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Major computational challenges exist in relation to the collection, curation,

processing and analysis of large genomic and imaging datasets, as well as the
simulation of larger and more realistic models in systems biology. Here we
discuss how a relative newcomer among programming languages—Jjulia—is
poised to meet the current and emerging demands in the computational
biosciences and beyond. Speed, flexibility, a thriving package ecosystem
and readability are major factors that make high-performance computing
and data analysis available to an unprecedented degree. We highlight how
Julia’s design is already enabling new ways of analyzing biological data and
systems, and we provide alist of resources that can facilitate the transition
intoJulian computing.

Computersare tools. Like pipettes or centrifuges, they allow us to per-
formtasks more quickly or efficiently, and like microscopes, they give
us new, more detailed insights into biological systems and data. Com-
putersallow us to develop, simulate and test mathematical models of
biology and compare models with complex datasets. As computational
power evolved, solving biological problems computationally became
possible, then popular and, eventually, necessary'. Entire fields such
as computational biology and bioinformatics emerged. Without com-
puters, the reconstruction of structures from X-ray crystallography,
NMR or cryogenic electron microscopy methods would be impossible.
The same goes for the 1000 Genomes Project?, which used computer
programs to assemble and analyze the DNA sequences generated.
More recently, vaccine development has benefited from advances in
algorithms and computer hardware’.

Programming languages are also tools. They make it possible
to instruct computers. Some languages are good at specific tasks
(think Perl for string processing tasks or R for statistical analyses),
whereas others—including C/C++ and Python—have been used with
success across many different domains. In biomedical research, the
prevailing languages have arguably been R* and Python®. Much of the
high-performance backbone supporting computationally intensive

research thatis hidden from most users, however, continuestorely on
C/C++orFortran. Computationally intensive studies are ofteninitially
designed and prototyped in R, Python or MATLAB and subsequently
translated into C/C++ or Fortran for increased performance. This is
known as the two-language problem®.

This two-language approach has been successful but has limita-
tions (Fig.1a). When moving animplementation from one language to
another, faster, programming language, verbatim translation may not
be the optimal route: faster languages often provide the programmer
with higher autonomy to choose how memory isaccessed or allocated
or to employ more flexible data structures’. Exploiting such features
may involve acomplete rewrite of the algorithm to ensure fasterimple-
mentation or better scaling as datasets grow in size and complexity.
Thisrequires expertise across both languages, but also rigorous testing
ofthe codeinboth languages.

Julia®is a relatively new programming language that overcomes
the two-language problem. Users do not have to choose between ease
of use and high performance. Julia has been designed to be easy to
program in and fast to execute (Fig. 1b). This efficiency and the grow-
ing ecosystem of state-of-the-art application packages (Table 1 and
Fig.2) and introductions™ make it an attractive choice for biologists.
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Fig.1|Juliais atool enabling biologists to discover new science. a, In the
biological sciences, the most obvious alternatives to the programming language
JuliaareR, Pythonand MATLAB. Here we contrast the two potential pathways to
new biology withamountaineering analogy. The top of the mountain represents
new biology*. There are two potential base camps for the ascent: base camp 1
(left, red) is R/Python/MATLAB. Base camp 2 (right, green) is Julia. To get to the
top, the mountaineer, representing a researcher, needs to overcome certain
obstacles, such asaglacier and achasm. These represent research hurdles, such
aslarge and diverse datasets or complex models. Starting at the Julia base camp,
the mountaineer has access to efficient and effective tools, such as abridge over

Required performance

the glacier and arocket to simply fly over the chasm. These represent Julia’s top
three language design features: abstraction, speed and metaprogramming. With
these tools, the journey to the top of the mountain becomes much easier for the
excursionist. Julia allows biologists to not be held back by the problems discussed
inband c. b, The two-language problem refers to having separate languages for
algorithm development and prototyping (such as R or Python) and production
runs (such as C/C++ or Fortran), respectively. Julia was designed to be good at both
tasks, which can reduce programming efforts and software complexity. ¢, The
expression problem refers to the effort required by users to define new (optimized)
datatypes and functions that can be added to existing external code bases.

