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Abstract. We study a system of nonlinear elliptic partial differential equa-
tions involving divergence-form operators. The problem under considera-
tion is a natural generalization of the classical Brezis—Nirenberg problem.
We find conditions on the domain, the coupling coefficients and the co-
efficients of the differential operator under which positive solutions are
guaranteed to exist and conditions on these objects under which no pos-
itive solution exists.
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1. Introduction

In 1983 Brezis and Nirenberg [5] determined conditions on A € R and the
bounded domain @ C R™ (n > 3) for which the problem

{—Au:)\u+|u|"2u in (11)

u=20 on 0N

admits a positive solution and conditions on these objects under which problem
(1.1) does not admit a positive solution. They established the following theo-
rem. In the statement of the theorem, A\; = A;(—A) > 0 is the first eigenvalue
of the Dirichlet Laplacian.

Theorem A. (a) If n = 3 then there are constants A (1) < X\*(Q) satisfying
0 < A < A* < A1 such that (1.1) admits a positive solution if X € (A*, A1)
and (1.1) does not admit a positive solution if X € (0, \].
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(b) If n > 4 then problem (1.1) admits a positive solution if and only if
A€ (0,A).

The subtleties on the conditions under which problem (1.1) is solvable,
at least in the case that one is interested in positive solutions, are already
apparent in the statement of Theorem A-the solvability depends on the the
dimension n, the domain 2 and the value of \. These subtleties make problem
(1.1) a natural candidate for further investigation and indeed, these particular
subtleties were investigated in the works that followed [5]. For example, the
regime A > A; was considered in [6], where it was shown that if n > 4 then
problem (1.1) admits a non-trivial solution. In [17], problem (1.1) was realized
as a member of a more general family of problems and the local L?-summability
(or lack thereof) of the fundamental solution for —A was identified as a reason
for the fact that, in Theorem A, the conditions on A under which problem (1.1)
admits a positive solution depend on n. See also [14] where this n-dependence
was linked to the ability to improve sharp inequalities of Sobolev-type.

Even in the present day, extensions and variants of problem (1.1) con-
tinue to be posed and investigated. Let us discuss some general themes present
in the literature regarding extensions of problem (1.1) that are particularly
relevant for this work. One theme for extending problem (1.1) concerns the re-
placement of the operator —A with a different (and often times more general)
operator. Works in this family include the extension to the p-Laplacian [13],
the extension to an operator of Hardy type [11,14,17], the extension to the
fractional Laplacian [20] and the extension to more general divergence-form
operators [10,15,16,18]. A second family of extensions of problem (1.1) con-
cerns analogous problems having vector-valued unknown functions. Results in
this direction can be found in [1,12].

In this work we consider an extension of problem (1.1) having vector-
valued unknown function and second-order divergence form operator. The par-
ticular choice of problem we consider is motivated by primarily by [1,18]. For
n > 3 and for a bounded domain 2 C R™ we consider the problem

—Luy = auy + bug + afuy|*?|ug/fu;  in Q
—Lug = buy + cug + Blug[*|uz[*"2uy  in Q (1.2)
UL =ups =0 on 0%,
where L is the divergence-form operator
Lu = div (A(x)Vu) (1.3)
and A : Q — M(n;R) is a matrix-valued function. In order that £ retain many

of the essential properties of the Laplacian, we will assume that A satisfies

Al. A:Q — M(n;R) is continuous

A2. A(x) = A(z)" forall 2 € Q

A3. A is uniformly positive definite in the sense that there is a constant 7 > 0
such that

TI€)? < (A(x)€,€) for all (z,£) € Q x R™.
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Here and throughout this article we use (-, -) to denote the usual real Euclidean
inner product. Conditions A1, A2 and A3 ensure that £ is symmetric on H} (£2)
and that the first eigenvalue \;(—L) of —L is positive. To retain the character
of the nonlinearity in problem (1.1), the exponents o and 3 in (1.2) will be
assumed to satisfy

a+ 8 =2, (1.4)

where 2* = 2n/(n — 2) is the critical exponent for the embedding of H{(£2)
into Lebesgue’s spaces. The matrix

A= {‘; ﬂ (1.5)

consisting of the coupling coefficients of the linear terms on the right-hand
side of (1.2) will play the role of the parameter A in (1.1). Our aim in this
work is to determine conditions on n, A, 2 and A that guarantee the existence
of a positive solution to (1.2) and conditions on these objects that guarantee
that problem (1.2) does not have a positive solution. Here and throughout the
article, when we use the adjective positive to describe a vector-valued function
on 2, we mean that all coordinate functions are strictly positive in Q. Our
conditions on A will be expressed in terms of the eigenvalues of A which, in
view of the symmetry of A are necessarily real. Letting p1 < ps denote these
eigenvalues, we have

lel® < (A6€) < polé?  forall € € R, (1.6)

Generally, both the location of a global minimizer z( of det A and the behavior
of A near z( play roles in our formulations of sufficient conditions for existence
of a positive solution to (1.2). The statements of our existence theorems (The-
orems 1.1, 1.3 and 1.6 below) assume minimal regularity assumptions on A
and 0f). A standard iteration argument shows that under these assumptions,
any weak solution u to (1.2) satisfies u € L>°(Q) x L°°(€2). Thus, the standard
elliptic theory guarantees that any weak solution u to (1.2) possesses as much
regularity as A and 02 permit. The first of our existence theorems concerns
the case where A is not too flat near a global minimizer of det A and is as
follows:

Theorem 1.1. Let n > 3 and let Q@ C R™ be a bounded domain. Suppose A :
Q — M(n;R) satisfies Al, A2 and A3 and that o, € R satisfy both 1 <
min{a, 8} and (1.4). If there is xg € Q, Co > 0 and v € (0,2] such that

A(z) > A(zo) + Colz — xo| I, for all x € €, (1.7)

where the inequality is understood in the sense of bilinear forms, then there
exists a constant \* € (0, A\1(—L)) such that problem (1.2) has a nontrivial
weak solution whenever \* < puy < ps < A\ (=L). If, in addition to the above
hypotheses, b > 0 then then problem (1.2) has a positive weak solution.

Remark 1.2. Condition (1.7) implies that A(x)
forms for all # € €, so any x¢ € Q for which (1.
minimizer of det A.

> A(xo) in the sense of bilinear
7) holds is necessarily a global
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Our next two existence theorems concern the case where A satisfies a
flatness condition near a minimizer of det A. One of these theorems concerns
the case where a minimizer occurs in the interior of 2 while the other theorem
concerns the case where a minimizer occurs on 9f2.

