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Abstract—Reconfigurable reflective metasurfaces—or reconfig-
urable intelligent surfaces (RISs)—can redirect incident signals to-
ward desired directions, an ability that allows for sculpting wireless
communication channels with desired characteristics. This smart
radio environment, however, necessitates the information about the
transmitter(s) and the receiver(s) to be available at the RIS. One
possible solution to this need is to add sensing capability to the RIS.
However, sensing complex wireless signals (i.e., both amplitude
and phase) often requires complicated setups. In this letter, we
propose and numerically demonstrate a reconfigurable reflective
metasurface that uses intensity-only samples of the incident signal
to retrieve desired information about the propagation environment.
To do that, we will randomly tune the metasurface elements to
multiplex information incident on all of them. The phaseless multi-
plexed data are then processed using computational ghost imaging
algorithm to retrieve the desired information. As a demonstrative
example, we present the detection of the incident angle from a user
in a free-space environment. This simplified sensing process can
pave the way for incorporation of RISs with integrated sensing
capabilities in future wireless communication or sensing systems.

Index Terms—Angle of arrival (AoA), ghost imaging (GI),
metasurface.

I. INTRODUCTION

A
DAPTIVE wireless propagation environments empow-
ered by reconfigurable intelligent surface (RIS) have gar-

nered much interest recently [1], [2], [3], [4], [5], [6]. In these
so-called smart radio environments, RISs redirect signals toward
desired directions or realize over-the-air equalization [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16]. The RIS’s promising
attributes, however, strongly depend on the knowledge about the
propagation environment, such as the incident signal’s direction
or intended reflection angle. Since RISs are ideally designed
to reflect the signal (and not sense it), obtaining necessary
information about the channel at the RIS elements has become
a hindering challenge.

Over the years, several works have proposed solutions to this
problem. A common approach is to use joint channel estima-
tion [17], [18] using the information about the cascaded channel.
This method, however, is computationally expensive since it
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aims to estimate separate channels from jointly sensed data. To
overcome that, some have suggested adding dedicated sensing
elements to the RIS [19] and applying compressive sensing. Ded-
icated antennas attached to a receiver would reduce the effective
reflective aperture of the RIS and may disrupt the phase profile
needed for forming desired reflection patterns. Alternatively, a
novel RIS was proposed in [20] that can switch to an absorption
mode; by comparing the received power in the absorption mode
with an extensive look-up table for all possible angles of arrival
(AoA), the incident angle can be found. Another method is to use
AoA-dependent frequency shift in time-modulated RISs [21].
Similarly, the estimation of AoA has been demonstrated by
applying time-domain orthogonal codes to the signals incident
on the metasurface [22]. These approaches, however, require
complicated metasurface configurations with time modulation
and a dedicated receiving antenna connected to a receiver near
the RIS. Alternatively, it is suggested in [23], [24], [25], [26],
and [27] to use hybrid RISs (HRISs) that consist of hybrid
meta-atoms: elements that can reflect the signal while also sense
a portion of the incident signal. In particular, [23] and [28] have
shown that using only a few such hybrid elements is enough
to retrieve desired information about the channel. To do that,
they used the HRIS in a novel manner where it realizes random
multiplexing of the incident signal. By demultiplexing the signal
collected in this manner, the desired features of the incident
signal can be retrieved.

All the abovementioned methods require conventional sens-
ing of complex data to deduce information about the incoming
waves. Detecting complex signals (i.e., amplitudes and phases)
necessitates complicated circuitry. If instead, intensity-only data
can be used for detecting desired characteristics about the en-
vironment, the complexity of the receiving unit at the HRIS
can be substantially reduced. While ABSense RIS [20] may
in principle use intensity-only data, it requires a complicated
search among many impedance profiles to match the incident
signal impedance. Here, we are interested in a sensing protocol
that does not require a complicated dictionary look-up process.

Toward this goal, we take inspiration from intensity-only
computational microwave imaging, which has received a lot of
attention over the last decade [29], [30], [31], [32]. In particular,
the computational ghost imaging (GI) technique or coincidence
imaging has recently been applied to intensity-only measure-
ments to recover reflection patterns of a region of interest [32].
The underlying idea in these works is to use a dynamic metasur-
face antenna (DMA) that can generate a series of precharacter-
ized spatially diverse patterns to illuminate a scene of interest. By
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Fig. 1. Comparative depiction of (a) conventional sensing mechanism and (b)
proposed sparse sensing mechanism for an RIS.

correlating the intensity of the return signal with the illuminating
patterns, one can deduce the location of targets in the scene.
Here, our goal is to leverage the GI principle to estimate the
AoA on an HRIS.