Biological systems and data are multifaceted by nature, and to
describe them or model them mathematically requires a flexible
programming language that can connect different types of highly
structured data (Fig. 1c). Three hallmarks of the language make Julia
particularly suitable for meeting current and emerging demands of
biomedical science: speed, abstraction and metaprogramming.

In this article, we discuss each language feature and its rele-
vance in the context of one concrete biological example per feature.
Anadditional example per feature can be found in the Supplementary
Information. Furthermore, in Supplementary Table 1, we provide asum-
mary of why we believeJuliais agood programming language for biolo-
gists. Supporting online materialis provided ina GitHub repository at
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Table 1] Julia provides a rich package ecosystem for biologists

Community Topic Example packages

JuliaData Data manipulation, storage, and input and output DataFrames.jl, JuliaDB.jl, DataFramesMeta.jl and CSV.jl

JuliaPlots Data visualization Plots.jl, Makie.jl, StatsPlots.jl and PlotlyJS.jl

JuliaStats Statistics and machine learning Distributions.jl, GLM.jl, StatsBase.jl, Distances.jl, MixedModels.jl, TimeSeries.jl,
Clustering.jl, MultivariateStats.jl and HypothesisTests.jl.

BioJulia Bioinformatics and computational biology BioSequences.jl, BioStructures.jl, BioAlignments.jl, FASTX.jl and Microbiome.jl

Julialmages Image processing Images.jl, ImageSegmentation.jl, ImageTransformations.jl and ImageView.jl

EcolJulia Ecological research SpatialEcology.jl, EcologicalNetworks.jl, Phylo.jl and Diversity.jl

SciML Scientific machine learning DifferentialEquations.jl, ModelingToolkit.jl, DiffEgFlux.jl and Catalyst.jl

FluxML Machine learning Flux.jl, Zygote.jl, MacroTools.jl, GeometricFlux.jl and Metalhead.jl

Related packages are organized in package communities. In this table, we present an overview of the package communities we consider to be most relevant to biologists.

Plots.jl
StatPlots.jl
PhyloPlots.jl
PyPlot.jl
Gadfly.jl

Data handling and
visualization

Dimensionality
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TSne.jl
UMAP.jL
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./
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RCalljl
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~_| Julia for Biologists

Deep learning:

MixedModels.jl Flux.jl
Traditional machine DiffEqFlux.jl InformationMeasures.jl
learning: ChainRules.jl Optim,jl .
Zygote.jl GpABC.jl

CellFishing.jl

FASTX.jL Tools:

Miocrobiome.jl
BioStructures.jl
BioAlignments.jl
PhyloNetworks.jl
MIToS.jl

Bioinformatics

Advanced models:

ModelingToolkit.jl
DifferentialEquations.jl
DynamicalSystems.jl
Catalyst.jl, Turing.jl
BifurcationKit.jl

Mathematical modeling

Inferences and optimization:

JuMP.jL

Fig. 2| Overview of Julia’s package ecosystem, presented by topic group. Julia consists of packages related to five main biological topics: bioinformatics,
mathematical modeling, statistical and machine learning, data handling and visualization, and the integration of non-Julia code.

https://github.com/ElisabethRoesch/Perspective_Julia_for_Biologists/
tree/main/examples/Abstraction/Example_Structural_bioinformat-
ics_with_composable_packages. First, the online material shows code
forthe examples discussed here. Code examples have been chosen and
designedtobeaccessible toawide audience. We group thembased on
computational focus (high-and low-level user case) and access points
(forexample, Juliafiles and interactive notebooks). Second, asummary
of helpful resources for starting with Julia and buildingJulia solutions
is provided. The latter include, for example, platform-specific Julia
installation guides, links to introductory Julia courses and aselection
of pointers to relevantjuliacommunities.

Speed

The speed of a programming language is not just a matter of conveni-
ence that allows us to complete analyses more quickly (Fig. 3). It can
enable new and better science. Speed isimportant for analyzing large
datasets'® that are becoming the norm across many areas of modern
biomedical research. Slow computations might not hold back scientific

discovery when performed a small number of times. However, when
performed repeatedly onlarge datasets, the execution speed of a pro-
gramming language can become the limiting factor. Similarly, simu-
lation of large and complex computational models is only possible
with fast implementations. For example, digital twins™'? in precision
medicine will be useless without fast computation.

