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Single-cell genomic technologies offer vast new resources with which to
study cells, but their potential to inform parameter inference of cell
dynamics has yet to be fully realized. Here we develop methods for Bayesian
parameter inference with data that jointly measure gene expression and Ca2+

dynamics in single cells. We propose to share information between cells via
transfer learning: for a sequence of cells, the posterior distribution of one cell
is used to inform the prior distribution of the next. In application to intra-
cellular Ca2+ signalling dynamics, we fit the parameters of a dynamical
model for thousands of cells with variable single-cell responses. We show
that transfer learning accelerates inference with sequences of cells regardless
of how the cells are ordered. However, only by ordering cells based on their
transcriptional similarity can we distinguish Ca2+ dynamic profiles and
associated marker genes from the posterior distributions. Inference results
reveal complex and competing sources of cell heterogeneity: parameter
covariation can diverge between the intracellular and intercellular contexts.
Overall, we discuss the extent to which single-cell parameter inference
informed by transcriptional similarity can quantify relationships between
gene expression states and signalling dynamics in single cells.
1. Introduction
Models in systems biology span systems from the scale of protein/DNA inter-
actions to cellular, organ and whole organism phenotypes. Their assumptions
and validity are assessed through their ability to describe biological obser-
vations, often accomplished by simulating models and fitting them to data
[1–4]. Under the framework of Bayesian parameter inference and model selec-
tion, the available data are used along with prior knowledge to infer a posterior
parameter distribution for the model [5]. The posterior distribution character-
izes the most likely parameter values to give rise to the data as well as the
uncertainty that we have regarding those parameters. Thus, parameter infer-
ence provides a map from the dynamic phenotypes that we observe in
experiments to the parameters of a mathematical model.

Single-cell genomics technologies have revealed a wealth of information
about the states of single cells that was not previously accessible [6]. This
ought to assist with the characterization of dynamic phenotypes. However, it
is much less clear how to draw maps between dynamic phenotypes of the
cell and single-cell states as quantified via genomic measurements. The chal-
lenge in part lies in the combinatorial complexity: even if a small fraction of
genes contain information regarding the phenotype of interest, say a few hun-
dred, this is more than enough to characterize any feasible number of states of
an arbitrarily complex dynamical process.
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This leads us to a central question: can the integration of
single-cell gene expression data into a framework for par-
ameter inference improve our understanding of the cellular
phenotypes of interest? Here, various sources of transcrip-
tional noise must be taken into account [7–9], which we
propose to address by taking a global view and comparing
cells first by their similarity across many genes, and, after infer-
ence, by their similarity in posterior parameter distributions.
Our previously work provides the ideal data for this approach:
we jointly measured dynamics and gene expression in the
same single cells [10]. Here, we apply our new parameter infer-
ence framework to study Ca2+ signalling dynamics and signal
transduction in response to adenosine triphosphate (ATP) in
human mammary epithelial (MCF10A) cells.

Ca2+ signalling regulates a host of cellular responses in epi-
thelial cells, from death and division to migration and
molecular secretion, as well as collective behaviours, such as
organogenesis and wound healing [11–13]. In response to
ATP binding to purinergic receptors, a signalling cascade is
initiated whereby phospholipase C (PLC) is activated and in
turn hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2),
producing inositol 1,4,5-trisphosphate (IP3) and diacylglycerol
(DAG). The endoplasmic reticulum (ER) responds to IP3 by
the activation of Ca2+ channels: the subsequent release of cal-
cium from the ER into the cytosol produces a spiked calcium
response. To complete the cycle and return cytosolic calcium
levels to steady state, the sarco/ER Ca2+-ATPase (SERCA)
channel pumps the Ca2+ from the cytosol back into the ER
[14,15]. Ca2+ signalling is highly conserved, regulating cell
phenotypic responses across mammals, fish and flies
[12,16,17] as well as in prokaryotes [18]. Since the Ca2+

response to ATP occurs quickly in epithelial cells: on a time-
scale that is almost certainly faster than gene transcription,
we work under the assumption that the transcriptional state
of the cell does not change in the duration of the experiment.

Our ability to measure gene expression in thousands of
single cells has not only led to new discoveries but has also
fundamentally changed how we identify and characterize
cell states [19]. Technologies used to quantify gene expression
in single cells include sequencing and fluorescent imaging. The
latter permits the measurement of hundreds of genes in
spatially resolved populations of single cells. Small molecule
fluorescence in situ hybridization (smFISH) can be multiplexed
to achieve this high resolution by protocols, such as MERFISH
[20] and seqFISH [21]. Moreover, by coupling multiplexed
smFISH with fluorescent imaging of Ca2+ dynamics using a
GFP reporter in MCF10A cells, we are able to jointly capture
the dynamic cell responses and the single-cell gene expression
in the same single cells [10]. These data offer new potential to
study the relationships between transcriptional states of cells
and the dynamic phenotypes these may produce.

Models of gene regulatory networks and cellular signal-
ling pathways described by ordinary differential equations
(ODEs) capture the interactions between gene transcripts,
proteins or other molecular species and their impact on cellu-
lar dynamics. Well-established dynamical systems theory
offers a range of tools with which to analyse transient and
equilibrium behaviour of ODE models [22]; it remains an
open question whether or not it is appropriate to make
equilibrium assumptions of living cells [23]. Constraining
dynamic models of cellular/molecular processes with
single-cell data via inference offers much potential to gain
new insight into dynamics, albeit coming with many
challenges, given, among other things, the complex sources
of noise in these data and the lack of explicit temporal infor-
mation in (snapshot) datasets gathered at one time point [24].
Parameter inference has provided insight into clonal relation-
ships of single cells [25,26] and stem cell differentiation/cell
state transitions [27,28]. Inference methods have also been
applied to single-cell data for the discovery of new properties
of single-cell oscillations [29,30] and cell–cell variability [31–
33], as well as to study cell–cell communication [34]. New
methods to infer the parameters of models of stochastic
gene expression provide means to study single-cell dynamics
in greater depth [35,36].