Theorem 1.3. Let n > 4, let Q C R™ be a bounded domain and let A be a
matriz-valued function on Q satisfying A1, A2 and A3. Suppose o and 3 satisfy
both 1 < min{a, B} and (1.4). Suppose further that the eigenvalues py, po of A
satisfy 0 < p1 < po < A\ (—L). If det A attains its minimum value at xg €
and if there are constants Cy > 0 and v > 2 such that

A(x) < A(zo) + Colx — x| I, (1.8)

locally near xy in the sense of bilinear forms, then problem (1.2) admits a
nontrivial weak solution. If, in addition to the above hypotheses, b > 0 then
problem (1.2) admits a positive weak solution.

Theorem 1.6 below provides an existence result for the case where there is
a minimizer xg of det A on 92 and the boundary of €2 has favorable geometry
near xg. The following definition and example describe this geometry.

Definition 1.4. The boundary of 2 C R™ is said to be interior 6-singular at
xo € 0 with 6 > 1 if there is a constant § > 0 and a sequence (z;) C €2 such
that x; — o as i — oo and B(x;, §|lz; — 20]?) C Q.

Ezample 1.5. For § > 1, the set Q = {(z,y) € R? : y > |z|'/?} is interior
f-singular at the origin. Indeed, there is § > 0 such that for any 0 < 7 < 1,
B((0,7),67%) C Q.

Theorem 1.6. Let n > 5 and let  C R™ be a bounded domain. Suppose A :
Q — M(n;R) satisfies A1, A2 and A3; suppose a, 3 € R satisfy 1 < min{a, 5}
and (1.4); and suppose the eigenvalues 1 < po of A satisfy 0 < py < g <
M (=L). If det A attains its global minimum at a point xo € I such that (1.8)

is satisfied for some vy > 27?:44, and if 02 is interior 0-singular at xo for some

0 e [1, %), then problem (1.2) admits a nontrivial weak solution. If, in
addition to the above hypotheses, b > 0 then problem (1.2) admits a positive
weak solution.

Our nonexistence results are in Theorems 1.7 and 1.8 below.

Theorem 1.7. Let n > 3 and let QQ C R™ be a bounded domain. Suppose o and
3 satisfy both min{a, B} > 1 and o + B < 2* and suppose A : Q — M(n;R)
satisfies A1, A2 and A3. If b > 0 and ps > X\ (—L) then (1.2) has no positive
weak solution.

~ Now we consider nonexistence results for star-shaped domains. Define
B:Q — M(n;R) by

bij(z) = (Va(z), z — o),

where a;;(z) are the entries of A(x). Clearly B(z) is symmetric for each z € Q.



NoDEA The Brezis—Nirenberg problem for systems Page 5 of 27 75

Theorem 1.8. Let n > 3 and assume Q C R™ is of class C' and star-shaped
with respect to g € Q. Let A : Q — M, (R) satisfy A1, A2 and A3 and have
entries a;; € CY(Q\{zo}) for which x — b;j(z) = (Vai;(z),x — x0) extends
continuously to xo for all (i,7) € {1,...,n} x{1,...,n}. Assume further that
a and (B satisfy both min{a, 8} > 1 and (1.4) and that there is 0 < v < 2 and
a positive constant Cy for which

B(z) > vColz — zo|" I, (1.9)

for all x € Q in the sense of bilinear forms. There is a constant \. = A.(n,
7, 8%, 20, Co) > 0 such that if p2 < A, then problem (1.2) has no positive
solution w € C*(Q2) x CH(Q).

Remark 1.9. In (1.9), the factor « in the multiplicative constant yCy plays no
essential role in the proof of Theorem 1.8. However, writing the multiplicative
constant as such facilitates comparison between Theorems 1.1 and 1.8. Indeed,
condition (1.9) implies condition (1.7) so, under the hypotheses of Theorem
1.8 and the additional assumption that b > 0, there are 0 < A, < A* such that
a positive C'! solution of (1.2) exists for any \* < p; < s < A1(—L) but there
is no such solution for uy € (—o00, A.]. Estimates for A, and A* can be found
in Sect. 4 of [18].

This paper is organized as follows. In Sect. 2, some mathematical prelim-
inaries will be discussed and some notational conventions will be established.
In Sect.3 a sharp inequality of Sobolev type will be established. The sharp
constant in this inequality will be used in Sect. 4 to establish a sufficient con-
dition for existence of nontrivial solutions that arise as minimizers for a certain
constrained minimization problem. Section 5 is devoted to establishing the pos-
itivity of minimizing solutions. In Sect. 6 we prove Theorems 1.1, 1.3 and 1.6,
all of which are established by verifying that the infimum of a suitable con-
strained energy functional is sufficiently small. Section 7 contains the proofs
of the non-existence assertions of Theorems 1.7 and 1.8. Finally, Sect.8 is an
“Appendix” where we have collected some computations whose inclusion in
the main body of the manuscript would detract from the presentation.

2. Preliminaries

We assume throughout this section that A satisfies A1, A2 and A3. It is routine
to verify that for any such A the map H{(Q) x H}(Q) — R given by

(u,v) — /Q(A(J:)Vu,vw dz

is an inner product on H} () and that the corresponding norm is equivalent
to the usual norm on H}(Q2). In particular, denoting this inner product by
(") xa(Q)» we have that H}(Q), when equipped with (-, ) xA() is also a Hilbert
space. We will denote this Hilbert space by X4(f2). With £ as in (1.3), =L
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is symmetric and positive definite and the variational characterization of the
minimal eigenvalue \;(—L), which is necessarily positive, is

M(=£) = inf{uly, o) u € HY(Q) and [ull 2@y = 1. (2.1)
For R%-valued functions u = (uy, uz) we consider the product norms
||u||?)1A = ”u”.%(A(Q)xXA(Q) = HungcA(Q) + ”U’Q”.%(A(Q)
H’U’HIE,P(Q;RQ) = ||u||I[),P(Q)><LP(Q) = ||u1||’£p(9) + Hu2||1£p(g)a
where, for ease of notation, we set
Ha = Xa(2) x X4(Q)
H=H; = H}(Q) x H}(Q).

