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Abstract. We study a system of nonlinear elliptic partial differential equa-
tions involving divergence-form operators. The problem under considera-
tion is a natural generalization of the classical Brezis–Nirenberg problem.
We find conditions on the domain, the coupling coefficients and the co-
efficients of the differential operator under which positive solutions are
guaranteed to exist and conditions on these objects under which no pos-
itive solution exists.
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1. Introduction

In 1983 Brezis and Nirenberg [5] determined conditions on λ ∈ R and the
bounded domain Ω ⊂ R

n (n ≥ 3) for which the problem{
−Δu = λu + |u| 4

n−2 u in Ω
u = 0 on ∂Ω

(1.1)

admits a positive solution and conditions on these objects under which problem
(1.1) does not admit a positive solution. They established the following theo-
rem. In the statement of the theorem, λ1 = λ1(−Δ) > 0 is the first eigenvalue
of the Dirichlet Laplacian.

Theorem A. (a) If n = 3 then there are constants λ∗(Ω) ≤ λ∗(Ω) satisfying
0 < λ∗ ≤ λ∗ < λ1 such that (1.1) admits a positive solution if λ ∈ (λ∗, λ1)
and (1.1) does not admit a positive solution if λ ∈ (0, λ∗].
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(b) If n ≥ 4 then problem (1.1) admits a positive solution if and only if
λ ∈ (0, λ1).

The subtleties on the conditions under which problem (1.1) is solvable,
at least in the case that one is interested in positive solutions, are already
apparent in the statement of Theorem A–the solvability depends on the the
dimension n, the domain Ω and the value of λ. These subtleties make problem
(1.1) a natural candidate for further investigation and indeed, these particular
subtleties were investigated in the works that followed [5]. For example, the
regime λ > λ1 was considered in [6], where it was shown that if n ≥ 4 then
problem (1.1) admits a non-trivial solution. In [17], problem (1.1) was realized
as a member of a more general family of problems and the local L2-summability
(or lack thereof) of the fundamental solution for −Δ was identified as a reason
for the fact that, in Theorem A, the conditions on λ under which problem (1.1)
admits a positive solution depend on n. See also [14] where this n-dependence
was linked to the ability to improve sharp inequalities of Sobolev-type.

Even in the present day, extensions and variants of problem (1.1) con-
tinue to be posed and investigated. Let us discuss some general themes present
in the literature regarding extensions of problem (1.1) that are particularly
relevant for this work. One theme for extending problem (1.1) concerns the re-
placement of the operator −Δ with a different (and often times more general)
operator. Works in this family include the extension to the p-Laplacian [13],
the extension to an operator of Hardy type [11,14,17], the extension to the
fractional Laplacian [20] and the extension to more general divergence-form
operators [10,15,16,18]. A second family of extensions of problem (1.1) con-
cerns analogous problems having vector-valued unknown functions. Results in
this direction can be found in [1,12].

In this work we consider an extension of problem (1.1) having vector-
valued unknown function and second-order divergence form operator. The par-
ticular choice of problem we consider is motivated by primarily by [1,18]. For
n ≥ 3 and for a bounded domain Ω ⊂ R

n we consider the problem⎧⎪⎨
⎪⎩

−Lu1 = au1 + bu2 + α|u1|α−2|u2|βu1 in Ω
−Lu2 = bu1 + cu2 + β|u1|α|u2|β−2u2 in Ω
u1 = u2 = 0 on ∂Ω,

(1.2)

where L is the divergence-form operator

Lu = div (A(x)∇u) (1.3)

and A : Ω → M(n;R) is a matrix-valued function. In order that L retain many
of the essential properties of the Laplacian, we will assume that A satisfies

A1. A : Ω → M(n;R) is continuous
A2. A(x) = A(x)� for all x ∈ Ω
A3. A is uniformly positive definite in the sense that there is a constant τ > 0

such that

τ |ξ|2 ≤ 〈A(x)ξ, ξ〉 for all (x, ξ) ∈ Ω × R
n.
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Here and throughout this article we use 〈·, ·〉 to denote the usual real Euclidean
inner product. Conditions A1, A2 and A3 ensure that L is symmetric on H1

0 (Ω)
and that the first eigenvalue λ1(−L) of −L is positive. To retain the character
of the nonlinearity in problem (1.1), the exponents α and β in (1.2) will be
assumed to satisfy

α + β = 2∗, (1.4)

where 2∗ = 2n/(n − 2) is the critical exponent for the embedding of H1
0 (Ω)

into Lebesgue’s spaces. The matrix

Λ =
[
a b
b c

]
(1.5)

consisting of the coupling coefficients of the linear terms on the right-hand
side of (1.2) will play the role of the parameter λ in (1.1). Our aim in this
work is to determine conditions on n, Λ, Ω and A that guarantee the existence
of a positive solution to (1.2) and conditions on these objects that guarantee
that problem (1.2) does not have a positive solution. Here and throughout the
article, when we use the adjective positive to describe a vector-valued function
on Ω, we mean that all coordinate functions are strictly positive in Ω. Our
conditions on Λ will be expressed in terms of the eigenvalues of Λ which, in
view of the symmetry of Λ are necessarily real. Letting μ1 ≤ μ2 denote these
eigenvalues, we have

μ1|ξ|2 ≤ 〈Λξ, ξ〉 ≤ μ2|ξ|2 for all ξ ∈ R
2. (1.6)

Generally, both the location of a global minimizer x0 of det A and the behavior
of A near x0 play roles in our formulations of sufficient conditions for existence
of a positive solution to (1.2). The statements of our existence theorems (The-
orems 1.1, 1.3 and 1.6 below) assume minimal regularity assumptions on A
and ∂Ω. A standard iteration argument shows that under these assumptions,
any weak solution u to (1.2) satisfies u ∈ L∞(Ω)×L∞(Ω). Thus, the standard
elliptic theory guarantees that any weak solution u to (1.2) possesses as much
regularity as A and ∂Ω permit. The first of our existence theorems concerns
the case where A is not too flat near a global minimizer of detA and is as
follows:

Theorem 1.1. Let n ≥ 3 and let Ω ⊂ R
n be a bounded domain. Suppose A :

Ω → M(n;R) satisfies A1, A2 and A3 and that α, β ∈ R satisfy both 1 <
min{α, β} and (1.4). If there is x0 ∈ Ω, C0 > 0 and γ ∈ (0, 2] such that

A(x) ≥ A(x0) + C0|x − x0|γIn for all x ∈ Ω, (1.7)

where the inequality is understood in the sense of bilinear forms, then there
exists a constant λ∗ ∈ (0, λ1(−L)) such that problem (1.2) has a nontrivial
weak solution whenever λ∗ < μ1 ≤ μ2 < λ1(−L). If, in addition to the above
hypotheses, b > 0 then then problem (1.2) has a positive weak solution.

Remark 1.2. Condition (1.7) implies that A(x) ≥ A(x0) in the sense of bilinear
forms for all x ∈ Ω, so any x0 ∈ Ω for which (1.7) holds is necessarily a global
minimizer of detA.
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Our next two existence theorems concern the case where A satisfies a
flatness condition near a minimizer of detA. One of these theorems concerns
the case where a minimizer occurs in the interior of Ω while the other theorem
concerns the case where a minimizer occurs on ∂Ω.

Theorem 1.3. Let n ≥ 4, let Ω ⊂ R
n be a bounded domain and let A be a

matrix-valued function on Ω satisfying A1, A2 and A3. Suppose α and β satisfy
both 1 < min{α, β} and (1.4). Suppose further that the eigenvalues μ1, μ2 of Λ
satisfy 0 < μ1 ≤ μ2 < λ1(−L). If det A attains its minimum value at x0 ∈ Ω
and if there are constants C0 > 0 and γ > 2 such that

A(x) ≤ A(x0) + C0|x − x0|γIn (1.8)

locally near x0 in the sense of bilinear forms, then problem (1.2) admits a
nontrivial weak solution. If, in addition to the above hypotheses, b > 0 then
problem (1.2) admits a positive weak solution.

Theorem 1.6 below provides an existence result for the case where there is
a minimizer x0 of det A on ∂Ω and the boundary of Ω has favorable geometry
near x0. The following definition and example describe this geometry.

Definition 1.4. The boundary of Ω ⊂ R
n is said to be interior θ-singular at

x0 ∈ ∂Ω with θ ≥ 1 if there is a constant δ > 0 and a sequence (xi) ⊂ Ω such
that xi → x0 as i → ∞ and B(xi, δ|xi − x0|θ) ⊂ Ω.