Here, we model Ca2+ dynamics via ODEs based on pre-
vious work [37,38]. We develop a parameter inference
framework to fit Ca2+ response dynamics in many single
cells. We perform inference of multiple cells sequentially,
through the construction of ‘cell chains’. A cell chain is an
ordering of cells, which can be random or directed by some
measure, e.g. by similarity of gene expression or of Ca2+

dynamic response. Given a cell chain, we propose to infer
the parameters of the Ca2+ ODE model in a single cell via a
transfer of information from its cell predecessor in the
chain. We achieve this by setting the prior of the current
cell in the chain informed by the posterior of its predecessor.
We will use this framework to assess the extent to which
transcriptional cell states inform dynamic cell responses.

In the next section, we present the model and the
methods implemented for parameter inference using Hamil-
tonian Monte Carlo in Stan [39]. We go on to study the results
of inference: we discover that priors informed by cell prede-
cessors accelerate parameter inference, but that cell chains
with randomly sampled predecessors perform as well as
those with transcriptional similarity-informed predecessors.
Analysis of hundreds of fitted single cells reveals that
cell-intrinsic versus cell-extrinsic posterior parameter
relationships can differ widely, indicative of fundamentally
different sources of underlying variability. By perturbing
the posterior distributions, we assess model parameter sensi-
tivities in light of Ca2+ dynamics. We also find that variability
in single-cell gene expression is associated with variability in
posterior parameter distributions, both for individual gene–
parameter pairs and globally, via principal component analy-
sis. We go on to cluster cells by their posterior parameter
distributions, and discover that only for gene expression-
based cell chains are there clear relationships between gene
expression states and dynamic cell phenotypes.
2. Material and methods
2.1. A model of Ca2+ dynamics in response to ATP
We model Ca2+ signalling pathway responses in MCF10A
human epithelial cells using nonlinear ODEs, as previously
developed [37,38]. The model consists of four state variables:
phospholipase C (PLC), inositol 1,4,5-trisphosphate (IP3), the
fraction of IP3-activated receptor (h) and cytoplasmic Ca2+. The
four variables are associated with a system of four nonlinear
ODEs describing the rates of change of the Ca2+ pathway species
following ATP stimulation, to characterize dynamic responses in
MCF10A cells. The equations are given by

d½PLC�
dt

¼ ATP � e�KATPt � Koff;ATP½PLC�, ð2:1Þ
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d½IP3�
dt

¼ VPLC
½PLC�2

K2
IP3 þ ½PLC�2 � Koff;IP3½IP3�, ð2:2Þ

dh
dt

¼ að½Ca2þ� þ dinhÞ dinh
½Ca2þ� þ dinh

� h

 !
, ð2:3Þ

d½Ca2þ�
dt

¼b 1ðh1m
3
1h

3þh2Þðc0�ð1þ1Þ½Ca2þ�Þ�h3
½Ca2þ�2

k23þ½Ca2þ�2
 !

,

b¼ 1þ Ke½Be�
ðKeþ½Ca2þ�Þ2

 !�1

and m1¼ ½IP3�
d1þ½IP3�
� � ½Ca2þ�

d5þ½Ca2þ�

 !
: ð2:4Þ

The equations describe a chain of responses following ATP
binding to purinergic receptors: the activations of PLC, IP3,
the IP3R channel on the surface of the ER and finally the
release of Ca2+ from the ER into the cytoplasm [38]. Ca2+

may also enter the ER through the IP3R channel and the
SERCA pump [38]. Our model differs from Yao et al. [38] in
that we combine the product of two parameters in the pre-
vious model, Kon,ATP and ATP, into a single parameter, ATP.
This reduction of the model parameter space removed the
redundancy that would otherwise exist in the distributions
of Kon,ATP and ATP. A description of each of the parameters
in the model is given in table 1, where reference values for
each of the model parameters are found in Lemon et al. [37]
and Yao et al. [38].
2.2. Data collection and preprocessing
The data consist of a joint assay measuring Ca2+ dynamics and
gene expression via multiplexed error-robust fluorescence
in situ hybridization (MERFISH) [20]. Ca2+ dynamics in a
total of 5128 human MCF10A cells are measured via imaging
for 1000 s (ATP stimulation at 200 s) using a GCaMP5 biosen-
sor. Immediately following this step, 336 genes are measured
by MERFISH [10]. The Ca2+ trajectories are smoothed using a
moving average filter with a 20 s window size (electronic sup-
plementary material, figure S1). After smoothing, data points
occurring before ATP stimulation are removed. Data points
for each Ca2+ trajectory after t = 300 are downsampled by a
factor of 10; the trajectories are at or close to steady state by
this time. After removing the data for the first 200 s and down-
sampling for the last 700 s, each processed trajectory consists
of Ca2+ response data on 171 time points (t = 200, 201,…,
298, 299, 300, 310, 320,…, 1000). All numerical experiments
in this work will evaluate Ca2+ response on those same 171
time points. Single-cell gene expression data are collected
using MERFISH after the Ca2+ imaging as previously
described [10,20].
2.3. Generating cell chains via cell–cell similarity
Cell–cell similarity is quantified via single-cell transcriptional
states, i.e. by comparing xim and xjm, the expression of m genes
in cells i and j. We obtain a symmetric cell–cell similarity
matrix, W, from the log-transformed MERFISH expression data
via optimization in SoptSC [41]: entries Wi,j denote the similarity
between cells i and j. To create a chain of cells linked through
their similarity in gene expression space, we:

1. Construct a graph G = (V, E); each node is a cell and an edge is
placed between two cells if they have a similarity score above
zero.