Although the equivalence of the norms || - [|z1(q) and || - [|x, () ensures that
H = Ha as sets, we retain the notational distinction as doing so will be
convenient for expressing the norms and inner products. For A as in (1.5), we
define the functional &5 : H — R by

B () = ulf, — [ (Auw) da. (2.2)
In view of (2.1), if po > 0 then

Oy (u) > (1 - Alétjz:)) [

In particular, if 0 < ps < A;(—L) then ®, is coercive. A weak solution to
problem (1.2) is a vector-valued function w = (u1,us) € H for which

/(A(:E)Vupij) do = / fitw)pjdz  forall @ = (p1,92) €H, j=1,2,
Q Q

where

fl(u) = aquy + bus + Ot|ul|a72|U2|ﬁ’U,1

(2.3)
fo(w) = buy + cug + Blur|*[uz|’ 2 us.
If o+ B < 2* then the functional Qa.a,g : H\{0} — R given by
INET
Qnsa,p(u) = a(u) 75 (2.4)
(Jo G(u) dz)
where
G(u) = Gap)(u) = [ur|*[us|” (2.5)

is of class C” whenever 0 < min{a, 3} and Qa.op is of class C' whenever
1 < min{a, f}. In the latter case, weak solutions to problem (1.2) can be
realized as critical points of Qa.o,3. We will not consider critical points of
Qp;a,p in full generality. Instead we will consider only minimizers of Qa.q 3-
To see that Qa.q,s is bounded below, note that Young’s inequality ensures

that ||G(u)||§/f(;) < C(a, 8,190) X5, llus|3 2+ ) whenever  and § are non-
negative numbers for which 0 < o+ 5 < 2*. Thus, if 0 < py < A1(—£L) then

from the equivalence of || || x, (o) and || || z1 () and the Sobolev inequality one
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easily deduces that Qa.q,s is bounded below by a positive constant. In fact,
since Q4. is invariant under the scaling u — du for any 6 € R\{0}, any min-
imizer of Q. 5 can be realized as a minimizer of ®, subject to the constraint
|G ()|t () = 1. In the following section we will discuss some quantities that
will allow us to formulate a sufficient condition for the restriction of ®, to
{u e H:||G(u)|r1 () = 1} to attain a minimum.

3. Sharp inequalities of Sobolev type

In this section we formulate some sharp inequalities of Sobolev type. The sharp
constants in these inequalities will be used in Sect.4 to formulate a sufficient
condition for the existence of a constrained minimizer of the functional ®
given in equation (2.2), see Proposition 4.3.

The sharp constant in the classical Sobolev inequality is

S = inf{HVuH%Z(Q) Lue C(Q) and [[ul o ) = 1}. (3.1)

It is well-known that S depends only on n [2,21]. In particular, S is independent
of  and the infimum in (3.1) is not attained unless = R™. In this case, the
infimum in (3.1) is attained by the Aubin-Talenti bubbles; the nonzero constant
multiples of the functions

Uxo,e(‘r) = ei(niz)/ZU((x - 'TO)/E)? (32)
where
Ulz) = (14 |z|?)~(n=2/2 for z € R® (3.3)

and (zg,e) € R™ x (0,00). For any symmetric positive definite matrix M
(having constant entries) we have the following generalization of the Sobolev
constant:

S(M)~! = inf {||u||3(M(Q) Lu € HY(Q) and [|u g ) = 1} . (34)

In this notation, the usual Sobolev constant in (3.1) is equal to S(I,,), where
I,, is the n x n identity matrix. The following lemma relates the values of S
and S(M). The proof follows from a routine computation using the change of
variable z +— P~'y, where P € GL(n;R) satisfies PMPT = I,,, see Appendix
A of [18] for details.

Lemma 3.1. Let M be a symmetric positive definite matriz. The Sobolev-type
constants in (3.1) and (3.4) are related via the equality

S(M) = (det M)~/"S. (3.5)

In the subsequent sections of the paper we will need an analogue of (3.4)
that compares the greatest lower bound of ||ul|7,, (together with a lower-order
term) as w varies among functions satisfying ||G(u)||z1(q) = 1, where G(u)



75 Page 8 of 27 B. Brown IV et al. NoDEA

is as in (2.5). We will develop a more general inequality that holds for R™-
valued functions under relaxed assumptions on G. These developments may be
of independent interest. In the confines of this section let us use the notation

H = Hg (G R™) = HY(Q) x --- x HJ(Q)
HA = XA(Q;Rm) = XA(Q) X o+ X XA(Q)

and let the corresponding norms be denoted by

m
lullde = llusli )

j=1
ull, = Z luil1 % ()

Still in the confines of this section, we will relax the assumptions on G. Specif-
ically, rather than assuming G has the explicit form (2.5), we will only assume
that G : R™ — R satisfies

Gl. G e C(R™;R) and G(7) > 0 for all 7 € R™.
G2. G is homogeneous of degree 2* in the sense that G(A1) = |A|? G(7) for
all A € R and all 7 € R™.

Of course, for m = 2, the function G in (2.5) satisfies both G1 and G2. To
describe the vector-valued analogue of (3.4), note that for any 7 € R™ \ {0}
we have

G(r) = |7 G(Ir|"'7) < |7|* Mg,
where

Mg = max G(7). (3.6)

TeSm—1

Therefore, for a symmetric positive definite constant matrix M and for u =
(w1, um) € H\ {0}, writing u|*> = 327" | w3 we have

2" /2 2/2*

2/2* . m
(/ G(u) dx) < Mé/Q / Zu? dx
Q o \io
2/2 7” (
m

2 2%
o Z 5113, )

= M” s<M>||u||HM.

1% dx) " (3.7)

This computation shows that the quantity

S(M;G)™! := inf {||u||r2HM cu € H and / G(u) dz = 1} ) (3.8)
Q



NoDEA The Brezis—Nirenberg problem for systems Page 9 of 27 75

is well-defined and satisfies S(M;G) < Mé/ s (M). The following lemma
shows that equality holds.

Lemma 3.2. Let M € M(n;R) be a symmetric positive definite matriz. If G
satisfies G1 and G2 then S(M;G) = Mé/Q S(M).
Proof. In view of (3.7), we only need to show that S(M; G) > Mé/Z*S(M). To

do so, choose functions (¢;);2, C Hj () for which both [[¢s]| 2 o) = M51/2*
for all 4 and
2
lelaw@ gyt
H‘piHiz*(Q)

Let 7 € S™ ! satisfy G(7) = M. The functions u; defined by u; = ;7 satisfy
both HG(U’L)HLl(Q =1 and

—2/2* _
sl = 3 100751 oy = il ey — M™% (M),
Jj=1
This establishes the desired inequality. O

Remark 3.3. A simple rescaling argument shows that, under the hypotheses
of Lemma 3.2, for all (zg,d) €  x (0,00), the quantity

S10.5(M;G)™ = inf {|u||${M tu € H(xo,d) and / G(u) dz = 1}
Q

satisfies Sz, s(M; G) = S(M; G), where
H(20,6) = Hy(QN B(xg,0); R™)
= Hy (2N B(x0,6)) x ... x HJ (2N B(x,6)). (3.9)
If we have a non-constant matrix A : Q@ — M (n;R) in place of the con-

stant matrix M, we consider the following inequality for scalar-valued func-
tions:

[ull 2 ) < Cillullz, @) + Callulls(q)- (3.10)
In this case, the analogue of the sharp constant S(M) in Eq. (3.4) is
N(A) = inf{C; : there exists C2 > 0 for which(3.10) holds for all u € Hg(Q)}.
(3.11)

It was shown in Proposition A.1 of [18] that N'(A) = m, /"8, where my =
min{det A(z) : € Q}. To describe the vector-valued analog of (3.11) we
consider in place of (3.10) the inequality

2/2
([otwar)  <cilulb, + el (312)

and the corresponding sharp constant

N(A;G) =inf{C} : there exists C2 > 0 for which (3.12) holds for all u € H}.
(3.13)

The value of N'(A4;G) is given explicitly in the following proposition.
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Proposition 3.4. Let n > 3 and let @ C R™ be a bounded open set. If A :
Q — M(n;R) is a matriz-valued function satisfying A1, A2 and A3 and if G
satisfies both G1 and G2 then

N(A;G) =m " MY* s, (3.14)

where m  is the minimum value of det A : Q — R, Mg is as in (3.6) and S is
the sharp Sobolev constant in given in Eq. (3.1).