In this letter, we update the compressive sensing architecture
proposed in [28] to sense the incoming signal from only two
sensing elements. The intensity of the difference of the signal
captured by each of these elements is used for sensing purposes,
eliminating the need for phase detection altogether. We then
recast the computational GI method to be used for analyzing
the intensity data. Using full-wave simulation, we show that the
proposed intensity-only sensing operation can be used to detect
the AoA of an incoming signal in free space.

II. SPARSE SENSING OF PHASELESS DATA

Recovering complex incident signals can overcomplicate an
RIS configuration, outdoing the benefits it can bring to the
network. This is especially the case if we connect circuitry
for phase (and intensity) detection to each element of an RIS
which typically can have hundreds of elements. Such a setup
is shown schematically in Fig. 1(a). To circumvent this issue,
previous works have suggested using compressive sensing of
the incident wave from signal collected by a few receiving
circuitry. Using a sparse array of receivers, one can reduce
the spatial resolution of the detecting aperture. One solution
to this problem, as suggested in [28], is to use multiplexing of
the incident signal on all elements in the shared substrate of
the elements, as shown in Fig. 1(b). This can be possible when
elements of the HRIS exhibit random scattering responses. The
multiplexed signal can then be processed to retrieve the incident
signal on all elements. The only requirement is to obtain diverse
measurements of the incident signal, which can be accomplished
by using different multiplexing weights. In the case of [28], the
varactors exciting each element is set randomly (we will refer to
a configuration of varactor diodes as “masks” for brevity). In this
manner, the signal coupled to the substrate from each element
is randomly weighted, resulting in diverse measurements of the
incident signal.

To realize this sensing protocol, one possible implementation
is to use an HRIS with two different meta-atoms as shown
in Fig. 2. This structure consists of well-known mushroom
structures [33], each loaded with a varactor diode. To implement
hybrid meta-atoms, as shown in Fig. 2, we add a rectangular slot
to the ground plane of the mushroom structure. This slot also
serves as an opening in the broad wall of a substrate-integrated

Fig. 2. Proposed HRIS architecture for intensity-only measurement. Here,
P = 8.1 mm, U = 35 mm, V = 17.5 mm, d = 3.7 , and L = 13.1 mm.

waveguide (SIW). Using this slot, we can couple the signal in the
shared substrate of the HRIS into the SIW [34], which guides the
coupled signal toward sensing units [28]. The location and size
of this opening were tailored to ensure that a sufficient amount
of power is coupled to the SIW. The HRIS and the sensing
SIWs are both implemented with a 1.52 mm thick Rogers 4003C
substrate. The dimension, size, and composition of the hybrid
meta-atom and the HRIS array are similar to the one in [28] as
the operating frequency, 5.8 GHz, is the same. For completeness,
these dimensions are denoted in Fig. 2. The design process to
arrive at these values is presented in [28] and is not repeated here.
As shown in [28], such a geometry can sense incident signals
as well as redirect them toward desired directions. However,
in contrast to [28], we only use two hybrid elements in this
work. Our goal in this letter is to use this setup to retrieve
relevant information about the channel (i.e., AoA) using only
the intensity of the received signal.

When using intensity-only data, the inverse problem at the
heart of AoA detection becomes much more complicated. To
better illustrate this point, consider the case of two antennas
tasked with detecting the AoA of an incident signal. By exam-
ining the phase difference between signals incident on the two
antennas, i.e., the difference in measured phase, φ, in Fig. 1(a),
one can detect AoAs. The intensity of the received signal on
the antennas will, in fact, be almost identical. In other words,
intensity-only data do not usually exhibit variation as a function
of AoA. If instead, we combine the complex signals of the two
antennas with random weights before measuring the intensity,
the resulting intensity would depend on the phase of each signal
and thus would change as a function of the AoA. When applying
a similar idea to the HRIS, we note that the random multiplexing
of the incident signals can happen naturally in the proposed
HRIS configuration. Specifically, when the surface of the HRIS
exhibits a random surface reactance, the signal incident on it
scrambles inside. This scrambling of the signal manifests itself
as a multiplexing of signals incident on all elements. The signal
at the end of the SIWs can thus be described as a random
weighted sum of signals incident on all elements—i.e., the cap-
tured signal contains information about all incident phases, φ, in
Fig. 1(b). If we examine the intensity of such a received signal,
it changes as a function of the incident AoA. One issue with the
random weighted sum is that it reduces the dimensionality of
the incident signal from all elements to a single measurement.
To overcome that, inspired by compressive microwave imaging,
we can use different random masks.
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Fig. 3. (a) Intensity data for different AoAs. (b) Masks.