2. For a choice of initial (root) cell, traverse G and record the
order of cells traversed.
Ideally, each cell would be visited exactly once; however, this
amounts to finding a Hamiltonian path in G, an NP-complete
problem. Therefore, as a heuristic solution we use a depth-first
search (DFS), which can be completed in linear time. From the
current node, we randomly select an unvisited neighbour node
and set this as the next current node, recording it once visited
(pre-order DFS). If the current node has no unvisited neighbours,
it backtracks until a node with unvisited neighbours is found.
When there is no unvisited node left, every node in the graph
has been visited exactly once. Given cases where the similarity
matrix is sparse (as we have here), the DFS generates a tree
that is very close to a straight path.
2.4. Bayesian parameter inference with posterior-
informed prior distributions

We seek to infer dynamic model parameters in single cells,
informed by cell–cell similarity via the position of a cell in a
cell chain. We use the Markov chain Monte Carlo (MCMC)
implementation: Hamiltonian Monte Carlo (HMC) and the No-
U-Turn Sampler (NUTS) in Stan [39,42]. HMC improves upon
the efficiency of other MCMC algorithms by treating the
sampling process as a physical system and employing conserva-
tion laws [43]. From an initial distribution, the algorithm
proceeds through intermediate phase of sampling (warm-up)
until (one hopes) convergence to the stationary distribution.
During warm-up, NUTS adjusts the HMC hyperparameters
automatically [42].

The prior distribution over parameters is a multivariate
normal distribution, with dimensions θj, j = 1,…, m, where m is
the number of parameters. This choice of prior makes it straight-
forward to pass information from the inferred posterior
distribution of one cell to the next cell in line to be sampled,
which will be described in §2.5. Let f be a numerical solution
of the ODE model, and y0 be the initial condition. Then, in
each single cell, the Ca2+ response to ATP is generated by the
following process:

uj � N ðmuj
, s2

uj
Þ

byðtÞ ¼ f ðy0, t; uÞ
s � Cauchyð0, 0:05Þ

yðtÞ � N ðbyðtÞ, s2Þ,
where we truncate the prior so that each θi is bounded by 0 from
below. The Cauchy distribution is chosen to generate the noise
for observed Ca2+ response as it contains greater probability
mass in its tails, thus encouraging NUTS to explore extreme
values of the parameter space more frequently.

For the first cell in a chain, we use a relatively uninformative
prior, the ‘Lemon’ prior (table 1), derived from parameter value
estimates in previous work [37,38,40]. For the ith cell in a chain
(i > 1), the prior distribution is constructed from the posterior dis-
tribution of the (i− 1)th cell (§2.5). For each cell, NUTS is run for
four independent chains with the same initialization. To simulatebyðtÞ during sampling, we use the implementation of fourth- and
fifth-order Runge–Kutta in Stan [39]. For each output trajectory y,
its error is the Euclidean distance between y and data y* for all
171 data points

eðy, y�Þ :¼
X170
k¼0

ðyðtkÞ � y�ðtkÞÞ2
 !1=2

:

The error of a posterior sample for a cell is the mean error of
trajectories simulated from all draws in the sample

esample :¼ 1
N

XN
i¼1

eðyi, y�Þ,



Table 1. Definition and description of the ODE model parameters. Prior distributions are derived from [37,38,40].

name description prior distribution unit

ATP concentration of ATP that activates PLC N ð5, 4Þ s−1

KATP ATP decay rate N ð0:0083, 0:0025Þ s−1

Koff,ATP PLC degradation rate N ð1:25, 1Þ s−1

VPLC maximum velocity for IP3 generation N ð1, 1Þ μM · s−1

KIP3 equilibrium constant for IP3 generation through PLC N ð0:5, 0:01Þ μM

Koff,IP3 IP3 degradation rate N ð1:25, 1Þ s−1

a time constant of IP3 channel N ð1, 1Þ s−1

dinh dissociation constant for IP3 channel calcium inhibiting subunit N ð0:4, 0:01Þ μM

Ke dissociation constant for calcium buffer N ð10, 4Þ μM

Be concentration of calcium buffer N ð150, 25Þ μM

d1 dissociation constant for IP3 channel IP3 activating subunit N ð0:13, 0:01Þ μM

d5 dissociation constant for IP3 channel calcium activating subunit N ð0:0823, 0:01Þ μM

e ER to cytosolic volume N ð0:185, 0:01Þ —

η1 IP3 channel permeability constant N ð575, 625Þ s−1

η2 ER leak permeability constant N ð5:2, 1Þ s−1

η3 Ca2+ pump permeability constant N ð45, 25Þ s−1

c0 concentration of free Ca2+ in the ER N ð4, 1Þ μM

k3 SERCA pump dissociation constant N ð0:4, 0:01Þ μM
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where N is the sample size and yi is the output trajectory from the
ith draw in the sample.

Convergence of NUTS chains is evaluated using the bR stat-
istic: the ratio of between-chain variance to within-chain
variance [39,44]. A typical heuristic used is bR between 0.9 and
1.1, indicating that for this set of chains the stationary distri-
butions reached for a given parameter are well mixed. There
are two caveats on our use of bR in practice:

1. For our model, we observe that well-fit (i.e. not overfit) Ca2+

trajectories did not require bR [ ð0:9, 1:1Þ for all parameters.
Thus, we assess bR only for the log posterior, using a more
tolerant upper bound of 4.0.

2. There are cases where one chain diverges but three of the four
are well mixed. In such cases, we choose to retain the three
well-mixed chains as a sufficiently successful run. Thus if bR
is above the threshold, before discarding the run, we computebR for all three-wise combinations of chains, and retain the run
if there exist three well-mixed chains.

2.5. Constructing and constraining prior distributions
We construct the prior distribution of the ith cell from the pos-
terior of the (i− 1)th cell. The prior mean for each parameter θj
for the ith cell is set to m

ði�1Þ
j , the posterior mean of θj from the

(i− 1)th cell. The variance of the prior for θj is derived from
s
ði�1Þ
j , the posterior variance of θj from the (i− 1)th cell. To (a) suf-

ficiently explore the parameter space, and (b) prevent instabilities
(rapid growth or decline) in marginal parameter posterior values
along the cell chain, we scale each s

ði�1Þ
j by a factor of 1.5 and

clip the scaled value to be between 0.001 and 5. The scaled and
clipped value is then set as the prior variance for θj for the ith cell.