Example 1.5. For θ ≥ 1, the set Ω = {(x, y) ∈ R
2 : y > |x|1/θ} is interior

θ-singular at the origin. Indeed, there is δ > 0 such that for any 0 < r < 1,
B((0, r), δrθ) ⊂ Ω.

Theorem 1.6. Let n ≥ 5 and let Ω ⊂ R
n be a bounded domain. Suppose A :

Ω → M(n;R) satisfies A1, A2 and A3; suppose α, β ∈ R satisfy 1 < min{α, β}
and (1.4); and suppose the eigenvalues μ1 ≤ μ2 of Λ satisfy 0 < μ1 ≤ μ2 <
λ1(−L). If det A attains its global minimum at a point x0 ∈ ∂Ω such that (1.8)
is satisfied for some γ > 2n−4

n−4 , and if ∂Ω is interior θ-singular at x0 for some

θ ∈ [1, γ(n−4)
2n−4 ), then problem (1.2) admits a nontrivial weak solution. If, in

addition to the above hypotheses, b > 0 then problem (1.2) admits a positive
weak solution.

Our nonexistence results are in Theorems 1.7 and 1.8 below.

Theorem 1.7. Let n ≥ 3 and let Ω ⊂ R
n be a bounded domain. Suppose α and

β satisfy both min{α, β} ≥ 1 and α + β ≤ 2∗ and suppose A : Ω → M(n;R)
satisfies A1, A2 and A3. If b ≥ 0 and μ2 ≥ λ1(−L) then (1.2) has no positive
weak solution.

Now we consider nonexistence results for star-shaped domains. Define
B : Ω → M(n;R) by

bij(x) = 〈∇aij(x), x − x0〉,
where aij(x) are the entries of A(x). Clearly B(x) is symmetric for each x ∈ Ω.
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Theorem 1.8. Let n ≥ 3 and assume Ω ⊂ R
n is of class C1 and star-shaped

with respect to x0 ∈ Ω. Let A : Ω → Mn(R) satisfy A1, A2 and A3 and have
entries aij ∈ C1(Ω\{x0}) for which x �→ bij(x) = 〈∇aij(x), x − x0〉 extends
continuously to x0 for all (i, j) ∈ {1, . . . , n} × {1, . . . , n}. Assume further that
α and β satisfy both min{α, β} > 1 and (1.4) and that there is 0 < γ ≤ 2 and
a positive constant C0 for which

B(x) ≥ γC0|x − x0|γIn (1.9)

for all x ∈ Ω in the sense of bilinear forms. There is a constant λ∗ = λ∗(n,
γ,Ω, x0, C0) > 0 such that if μ2 ≤ λ∗ then problem (1.2) has no positive
solution u ∈ C1(Ω) × C1(Ω).

Remark 1.9. In (1.9), the factor γ in the multiplicative constant γC0 plays no
essential role in the proof of Theorem 1.8. However, writing the multiplicative
constant as such facilitates comparison between Theorems 1.1 and 1.8. Indeed,
condition (1.9) implies condition (1.7) so, under the hypotheses of Theorem
1.8 and the additional assumption that b > 0, there are 0 < λ∗ ≤ λ∗ such that
a positive C1 solution of (1.2) exists for any λ∗ < μ1 ≤ μ2 < λ1(−L) but there
is no such solution for μ2 ∈ (−∞, λ∗]. Estimates for λ∗ and λ∗ can be found
in Sect. 4 of [18].

This paper is organized as follows. In Sect. 2, some mathematical prelim-
inaries will be discussed and some notational conventions will be established.
In Sect. 3 a sharp inequality of Sobolev type will be established. The sharp
constant in this inequality will be used in Sect. 4 to establish a sufficient con-
dition for existence of nontrivial solutions that arise as minimizers for a certain
constrained minimization problem. Section 5 is devoted to establishing the pos-
itivity of minimizing solutions. In Sect. 6 we prove Theorems 1.1, 1.3 and 1.6,
all of which are established by verifying that the infimum of a suitable con-
strained energy functional is sufficiently small. Section 7 contains the proofs
of the non-existence assertions of Theorems 1.7 and 1.8. Finally, Sect. 8 is an
“Appendix” where we have collected some computations whose inclusion in
the main body of the manuscript would detract from the presentation.

2. Preliminaries

We assume throughout this section that A satisfies A1, A2 and A3. It is routine
to verify that for any such A the map H1

0 (Ω) × H1
0 (Ω) → R given by

(u, v) �→
∫

Ω

〈A(x)∇u,∇v〉 dx

is an inner product on H1
0 (Ω) and that the corresponding norm is equivalent

to the usual norm on H1
0 (Ω). In particular, denoting this inner product by

〈·, ·〉XA(Ω), we have that H1
0 (Ω), when equipped with 〈·, ·〉XA(Ω), is also a Hilbert

space. We will denote this Hilbert space by XA(Ω). With L as in (1.3), −L
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is symmetric and positive definite and the variational characterization of the
minimal eigenvalue λ1(−L), which is necessarily positive, is

λ1(−L) = inf{‖u‖2
XA(Ω) : u ∈ H1

0 (Ω) and ‖u‖L2(Ω) = 1}. (2.1)

For R
2-valued functions u = (u1, u2) we consider the product norms

‖u‖2
HA

= ‖u‖2
XA(Ω)×XA(Ω) = ‖u1‖2

XA(Ω) + ‖u2‖2
XA(Ω)

‖u‖p
Lp(Ω;R2) = ‖u‖p

Lp(Ω)×Lp(Ω) = ‖u1‖p
Lp(Ω) + ‖u2‖p

Lp(Ω),

where, for ease of notation, we set
HA = XA(Ω) × XA(Ω)

H = HI = H1
0 (Ω) × H1

0 (Ω).

Although the equivalence of the norms ‖ · ‖H1
0 (Ω) and ‖ · ‖XA(Ω) ensures that

H = HA as sets, we retain the notational distinction as doing so will be
convenient for expressing the norms and inner products. For Λ as in (1.5), we
define the functional ΦΛ : H → R by

ΦΛ(u) = ‖u‖2
HA

−
∫

Ω

〈Λu,u〉 dx. (2.2)

In view of (2.1), if μ2 ≥ 0 then

ΦΛ(u) ≥
(

1 − μ2

λ1(−L)

)
‖u‖2

HA
.

In particular, if 0 ≤ μ2 < λ1(−L) then ΦΛ is coercive. A weak solution to
problem (1.2) is a vector-valued function u = (u1, u2) ∈ H for which∫

Ω

〈A(x)∇uj ,∇ϕj〉 dx =
∫

Ω

fj(u)ϕj dx for all ϕ = (ϕ1, ϕ2) ∈ H, j = 1, 2,

where
f1(u) = au1 + bu2 + α|u1|α−2|u2|βu1

f2(u) = bu1 + cu2 + β|u1|α|u2|β−2u2.
(2.3)

If α + β ≤ 2∗ then the functional QΛ;α,β : H\{0} → R given by

QΛ;α,β(u) =
ΦΛ(u)(∫

Ω
G(u) dx

)2/2∗ , (2.4)

where

G(u) = G(α,β)(u) = |u1|α|u2|β (2.5)

is of class C0 whenever 0 < min{α, β} and QΛ;α,β is of class C1 whenever
1 < min{α, β}. In the latter case, weak solutions to problem (1.2) can be
realized as critical points of QΛ;α,β . We will not consider critical points of
QΛ;α,β in full generality. Instead we will consider only minimizers of QΛ;α,β .
To see that QΛ;α,β is bounded below, note that Young’s inequality ensures
that ‖G(u)‖2/2∗

L1(Ω) ≤ C(α, β, |Ω|)∑2
j=1 ‖uj‖2

L2∗ (Ω)
whenever α and β are non-

negative numbers for which 0 < α + β ≤ 2∗. Thus, if 0 < μ2 < λ1(−L) then
from the equivalence of ‖ ·‖XA(Ω) and ‖ ·‖H1

0 (Ω) and the Sobolev inequality one
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easily deduces that QΛ;α,β is bounded below by a positive constant. In fact,
since QΛ;α,β is invariant under the scaling u �→ δu for any δ ∈ R\{0}, any min-
imizer of QΛ;α,β can be realized as a minimizer of ΦΛ subject to the constraint
‖G(u)‖L1(Ω) = 1. In the following section we will discuss some quantities that
will allow us to formulate a sufficient condition for the restriction of ΦΛ to
{u ∈ H : ‖G(u)‖L1(Ω) = 1} to attain a minimum.