Remark 3.5. Under the hypotheses of Proposition 3.4, for any zq € Q, apply-
ing Lemma 3.2 with M = A(xg) gives

S(A(x0); G) = (det A(xo)) V" MY*S.

By choosing xy to be a minimizer of det A, we see that the assertion in Propo-
sition 3.4 is precisely the assertion that

N(A;G) = max{S(A(x0); G) : 29 € Q} = N(4;G). (3.15)
Proof of Proposition 3.4. In view of Remark 3.5, to establish Proposition 3.4

it is sufficient to show that N'(A; G) > N(A; G) and that N'(4; G) < N(4;G).
These inequalities are established separately in Lemmas 3.6 and 3.7 below. [J

Lemma 3.6. Under the hypotheses of Proposition 3.4, if C1 and Cy are con-
stants for which inequality (3.12) holds for all w € H then C1 > N(A;G). In
particular, N(A4; G) < N(4;G).

Proof of Lemma 3.6. We proceed by way of contradiction. Suppose C; € (0,

N(A4;@)) and Cs € (0,00) are constants for which (3.12) holds for all u € H.
By the definition of N'(A;G), there is 7o € Q for which C; < S(A(x); G).
Let us fix any such xg and, for ease of notation, set M = A(xg). Since A
satisfies A1, A2 and A3, for any € > 0 there is § > 0 such that

(1= e)(ME, &) < (A(@)€,§) < (1+€)(ME,E)
for all (z,&) € (2N B(xg,d)) x R™.
Fixing € > 0, choosing § € (0, 1/€) as such, one finds that for any u € H(zo, ),

||u||3{A <(l+e) Z/Q(MVuj,Vuj) de = (1+ e)||u||3{M, (3.16)
j=1

where H(zg, ) is as in (3.9). Moreover, still for u € H(z,d), using Holder’s
inequality, the Sobolev inequality and the fact that | - || g1 (o) and [ - [[x,, ()
are equivalent norms, we find that

[l @upmy < C8°llullfy, < Celluliy,, (3.17)

for some constant C' that is independent of both w and e. In view of estimates
(3.16) and (3.17), for any € > 0 and any u € H(zo, ) satisfying |G ()| 11 () =
1 we have

1 S ClHuH?HA + CQHUH%Q(Q;]RWL) S Cl(l + OE)H’U,”?_[M (318)
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Choosing € > 0 sufficiently small so that 2C(1 + Ce) < S(M;G) + C; and
choosing 6 = d(e) € (0,+/€) small enough to ensure that (3.18) holds for all
w € H(xg,0) for which [|G(u)|[11(q) = 1 gives

S(M;G) + Cy

1< T S g,

for all such w. This implies that 2/(S(M;G) + C;) < S(M;G)~! and thus
contradicts the assumption C; < S(M; Q). O

Lemma 3.7. (e-sharp inequality) Under the hypotheses of Proposition 3.4, for
every € > 0 there is a constant C¢ > 0 such that the estimate

2/2" o
(/QG(U) dw) < N(A;G) + )lullfy, + Cellulizomny  (3:19)

holds for all w € H. In particular, N (A;G) > N(4;G).

Proof of Lemma 3.7. The proof is a standard partition of unity argument.
Since A satisfies A1, A2 and A3, and since 2 is compact, for all ¢g > 0 there
is >0, N € Nand {2/}, C Q such that Q C Ufil B(z*,4) and

(1 - e0){A(z")€, €) < (A(2)€,€) < (1+ e0)(A(2")€, €)
for all (z,€) € (2N B;) x R", (3.20)

where, for ease of notation we set B; = B(z%,§). Let {n;})¥.; be a partition

of unity subordinate to the open cover {B;}}, for which nil /2 ¢ C(B;). For
any u € H\{0}, performing routine estimates gives

2% 2/2*
2* 2

([)G(“)d“;)w - L(Zmuﬁeum-lu)w?) o
< ([ a )
:Z</ Gl dx>2/2* (3.21)
< XS OV, ..
N(4:€) anunaw).

We estimate the sum on the right-most side of (3.21) by using property A2,
the left-most inequality in (3.20) and the equivalence of the norms || - || and
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| ||, as follows:

2
S Il
1
m

= Z Z /Q (m(A(xi)VuJ, Vu]> + 2<A($Z)mVu]7 ujv\/ﬁi>

+“?égﬂf)vyﬁﬁgvyﬁﬁ» dz (3.22)

i3, + eollwli? + CllullZz @zm)

1760

1
< (122 +Gheo) Il + Clulla ey

where Cj is any constant for which || - ||x < Co|| - ||», and C' > 0 depends on
A, €, Q and {n;}. Since €y > 0 is arbitrary, the asserted estimate follows from
using estimate (3.22) in estimate (3.21). O

With Proposition 3.4 in hand, combining (3.15) and Lemma 3.7 gives the
following e-sharp inequality.

Corollary 3.8. Under the hypotheses of Proposition 3.4, for every € > 0 there
18 a constant C, > 0 such that the estimate

2/2
( [ ) dx) < W(A:G) + ull, + Collulapan,  (3.23)

holds for all uw € 'H.

4. A sufficient condition for existence

We assume throughout this section that G is as in (2.5) and we use the notation
N(4;, ) := N(4;G), (4.1)

where N (A4; G) is defined (for more general G) in (3.13). We start by stating a
lemma that carries the same sentiment as the classical Brezis—Lieb lemma [3],
but is suitable for application to functionals of the form w — ||G(u)| 11 (q). A
similar lemma has been used previously in [1], see also Proposition A.1 of [4].
For the convenience of the reader, we provide a proof in the “Appendix”.

Lemma 4.1. For g = (q1,...,qm) € (1,00)™ and £ = (&1,...,&n) € R™ let

m

H(E) = [&]™ &l - &m|" = [T 61"
j=1
and set p = Zj qj. If uf = (uf, ... uk) is a bounded sequence in LP(Q;R™),
and if there is u = (uy,...,um) € LP(Q;R™) for which u* — w a.e. in Q

then
lilgn/ |H(u*) — H(u" —u) — H(u)| dz = 0.
Q
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By choosing m = 2 and ¢ = («, 3) in Lemma 4.1 we obtain the following
corollary. It is the version of Lemma 4.1 that will be of use to us in the sequel.