2.6. Dimensionality reduction and sensitivity analyses
To compare posterior samples from different cells, we use principal
component analysis (PCA). Posterior samples are projected onto a
subspace by first choosing a cell (the focal cell) and normalizing
the posterior samples from other cells against the focal cell, either
by min–max or z-score normalization. Min–max normalization
transforms a vector x to (x− xmin)/(xmax− xmin), where xmin is the
minimum and xmax the maximum of x. z-score normalization trans-
forms x to (x− μx)/σx, where μx is the mean and σx is the standard
deviation of x. Normalizing to the focal cell amounts to setting
xmin, xmax, μx, σx to be the values corresponding to the focal cell
for all cells normalized. We perform PCA (implemented by scikit-
learn 0.24 [45]) on the normalized focal cell posterior samples and
project them into the subspace spanned by the first two principal
components. The normalized samples from all other cells are
projected onto the PC1–PC2 subspace of the focal cell.

We develop methods for within-posterior sensitivity analysis
to assess how perturbations of model parameters within the
bounds of the posterior distribution affect Ca2+ responses. Given
~u, the posterior distribution of a cell, each parameter θj is perturbed

to two extremevalues: ~u
ð0:01Þ
j , the 0.01-quantile of ~u�,j, and ~u

ð0:99Þ
j , the

0.99-quantile of ~u�,j. Nine ‘evenly spaced’ samples are drawn from

the posterior range of ~u for the parameter of interest, ~u�,j: the kth

draw corresponds to a sample ~ui,� such that ~ui,j ¼ ~u
ð0:1kÞ
j , the 0.1k-

quantile of ~u�,j. For each draw ~ui,�, we replace ~ui,j by either ~u
ð0:01Þ
j

or ~u
ð0:99Þ
j and then simulate a Ca2+ response. The mean Euclidean

distances between trajectories simulated from the evenly spaced
samples and the perturbed samples are used to quantify the sensi-
tivity of each parameter perturbation.

2.7. Correlation analysis and cell clustering of MERFISH
data

Correlations between single-cell gene expression values and pos-
terior parameters from the Ca2+ pathway model are determined
for variable genes. We calculate the z-scores of posterior means
for each parameter of a cell sampled from a population, and
remove that cell if any of its parameters has a posterior mean
z-score smaller than −3.0 or greater than 3.0. PCA is performed
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on log-normalized gene expression of remaining cells using
scikit-learn 0.24 [45], which yields a loadings matrix A such
that Ai,j represents the ‘contribution’ of gene i to component j.
We designate gene i as variable if Ai,j is ranked top 10
or bottom 10 in the jth column of A for any j≤ 10. For each
variable gene, we calculate the Pearson correlation between its
log-normalized expression value and the posterior means of indi-
vidual model parameters. Gene–parameter pairs are ranked by
their absolute Pearson correlations and the top 30 are selected
for analysis. Gene–parameter pair relationships are quantified
by linear regression using a Huber loss, which is more robust
to outliers than mean squared error.

To cluster cells using their single-cell gene expression, raw
count matrices are normalized, log-transformed, and scaled to
zero mean and unit variance before clustering using the Leiden
algorithm at 0.5 resolution [46], implemented in Scanpy 1.8
[47]. Marker genes for each cluster are determined by a t-test.

2.8. Clustering of cell posterior parameter distributions
Cells are clustered according to their posterior distributions. For
each parameter, the posterior means for each cell are computed
and scaled to [0, 1]. The distance between two cells is defined
as the m-dimensional Euclidean distance between their posterior
means (where m is the number of parameters). Given distances
calculated between all pairs of cells, agglomerative clustering
with Ward linkage is performed using SciPy 1.7 [48]. Marker
genes for each cluster identified are determined using a t-test.
3. Results
3.1. Single-cell priors informed by cell predecessors

enable computationally efficient parameter
inference

To study the dynamic Ca2+ responses of cells to ATP stimu-
lation, we fit the ODE model (equations (2.1)–(2.4)) to data
in single cells using Bayesian parameter inference (figure 1a).
Only those MCF10A cells classified as ‘responders’ to ATP
were included—cells with very low overall responses (less
than 1.8 Ca2+ peak height) were filtered out. To assess whether
cell chains improve inference, we performed parameter infer-
ence of the ODE model in single cells fit either individually,
each from the same prior (we used the ‘Lemon’ prior
(table 1)), or fit via the construction of a cell chain. In a cell
chain there is a transfer of information, whereby the posterior
parameter distribution of one cell informs the prior distri-
bution of the next cell in the chain. The first cell in the chain
was fit using the Lemon prior. We are primarily interested in
cell chains constructed using transcriptional similarity: we con-
structed cell chains based on a single-cell gene expression
similarity metric and compared them with alternatives (see
Material and methods; electronic supplementary material,
table S1). We studied the effects of different choices of g,
where πi+1 = g(pi), pi is the posterior distribution for cell i,
and πi+1 is the prior distribution for the following cell. We
found that transformations via scaling and clipping were
necessary to sufficiently explore the parameter space for each
cell while maintaining stable marginal posterior distributions
along a cell chain (electronic supplementary material, section
S1.1, figure S2). We tested various numerical methods
to solve the ODE system (stiff and non-stiff), and found
that we could simulate Ca2+ responses sufficiently well
using a non-stiff solver (electronic supplementary material,
figure S3), so for inference runs with hundreds of single cells
we proceeded to use a non-stiff solver.