3. Sharp inequalities of Sobolev type

In this section we formulate some sharp inequalities of Sobolev type. The sharp
constants in these inequalities will be used in Sect. 4 to formulate a sufficient
condition for the existence of a constrained minimizer of the functional ΦΛ

given in equation (2.2), see Proposition 4.3.
The sharp constant in the classical Sobolev inequality is

S−1 = inf
{

‖∇u‖2
L2(Ω) : u ∈ C∞

c (Ω) and ‖u‖L2∗ (Ω) = 1
}

. (3.1)

It is well-known that S depends only on n [2,21]. In particular, S is independent
of Ω and the infimum in (3.1) is not attained unless Ω = R

n. In this case, the
infimum in (3.1) is attained by the Aubin-Talenti bubbles; the nonzero constant
multiples of the functions

Ux0,ε(x) = ε−(n−2)/2U((x − x0)/ε), (3.2)

where

U(x) = (1 + |x|2)−(n−2)/2 for x ∈ R
n (3.3)

and (x0, ε) ∈ R
n × (0,∞). For any symmetric positive definite matrix M

(having constant entries) we have the following generalization of the Sobolev
constant:

S(M)−1 = inf
{

‖u‖2
XM (Ω) : u ∈ H1

0 (Ω) and ‖u‖L2∗ (Ω) = 1
}

. (3.4)

In this notation, the usual Sobolev constant in (3.1) is equal to S(In), where
In is the n × n identity matrix. The following lemma relates the values of S
and S(M). The proof follows from a routine computation using the change of
variable x �→ P−1y, where P ∈ GL(n;R) satisfies PMP� = In, see Appendix
A of [18] for details.

Lemma 3.1. Let M be a symmetric positive definite matrix. The Sobolev-type
constants in (3.1) and (3.4) are related via the equality

S(M) = (detM)−1/nS. (3.5)

In the subsequent sections of the paper we will need an analogue of (3.4)
that compares the greatest lower bound of ‖u‖2

HA
(together with a lower-order

term) as u varies among functions satisfying ‖G(u)‖L1(Ω) = 1, where G(u)



   75 Page 8 of 27 B. Brown IV et al. NoDEA

is as in (2.5). We will develop a more general inequality that holds for R
m-

valued functions under relaxed assumptions on G. These developments may be
of independent interest. In the confines of this section let us use the notation

H = H1
0 (Ω;Rm) = H1

0 (Ω) × · · · × H1
0 (Ω)

HA = XA(Ω;Rm) = XA(Ω) × · · · × XA(Ω)

and let the corresponding norms be denoted by

‖u‖2
H =

m∑
j=1

‖uj‖2
H1

0 (Ω)

‖u‖2
HA

=
m∑

j=1

‖uj‖2
XA(Ω).

Still in the confines of this section, we will relax the assumptions on G. Specif-
ically, rather than assuming G has the explicit form (2.5), we will only assume
that G : Rm → R satisfies

G1. G ∈ C(Rm;R) and G(τ) ≥ 0 for all τ ∈ R
m.

G2. G is homogeneous of degree 2∗ in the sense that G(λτ) = |λ|2∗
G(τ) for

all λ ∈ R and all τ ∈ R
m.

Of course, for m = 2, the function G in (2.5) satisfies both G1 and G2. To
describe the vector-valued analogue of (3.4), note that for any τ ∈ R

m \ {0}
we have

G(τ) = |τ |2∗
G(|τ |−1τ) ≤ |τ |2∗

MG,

where

MG := max
τ∈Sm−1

G(τ). (3.6)

Therefore, for a symmetric positive definite constant matrix M and for u =
(u1, . . . , um) ∈ H \ {0}, writing |u|2 =

∑m
j=1 u2

j we have

(∫
Ω

G(u) dx

)2/2∗

≤ M
2/2∗

G

⎛
⎜⎝∫

Ω

⎛
⎝ m∑

j=1

u2
j

⎞
⎠

2∗/2

dx

⎞
⎟⎠

2/2∗

≤ M
2/2∗

G

m∑
j=1

(∫
Ω

|uj |2∗
dx

)2/2∗

≤ M
2/2∗

G S(M)
m∑

j=1

‖uj‖2
XM (Ω)

= M
2/2∗

G S(M)‖u‖2
HM

.

(3.7)

This computation shows that the quantity

S(M ;G)−1 := inf
{

‖u‖2
HM

: u ∈ H and
∫

Ω

G(u) dx = 1
}

, (3.8)



NoDEA The Brezis–Nirenberg problem for systems Page 9 of 27    75 

is well-defined and satisfies S(M ;G) ≤ M
2/2∗

G S(M). The following lemma
shows that equality holds.

Lemma 3.2. Let M ∈ M(n;R) be a symmetric positive definite matrix. If G

satisfies G1 and G2 then S(M ;G) = M
2/2∗

G S(M).

Proof. In view of (3.7), we only need to show that S(M ;G) ≥ M
2/2∗

G S(M). To
do so, choose functions (ϕi)∞

i=1 ⊂ H1
0 (Ω) for which both ‖ϕi‖L2∗ (Ω) = M

−1/2∗

G

for all i and
‖ϕi‖2

XM (Ω)

‖ϕi‖2
L2∗ (Ω)

→ S(M)−1.

Let τ ∈ S
m−1 satisfy G(τ) = MG. The functions ui defined by ui = ϕiτ satisfy

both ‖G(ui)‖L1(Ω) = 1 and

‖ui‖2
HM

=
m∑

j=1

‖ϕiτj‖2
XM (Ω) = ‖ϕi‖2

XM (Ω) → M
−2/2∗

G S(M)−1.

This establishes the desired inequality. �
Remark 3.3. A simple rescaling argument shows that, under the hypotheses
of Lemma 3.2, for all (x0, δ) ∈ Ω × (0,∞), the quantity

Sx0,δ(M ;G)−1 = inf
{

‖u‖2
HM

: u ∈ H(x0, δ) and
∫

Ω

G(u) dx = 1
}

satisfies Sx0,δ(M ;G) = S(M ;G), where

H(x0, δ) = H1
0 (Ω ∩ B(x0, δ);Rm)

= H1
0 (Ω ∩ B(x0, δ)) × . . . × H1

0 (Ω ∩ B(x0, δ)). (3.9)

If we have a non-constant matrix A : Ω → M(n;R) in place of the con-
stant matrix M , we consider the following inequality for scalar-valued func-
tions:

‖u‖2
L2∗ (Ω) ≤ C1‖u‖2

XA(Ω) + C2‖u‖2
L2(Ω). (3.10)

In this case, the analogue of the sharp constant S(M) in Eq. (3.4) is

N (A) = inf{C1 : there exists C2 > 0 for which(3.10) holds for all u ∈ H1
0 (Ω)}.

(3.11)

It was shown in Proposition A.1 of [18] that N (A) = m
−1/n
A S, where mA =

min{det A(x) : x ∈ Ω}. To describe the vector-valued analog of (3.11) we
consider in place of (3.10) the inequality(∫

Ω

G(u) dx

)2/2∗

≤ C1‖u‖2
HA

+ C2‖u‖2
L2(Ω;Rm) (3.12)

and the corresponding sharp constant

N (A; G) = inf{C1 : there exists C2 > 0 for which (3.12) holds for all u ∈ H}.

(3.13)

The value of N (A;G) is given explicitly in the following proposition.
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Proposition 3.4. Let n ≥ 3 and let Ω ⊂ R
n be a bounded open set. If A :

Ω → M(n;R) is a matrix-valued function satisfying A1, A2 and A3 and if G
satisfies both G1 and G2 then

N (A;G) = m
−1/n
A M

2/2∗

G S, (3.14)

where mA is the minimum value of det A : Ω → R, MG is as in (3.6) and S is
the sharp Sobolev constant in given in Eq. (3.1).

Remark 3.5. Under the hypotheses of Proposition 3.4, for any x0 ∈ Ω, apply-
ing Lemma 3.2 with M = A(x0) gives

S(A(x0);G) = (detA(x0))−1/nM
2/2∗

G S.

By choosing x0 to be a minimizer of detA, we see that the assertion in Propo-
sition 3.4 is precisely the assertion that

N (A;G) = max{S(A(x0);G) : x0 ∈ Ω} =: N (A;G). (3.15)

Proof of Proposition 3.4. In view of Remark 3.5, to establish Proposition 3.4
it is sufficient to show that N (A;G) ≥ N (A;G) and that N (A;G) ≤ N (A;G).
These inequalities are established separately in Lemmas 3.6 and 3.7 below. �

Lemma 3.6. Under the hypotheses of Proposition 3.4, if C1 and C2 are con-
stants for which inequality (3.12) holds for all u ∈ H then C1 ≥ N (A;G). In
particular, N (A;G) ≤ N (A;G).