Corollary 4.2. Let o, 8 € R satisfy 1 < min{a, 8}. If (u¥)2 | is a bounded
sequence in LA (Q) x LoTA(Q) and if there is uw € LT (Q) x L*P(Q) for
which u* — w a.e in Q, then with G as in (2.5),

/Gu—u dx—/G dx—/G ) da + o(1).

With @, as in (2.2) and G as in (2.5) we define Ky (4;a, 3) by

G(u) dz = 1} . (4.2)
Q

By making cosmetic changes to the argument in the final paragraph of Sect. 2
one finds that K (A;«a,3)~! is strictly positive whenever a and 3 are non-
negative, 0 < a + # < 2* and the largest eigenvalue po of A satisfies 0 <
po < A (—L). The following proposition provides a sufficient condition for the
attainment of the infimum in (4.2).

Kz(A;a,8)7! = inf {@A(u) :u € 'H and

Proposition 4.3. Let n > 3 and let @ C R™ be a bounded open set. Suppose
A:Q — M(n;R) satisfies A1, A2 and A3. Let o, 5 satisfy both 1 < min{«, 8}
and (1.4) and let G be as in (2.5). With A as in (1.5), suppose the mazimum
eigenvalue po of A satisfies 0 < pg < M\ (—=L). If

KA(A;aa/B)il <N(A;a7ﬂ)7l (43)

then the restriction of the functional ®, to the set {u € H : ||G(u)||1 () = 1}
attains its minimum.

Proof of Proposition 4.3. For ease of notation we write K = K (A4;«, ) and
N = N(4;a,B). Let (uF)2, C H satisfy both

/G yde =1 for k=1,2,... (4.4)
and
K™ 4 0(1) = @5 (ub) = |[u"|3,, — / (AuP uk) dz. (4.5)
Q

The assumption 0 < ps < A (—L) ensures the coercivity of ®5 so (4.5) ensures
that (u*)2°, is bounded in H 4. In view of the reflexivity of H 4 there is u € H
and a subsequence of (u¥)%e, (still denoted u*) along which u* — u weakly
in H4. The equivalence of the norms || - ||, and || - ||y on H ensures that
(uk)2e, is also bounded in M, so the compactness of the subcritical Sobolev
embedding guarantees the existence of a subsequence of u* along which u* —
win L2(Q) x L3(Q) and u* — wu a.e. in Q. Since u¥ — u weakly in H4 we
have

2
o~ wlf, = e, ~ 23 [ AV V) do
J=1

= [[u*3,, = llullf, +o(1).
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Using this equality in Eq. (4.5) and in view of the L? x L?-convergence u* — u

we obtain

K1+ o(1) = ||u||%{A — / (Au,u) doz + Huk — u||%(A +o(1)
Q
" (4.6)
>t ([ Gwan) bt -l o),
Q

Moreover, for each k € N and for any € > 0, applying Corollaries 3.8 and 4.2,
then using (4.4) gives

" — ull,

2/2*
> (N +e) G (u* —u da:) - Ce”uk —ull729)xr2(0)

<

(U
=N+e~ (QG dx—/G dx) +o(1)
(1

2/2°
=N+ ! —/G da:) +o(1)

N

) 2/2
> (N 46 (1 ([ ctwa) ) +o(1). (47)

Using (4.7) in (4.6) and letting k — oo gives

2/2*
(K'—WN+e™h (1 — ( i G(u) da:) ) > 0. (4.8)

Fatou’s lemma and (4.4) give

l—hmlnf/G dx>/hm1nfG dx—/G

so by choosmg € > 0 small enough so that K > A + ¢, inequality (4.8) implies
that [, G(u) dz = 1. Using this in (4.6) gives |[u* — [, — 0. Finally, from
(4.5) and the continuity of ®5 on H we obtain K1 = &, (u). a

Since minimizers of ®5 constrained to the set {u € H : ||G(u)||11(q) = 1}
are nontrivial weak solutions to (1.2), we obtain the following corollary.

Corollary 4.4. Under the hypotheses of Proposition 4.3, problem (1.2) has a
nontrivial weak solution.

5. Positivity of minimizing solutions

We assume throughout this section that G is as in (2.5) and we use the notation
(4.1). We establish conditions that guarantee that if w € H minimizes the
functional ®, given in (2.2) subject to the constraint ||G(u)|[z1(q) = 1, then
one of u or —u is a positive solution to (1.2).
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Proposition 5.1. Suppose 0 < p1 < po < A\ (—L) and suppose o and 3 satisfy
1 < min{e, 8} and (1.4). If b > 0 and if uw € H is a minimizer of the restriction
of @4 to the set {u € H : ||G(u)| 11 () = 1}, where G is as in (2.5), then either
u; > 01in Q for j =1,2 oru; <0 in Q for j =1,2. In either case we can
arrange that uw > 0 in Q by considering —w in place of w if necessary.

Proof of Proposition 5.1. For any u € H, since Vu; = 0 a.e. on {u; = 0}
we have (A(x)V(Ju;|), V(Ju,|)) = (A(x)Vu,, Vu;) on {Vu,; # 0}. More-
over, writing |u| = (Juy|, |uz|), we have G(|u|) = G(u) and

(Mul, [u]) = (Aw, u) + 2b(|ur||ug| — uruz).

Therefore,
Dp(lu]) = Pa(u) — 2b/ (Jur|lug| — urug) da. (5.1)
Q

Now suppose w minimizes ®, subject to the constraint ||G(u)||z1(q) = 1. For
such u we have @ (u) < Dp(|ul), so Eq. (5.1) gives

b/ (lur||uz] — urug) dx < 0.

Q

The non-negativity of the integrand together with the assumption that b > 0
gives

(uf +uy)(ug +uy) = Jur||ue| = wiue = (v —ui )(ug —uy) a.e. x € (),

from which we deduce that ufu, + ujus = 0. Since both summands in this
equality are non-negative we obtain both

ufuy =0 and uyuy =0 a.e. in Q. (5.2)

In particular, using the notational conventions u* = (uf,uj) and u~ =
(uy,uy) we have (Au™,u~) =0 a.e. in Q and therefore

<I>A(u) = CI)A(U+) + <I>A(u_). (5.3)

With Ka(A; o, 8) defined in (4.2) we write K = Kx(A; a, §) and we ob-
serve that the assumptions on ps, o and ( ensure that K > 0. The assumption
that u is a constrained minimizer and decomposition (5.3) give

1= K@A(u)
= K(®p(ut) + @p(u))

> ( Gt dx>2/2* + ( [ G dx)z/?.