Parameter inference of the ODE model via a cell chain
(denoted Similar-r1) was more efficient and gave more accu-
rate results than individually fit cells (figure 1b,c), with
shorter overall computational run times and higher posterior
model probabilities (electronic supplementary material,
table S2). The model fit quality was also higher for the cell
chain versus individually fit cells as assessed by the bR statistic
(electronic supplementary material, table S3). To test whether
these improved model fits are in part due to longer fitting
times rather than the construction of the cell chain directly,
we fit the same cell consecutively ten times: the fits improved
over the 10 repeat epochs, but the only substantial improve-
ments were seen for the first couple of epochs, after which
improvements were minimal and the overall fit quality was
comparable to the same cell fitted in the chain (electronic
supplementary material, section S1.2, figure S4a–f ), albeit
with some evidence for overfitting in individual parameters
(electronic supplementary material, figure S4g,h). Thus, the
quality of fits obtained from fitting in a cell chain are not
inherently due to more time spent running inference but
are due to the transfer of information between different
cells along the chain.

The advantage of transfer learning in cell chains can be
demonstrated by the higher predictive power of sampled
posterior distributions. We predicted Ca2+ responses of test
cells for which the parameters have not been inferred (i.e.
cells not in Similar-r1), using the initial conditions of the
test cells but parameters from elsewhere. Each test cell was
simulated using parameters sampled from: the posterior of
a fitted cell with similar gene expression to the test cell; the
posterior of a random fitted cell; and reference values from
literature (‘Lemon’ values; see table 1). To compare predicted
Ca2+ responses, we used the Euclidean distance between a
predicted Ca2+ trajectory and data to quantify the prediction
error. We found that posteriors of similar cells and posteriors
of random cells had equally good predictive power on test
cells: in both cases better than using Lemon values for predic-
tion (figure 1d ). These results illustrate how constructing
priors for cells using posterior information from other cells
offers greater ability to capture the dynamics of a new cell
not previously modelled.

To assess whether cell chains ordered using gene
expression information improve inference performance over
cell chains ordered randomly, we compared inference runs of
at least 500 cells in a chain, with priors informed by cell prede-
cessor, where the chain construction was either random or
gene expression similarity based. The performance of cell
chains ordered randomly—evaluated by computational effi-
ciency (sampling times) and accuracy of fits (model posterior
probabilities)—was not significantly different to that of the
similarity-based chains (electronic supplementary material,
table S4). Therefore, although the use of a cell chain (priors
informed by cell predecessors) improved inference relative to
individually fit cells, the choice of cell predecessors (simi-
larity-based versus randomly assigned) did not affect
computational efficiency or the accuracy of fits.

We also studied the effects of HMC parameters on
sampling. We found that sampling times were faster without
loss of fit quality when we reduced the maximum tree depth
(a parameter controlling the size of the search space) from 15
to 10, since rarely was a tree depth greater than 10 used in
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practice; so this reduction did not negatively impact the model
fits (electronic supplementary material, table S5). We also
found that a warm-up period of 500 steps was sufficient for
convergence of MCMC chains for most cells. Setting the maxi-
mum tree depth to 10 and the number of warm-up steps to 500
led to much faster sampling times for large populations of cells
(figure 1e).

3.2. Analysis of single-cell posteriors reveals divergent
intracellular and intercellular sources of variability

The posterior distributions of hundreds of cells show striking
differences between marginal parameters: some are
consistent across cells in a chain while others vary widely.
To quantitatively assess this, we ran two similarity-based
cell chains with identical cell ordering for the final 100 cells
but with different initial cells. We found that while some mar-
ginal posterior parameters were similar for all cells (e.g. Koff,

ATP, figure 2a), others diverged for the same set of cells along
a chain (e.g. d5, figure 2b). Relative changes in marginal pos-
teriors were seen to be tightly correlated. We computed the
fold change in mean marginal posterior parameter values
between consecutive cells along the chain (figure 2a,b,
second row): the majority of consecutive cell pairs were
tightly correlated both in direction and magnitude, even
when the absolute values diverged. We obtained similar
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results for random cell chains run in parallel with different
initial cells (electronic supplementary material, figure S5).
Analysis of the posterior values of parameters relative to
their ’Lemon’ values (see table 1) revealed in some cases
large distances between them (e.g. d5 varies from 0.08
(Lemon) to posterior values greater than 3). There are several
possible causes for these prior–posterior discrepancies,
including differences in the biological system and differences
in experimental inputs, e.g. the stimulus used or the amount
of stimulus that cells receive.

Further analysis of the marginal posterior distributions
revealed two uninformative (‘sloppy’ [49]) parameters. The pos-
terior distributions of Be and η1 drifted, i.e. varied along the
chain independent of the particular cell (electronic supplemen-
tary material, figure S6a,b). Given these insensitivities, we
studied model variants where either one or both of these
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parameters were set to a constant. Comparing chains of 500
cells each, the reduced models performed as well as the
original in terms of sampling efficiency and convergence (elec-
tronic supplementary material, figure S6c–e and table S6).
Posterior predictive checks of the reduced models showed no
significant differences in simulated Ca2+ trajectories. Thus, for
further investigation into the parameters underlying single-
cell Ca2+ dynamics, we analysed the model with both Be and
η1 set to a constant. This cell chain is referred to as Reduced-3.