Proof of Lemma 3.6. We proceed by way of contradiction. Suppose C1 ∈ (0,
N (A;G)) and C2 ∈ (0,∞) are constants for which (3.12) holds for all u ∈ H.
By the definition of N (A;G), there is x0 ∈ Ω for which C1 < S(A(x0);G).
Let us fix any such x0 and, for ease of notation, set M = A(x0). Since A
satisfies A1, A2 and A3, for any ε > 0 there is δ > 0 such that

(1 − ε)〈Mξ, ξ〉 ≤ 〈A(x)ξ, ξ〉 ≤ (1 + ε)〈Mξ, ξ〉
for all (x, ξ) ∈ (Ω ∩ B(x0, δ)) × R

n.

Fixing ε > 0, choosing δ ∈ (0,
√

ε) as such, one finds that for any u ∈ H(x0, δ),

‖u‖2
HA

≤ (1 + ε)
m∑

j=1

∫
Ω

〈M∇uj ,∇uj〉 dx = (1 + ε)‖u‖2
HM

, (3.16)

where H(x0, δ) is as in (3.9). Moreover, still for u ∈ H(x0, δ), using Hölder’s
inequality, the Sobolev inequality and the fact that ‖ · ‖H1

0 (Ω) and ‖ · ‖XM (Ω)

are equivalent norms, we find that

‖u‖2
L2(Ω;Rm) ≤ Cδ2‖u‖2

HM
≤ Cε‖u‖2

HM
(3.17)

for some constant C that is independent of both u and ε. In view of estimates
(3.16) and (3.17), for any ε > 0 and any u ∈ H(x0, δ) satisfying ‖G(u)‖L1(Ω) =
1 we have

1 ≤ C1‖u‖2
HA

+ C2‖u‖2
L2(Ω;Rm) ≤ C1(1 + Cε)‖u‖2

HM
. (3.18)
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Choosing ε > 0 sufficiently small so that 2C1(1 + Cε) < S(M ;G) + C1 and
choosing δ = δ(ε) ∈ (0,

√
ε) small enough to ensure that (3.18) holds for all

u ∈ H(x0, δ) for which ‖G(u)‖L1(Ω) = 1 gives

1 <
S(M ;G) + C1

2
‖u‖2

HM

for all such u. This implies that 2/(S(M ;G) + C1) ≤ S(M ;G)−1 and thus
contradicts the assumption C1 < S(M ;G). �

Lemma 3.7. (ε-sharp inequality) Under the hypotheses of Proposition 3.4, for
every ε > 0 there is a constant Cε > 0 such that the estimate

(∫
Ω

G(u) dx

)2/2∗

≤ (N (A;G) + ε)‖u‖2
HA

+ Cε‖u‖2
L2(Ω;Rm) (3.19)

holds for all u ∈ H. In particular, N (A;G) ≥ N (A;G).

Proof of Lemma 3.7. The proof is a standard partition of unity argument.
Since A satisfies A1, A2 and A3, and since Ω is compact, for all ε0 > 0 there
is δ > 0, N ∈ N and {xi}N

i=1 ⊂ Ω such that Ω ⊂ ⋃N
i=1 B(xi, δ) and

(1 − ε0)〈A(xi)ξ, ξ〉 ≤ 〈A(x)ξ, ξ〉 ≤ (1 + ε0)〈A(xi)ξ, ξ〉
for all (x, ξ) ∈ (Ω ∩ Bi) × R

n, (3.20)

where, for ease of notation we set Bi = B(xi, δ). Let {ηi}N
i=1 be a partition

of unity subordinate to the open cover {Bi}N
i=1 for which η

1/2
i ∈ C∞

c (Bi). For
any u ∈ H\{0}, performing routine estimates gives

(∫
Ω

G(u) dx

)2/2∗

=

⎛
⎝∫

Ω

(∑
i

ηi|u|2G(|u|−1u)2/2∗
) 2∗

2

dx

⎞
⎠

2/2∗

≤
∑

i

(∫
Ω

(
√

ηi|u|)2∗
G(|u|−1u) dx

)2/2∗

=
∑

i

(∫
Ω

G(
√

ηiu) dx

)2/2∗

≤
∑

i

S(A(xi);G)‖√ηiu‖2
HA(xi)

≤ N (A;G)
∑

i

‖√
ηiu‖2

HA(xi).

(3.21)

We estimate the sum on the right-most side of (3.21) by using property A2,
the left-most inequality in (3.20) and the equivalence of the norms ‖ · ‖H and
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‖ · ‖HA
as follows:∑
i

‖√
ηiu‖2

HA(xi)

=
∑

i

m∑
j=1

∫
Ω

(
ηi〈A(xi)∇uj ,∇uj〉 + 2〈A(xi)

√
ηi∇uj , uj∇√

ηi〉

+u2
j 〈A(xi)∇√

ηi,∇√
ηi〉
)

dx

≤ 1
1 − ε0

‖u‖2
HA

+ ε0‖u‖2
H + C‖u‖2

L2(Ω;Rm)

≤
(

1
1 − ε0

+ C2
0 ε0

)
‖u‖2

HA
+ C‖u‖2

L2(Ω;Rm),

(3.22)

where C0 is any constant for which ‖ · ‖H ≤ C0‖ · ‖HA
and C > 0 depends on

A, ε0, Ω and {ηi}. Since ε0 > 0 is arbitrary, the asserted estimate follows from
using estimate (3.22) in estimate (3.21). �

With Proposition 3.4 in hand, combining (3.15) and Lemma 3.7 gives the
following ε-sharp inequality.

Corollary 3.8. Under the hypotheses of Proposition 3.4, for every ε > 0 there
is a constant Cε > 0 such that the estimate(∫

Ω

G(u) dx

)2/2∗

≤ (N (A;G) + ε)‖u‖2
HA

+ Cε‖u‖2
L2(Ω;Rm) (3.23)

holds for all u ∈ H.

4. A sufficient condition for existence

We assume throughout this section that G is as in (2.5) and we use the notation

N (A;α, β) := N (A;G), (4.1)

where N (A;G) is defined (for more general G) in (3.13). We start by stating a
lemma that carries the same sentiment as the classical Brezis–Lieb lemma [3],
but is suitable for application to functionals of the form u �→ ‖G(u)‖L1(Ω). A
similar lemma has been used previously in [1], see also Proposition A.1 of [4].
For the convenience of the reader, we provide a proof in the “Appendix”.

Lemma 4.1. For q = (q1, . . . , qm) ∈ (1,∞)m and ξ = (ξ1, . . . , ξm) ∈ R
m let

H(ξ) = |ξ1|q1 |ξ2|q2 . . . |ξm|qm =
m∏

j=1

|ξj |qj

and set p =
∑

j qj. If uk = (uk
1 , . . . , uk

m) is a bounded sequence in Lp(Ω;Rm),
and if there is u = (u1, . . . , um) ∈ Lp(Ω;Rm) for which uk → u a.e. in Ω
then

lim
k

∫
Ω

|H(uk) − H(uk − u) − H(u)| dx = 0.
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By choosing m = 2 and q = (α, β) in Lemma 4.1 we obtain the following
corollary. It is the version of Lemma 4.1 that will be of use to us in the sequel.

Corollary 4.2. Let α, β ∈ R satisfy 1 < min{α, β}. If (uk)∞
k=1 is a bounded

sequence in Lα+β(Ω) × Lα+β(Ω) and if there is u ∈ Lα+β(Ω) × Lα+β(Ω) for
which uk → u a.e in Ω, then with G as in (2.5),∫

Ω

G(uk − u) dx =
∫

Ω

G(uk) dx −
∫

Ω

G(u) dx + ◦(1).

With ΦΛ as in (2.2) and G as in (2.5) we define KΛ(A;α, β) by

KΛ(A;α, β)−1 = inf
{

ΦΛ(u) : u ∈ H and
∫

Ω

G(u) dx = 1
}

. (4.2)

By making cosmetic changes to the argument in the final paragraph of Sect. 2
one finds that KΛ(A;α, β)−1 is strictly positive whenever α and β are non-
negative, 0 < α + β ≤ 2∗ and the largest eigenvalue μ2 of Λ satisfies 0 ≤
μ2 < λ1(−L). The following proposition provides a sufficient condition for the
attainment of the infimum in (4.2).