To demonstrate these points, we used the setup shown in Fig. 2
in Ansys HFSS. In our studies, we consider signals incident
on the HRIS to be X-polarized plane waves in the YZ-plane.
The goal of the sensing process is to deduce the AoA using
only the intensity of the data. Similar to [28], we use binary
masks where the varactor loading each element may randomly
take one of the two different capacitive states of C1 = 0.4 or
C2 = 0.86 pF. Following the same procedure as in [28], we
use the signal difference between the two adjacent collecting
waveguides. In practical implementation, the signal difference
between the collecting waveguides can be formed using a 180◦

RF combiner. The intensity of the difference between the two
signals can be sensed using a voltage or a power detector.
Thus, only a single RF transmission line is required to pass
the intensity data to a processor. The specific hardware layout
for sensing is beyond the scope of this letter. Instead, we focus
on demonstrating its possibility. Toward this goal, we take the
intensity of the difference of the simulated signal at the end of
each collecting waveguide numerically.

We denote the intensity of the difference signal obtained in
the abovementioned manner with |g|2. This signal is plotted in
Fig. 3(a) for different AoAs. We clearly see that the intensity of
the signal changes as a function of the AoA, confirming that the
intensity signals contain AoA-specific features. We have also
plotted the signal intensity for different masks for each AoAs in
Fig. 3(a). The random capacitance distribution corresponding to
each mask is presented in Fig. 3(b). We clearly see that for the
same AoA (denoted by the color), the phaseless data change as
a function of masks, thereby validating the proposition to use
random masks to diversify the data.

III. COMPUTATIONAL GI

While the previous section illustrates the fact that intensity-
only data are related to the AoA of the incident signal, we still
need to formulate an algorithm to retrieve that information. In
recent years, there has been a strong push to extend microwave
imaging and sensing to phaseless detection [29], [30], [31], [32].
Various algorithms and hardware systems have been proposed
for this purpose. In this work, inspired by the analogy of signal
multiplexing in the proposed HRIS and that in DMAs in [32],
we select to use computational GI. Yet, unlike the active imaging
approach in [32], which relied on spatially diverse transmitted
signals to retrieve reflectivity maps, our device does not transmit
signals, instead, relies on the intensity of the incident signal.

To capture sufficient information for successful AoA estima-
tion, we sense the incident signal multiple times usingS random
masks. Each sensed signal consists of the fields coupled to the
hybrid meta-atoms and observed at the end of the SIWs attached
to two hybrid meta-atoms. We denote these two field readings at
the end of the SIWs as g1 and g2. For our studies, we examine
the absolute difference between the two data streams. The final
captured intensity |g|2 is then a real-valued vector, denoted as
follows:

|g|2 = |g1 − g2|
2 ∈ R

S . (1)

Following GI formulation, we subtract the ensemble average
〈|g|2〉 from the intensity in (1), which yields the following:

Ig = |g|2 − 〈|g|2〉. (2)

In this framework, AoA is determined based on the correlation
of the collected intensity with a set of reference data. The
reference data are comprised of a collection of known Ig for a set
of preselected AoAs. Specifically, we used 25 AoAs uniformly
distributed between ±60◦ to construct the reference sensing
matrix H. In this manner, we discretize the continuous AoA
range into 5◦ bins. The choice of the 120◦ sector around the
normal direction is primarily based on the operation of RISs
in practical settings since they cannot easily redirect beams
to grazing angles without large sidelobes or grating lobes. It
is worth mentioning that the HRIS can detect angles beyond
±60◦ but with a lower resolution since its projected aperture is
smaller for such angles. The 5◦ bins are used for two factors:
1) simulation time and 2) the HRIS’s expected resolution. To
ensure reasonable simulation time, we used a bin size that is the
same as the beamwidth that would be generated by an array of
the same size as the HRIS.

The simulated data for each of the reference AoAs are col-
lected in the columns of H. The estimated values are then
determined from the cross-correlation between Ig and H as
follows:

RIH =
1

S
I∗gH. (3)

The estimated parameter can then be related to the AoA in a
similar manner as in [28]: the maximum of RIH occurs at the
bin center closest to the actual incident AoA. The correlation in
(3) acts as a pattern matching parameter between the data of the
incoming AoAs and the reference AoAs. Thus, the estimated
AoA is the angle in H that has the highest correlation with Ig.
In other words, the AoA can be estimated from the maximum
value given by (3).

It is important to note that the number of masks, S, may have
a significant impact on the accurate estimation of the actual
AoA. We thus begin our analysis by examining this factor.
Toward this goal, we have plotted an illustrative example of
the AoA detection process for a signal incident at 13◦ at 10 dB
signal-to-noise ratio (SNR) in Fig. 4 as we increase the number of
masks. We clearly see that using one mask or one measurement
is not sufficient to detect the AoA. As we increase the number
of masks, more diverse information is obtained and a better
estimate is achieved. However, the increase in the amount of
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Fig. 4. Detecting a single AoA at 10 dB SNR for different numbers of masks.
The dotted line represents the actual AoA, i.e., 13◦.