We discovered striking differences between intracellular
and intercellular variability through analysis of the joint pos-
terior distributions of parameters in chain Reduced-3. Several
parameter pairs were highly correlated, as can be expected
given their roles in the Ca2+ pathway, e.g. as activators or
inhibitors of the same species. However, comparison of par-
ameter correlations within (intra) and between (inter) cells
yielded stark differences. Some parameter pairs showed con-
sistent directions of correlation intercellularly (along the
chain) and within single cells. The Ca2+ pump permeability
(η3) and the concentration of free Ca2+ (c0) were positively
correlated both inter- and intra-cellularly (figure 2c).
Similarly, the ER-to-cytosolic volume (e) and the ER per-
meability (η2) were negatively correlated in both cases
(figure 2d ). However, the ATP decay rate (KATP) and the
PLC degradation rate (Koff,ATP) were positively correlated
along the chain (posterior means) but—for many cells—
negatively correlated within the cell (figure 2e). The distri-
bution of MAP values is well-mixed, i.e. there is no
evidence of biases arising due to a cell’s position in the
chain: the variation observed in the posterior distributions
represents biological differences in the population. These
differences may be in part explained by the differences in
scale: intercellular parameter ranges are necessarily as large
as (and sometimes many times larger than) intracellular
ranges. On these different scales, parameters can be
positively correlated over the large scale but negatively corre-
lated locally, or vice versa. These divergent sources of
variability at the inter- and intra-cellular levels highlight the
complexity of the dynamics arising from a relatively simple
model of Ca2+ pathway activation.

3.3. Quantifying the sensitivity of Ca2+ responses in a
population of heterogeneous single cells

We conducted analysis of the sensitivity of Ca2+ responses to
the model parameters. Typically, one defines a parameter
sensitivity as the derivative of state variables with respect
to that parameter [50,51]. Here, we are most interested in
how the dynamics are affected by parameter perturbations
over the range of their marginal posterior distributions.
Thus, we evaluate the model response to a given parameter
perturbation across its marginal posterior distribution in a
population of cells as follows. First, sample from a cell’s pos-
terior distribution, and alter each sample such that the
parameter of interest is set to an extreme value according to
its marginal posterior distribution (0.01-quantile or 0.99-
quantile). We then simulate trajectories from these altered
samples (figure 3a), and use the distance between unper-
turbed and perturbed model trajectories to define the
sensitivity of model output to that parameter, taking the
mean of nine simulated trajectories.

We find that there is a lot of variation in the Ca2+

responses: sensitive to some model parameters and
insensitive to others (figure 3b). Notably, the sensitivities of
the least sensitive parameters had mean values of close to
1.0: similar to the distances obtained from the best-fit pos-
terior values (electronic supplementary material, table S5),
i.e. the Ca2+ response is insensitive to these parameters
across the whole posterior range. The insensitive parameters
were not simply those which had the highest posterior var-
iance: there was little correlation between the inferred
sensitivity and the posterior variance (electronic supplemen-
tary material, table S7), compare e.g. parameters d1 and d5.

Analysis of the Ca2+ responses to parameter perturbations
provides means to predict how much Ca2+ responses are
affected by changes in extracellular and intracellular
dynamics (figure 3c,d ). For example, low concentrations of
ATP result in very low Ca2+ responses; increasing the concen-
tration of ATP can more than double the peak response
(figure 3c). The importance of IP3 in Ca2+ signal transduction
is in agreement with the results of Yao et al. [38]; here we go
further in that we can quantify the particular properties of
the Ca2+ response affected by each parameter. In the case of
Koff,IP3, the main effect is also in the peak height of the
Ca2+ response (figure 3d ).

3.4. Variability in gene expression is associated with
variability in Ca2+ dynamics

We studied variation between pairs of genes and parameters
sampled from a cell population to assess whether relation-
ships between them might exist. We found that several
gene–parameter pairs were correlated. In general, the pro-
portion of variance explained between a gene–parameter
pair was low; this is to be expected given the many sources
of variability in both the single-cell gene expression and the
Ca2+ responses.

Analysis of the most highly correlated gene–parameter
pairs (see Material and methods and electronic supplemen-
tary material, table S8) identified a number of genes that
were correlated with multiple parameters, e.g. PPP1CC, as
well as parameters that were correlated with multiple
genes, e.g. η3. Pairwise relationships were analysed via
linear regression. The top four correlated gene–parameter
pairs from a similarity-based cell chain are shown in
figure 4a–d: cells are well mixed according to their positions
along the chain, i.e. correlations are not due to local effects.
The pairwise correlations overall are low, which we expect
given single-gene inputs. Performing multiple regression
could improve predictive power; however, our goal here is
to study whether any evidence supports the existence of indi-
vidual gene–parameter relationships. We performed the
same analysis on a randomly ordered cell chain, where the
same gene–parameter relationships were recapitulated,
albeit with lower absolute correlation values (figure 4e–h
and electronic supplementary material, table S9). There is
no discernable influence of a cell’s position in a chain on
the gene–parameter relationship, confirming that these
correlations among a cell population reflect the variability
in the population rather than any sampling artefacts.

We compared the top genes ranked by gene–parameter
correlations for four populations: from two randomly sampled
and two similarity-informed cell chains. Gene–parameter pairs
were sorted by their absolute Pearson correlation coefficients,
and the genes ranked by their positions among sorted pairs.
In total, we identified 75 correlated gene–parameter pairs for
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the Reduced-3 chain, applying a Bonferroni correction for mul-
tiple testing (electronic supplementary material, figure S7). Out
of the top 30 genes, 25 appeared in the top 30 in at least three-
quarters of the cell chains studied (figure 4i). Of these 25
genes, 20 also appeared as top-10 marker genes from unsuper-
vised clustering (into three clusters) of the gene expression
data directly (figure 4i). The high degree of overlap between
these gene sets demonstrates that a subset of genes expressed
in MCF10A cells explain not only their overall transcriptional
variability but also their variability in Ca2+ model dynamics.
These results are also suggestive of how information content
pertaining to the heterogeneous Ca2+ cellular responses is
encapsulated in the parameter posterior distributions.
Next, we turn our attention from the level of individual
genes/parameters to that of the whole: what is the relation-
ship between the posterior parameter distribution of a cell
and its global transcriptional state? We used PCA for dimen-
sionality reduction of the posterior distributions to address
this question. We selected a cell (denoted the ‘focal cell’)
from a similarity-based cell chain (Reduced-3) and decom-
posed its posterior distribution using PCA. We projected
the posterior distributions of other cells onto the first two
components of the focal cell (figure 4j,k and electronic sup-
plementary material, figure S8a,b) to evaluate the overall
similarity between the posterior distributions of cells relative
to the focal cell. On PCA projection plots, posterior samples
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are coloured based on gene expression: samples are derived
from cells that are either transcriptionally similar to the
focal cell, or share no transcriptional similarity. Comparison
of similar and dissimilar cells from the same popula-
tion showed that cells that were transcriptionally similar
were located closer to the focal cell than dissimilar cells
(figure 4l,m and electronic supplementary material, figure
S8c,d ). By contrast, similar analysis of a random cell chain
showed that transcriptionally similar cells were not located
closer to the focal cell than dissimilar cells (electronic sup-
plementary material, figure S9). Notably, proximity of
posterior samples derived from transcriptionally similar
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cells was not driven by a cell’s position along the chain (no
block structure observed; electronic supplementary material,
figure S10). Similarities between posterior distributions of
transcriptionally similar cells were thus not driven by local
cell–cell similarity, but rather underlie a global effect and
denote a relationship between the transcriptional states of
cells and the Ca2+ pathway dynamics that they produce.
ing.org/journal/rsif
J.R.Soc.Interface