Proposition 4.3. Let n ≥ 3 and let Ω ⊂ R
n be a bounded open set. Suppose

A : Ω → M(n;R) satisfies A1, A2 and A3. Let α, β satisfy both 1 < min{α, β}
and (1.4) and let G be as in (2.5). With Λ as in (1.5), suppose the maximum
eigenvalue μ2 of Λ satisfies 0 < μ2 < λ1(−L). If

KΛ(A;α, β)−1 < N (A;α, β)−1 (4.3)

then the restriction of the functional ΦΛ to the set {u ∈ H : ‖G(u)‖L1(Ω) = 1}
attains its minimum.

Proof of Proposition 4.3. For ease of notation we write K = KΛ(A;α, β) and
N = N (A;α, β). Let (uk)∞

k=1 ⊂ H satisfy both∫
Ω

G(uk) dx = 1 for k = 1, 2, . . . (4.4)

and

K−1 + ◦(1) = ΦΛ(uk) = ‖uk‖2
HA

−
∫

Ω

〈Λuk,uk〉 dx. (4.5)

The assumption 0 < μ2 < λ1(−L) ensures the coercivity of ΦΛ so (4.5) ensures
that (uk)∞

k=1 is bounded in HA. In view of the reflexivity of HA there is u ∈ H
and a subsequence of (uk)∞

k=1 (still denoted uk) along which uk ⇀ u weakly
in HA. The equivalence of the norms ‖ · ‖HA

and ‖ · ‖H on H ensures that
(uk)∞

k=1 is also bounded in H, so the compactness of the subcritical Sobolev
embedding guarantees the existence of a subsequence of uk along which uk →
u in L2(Ω) × L2(Ω) and uk → u a.e. in Ω. Since uk ⇀ u weakly in HA we
have

‖uk − u‖2
HA

= ‖uk‖2
HA

− 2
2∑

j=1

∫
Ω

〈A(x)∇uk
j ,∇uj〉 dx + ‖u‖2

HA

= ‖uk‖2
HA

− ‖u‖2
HA

+ ◦(1).
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Using this equality in Eq. (4.5) and in view of the L2×L2-convergence uk → u
we obtain

K−1 + ◦(1) = ‖u‖2
HA

−
∫

Ω

〈Λu,u〉 dx + ‖uk − u‖2
HA

+ ◦(1)

≥ K−1

(∫
Ω

G(u) dx

)2/2∗

+ ‖uk − u‖2
HA

+ ◦(1).
(4.6)

Moreover, for each k ∈ N and for any ε > 0, applying Corollaries 3.8 and 4.2,
then using (4.4) gives

‖uk − u‖HA

≥ (N + ε)−1

(∫
Ω

G(uk − u) dx

)2/2∗

− Cε‖uk − u‖2
L2(Ω)×L2(Ω)

= (N + ε)−1

(∫
Ω

G(uk)dx −
∫

Ω

G(u) dx

)2/2∗

+ ◦(1)

= (N + ε)−1

(
1 −

∫
Ω

G(u) dx

)2/2∗

+ ◦(1)

≥ (N + ε)−1

(
1 −

(∫
Ω

G(u) dx

)2/2∗)
+ ◦(1). (4.7)

Using (4.7) in (4.6) and letting k → ∞ gives

(K−1 − (N + ε)−1)

(
1 −

(∫
Ω

G(u) dx

)2/2∗)
≥ 0. (4.8)

Fatou’s lemma and (4.4) give

1 = lim inf
k

∫
Ω

G(uk) dx ≥
∫

Ω

lim inf
k

G(uk) dx =
∫

Ω

G(u) dx,

so by choosing ε > 0 small enough so that K > N + ε, inequality (4.8) implies
that

∫
Ω

G(u) dx = 1. Using this in (4.6) gives ‖uk − u‖2
HA

→ 0. Finally, from
(4.5) and the continuity of ΦΛ on H we obtain K−1 = ΦΛ(u). �

Since minimizers of ΦΛ constrained to the set {u ∈ H : ‖G(u)‖L1(Ω) = 1}
are nontrivial weak solutions to (1.2), we obtain the following corollary.

Corollary 4.4. Under the hypotheses of Proposition 4.3, problem (1.2) has a
nontrivial weak solution.

5. Positivity of minimizing solutions

We assume throughout this section that G is as in (2.5) and we use the notation
(4.1). We establish conditions that guarantee that if u ∈ H minimizes the
functional ΦΛ given in (2.2) subject to the constraint ‖G(u)‖L1(Ω) = 1, then
one of u or −u is a positive solution to (1.2).
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Proposition 5.1. Suppose 0 < μ1 ≤ μ2 < λ1(−L) and suppose α and β satisfy
1 < min{α, β} and (1.4). If b > 0 and if u ∈ H is a minimizer of the restriction
of ΦΛ to the set {u ∈ H : ‖G(u)‖L1(Ω) = 1}, where G is as in (2.5), then either
uj > 0 in Ω for j = 1, 2 or uj < 0 in Ω for j = 1, 2. In either case we can
arrange that u > 0 in Ω by considering −u in place of u if necessary.

Proof of Proposition 5.1. For any u ∈ H, since ∇uj = 0 a.e. on {uj = 0}
we have 〈A(x)∇(|uj |),∇(|uj |)〉 = 〈A(x)∇uj ,∇uj〉 on {∇uj �= 0}. More-

over, writing |u| = (|u1|, |u2|), we have G(|u|) = G(u) and

〈Λ|u|, |u|〉 = 〈Λu,u〉 + 2b(|u1||u2| − u1u2).

Therefore,

ΦΛ(|u|) = ΦΛ(u) − 2b

∫
Ω

(|u1||u2| − u1u2) dx. (5.1)

Now suppose u minimizes ΦΛ subject to the constraint ‖G(u)‖L1(Ω) = 1. For
such u we have ΦΛ(u) ≤ ΦΛ(|u|), so Eq. (5.1) gives

b

∫
Ω

(|u1||u2| − u1u2) dx ≤ 0.

The non-negativity of the integrand together with the assumption that b > 0
gives

(u+
1 + u−

1 )(u+
2 + u−

2 ) = |u1||u2| = u1u2 = (u+
1 − u−

1 )(u+
2 − u−

2 ) a.e. x ∈ Ω,

from which we deduce that u+
1 u−

2 + u−
1 u+

2 = 0. Since both summands in this
equality are non-negative we obtain both

u+
1 u−

2 = 0 and u−
1 u+

2 = 0 a.e. in Ω. (5.2)

In particular, using the notational conventions u+ = (u+
1 , u+

2 ) and u− =
(u−

1 , u−
2 ) we have 〈Λu+,u−〉 = 0 a.e. in Ω and therefore

ΦΛ(u) = ΦΛ(u+) + ΦΛ(u−). (5.3)

With KΛ(A;α, β) defined in (4.2) we write K = KΛ(A;α, β) and we ob-
serve that the assumptions on μ2, α and β ensure that K > 0. The assumption
that u is a constrained minimizer and decomposition (5.3) give

1 = KΦΛ(u)

= K(ΦΛ(u+) + ΦΛ(u−))

≥
(∫

Ω

G(u+) dx

)2/2∗

+
(∫

Ω

G(u−) dx

)2/2∗

.

(5.4)

Using this estimate, together with the fact that (5.2) guarantees that G(u) =
G(u+) + G(u−) we have

1 ≥
(∫

Ω

G(u+) dx

)2/2∗

+
(∫

Ω

G(u−) dx

)2/2∗

≥
(∫

Ω

(G(u+) + G(u−)) dx

)2/2∗

= 1,

(5.5)
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where the second inequality holds in view of the elementary inequality (a +
b)s ≤ as + bs for a ≥ 0, b ≥ 0 and 0 < s < 1. Since equality holds in
this elementary inequality if and only if at least one of a or b is zero and
since we have equality throughout (5.5), we deduce that either u+

1 u+
2 = 0 or

u−
1 u−

2 = 0. Since ΦΛ(u) = ΦΛ(−u) we may assume with no loss of generality
that u−

1 u−
2 = 0. In particular we have G(u) = G(u+) so ‖G(u+)‖L1(Ω) = 1.

Now, the coercivity of ΦΛ ensures that ΦΛ(u−) ≥ 0, so we have

1 = K(ΦΛ(u+) + ΦΛ(u−))

≥ KΦΛ(u+)

≥
(∫

Ω

G(u+) dx

)2/2∗

= 1,

from which we deduce both ΦΛ(u+) = K−1‖G(u+)‖2/2∗

L1(Ω) and ΦΛ(u−) = 0.
In view of the coercivity of ΦΛ, the second of these equalities ensures that
u− ≡ 0. In particular, u+ = u is a constrained minimizer of ΦΛ for which
u ≥ 0 in Ω. Up to a positive constant multiple, u is a non-negative weak
solution to (1.2):⎧⎪⎨

⎪⎩
−Lu1 = au1 + bu2 + αuα−1

1 uβ
2 in Ω

−Lu2 = bu1 + cu2 + βuα
1 uβ−1

2 in Ω
u1 = u2 = 0 on ∂Ω.