The speed of the programming language also determines how
extensively we can test statistical analysis or simulation algorithms
before using them on real data. Thorough testing of a new statisti-
cal algorithm can be expected to be around two to three orders of
magnitude more costly in computational terms than a single produc-
tion run®. Furthermore, the quality of approximations depends on
many factors (for example, the number of tested candidates'" and
grid step sizes'®), and faster code enables better analysis. Here and in
the Supplementary Information we provide insights into the design
features underlying Julia’s speed®. The speed rivals that of statically
compiled languages such as Fortran and C/C++. Higher-level language
features—hallmarks of R, Python, MATLAB and Julia—typically lead
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Fig.3|Julia’s speed feature. a, Speed-up examples relevant to biology.
Left, comparison of the time required to calculate the mutual information
for all possible pairs of genes of a single-cell dataset”. Right, benchmark of
ODE solvers implemented inJulia, Fortran, C, MATLAB, Python and R for the

Lotka-Volterramodel (more systems are described in ref. 50). b, Schematic
of the speed up of vectorizable code (asin a). ¢, Schematic of the speed up of
nonvectorizable code (asinb).

to shorter development times. Going from an initial idea to working
code canbe orders of magnitude faster than, for example, C/C++. This
isin no small measure helped by the flexible Jupyter and Pluto.jl note-
book user interfaces (which fulfill similar functions to, for example,

R’s Shiny) and flexible software editing environments. Juliacombines
fast development with fast run-time performance and is therefore
appropriate for both algorithm/method prototyping and time- and
resource-intensive applications.
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Example: network inference from single-cell data

Insingle-cell biology, we can measure expression levels of tens of thou-
sands of genes in tens of thousands of cells”. Increasingly, we are able
to do this with spatial resolution. However, searching for patterns in
complex and large datasetsis computationally expensive. Even appar-
ently simple tasks, such as calculating the mutual information across
all pairs of genes in a large dataset can quickly become impossible.

Generegulatory network inference from single-cell datais a sta-
tistically demanding task and one for whichJulia’s speed helps. Chan
et al.” used higher-order information theoretical measures to infer
gene regulatory networks from transcriptomic single-cell data of a
range of developmental and stem cell systems. The mutual informa-
tionhasto be calculated for gene pairs, but amultivariate information
measure—partial information decomposition—is also considered
to separate out direct and indirect interactions'®, and this requires
consideration of all gene triplets.

The run time of algorithms implemented in the Julia package
InformationMeasures.jl can be compared with that of the minet R
package" (Fig. 3a, left). For small numbers of genes, differences are
considerable but not prohibitive. Inferring a network with 100 genes
takesaround 0.3 sinjuliacompared with1.5sinR, but already for 1,000
genes the inference times differ substantially (17 sinJuliaand 390 s
(>20-fold difference) inR). For datasets with 3,500 genes and 600 cells
(by today’s standards, small datasets), R needs over 2.5 h compared
with Julia’s 134 s (-64-fold difference) and, in real-world applications,
400-fold speed differences are possible (this corresponds to comput-
ingtimes of hours versus weeks). Here we reach the threshold of what
can be tested and evaluated rigorously in many high-level languages.
Overall, multivariate information measures would almost certainly be
unfeasiblein pure R or Pythonimplementations.