Using this estimate, together with the fact that (5.2) guarantees that G(u) =
G(u™) + G(u™) we have

= ([ ) +(fowrw)”

( Gl dx) 2/2" (5.5)
=1,

(5.4)
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where the second inequality holds in view of the elementary inequality (a +
b)* < a®+b° fora > 0,b > 0and 0 < s < 1. Since equality holds in
this elementary inequality if and only if at least one of a or b is zero and
since we have equality throughout (5.5), we deduce that either ujuj = 0 or
uy uy = 0. Since P (u) = P (—u) we may assume with no loss of generality
that u; u; = 0. In particular we have G(u) = G(u™) so [|G(u™)|p1(q) = 1.
Now, the coercivity of ®, ensures that ®(u~) > 0, so we have

1= K(@A(u+) + <I>A(u_))
> K®p(u')

> ( /Q G(u™) dx) 2/2*

=1,
from which we deduce both ®,(u™) = K_1||G(u+)||i/12(;) and @, (u~) = 0.
In view of the coercivity of ®,, the second of these equalities ensures that
u~ = 0. In particular, u™ = w is a constrained minimizer of ®, for which
u > 0 in Q. Up to a positive constant multiple, u is a non-negative weak
solution to (1.2):

—Luy = auq + busg + au?_lug in Q

—Lus = buy + cug + ﬂuf‘ug_l in Q

up =ug =0 on 0.

The positivity assumption on p; and po (the eigenvalues of A) ensures that
the diagonal entries of A satisfy ¢ > 0 and ¢ > 0. Combining these inequalities
with the assumption b > 0 we find that Lu; <0 in © for j = 1,2. The strong
maximum principle together with the fact that w > 0 in ) shows that either
u > 0in Q or w = 0 in 2. The latter of these possibilities is ruled out by the
fact that |G (u)||L1(q) = 1. O

6. Proofs of existence theorems

In this section we prove Theorems 1.1, 1.3 and 1.6. In view of Proposition 4.3
and Corollary 4.4, in order to establish existence of a nontrivial solution to
(1.2), it is sufficient to construct a test function w € H for which ®,(u) <
N(A;a, )71, where N(4;a,3) is as in (4.1) with G given by (2.5). For this
choice of G one easily verifies that Mg as defined in (3.6) satisfies

i 8/2* —af2*
e =(5) +(5)

so from Eq. (3.14), the explicit value of N'(4; a, §) is

N(A; o, B) = m " ((g)ﬁ/z* + (;)a/z*> B S. (6.1)
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6.1. Construction of test function when 0 < v < 2

Proof of Theorem 1.1. In view of the boundedness of €2 and the assumption
that 0 < v < 2, the following Hardy—Sobolev type inequality holds for all
u € H(Q)

/ u? do < Ko(n7’7,Q,$0)2/ |z — xo|7|Vul? d. (6.2)
Q Q

This inequality is a special case of the Caffarelli-Kohn—Nirenberg inequalities
established in [7]. For any u € H, assumption (1.7) and inequality (6.2) give

2 .
leslle, > Z/ (A(20)Vuy, Vuz) + Colz — zo["|Vuy|?) d
2/2* ) (6.3)
> S(A(wo); @, 8)7 (/ G(u)dm) +cof<o<n,v,sz,xo)—22/ u? dz,
Q = Q

where S(A(z¢); o, 3) is as in (3.8) with G(u) = |u;|*|uz|? as in (2.5). Define
O to be the set of A > 0 such that the inequality

Julfe, = Sty ( [ ()dx>2/2*+xijgu?dx

holds for all u € H. Estimate (6.3) ensures that CoKo(n,v,Q,2¢)"2 € O, so
© # (. An elementary argument shows that © is both closed and bounded
above. Setting \* = sup© we have both \* > CyKoy(n,v,Q,x9)"2 and, for
every u € 'H,

i/ﬂ(A(m)Vuj,Vuj) dz > S(A(zo); o, B) ! (/Q &(w) dx>2/2* +/\*i/9u? N

Moreover, the following short computation using the variational characteriza-
tion of A1(—L) shows that \* < A;(—L). Let ¢» > 0 be an eigenfunction for
—L corresponding to Ai(—L). For ¢ = (¢, 1) we have

20 (=L)1YN1Z2 ) = el

2/2* 2
> S(A( (/ Gl dx) S el

j=1
> 2)\*||7/)||2L2(Q)»

from which we deduce \* < A(—L). Next we show that the assumption p; >
A* ensures that Kj(A;a,3)"t < S(A(z0); o, )71, where K, is defined in
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(4.2). By definition of A*, if gy > A* then there is w € H such that

Z/ x)Vu;, Vu;) do —/(Au,u) dz

Q

< Z/ x)Vu;, Vu,) — ulu?) dz (6.4)

< S(A(wo);a, 8)~ (/Q G(u) dx) o

Since the hypotheses of the theorem ensure the coercivity of ®,, any u satisfy-

ing (6.4) must also satisfy [, G(u) dz > 0. From inequality (6.4) and the fact

that ®, is homogeneoub of degree two, we find that v = ([, G(u) dz) Y2y

satisfies [, G(v) dz = 1 and @ (v) < S(A(zo); o, 3)~'. Now Remark 3.5 to-
gether with the fact that xy is a minimizer of det A (see Remark 1.2) implies
that S(A(zo); o, 8) = N(A;, ). Therefore, Corollary 4.4 ensures the exis-
tence of a nontrivial solution to (1.2) whenever \* < uy < ps < A (=L).
Finally, if b > 0 then an application of Proposition 5.1 ensures the existence
of a positive solution to problem (1.2). O

6.2. Construction of test function when v > 2

In this subsection we construct a test function w € H for which
Qrsap(u) < N(A;a,8)"

Having constructed such a w, and for ¢ defined by ¢ = = fQ ) dz, the
function cu demonstrates that the hypotheses of Proposmon 4.3 are satlsﬁed
so Corollary 4.4 ensures the existence of a nontrivial solution to (1.2). Since
the method of constructing w in the case that a minimizer of det A is located
in the interior of ) differs from the method of construction in the case that a
minimizer of det A is located on 0f), we consider these two cases separately.

6.2.1. Case 1: There is a minimizer of det A in €. In this case we show that
estimate (4.3) holds by constructing a test function from the Aubin-Talenti
bubbles given in (3.2), (3.3).