The positivity assumption on μ1 and μ2 (the eigenvalues of Λ) ensures that
the diagonal entries of Λ satisfy a > 0 and c > 0. Combining these inequalities
with the assumption b > 0 we find that Luj ≤ 0 in Ω for j = 1, 2. The strong
maximum principle together with the fact that u ≥ 0 in Ω shows that either
u > 0 in Ω or u ≡ 0 in Ω. The latter of these possibilities is ruled out by the
fact that ‖G(u)‖L1(Ω) = 1. �

6. Proofs of existence theorems

In this section we prove Theorems 1.1, 1.3 and 1.6. In view of Proposition 4.3
and Corollary 4.4, in order to establish existence of a nontrivial solution to
(1.2), it is sufficient to construct a test function u ∈ H for which ΦΛ(u) <
N (A;α, β)−1, where N (A;α, β) is as in (4.1) with G given by (2.5). For this
choice of G one easily verifies that MG as defined in (3.6) satisfies

M
−2/2∗

G =
(

α

β

)β/2∗

+
(

α

β

)−α/2∗

so from Eq. (3.14), the explicit value of N (A;α, β) is

N (A;α, β) = m
−1/n
A

((
α

β

)β/2∗

+
(

α

β

)−α/2∗)−1

S. (6.1)
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6.1. Construction of test function when 0 < γ ≤ 2

Proof of Theorem 1.1. In view of the boundedness of Ω and the assumption
that 0 < γ ≤ 2, the following Hardy–Sobolev type inequality holds for all
u ∈ H1

0 (Ω)

∫
Ω

u2 dx ≤ K0(n, γ,Ω, x0)2
∫

Ω

|x − x0|γ |∇u|2 dx. (6.2)

This inequality is a special case of the Caffarelli–Kohn–Nirenberg inequalities
established in [7]. For any u ∈ H, assumption (1.7) and inequality (6.2) give

‖u‖2
HA

≥
2∑

j=1

∫
Ω

(〈A(x0)∇uj , ∇uj〉 + C0|x − x0|γ |∇uj |2
)

dx

≥ S(A(x0); α, β)−1

(∫
Ω

G(u) dx

)2/2∗

+ C0K0(n, γ, Ω, x0)
−2

2∑
j=1

∫
Ω

u2
j dx,

(6.3)

where S(A(x0);α, β) is as in (3.8) with G(u) = |u1|α|u2|β as in (2.5). Define
Θ to be the set of λ > 0 such that the inequality

‖u‖2
HA

≥ S(A(x0);α, β)−1

(∫
Ω

G(u) dx

)2/2∗

+ λ

2∑
j=1

∫
Ω

u2
j dx

holds for all u ∈ H. Estimate (6.3) ensures that C0K0(n, γ,Ω, x0)−2 ∈ Θ, so
Θ �= ∅. An elementary argument shows that Θ is both closed and bounded
above. Setting λ∗ = sup Θ we have both λ∗ ≥ C0K0(n, γ,Ω, x0)−2 and, for
every u ∈ H,

2∑
j=1

∫
Ω

〈A(x)∇uj , ∇uj〉 dx ≥ S(A(x0); α, β)−1

(∫
Ω

G(u) dx

)2/2∗

+ λ∗
2∑

j=1

∫
Ω

u2
j dx.

Moreover, the following short computation using the variational characteriza-
tion of λ1(−L) shows that λ∗ < λ1(−L). Let ψ > 0 be an eigenfunction for
−L corresponding to λ1(−L). For ϕ = (ψ,ψ) we have

2λ1(−L)‖ψ‖2
L2(Ω) = ‖ϕ‖2

HA

≥ S(A(x0);α, β)−1

(∫
Ω

G(ϕ) dx

)2/2∗

+ λ∗
2∑

j=1

‖ψ‖2
L2(Ω)

> 2λ∗‖ψ‖2
L2(Ω),

from which we deduce λ∗ < λ1(−L). Next we show that the assumption μ1 >
λ∗ ensures that KΛ(A;α, β)−1 < S(A(x0);α, β)−1, where KΛ is defined in
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(4.2). By definition of λ∗, if μ1 > λ∗ then there is u ∈ H such that

ΦΛ(u) =
2∑

j=1

∫
Ω

〈A(x)∇uj ,∇uj〉 dx −
∫

Ω

〈Λu,u〉 dx

≤
2∑

j=1

∫
Ω

(〈A(x)∇uj ,∇uj〉 − μ1u
2
j

)
dx

< S(A(x0);α, β)−1

(∫
Ω

G(u) dx

)2/2∗

.

(6.4)

Since the hypotheses of the theorem ensure the coercivity of ΦΛ, any u satisfy-
ing (6.4) must also satisfy

∫
Ω

G(u) dx > 0. From inequality (6.4) and the fact

that ΦΛ is homogeneous of degree two, we find that v =
(∫

Ω
G(u) dx

)−1/2∗
u

satisfies
∫
Ω

G(v) dx = 1 and ΦΛ(v) < S(A(x0);α, β)−1. Now Remark 3.5 to-
gether with the fact that x0 is a minimizer of detA (see Remark 1.2) implies
that S(A(x0);α, β) = N (A;α, β). Therefore, Corollary 4.4 ensures the exis-
tence of a nontrivial solution to (1.2) whenever λ∗ < μ1 ≤ μ2 < λ1(−L).
Finally, if b > 0 then an application of Proposition 5.1 ensures the existence
of a positive solution to problem (1.2). �

6.2. Construction of test function when γ > 2
In this subsection we construct a test function u ∈ H for which

QΛ;α,β(u) < N (A;α, β)−1.

Having constructed such a u, and for c defined by c−2∗
=
∫
Ω

G(u) dx, the
function cu demonstrates that the hypotheses of Proposition 4.3 are satisfied
so Corollary 4.4 ensures the existence of a nontrivial solution to (1.2). Since
the method of constructing u in the case that a minimizer of detA is located
in the interior of Ω differs from the method of construction in the case that a
minimizer of detA is located on ∂Ω, we consider these two cases separately.

6.2.1. Case 1: There is a minimizer of det A in Ω. In this case we show that
estimate (4.3) holds by constructing a test function from the Aubin-Talenti
bubbles given in (3.2), (3.3).

Proposition 6.1. Under the hypotheses of Theorem 1.3, but without the as-
sumption that b > 0, there is u ∈ H\{0} for which QΛ;α,β(u) < N (A;α, β)−1.

Proof. We assume with no loss of generality that det A is minimized at x0 =
0 ∈ Ω and we set

mA = min
Ω

det A = detA(0).

Since A(0) is symmetric and positive definite there is an orthogonal matrix
Q ∈ M(n;R) such that QA(0)Q� = D, where D = diag(a1, . . . , an) and
0 < a1 ≤ a2 ≤ · · · ≤ an are the eigenvalues of A(0). Setting P = D−1/2Q, we
have PA(0)P� = In, we have a1|y|2 ≤ |P−1y|2 ≤ an|y|2 for all y ∈ R

n and
we have |P�ξ|2 ≤ a−1

1 |ξ|2 for all ξ ∈ R
n. For any u ∈ H, using the change of
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variable x = P−1y, setting vj(y) = uj(P−1y), and using the above-mentioned
properties of P as well as assumption (1.8) yields

ΦΛ(u) ≤
2∑

j=1

∫
Ω

(〈A(0)∇uj , ∇uj〉 + C0|x|γ |∇uj |2) dx −
∫
Ω

〈Λu , u〉 dx

= (det P )−1
[ 2∑

j=1

∫
PΩ

(〈PA(0)P �∇vj , ∇vj〉 + C0|P −1y|γ |P �∇vj |2) dy

−
∫

PΩ
〈Λv , v〉 dy

]

≤ (det A(0))1/2

⎡
⎣ 2∑

j=1

∫
PΩ

(
|∇vj |2+C0aγ/2

n a−1
1 |y|γ |∇vj |2

)
dy−

∫
PΩ

〈Λv , v〉 dy

⎤
⎦ .