The reason for this performance difference is Julia’s ability to
optimize vectorizable code® (Fig. 3b). Users of Python and R are familiar
with vectorized functions, such as maps and element-wise operations.
Julia’s performance improves by combining just-in-time compilation,
whereby computer code is compiled at run time (and the compiler can
therefore be informed by the current state of the program and data),
rather than ahead of execution, using vectorized functions via a trick
known as operator fusion. When writing a chain of vector expressions,
suchasD=AxB+C(whereA, B, Cand D are n-dimensional vectors),
libraries such as NumPy call optimized code, which is typically writ-
ten in languages such as C/C++, and these operations are computed
sequentially (Fig. 3¢c). To evaluate A x B, C code is called to produce a
temporary array, tmp, then tmp + Cis evaluated (using C) to produce
D. Allocating memory for the temporary intermediate tmp and the
final result Dis O(n) (which means that the time it takes to complete the
computationincreases approximately linearly with n, the length of the
vectors) and scales proportionally to the compute cost; thus, no matter
what thesize of the vectors, thereis amajor unavoidable overhead. Julia
usesthe“.” (“dot”) operator to signify element-wise action of afunction,
and we write D = A.x B.+ C. When theJuliacompiler sees this so-called
broadcast expression, indicated by the “.” operator, it fuses all nearby
dot operations into a single function and just-in-time compilation
compiles this function at run-time into a loop. Thus, NumPy makes
two function calls and spends time generating two arrays, whereas
Julia makes a single function call and reuses existing memory. This
and similar performance features are now leading package authors
of statistical and data science libraries to recommend calling Julia
for such operations, such as the recommendation by the principal
author of the R Ime4 linear mixed effects library to use JuliaCall to
access MixedModels.jl in Julia (both written by the same author) for
anapproximately 200x acceleration®.

The code for this example can be found at https://github.com/
ElisabethRoesch/Perspective_Julia_for_Biologists/tree/main/
examples/Abstraction/Example_Structural_bioinformatics_with_com-
posable_packages.

AbstractArray
interface

| }

SubArray

OffsetArray

Analogy:

Pipettor
interface

. !

Pipettor by Pipettor by
manufacturer A manufacturer B

Fig. 4 |InterfacesinJulia. It is possible for experimental scientists to switch
between different pipettors without recreating entire experimental protocols
because acommon understanding (or interface) exists that specifies tasks
that pipettors should be able to performin a similar manner. InJulia, we can
defineinterfaces, such as the AbstractArray class, in which we specify rules
that any array-like computational object has to follow. Interfaces allow us to
apply methods developed for abstract types to custom types. By building our
algorithms around interfaces, we can make the use, reuse and refinement of
code easier.

Abstraction

Julia allows an exceptionally high level of abstraction®. We canillus-
trate the advantages of abstraction by drawing an analogy to a stand-
ard laboratory tool: the pipettor. Pipettors produced by different
manufacturers have slightly different designs. Nevertheless, they
all perform the same task in a similar way. It thus takes minimum
efforttoget used toanew pipettor without having toretrainonevery
aspect of an experimental protocol. Abstraction achieves the same
for software. Similar to the described abstract interface pipettor, in
Julia we have interfaces such as the AbstractArray interface (Fig. 4
and discussed in detail in the Supplementary Information). All of
itsimplementations are array-like structures that provide the same
core functionalities that an array-like structure is expected to have.
This allows us to easily and flexibly switch between different imple-
mentations of the same interface?.

Abstractionis especially advantageousinthe biological sciences
where data are frequently heterogeneous and complex®**. This can
pose challenges for software developers? and data analysis pipelines,
as changes to data may require substantial rewriting of code for pro-
cessing and analysis. We may either end up with separate implementa-
tions of algorithms for different types of data or we may remove details
and nuance from the data to enable analysis by existing algorithms.
With abstraction, we do not have to make such choices. Julia’s abstrac-
tion capabilities provide room for both specialization and generaliza-
tionthrough features such as abstractinterfaces and generic functions
that can exploit the advantages of unique data formats with vary-
ing internal characteristics without an overall performance penalty.
Here we illustrate the effect of Julia’s abstraction via an example of a
structural bioinformatics pipeline. Additionally, we provide asecond,
more technical abstraction example focusing on image analysis in
Supplementary Fig. 1.

Example: structural bioinformatics with composable
packages

Julia’s flexibility means that packages from different authors can gener-
ally be combined with ease into workflows—a feature known as com-
posability (Fig. 5). Users benefit from Julia’s flexibility just as much
as package developers. For example, we consider a standard struc-
tural bioinformatics workflow (Fig. 5a) in which we want to download
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Fig. 5| The abstraction feature inJulia. a, Abstract Julia code enables a flexible
structural bioinformatics pipeline. The flow chart shows a pipeline that combines
multiple Julia packages seamlessly together. This gives developers and users
flexibility so that the effort and time required to generate new models and
complex workflows is substantially reduced and collaboration is made easier.
PDB, Protein Data Bank. b, An example pipeline showing the solving of the first
part of the expression problem (anillustration of which is provided in Fig. 1)
viathe easy code base extension to new functions (step highlighted in blue).