Proposition 6.1. Under the hypotheses of Theorem 1.3, but without the as-
sumption that b > 0, there is u € H\{0} for which Qa.a 5(u) < N(A4;a, )71

Proof. We assume with no loss of generality that det A is minimized at x¢ =
0 € Q and we set

ma = mindet A = det A(0).
Q

Since A(0) is symmetric and positive definite there is an orthogonal matrix
Q € M(n;R) such that QA(0)QT = D, where D = diag(ay,...,a,) and
0<a; <ay <---<a, are the eigenvalues of A(0). Setting P = D~/2Q, we
have PA(O)PT = I,,, we have a;|y|?> < |P~'y|? < a,|y|? for all y € R™ and
we have |PT¢? < ay'|¢]? for all € € R™. For any w € ‘H, using the change of



NoDEA The Brezis—Nirenberg problem for systems Page 19 of 27 75

variable x = P~ 1y, setting v;(y) = u;(P~'y), and using the above-mentioned
properties of P as well as assumption (1.8) yields

2
Pp(u) < Z/ ((A(0)Vuy, Vu;) + Colz|"|Vu;|?) dx—/ﬂ(Au,u) da

= (det P)~ [Z/PQ (PA(0)PT Vv, Vy) + Co| P~ 1y|Y[PT v, [?) d

—/PQ(Av,v>dy}

2
< (det A(0))1/2 [Z/ (|V’U 12+ Coa/2a] My| |V, ) —/ (Av,v) dy:|
=1 PQ
(6.5)
Similarly, using the same change of variable, we have
/ Glu) dz = (et AO)Y2 [ G(v) dy. (6.6)
Q PQ

For € > 0 consider the Aubin-Talenti bubble

n—2

- € e
0,6(117) = Cpn <62+|$|2> s

where ¢, is a normalization constant chosen so that |[Up,el| 2+ (gny = 1 (inde-
pendently of €). For convenience we will write U in place of Uy and U, in
place of Uy .. Let 6 > 0 satisty B(0,26) CC P and let n € C°(R") satisty
0<n<1,n=1in B(0,6),n=0in R"\ B(0,25) and |Vn| < C5~L. Set

we(y) = n(y)Ue(y). (6.7)
v =, = (Vaw,, \/Bwe),

and for u.(x) = v.(Px), estimate (6.5) gives

@A(ue) 2 C an . ,
(a + B)(det A(0))1/2 ‘/n (Vwel 20|y | V| )

_aa+2b\/a\/ﬁ+cﬁ W d
N a+p Rr

< —Ml/ w? dy
RTL
2/2*

( | Glue) da:)m* = (a®B” det A(0))/* ( /R wel” dy) . (6.10)

Therefore, using (6.9), (6.10) and the explicit value of N'(4; a, 8) given in (6.1)

we have

(6.9)

Y

and (6.6) gives

<I>A(u€)

(Jo Gluc) de)

N(A;a,p)

7 < SQ(w,), (6.11)
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where @ is defined for ¢ € C>°(R™)\{0} by

_ ) 2/2*
Qo) ([ 1o az) = [ (196 + CoazlZar W I9PR) dy - [ o

(6.12)
By performing standard computations, one can show that
[Vwel[2@ny = S+ O("?) (6.13)
Hweni%(Rn) =1+ O(En) '
and
bie?|loge| + O(e?) ifn=4
2 4 g
We ny = 6.14
|| HL2(]R ) {bn€2 + O(en_g) lf n Z 5’ ( )
where by = 0121|SBI and b, = C$L|Sn_1|27,,_3(7:/_E45¥L({721)_1)/2) for n > 5. Moreover,

using the assumption v > 2 and by performing elementary computations one

can show that
O(e?) ifn=4
| Vw,|? dy = 6.15
[ v dy {0(62) o (6.15)

If n = 4 then estimates (6.13), (6.14) and (6.15) give
1 — Su1bse?|loge| + O(€2)
1+ O0(e*)

where the final estimate holds provided € > 0 is sufficiently small. Using this
in (6.11) shows that if € > 0 is sufficiently small then

‘PA (ue)
(fQ G(ue) dx) v

Similarly if n > 5 and e > 0 is sufficiently small then estimates (6.13), (6.14)
and (6.15) give

SQ(wg) = <1,

<N(4;a,p8)7 L (6.16)

1 — Spuibye? + o(€?) <1,
14+ 0(en)

from which estimate (6.16) follows. O

SQ(we) =

Proof of Theorem 1.3. Since the hypotheses of Propositions 6.1 and 4.3 are
satisfied, the infimum in (4.2) is obtained by some w € H\{0}. Any such w is
a nontrivial solution to (1.2). If b > 0 then Proposition 5.1 ensures that one of
u or —u is a positive solution to (1.2). O

6.2.2. Case 2: There is a minimizer of det A on 9.

Proposition 6.2. Under the hypotheses of Theorem 1.6, except for the positivity
of b, there is uw € H for which [, G(u) dz =1 and ®p(u) < N(A;o, 8)7 .
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Proof. We assume with no loss of generality that zo = 0. For uw € H, using
the change of variable x = P~!y and setting v(y) = u(P~'y) as in the proof
of Proposition 6.1, we still have estimate (6.5) and Eq. (6.6). It is routine to
check that the interior #-singularity assumption on 92 at xg = 0 guarantees
the interior f-singularity of OPQ at yo = Pxg = 0. Indeed, if (z;) C Q with
x; — 0 and B(z;,0]z]?) € Q, then for y; = Px; we have B(y;,0|y;|’) € PR,
where § = ay, \/* 9/2(5 For x; and y; as such, let n € C2°(R"™) satisfy 0 <n < 1,
n=1in B(0,6/2) and = 0 on R™\B(0,4) and consider the test function

¢iy)=n (y Zgy> Ue (y — i),

%

where and €; = |y;| and p satisfies
2(n—2)0
n—4

i —0(n—2)/2 Y—UYi
Pily) = '/ W0 (9> ;

< 2p <. (6.17)
We have

i ei

where w, is given in (6.7), so Egs. (6.13) and (6.14) yield the following esti-
mates

\V4 i -
|| ¥ ||2[2(R7L) - H Cw6579”22(Rn) 871 + O(Egn— )(p ))
4 L2" (R I — n(p—0
||<,02||22*( n) Hw6570”22*(Rn) =1 +O(€i (p )) ( .18)
' ' L = n—2)p—(n—4)0
H ”22(R") bnegp +O(€Z( )p=( ) )

Moreover, since 6 > 1, for any y € supp ¢° we have |y| < Ce; and therefore
[ wPrvet a<oq [ Ve dy = o) (6.19)
R’ﬂr Rn

Using estimates (6.18) and (6.19) we find that for 4 sufficiently large,

SO(4) = 1 — p18bpe? + O(e} (n=2)(p= 9))—|—O(e;y)
7 140

where Q is as in (6.12) and the inequality holds by (6.17). Finally, for i =
1,2,..., setting v' = (Vay', /By') and u'(x) = vi(Px), if i is sufficiently
large then we have

<1

)

‘I’A( ‘)
(fn dz)

For any such 4, the function (fQ G(ul) dl‘)_l/2 u® satisfies the assertion of
the proposition. O

N(4;a,3

57 < SQ(p") <1

Proof of Theorem 1.6. Since the hypotheses of Propositions 6.2 and 4.3 are
satisfied, the infimum in (4.2) is obtained by some u € H\{0}. Any such wu is
a nontrivial solution to (1.2). If b > 0 then Proposition 5.1 ensures that one of
u or —u is a positive solution to (1.2). O
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7. Non-existence results

In this section we provide proofs for the non-existence results in Theorems 1.7
and 1.8. We start with the proof of Theorem 1.7.