(6.5)

Similarly, using the same change of variable, we have∫
Ω

G(u) dx = (det A(0))1/2

∫
PΩ

G(v) dy. (6.6)

For ε > 0 consider the Aubin-Talenti bubble

U0,ε(x) = cn

(
ε

ε2 + |x|2
)n−2

2

,

where cn is a normalization constant chosen so that ‖U0,ε‖L2∗ (Rn) = 1 (inde-
pendently of ε). For convenience we will write U in place of U0,1 and Uε in
place of U0,ε. Let δ > 0 satisfy B(0, 2δ) ⊂⊂ PΩ and let η ∈ C∞

c (Rn) satisfy
0 ≤ η ≤ 1, η ≡ 1 in B(0, δ), η ≡ 0 in R

n \ B(0, 2δ) and |∇η| ≤ Cδ−1. Set

wε(y) = η(y)Uε(y). (6.7)

v = vε = (
√

αwε,
√

βwε), (6.8)

and for uε(x) = vε(Px), estimate (6.5) gives

ΦΛ(uε)
(α + β)(det A(0))1/2

−
∫
Rn

(
|∇wε|2 +

C0a
γ/2
n

a1
|y|γ |∇wε|2

)
dy

≤ −aα + 2b
√

α
√

β + cβ

α + β

∫
Rn

w2
ε dy

≤ −μ1

∫
Rn

w2
ε dy

(6.9)

and (6.6) gives(∫
Ω

G(uε) dx

)2/2∗

= (ααββ detA(0))1/2∗
(∫

Rn

|wε|2∗
dy

)2/2∗

. (6.10)

Therefore, using (6.9), (6.10) and the explicit value of N (A;α, β) given in (6.1)
we have

N (A;α, β)
ΦΛ(uε)(∫

Ω
G(uε) dx

)2/2∗ ≤ SQ̃(wε), (6.11)
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where Q̃ is defined for ϕ ∈ C∞
c (Rn)\{0} by

Q̃(ϕ)

(∫
Rn

|ϕ|2∗
dx

)2/2∗

=

∫
Rn

(
|∇ϕ|2 + C0a

γ/2
n a−1

1 |y|γ |∇ϕ|2
)

dy − μ1

∫
Rn

ϕ2 dy.

(6.12)

By performing standard computations, one can show that

‖∇wε‖2
L2(Rn) = S−1 + O(εn−2)

‖wε‖2
L2∗ (Rn) = 1 + O(εn)

(6.13)

and

‖wε‖2
L2(Rn) =

{
b4ε

2| log ε| + O(ε2) if n = 4
bnε2 + O(εn−2) if n ≥ 5,

(6.14)

where b4 = c2
4|S3| and bn = c2

n|Sn−1|
√

πΓ(n/2)
2n−3(n−4)Γ((n−1)/2) for n ≥ 5. Moreover,

using the assumption γ > 2 and by performing elementary computations one
can show that ∫

Rn

|y|γ |∇wε|2 dy =

{
O(ε2) if n = 4
◦(ε2) if n ≥ 5.

(6.15)

If n = 4 then estimates (6.13), (6.14) and (6.15) give

SQ̃(wε) =
1 − Sμ1b4ε

2| log ε| + O(ε2)
1 + O(ε4)

< 1,

where the final estimate holds provided ε > 0 is sufficiently small. Using this
in (6.11) shows that if ε > 0 is sufficiently small then

ΦΛ(uε)(∫
Ω

G(uε) dx
)2/2∗ < N (A;α, β)−1. (6.16)

Similarly if n ≥ 5 and ε > 0 is sufficiently small then estimates (6.13), (6.14)
and (6.15) give

SQ̃(wε) =
1 − Sμ1bnε2 + ◦(ε2)

1 + O(εn)
< 1,

from which estimate (6.16) follows. �

Proof of Theorem 1.3. Since the hypotheses of Propositions 6.1 and 4.3 are
satisfied, the infimum in (4.2) is obtained by some u ∈ H\{0}. Any such u is
a nontrivial solution to (1.2). If b > 0 then Proposition 5.1 ensures that one of
u or −u is a positive solution to (1.2). �

6.2.2. Case 2: There is a minimizer of det A on ∂Ω.

Proposition 6.2. Under the hypotheses of Theorem 1.6, except for the positivity
of b, there is u ∈ H for which

∫
Ω

G(u) dx = 1 and ΦΛ(u) < N (A;α, β)−1.
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Proof. We assume with no loss of generality that x0 = 0. For u ∈ H, using
the change of variable x = P−1y and setting v(y) = u(P−1y) as in the proof
of Proposition 6.1, we still have estimate (6.5) and Eq. (6.6). It is routine to
check that the interior θ-singularity assumption on ∂Ω at x0 = 0 guarantees
the interior θ-singularity of ∂PΩ at y0 = Px0 = 0. Indeed, if (xi) ⊂ Ω with
xi → 0 and B(xi, δ|xi|θ) ⊂ Ω, then for yi = Pxi we have B(yi, δ̃|yi|θ) ⊂ PΩ,
where δ̃ = a

−1/2
n a

θ/2
1 δ. For xi and yi as such, let η ∈ C∞

c (Rn) satisfy 0 ≤ η ≤ 1,
η ≡ 1 in B(0, δ̃/2) and η ≡ 0 on R

n\B(0, δ̃) and consider the test function

ϕi(y) = η

(
y − yi

εθ
i

)
Uερ

i
(y − yi),

where and εi = |yi| and ρ satisfies

2(n − 2)θ
n − 4

< 2ρ < γ. (6.17)

We have

ϕi(y) = ε
−θ(n−2)/2
i wερ−θ

i

(
y − yi

εθ
i

)
,

where wε is given in (6.7), so Eqs. (6.13) and (6.14) yield the following esti-
mates

‖∇ϕi‖2
L2(Rn) = ‖∇wερ−θ

i
‖2

L2(Rn) = S−1 + O(ε(n−2)(ρ−θ)
i )

‖ϕi‖2
L2∗ (Rn) = ‖wερ−θ

i
‖2

L2∗ (Rn) = 1 + O(εn(ρ−θ)
i )

‖ϕi‖2
L2(Rn) = bnε2ρ

i + O(ε(n−2)ρ−(n−4)θ
i ).

(6.18)

Moreover, since θ ≥ 1, for any y ∈ supp ϕi we have |y| ≤ Cεi and therefore∫
Rn

|y|γ |∇ϕi|2 dy ≤ Cεγ
i

∫
Rn

|∇ϕi|2 dy = O(εγ
i ). (6.19)

Using estimates (6.18) and (6.19) we find that for i sufficiently large,

SQ̃(ϕi) =
1 − μ1Sbnε2ρ

i + O(ε(n−2)(ρ−θ)
i ) + O(εγ

i )

1 + O(εn(ρ−θ)
i )

< 1,

where Q̃ is as in (6.12) and the inequality holds by (6.17). Finally, for i =
1, 2, . . ., setting vi = (

√
αϕi,

√
βϕi) and ui(x) = vi(Px), if i is sufficiently

large then we have

N (A;α, β)
ΦΛ(ui)(∫

Ω
G(ui) dx

)2/2∗ ≤ SQ̃(ϕi) < 1.

For any such i, the function
(∫

Ω
G(ui) dx

)−1/2∗
ui satisfies the assertion of

the proposition. �

Proof of Theorem 1.6. Since the hypotheses of Propositions 6.2 and 4.3 are
satisfied, the infimum in (4.2) is obtained by some u ∈ H\{0}. Any such u is
a nontrivial solution to (1.2). If b > 0 then Proposition 5.1 ensures that one of
u or −u is a positive solution to (1.2). �
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7. Non-existence results

In this section we provide proofs for the non-existence results in Theorems 1.7
and 1.8. We start with the proof of Theorem 1.7.

Proof of Theorem 1.7. Let λ1 = λ1(−L) > 0 be the first eigenvalue of −L with
homogeneous Dirichlet boundary data on Ω and let ϕ > 0 be a corresponding
eigenfunction. The assumption b ≥ 0 and the Perron-Frobenius theorem (ap-
plied to Λ+kI2 for suitably large k ≥ 0) ensure the existence of an eigenvector
ξ = (ξ1, ξ2) ∈ R

2 for Λ corresponding to eigenvalue μ2 such that ξj ≥ 0 for
j = 1, 2 and at least one of ξ1 or ξ2 positive. If u ∈ H is a positive weak solu-
tion to (1.2) then testing the first equation of (1.2) against ξ1ϕ and using A2
we have∫

Ω

(au1 + bu2 + αuα−1
1 uβ

2 )ξ1ϕ dx = ξ1

∫
Ω

〈A(x)∇u1,∇ϕ〉 dx

= ξ1

∫
Ω

〈A(x)∇ϕ,∇u1〉 dx

= −ξ1

∫
Ω

div (A(x)∇ϕ)u1 dx

= λ1ξ1

∫
Ω

ϕu1 dx.