¢, Left, an example pipeline showing the solving of another expression
problem: extension to new types. The step highlighted in blue represents the
point at which anew plot recipe is defined for a domain-specific type (that s,
we demonstrate the extension of an existing code base to new types). Right,
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. ' mutable struct MyBioStruc 1
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."~.‘: certainty_AA::Vector{Float64},
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_______ E end H
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1 end .
Ll N L I
'A', 'L', 'A'], [0.5, 0.3, 0.3, 0.4], "StudyA", "Algl")

Julia code for defining a new type and and a new plot recipe. This example is for
the structure MyBioStruc, which captures the results of prediction algorithms of
amino acid sequences based on data. Itis defined with the fields predicted_AA
(avector of characters that represent the predicted AAs), certainty_AA (a vector
of numbers quantifying the certainty for each predicted AA), study (a string
naming the respective study that the prediction is based on) and alg (a string
naming the respective prediction algorithm). With the macro @recipe, we can
specify how the function plot(...) should work for our newly specified example
type. Here we define that this should create aline plot of the predicted amino
acids with the mean of the certainty of the prediction shown by the opacity of
theline, specified by the Plots.jl package as a. More details on the selected
example code are provided in the Supplementary Information.

and read the structure of the protein crambin from the Protein Data
Bank. This can be done using the BioStructures.jl package” from the
BioJulia organization, which provides the essential bioinformatics
infrastructure. Protein structures can be viewed using Bio3DView.jl,
whichuses the 3Dmol.jsJavaScript library* asJulia can easily connect
to packages from other languages. We can show the distance map of the
CB atoms using Plots.jl. While Plots.jl is not aware of this custom type,
aPlots.jl recipe makes this straightforward. BioSequences.jl provides
customdatatypes of sequences and allows us to represent the protein
sequence efficiently. With this, BioAlignments.jl can be used to align
our sequences of interest. This suite of packages can be used to carry
out single-cell, full-length total RNA sequencing analysis” quickly
and with ease. Afew lines of code in BioStructures.jl allow us to define
theresidue contact graph using Graphs.jl, giving access to optimized
graph operationsimplemented in Graphs.jl for further analysis, such
as calculating the betweenness centrality of the nodes. If coding and
analysis are performed in Pluto.jl, then updating one section updates
the whole workflow, which assists exploratory analysis (Fig. 5b).

Packages can be combined to meet the specific needs of each
study; for example, to generate protein ensembles and predict allos-
tericsites® or to carry outinformation theoretical comparisons using
the MIToS.jl package®. In this example, we have used at least five dif-
ferent packages together seamlessly. Plots.jl, BioAlignments.jl and
Graphs.jl do not depend on or know about BioStructures.jl, but can
still be used productively alongside it (Fig. 5c). Abstraction means
that the improvements in any of these packages will benefit users
of BioStructures.jl, despite the packages not being developed with
protein structures in mind.

Package composability iscommon across the Julia ecosystemand
is enabled by abstract interfaces supported by multiple dispatch (that
is, the ability to define multiple versions of the same function with dif-
ferent argument types). Programmers can define standard functions
such as addition and multiplication for their own types. Abstraction
means that functions in unrelated packages often just work despite
knowing nothing about the custom types. This is rarely seen in lan-
guages such as Python, R and C/C++, where the behavior of an object
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istightly confined and combining classes and functions from different
projects requires much more (of what is known as) boilerplate code.

For example, the Biopython project® has become a powerful
package covering much of bioinformatics. However, extensions to
Biopython objects are generally added to (anincreasingly monolithic)
Biopython, rather than to independent packages. This can lead to
objects and algorithms that have the difficult task of fitting all use
cases, including their dependencies, simultaneously®. In contrast,
Julia’s composability facilitates writing generic code that can be used
beyond its intended application domain. Tables.jl, for example, pro-
vides acommon interface for tabular data, allowing generic code for
common tasks on tables. Currently, some 131 distinct packages draw
on this common core for purposes far beyond the initially conceived
applicationscope. Thisis an example that showcases how abstraction
ensures the interoperability and longevity of code.