Fig. 5. (a) Detection of two different incident AoAs (superimposed with solid
and dashed lines) using GI (black) and CGS (red). (b) Estimated AoAs for
different incident AoAs.

information that newer masks provide starts to plateau. We can
see from Fig. 4 that using around S = 30 masks should suffice
for our purpose. We conducted this test for other AoAs (not
shown here for brevity) and arrived at a similar conclusion.

Having set the required number of masks, we now examine
how the performance changes for different AoAs with a few
illustrations in Fig. 5(a). As expected, the maximum correlation
occurs at the bin center closest to the test angle. In Fig. 5(b),
we depict the estimated AoA for incident angles for the whole
range of ±60◦. We clearly see that the estimated angles are
close to the incident AoAs. However, the estimation fidelity
degrades for angles that are farther from the normal (to some
extent that is expected as the resolution degrades and larger bin
sizes should have been used). By applying an iterative solver
to the GI problem [e.g., conjugate gradient squared (CGS)], we
can obtain accurate estimates for the whole ±60◦ range.

As explained in previous works on GI [31], [32], GI and
coincident imaging are usually susceptible to the impact of noise.
For example, the AoA detections presented in Fig. 5(a) and (b)
are done with an SNR of 20 dB added to test signalsg1 andg2. To
better investigate the impact of noise, we compute the accuracy
of the estimation as a function of noise. To do that, we note that
our accuracy in detecting an AoA depends on the bin size (i.e.,
5◦) used to discretize the range of incident angles. With that in
mind, we use a slightly larger bin size for setting the accuracy
of detection since when the test AoA is halfway between two
reference AoAs, either of the reference AoAs may be considered
to be the estimated AoA with minimal degradation to the overall
performance. Therefore, we consider an estimation within ±3◦

of the true AoA as accurate. Otherwise, the estimation is consid-
ered inaccurate. Thus, the estimation is a binary classification
problem that assigns a value of 1 to an accurate estimation and
0 otherwise. We have calculated this accuracy for SNR values

Fig. 6. Estimation accuracy for detecting various test AoAs.

of −50 to 50 dB. Because of the random nature of the noise, we
averaged the accuracy calculation for each SNR value over 100
repetitions. A few illustrations of the accuracy calculations for a
diverse set of AoAs are shown in Fig. 6. Evidently, the proposed
GI technique can perform accurate AoA estimation with SNR
values roughly larger than 0 dB. One can reduce the impact of
noise by using more masks. Nonetheless, the results presented
in Figs. 5 and 6 verify that we can detect AoA using only a single
circuitry that measures the intensity at a single frequency. Lastly,
we should note that the proposed HRIS can also realize the beam-
forming capabilities required for their use in smart radio environ-
ments. The beamforming results have been reported for various
hybrid geometries before [23], [28], and are not reported here.

IV. DISCUSSION

In summary, we investigated the problem of using intensity-
only sparse data to retrieve relevant information about the prop-
agation channel. We showed that using an HRIS with hybrid
meta-atoms and multiplexing capabilities along with computa-
tional GI techniques provide a simple solution to this problem.
Detecting signal strength or intensity requires a much simpler
circuitry compared with other methods, which require retrieving
phase information, paving the way for the widespread use of
HRISs with sensing capabilities in wireless systems. An imme-
diate future step is to extend this work to 2-D and demonstrate
it in experiments. It is worth noting that we used binary reactive
states to construct random masks in this letter. Thus, a potential
way to further diversify the sensed data without increasing
the number of masks would be to use more than two reactive
states in a mask. Furthermore, as shown in previous works on
computational imaging and sensing [35], [36], [37], the specific
choice of masks and their distribution can impact the perfor-
mance and one may reduce the number of required waveguides
or masks by intelligently selecting those masks. Conducting
such detailed studies on the choice of masks is left for future
work. While we have used intensity data in the computational
GI framework, one can instead utilize phase retrieval methods to
obtain complete information about the channel [30], [38], [39].
It is worth noting that the proposed scheme is not frequency
dependent and can easily be extended to higher frequencies
by simple geometrical modifications to the RIS elements. The
proposed configuration can also be used in applications other
than wireless communication, e.g., in wireless power transfer
systems to detect the location of the user, or in smart homes
for detecting human presence or gesture recognition by pro-
cessing intensity measurements from the electrically large
aperture of HRIS.
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