Similarly, testing the second equation in (1.2) against ξ2ϕ gives∫
Ω

(bu1 + cu2 + βuα
1 uβ−1

2 )ξ2ϕ dx = λ1ξ2

∫
Ω

ϕu2 dx.

Summing these two equalities and using both the symmetry of Λ and the
assumption that Λξ = μ2ξ gives∫

Ω

(
αuα−1

1 uβ
2 ξ1 + βuα

1 uβ−1
2 ξ2

)
ϕ dx = λ1

∫
Ω

(u1ξ1 + u2ξ2)ϕ dx −
∫
Ω

〈Λu, ξ〉ϕ dx

= λ1

∫
Ω

(u1ξ1 + u2ξ2)ϕ dx −
∫
Ω

〈Λξ, u〉ϕ dx

= (λ1 − μ2)

∫
Ω

(u1ξ1 + u2ξ2)ϕ dx.

Since both of
∫
Ω

(
αuα−1

1 uβ
2 ξ1 + βuα

1 uβ−1
2 ξ2

)
ϕ dx and

∫
Ω
(u1ξ1+u2ξ2)ϕ dx are

positive, we conclude that μ2 < λ1. �

The following Pohozaev-type identity for vector-valued functions is a spe-
cial case of the general variational identity established for C2 solutions in
Proposition 3 of [19]. The C2 assumption was relaxed in [9] where an approx-
imation technique was used to prove the identity for C1 solutions.

Lemma 7.1. Suppose aij ∈ C1(Ω \ {x0}) and that bij(x) = 〈∇aij(x), x − x0〉
extends continuously to x0. If u ∈ C1(Ω) × C1(Ω) is a weak solution to (1.2)
and if α, β satisfy both min{α, β} > 1 and (1.4) then the following identity
holds
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1
2

2∑
j=1

∫
∂Ω

〈A(x)∇uj ,∇uj〉〈x, ν〉 dSx

=
∫

Ω

〈Λu,u〉 dx − 1
2

2∑
j=1

∫
Ω

〈B(x)∇uj ,∇uj〉 dx. (7.1)

Proof of Theorem 1.8. Assume with no loss of generality that x0 = 0. Since
uj ≡ 0 on ∂Ω we have ∇uj = ∂uj

∂ν ν so the integrand on the boundary integral
on the left-hand side of (7.1) becomes

〈A(x)∇uj ,∇uj〉 〈x, ν〉 = 〈A(x)ν, ν〉 〈x, ν〉
2∑

j=1

(
∂uj

∂ν

)2

.

Since Ω is star shaped with respect to x0 = 0, we have 〈x, ν〉 ≥ 0 and this
quantity is not identically zero on ∂Ω. By assumption A3 we have 〈A(x)ν, ν〉 >
0 and from the Hopf Lemma for C1 subsolutions for operators in divergence
form (see [8]) we have (∂uj

∂ν )2 > 0 on ∂Ω for j = 1, 2. In particular the left-
hand side of (7.1) is strictly positive. Therefore, the Pohozaev-type identity
(7.1) together with the aid of the assumption 0 < γ ≤ 2, the assumption (1.9)
and inequality (6.2) we obtain

μ2

2∑
j=1

∫
Ω

u2
j dx ≥

∫
Ω

〈Λu,u〉 dx

>
1
2

2∑
j=1

∫
Ω

〈B(x)∇uj ,∇uj〉 dx

≥ γC0

2

2∑
j=1

∫
Ω

|x|γ |∇uj |2 dx

≥ γC0

2
K0(n, γ,Ω, x0)−2

2∑
j=1

∫
Ω

u2
j dx.

In particular, setting λ∗ = γC0
2 K0(n, γ,Ω, x0)−2 we find that if μ2 ≤ λ∗ then

there is no positive solution u ∈ C1(Ω) × C1(Ω) to (1.2). �
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8. Appendix

Here we record the details of some computations whose inclusion in the main
body of the text would have distracted from the story.

Proof of Lemma 4.1. For any ξ, ζ ∈ R
m we have

H(ξ) − H(ξ − ζ) =
m∑

i=1

(Ai(ξ, ζ) + Bi(ξ, ζ)), (8.1)

where

Ai(ξ, ζ) = (|ξi|qi − |ξi − ζi|qi − |ζi|qi)Pi(ξ, ζ), Bi(ξ, ζ) = |ζi|qiPi(ξ, ζ),

and

Pi(ξ, ζ) =
i−1∏
j=1

|ξj − ζj |qj ·
m∏


=i+1

|ξ
|q� .

In our notation for Pi(ξ, ζ) empty products (for example products of the form∏0
j=1 cj or of the form

∏m
j=m+1 cj) are understood to equal 1. For any 1 <

r < ∞ and any ε > 0, the inequality

||a + b|r − |a|r − |b|r| ≤ ε|a|r + Cε|b|r

holds for all a, b ∈ R. For each i = 1, . . . ,m, applying this inequality to to the
first factor of Ai(ξ, ζ) (with a = ξi − ζi, b = ζi and r = qi) gives

||ξi|qi − |ξi − ζi|qi − |ζi|qi | ≤ ε|ξi − ζi|qi + Cε|ζi|qi .

Therefore, using (8.1) we obtain

|H(ξ) − H(ξ − ζ) − H(ζ)|

≤
m∑

i=1

(ε|ξi − ζi|qi + Cε|ζi|qi) Pi(ξ, ζ) + |ζ1|q1

∣∣∣∣P1(ξ, ζ)

−
m∏

j=2

|ζj |qj

∣∣∣∣+
m∑

i=2

Bi(ξ, ζ)

(8.2)

for all ε > 0 and all (ξ, ζ) ∈ R
m × R

m. For ε > 0, and with uk as in the
hypotheses of the lemma, setting

fk
ε =

(∣∣H(uk) − H(uk − u) − H(u)
∣∣− ε

m∑
i=1

|uk
i − ui|qiPi(uk,u)

)+
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we have fk
ε → 0 a.e. in Ω. Moreover, in view of (8.2) we have 0 ≤ fk

ε ≤ gk
ε ,

where

gk
ε = Cε

m∑
i=1

|ui|qiPi(uk,u) + |u1|q1

∣∣∣∣P1(uk,u) −
m∏

j=2

|uj |qj

∣∣∣∣+
m∑

i=2

Bi(uk,u).

For every i = 1, . . . , m, Pi(uk,u) is bounded in Lp/(p−qi)(Ω) and

Pi(uk,u) →
{∏m


=2 |u
|q� if i = 1
0 if i ∈ {2, . . . , m} a.e. x ∈ Ω.

Therefore, P1(uk,u) ⇀
∏m


=2 |u
|q� weakly in Lp/(p−q1)(Ω) and, for i ∈ {2, . . . ,

m}, Pi(uk,u) ⇀ 0 weakly in Lp/(p−qi)(Ω). Consequently,
m∑

i=1

∫
Ω

|ui|qiPi(uk,u) dx →
∫

Ω

H(u) dx as k → ∞.

By a similar argument, we find both that
∣∣P1(uk,u) − ∏m

j=2 |uj |qj
∣∣ ⇀ 0

weakly in Lp/(p−q1)(Ω) and that Bi(uk,u) ⇀ 0 weakly in Lp/(p−qi)(Ω) for i ∈
{2, . . . , m}, so we deduce that

∫
Ω

gk
ε dx → Cε

∫
Ω

H(u) dx as k → ∞. The (gen-
eralized) Dominated Convergence Theorem now guarantees that

∫
Ω

fk
ε dx → 0.

Finally, ∫
Ω

|H(uk) − H(uk − u) − H(u)| dx

≤
∫

Ω

fk
ε dx + ε

m∑
i=1

∫
Ω

|uk
i − ui|qiPi(uk,u) dx

≤ Cε + ◦(1),

where ◦(1) → 0 as k → ∞ and C depends on m, p, ‖u‖Lp(Ω;Rm), and an upper
bound for {‖uk‖Lp(Ω;Rm)}∞

k=1, but is independent of k. Since ε > 0 is arbitrary,
the lemma is established. �
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[3] Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and
convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

[4] Barbosa, E.R., Montenegro, M.: Extremal maps in best constants vector theory.
Part I: duality and compactness. J. Funct. Anal. 262(1), 331–399 (2012)

[5] Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations in-
volving critical Sobolev exponents. SMR 398, 2 (1983)



   75 Page 26 of 27 B. Brown IV et al. NoDEA

[6] Capozzi, A., Fortunato, D., Palmieri, G.: An existence result for nonlinear elliptic
problems involving critical Sobolev exponent. Ann. l’Inst. Henri Poincaré C,
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