20:20230172
3.5. Similarity-based posterior cell clustering reveals
distinct transcriptional states underlying Ca2+

dynamics
To characterize the extent to which we can predict Ca2+

responses from knowledge of the model dynamics, we clus-
tered 500 cells from a similarity-based cell chain (Reduced-3)
based on the single-cell posterior distributions using hierarch-
ical clustering (see Material and methods). Three clusters
were obtained (figure 5a). Each cluster showed distinct Ca2+

dynamics: ‘low-responders’ exhibited lower overall Ca2+

peaks in response to ATP (figure 5b); ‘early-responders’
exhibited earlier overall Ca2+ peaks in response to ATP; and
‘late-high-responders’ exhibited robust Ca2+ responses with
peaks that were later and higher than cells from other clusters
(electronic supplementary material, figure S11). The distinct
dynamic profiles can be explained by the model parameters
that give rise to them: low-responders were characterized
by high concentration of free Ca2+ in the ER (c0) and low acti-
vation rates of IP3R (electronic supplementary material,
figures S11–S13). Early-responders were characterized by par-
ameters leading to faster and earlier IP3 and PLC dynamics.
Late-high-responders were characterized by small values of
d1 (electronic supplementary material, figure S13).

Comparison of posterior parameter clustering with the
clustering done by Yao et al. [38] highlights similarities and
distinctions. In both cases, one of the three clusters was
characterized by larger responses to ATP and correspond-
ingly higher values of dinh (electronic supplementary
material, figure S13). In Yao et al., both d1 and d5 were smaller
in cells with stronger Ca2+ responses; we found that d1 was
smaller in the late-high-responder cluster, but not in the
early responders. In our results, d5 was higher for the early-
responders, in contrast with Yao et al. (electronic supplemen-
tary material, figure S13). We note that we set a stringent
threshold for minimum peak Ca2+ response, i.e. we excluded
non-responding cells, unlike Yao et al., thus in a direct
comparison most of the cells in our population would
belong to the ‘strong positive’ cluster in [38].

To assess the Ca2+ dynamic clusters we obtained in light
of single-cell gene expression, we performed two analyses for
comparison. We clustered the same 500 cells based solely on
their gene expression using community detection (Leiden
algorithm in Scanpy [46]); and we clustered cells from a ran-
domly ordered cell chain using the same approach as above
for hierarchical clustering of posterior parameters. The cell
clusters obtained based solely on gene expression can be dis-
tinguished based on the Ca2+ profiles observed: ‘Ca-low’,
‘Ca-mid’ and ‘Ca-high’ responses (figure 5c); overlapping
partially with the similarity-based clusters obtained
(figure 5b). By contrast, no distinct Ca2+ dynamic responses
could be observed for the posterior clustering based on the
random cell chain (figure 5d and electronic supplementary
material, figure S14).
We analysed differential gene expression from each
set of clusters obtained, from the similarity-based
chain (figure 5e), the gene expression-based clustering
(figure 5f ) and the randomly ordered chain (figure 5g).
Distinct markers for each cluster were observed for the
similarity-based clustering and the gene expression-based
clustering, but were not discernible for cell clustering on
the random chain. Clustering of cell posteriors from the
randomly ordered chain was thus unable to distinguish
Ca2+ dynamic profiles nor gene expression differences.
On the other hand, clustering posteriors from a simi-
larity-based chain identified distinct gene expression
profiles, and these overlapped with the marker gene pro-
files obtained by clustering on the gene expression
directly. That is, parameter inference of single-cell Ca2+

dynamics from using a gene expression similarity-based
chain enables the identification of cell clusters with distinct
transcriptional profiles and distinct responses to ATP
stimulation.

Analysis of the genes that are associated with each
Ca2+ profile showed that low-responder cells were character-
ized by upregulation of CCDC47 and PP1 family genes
(PPP1CC and PPP2CA). Early-responder cells were character-
ized by upregulation of CAPN1 and CHP1, among others.
The late-high responder cells were characterized by increased
expression CALM3 among others, although the marker genes
for this cluster were less evident than the others. By compari-
son of marker genes, we saw considerable overlap between
the early-responders (similarity-based clustering) and the
Ca-mid responders (gene expression clustering). We also
saw overlap between the low-responder and the Ca-low
marker gene signatures. These results highlight that the pos-
terior distributions of cells fit from similarity-based cell
chains captured information about the underlying transcrip-
tional states of the cells, linking cellular response
parameters directly to transcriptional states. For example,
the low-responder cells (similarity-based clustering) were dis-
tinguished by parameter d5, characterizing the dynamics of
IP3 dissociation, and were marked by high PPP1CC and
CCDC47 expression.