Proof of Theorem 1.7. Let Ay = A1(—L) > 0 be the first eigenvalue of —L with
homogeneous Dirichlet boundary data on €2 and let ¢ > 0 be a corresponding
eigenfunction. The assumption b > 0 and the Perron-Frobenius theorem (ap-
plied to A+ k1> for suitably large k > 0) ensure the existence of an eigenvector
¢ = (&,&) € R? for A corresponding to eigenvalue s such that & > 0 for
j =1,2 and at least one of & or & positive. If u € H is a positive weak solu-
tion to (1.2) then testing the first equation of (1.2) against &1 and using A2
we have

/ (auy + bus + au?71u5)51<p der =& / (A(2)Vuy, V) do
Q Q
= fl/<A(33)V<P7VU1> da
= —§1/ div (A(x)Ve)uy dz

= /\151/ U1 dx.
Q

Similarly, testing the second equation in (1.2) against 2¢ gives

/(bu1 + CUu2 -+ 6’&1 U2 )52@ dx = )\152/ YUz dl?
Q

Summing these two equalities and using both the symmetry of A and the
assumption that A& = po€ gives

/ (au?_lug& + ﬁu‘l"ug*l&) pdr =X\ / (u1&1 + u2é2)p dz — / (Au, &) do
Q Q Q
=1 / (u1&1 + u2b2)p do — / (A&, u)p do
Q Q

= (A1 — p2) /Q(ulfl + u282)p da.

Since both of [, (au‘f §1 + Buf u2 52) @ dr and [, (u1& +ugbs)p da are
positive, we conclude that ps < Aq. O

The following Pohozaev-type identity for vector-valued functions is a spe-
cial case of the general variational identity established for C? solutions in
Proposition 3 of [19]. The C? assumption was relaxed in [9] where an approx-
imation technique was used to prove the identity for C'' solutions.

Lemma 7.1. Suppose a;; € C1(Q\ {x0}) and that b;j(x) = (Va;j(x),z — o)
extends continuously to zg. If w € C1(Q) x C1(Q) is a weak solution to (1.2)
and if a, B satisfy both min{a, 8} > 1 and (1.4) then the following identity
holds
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1 2
52 [ (4@ V. V) e v) S,

/(Au u) a:—fZ/ )V, Vuy) da. (7.1)

Proof of Theorem 1.8. Assumej with no loss of generality that x¢o = 0. Since
uj =0 on 092 we have Vu; = %u so the integrand on the boundary integral

on the left-hand side of (7.1) becomes

2/ ou\ 2
(A5, F5) (o) = () (o) 3 (52)

Since Q2 is star shaped with respect to g = 0, we have (z,v) > 0 and this
quantity is not identically zero on 9. By assumption A3 we have (A(z)v,v) >
0 and from the Hopf Lemma for C! subsolutions for operators in divergence
form (see [8]) we have ( Ifj) > 0 on 09 for j = 1,2. In particular the left-
hand side of (7.1) is strictly positive. Therefore, the Pohozaev-type identity
(7.1) together with the aid of the assumption 0 < v < 2, the assumption (1.9)
and inequality (6.2) we obtain

2
mZ/u?de/(Au,u) dz
oo Q
> 72/ z)Vuj, Vu;) do

7vCo
TZ/Q@MVUJF dx
j=1

Y

v

2
LCOKO(n v, Q,20)” Z/ u2- dz.

In particular, setting A, = VQOKO(n,%Q,xO) 2 we ﬁnd that if uo < A, then
there is no positive solution u € C1(Q) x C1(Q) to (1.2). a
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8. Appendix

Here we record the details of some computations whose inclusion in the main
body of the text would have distracted from the story.

Proof of Lemma 4.1. For any £, ( € R™ we have

m

H(E) = H(E—¢) =D (A&, Q) + Bi(&,0)), (8.1)

=1

where

Ai(6, Q) = (1GI" = 1& = GI" = 1GI*)Pi(S, Q). Bi€, Q) = [GI" Pi(€, ),

and

i—1 m
PO =115 -¢l"- I lel™.
j=1 l=i+1

In our notation for P;(&, () empty products (for example products of the form
H?Zl ¢; or of the form H?LmH ¢;) are understood to equal 1. For any 1 <
r < oo and any € > 0, the inequality

lla+6]" = la” — [b]"] < elal” + Cefb]"

holds for all a,b € R. For each ¢ = 1,...,m, applying this inequality to to the
first factor of A;(&,¢) (with a =¢&; — (;, b= (; and r = ¢;) gives

16l % — & — Gil™ — 1G]] < €l& — Gl + CelG
Therefore, using (8.1) we obtain

[H (&) = H(§—¢) — H()|

qi qi

<Y (elé = Gl A+ CelGl ™) Pal&, ©) + 1¢i|™ | Pi (€, )
i=1

m
— T¢I
j=2

for all ¢ > 0 and all (£,¢) € R™ x R™. For ¢ > 0, and with u* as in the
hypotheses of the lemma, setting
+
qiR:(“’“»“))

(8.2)

1=

m
=2

" ('HW) —H(w —w) - Hw)| - e 3 fuf —u,
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we have fF — 0 a.e. in Q. Moreover, in view of (8.2) we have 0 < f*F < g,

where
Pri(uf u) = [T Il |+ > Bi(u,w).
i=2

~a S
Jj=2
For every i = 1,...,m, P;(u* u) is bounded in LP/(P=4)(Q) and

- {HHIWI‘” ifi=1

m

9 p. u u) + ‘Ul‘(h

Pi(u”,u a.e. ¢ € (.

if i €{2,...,m}
Therefore, Py (u¥,u) — [[%, |ue|% weakly in LP/(P=9)(Q) and, for i € {2, ...,
m}, Pi(u* u) — 0 weakly in LP/(P=9)(Q)). Consequently,

m
> [ b
=1 Q2
m

By a similar argument, we find both that |Py(u”, u) — | uj|%| — 0
weakly in LP/(P=4)(Q) and that B (uk,u) =0 weakly in LP/(P=a)(Q) for i €
{2,...,m}, so we deduce that [, g¥ dz — C. [, H(u) dz as k — oo. The (gen-
erahzed) Dominated Convergence Theorem now guarantees that fQ fEdz —o0.
Finally,

% Py(u®, u) dxH/H(u) dz as k — oo.
Q

/ H(ub) — H(u — u) — H(u)| do
Q

k - ko

S/Qf6 da:—i—e;/nmi U;

< Ce+o(1),

%Py (uf, u) de

where o(1) — 0 as k — oo and C' depends on m, p, ||[u| pr(o;rm), and an upper
bound for {||u* | 2 (rm) }rey » but is independent of k. Since e > 0 is arbitrary,
the lemma is established. O
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