Finally, we considered whether alternative means for cell
chain construction could provide similar information. We
constructed a cell chain using cells from Reduced-3, denoted
‘Ca-similarity’ for which consecutive cells displayed similar
Ca2+ responses (see electronic supplementary material, sec-
tion S1.3). Clustering cells from Ca-similarity based on their
Ca2+ responses (via k-means) showed that cells with different
Ca2+ responses had distinct gene expression profiles (elec-
tronic supplementary material, figure S15). However,
hierarchical clustering on the parameter posterior distri-
butions from these cells after performing inference on
Ca-similarity did not separate cells into clusters with distinct
Ca2+ responses or distinct gene expression profiles (electronic
supplementary material, figure S16a,b). This result makes
sense when analysed via the similarity matrices obtained
for Ca-similarity versus a gene expression similarity-based
chain (electronic supplementary material, figure S16c,d ). For
the former, almost all pairs of neighbouring cells did not
share similarity in gene expression despite their similarity
in Ca2+ response. Whereas for Reduced-3, the gene expression
similarity-based chain, all pairs of consecutive cells were
similar in gene expression (electronic supplementary
material, figure S16d ).
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4. Discussion
We have presented methods for inferring the parameters of a
signalling pathway model, given data describing dynamics in
single cells coupled with subsequent gene expression profiling.
We hypothesized that via transfer learning we could use pos-
terior information from a cell to inform the prior distribution
of its neighbour along a ‘cell chain’ of transcriptionally similar
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cells. Implemented using Hamiltonian Monte Carlo sampling
[42], we discovered that the cell chain construction for prior
distributions did indeed lead to faster sampling of parameters.
However, these improvements did not rely on the use of gene
expression to construct priors: the performance of inference on
cells in a chain ordered randomly was equally good. However,
cell chains constructedusinggene expression similarity contained
more information (as defined by their posterior parameter distri-
butions) aboutCa2+ signalling responses. Clustering the posterior
parameters identified important relationships between gene
expression and the dynamic Ca2+ phenotypes, thus providing
mappings from state to dynamic cell fate.

The model studied here is described by ODEs to charac-
terize the Ca2+ signalling pathway, adapted from [37,40],
consisting of 12 variables and (originally) a 40-dimensional
parameter space. This was reduced to 19 parameters in Yao
et al. [38] and 16 parameters in our work. Analysis of even
a single 16-dimensional posterior distribution requires
dimensionality reduction techniques, let alone the analysis
of the posterior distributions obtained for populations of
hundreds of single cells. Parameter sensitivity analysis high-
lighted the effects of specific parameter perturbations on the
Ca2+ dynamic responses. Indeed, we advocate for the use of
sensitivity analysis more generally as means to distinguish
and pinpoint the effects of different parameter combinations
for models of complex biochemical signalling pathways.

By unsupervised clustering of the posterior distributions,
we found that distinct patterns of Ca2+ in response to ATP
could be mapped to specific variation in the single-cell gene
expression. In previous work using similar approaches for
clustering [38], posterior parameter clusters predominantly
revealed response patterns consisting of responders and non-
responders; here we excluded those cells that did not exhibit
a robust response to ATP. We were able to characterize subtler
the Ca2+ response dynamics (described by ‘early’, ‘low’, and
‘late-high’ responders) and predict which transcriptional
states give rise to each. This approach is limited since relatively
little gene expression variance is explained by an individual
model parameter: it may be possible to address this in future
work by surveying a larger range of cell behaviours, e.g. by
including a wider range of cellular responses or by considering
higher-level covariance in the posterior parameter space. It
also remains to be tested whether the given model of Ca2+

dynamics is appropriate to describe the signalling responses
in cell types other than MCF10A cells.

Our ability to fit to the single cells tested came potentially
at the expense of an unwieldy model size. With four variables
and a 16-dimensional parameter space, the dimension of the
model far exceeds that of the data: time series of Ca2+

responses in single cells. Without data with which to con-
strain the three additional model species, we needed to
constrain the model in another way. We used an approach
of ‘scaling and clipping’ for construction of the priors, i.e. set-
ting ad hoc limits to control posterior variance. More effective
(and less ad hoc) techniques could improve inference overall
and may become necessary in the case of larger models.
These include (in order of sophistication): tailoring the scal-
ing/clipping choices to be parameter-specific; tailoring the
choice of prior variance based on additional sources of
data; or performing model reduction/identifiability analysis
to further constrain the prior space before inference. Con-
structing priors from cells with similar gene expression also
helped to curb the curse of dimensionality: sampling cells
sequentially places a constraint on the model. Nonetheless,
in the future more directed approaches to tackle model iden-
tifiability ought to be considered.

Connecting dynamic cell phenotypes to transcriptional states
remains a grand challenge in systems biology. The limitations of
deriving knowledge from gene expression data alone [24] have
led to the proposal of new methods seeking to bridge the gap
between states and fates [52]. Here, making use of technology
that jointly measures Ca2+ dynamics and gene expression in
single cells, we have shown that parameter inference informed
by transcriptional similarity represents another way by which
we can connect gene expression states to dynamic cellular pheno-
types. The statistical framework employed improved our ability
to perform parameter inference for single-cell models. We
expect that improvements to statistical inference frameworks
could be gained by similar approaches applied to other models
of nonlinear cellular response dynamics. Current and future
technologies combining higher-resolution dynamic cell measure-
ments with high-throughput genomics will provide new data to
inform these parameter inference methods and, we expect, lead
to new discoveries of means of transcriptional control of
biological dynamics.

Data accessibility. All code developed to simulate models and run par-
ameter inference is released under an MIT license at: https://
github.com/maclean-lab/singlecell-parinf. Parameter inference was
developed in Python 3.6 and Stan 2.19. Posterior analyses were devel-
oped in Python 3.8. Ca2+ data and MERFISH data (processed files)
are also available from the GitHub repository: https://github.com/
maclean-lab/singlecell-parinf.

The data are provided in electronic supplementary material [53].
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