The code for this example can be found at https://github.com/
ElisabethRoesch/Perspective_Julia_for_Biologists/tree/main/
examples/Abstraction/Example_Structural_bioinformatics_with_com-
posable_packages.

Metaprogramming

Asour knowledge of the complexity of biological systems increases, so
doesourneedto construct and analyze mathematical models of these
systems (Fig. 6). Currently, most modeling studies in biology rely on
programming languages that treat source code as static. Once writ-
ten, it canbe processed intoloaded and executing code, butitis never
changed while running. We can compare this linear control process with
the central dogma of biology: source code (DNA) is transformed into
loaded code (RNA) and executing code (protein). We now know that this
process (DNA—RNA—sprotein)is notlinear and unidirectional. RNA
and proteins can alter how and when DNA is expressed. Programming
languages that support metaprogramming break the linear flow of the
computer programin aanalogous manner (Fig. 6a). With metaprogram-
ming, source code can be written that is processed into loaded and
executing code and that can be modified during run time. This shifts
our perception fromstatic software to code asadynamicinstance when
the program can modify aspects of itself during run time.

Metaprogramming originated in the LISP programming language
inthe early days of artificial intelligence research. It enables a form of
reflection and learning by the software, but the ability of a programto
modify computer code needs to be channeled very carefully. In Julia,
thisis done viaa feature called hygenic macros®. These are flexible code
templates, specified in the program, that can be manipulated at execu-
tion time. They are called hygenic because they prohibit accidentally
using variable names (and thus memory locations) that are defined
and used elsewhere. These macros can be used to generate repetitive
code efficiently and effectively.

However, there are other uses that can enable new research, and
this includes the development of mathematical models of biological
systems. Unlike in physics, first principles (the conservation of energy,
momentum and so on) offer little guidance as to how we should con-
struct models of biological processes and systems. For these notori-
ously complicated biological systems, trial and error, coupled with
biological domain expertise and state-of-the-art statistical model
selection, is required®. Great manual effort is spent on the formulation
of mathematical models, the exploration of their behavior and their
adaptation in light of comparisons with data. Metaprogramming (or
theabilities of introspection and reflection during run time*?) and the
ability to automate parts of the modeling process open up enormous
scope for new approaches to modeling biological systems (Fig. 6b),
including whole cells (see Supplementary Information).

Example: biochemical reaction networks
Mathematicalmodels of biochemical reaction networks allow us to ana-
lyze biological processes and make sense of the bewilderingly complex

systems underlying cellular function®**>. However, the specification
of mathematical models is challenging and requires us to specify all
of our assumptions explicitly. We then have to solve these models
based on these assumptions. Analyzing a given reaction network can
involve the solution, for example, of ordinary differential equations,
delay differential equations, stochastic differential equations (SDEs)
or discrete-time stochastic processes. To create instances of each of
these models would—in languages such as C/C++ or Python—typically
require the writing of different snippets of code for each modeling
framework. InJulia, via metaprogamming, different models can be
generated automatically from a single block of code. This simpli-
fies workflows and makes them more efficient, but also removes the
possibility of errors due to model inconsistencies.

For example, we can consider the ERK phosphorylation process
shownin Fig. 6b*°. Here ERK is doubly phosoporylated (by its cognisant
kinase, MEK), upon which it can shuttle into the nucleus and initiate
changesingene expression. Its role and importance have made ERK a
target of extensive further analysis, and modeling has helped to shed
light on its function and role in cell fate decision-making systems®.
This small system, albeit one of greatimportance and subtlety, forms
building blocks for larger, more realistic biochemical reaction and
signal transduction®® models.

InJulia, using the package Catalyst.jI*°, this model can be written
directlyinterms of itsreactions, with the corresponding rates. Source
code is human readable and differs minimally from the conventional
chemical reaction systems shown in Fig. 6¢.

The science is encapsulated in this little snippet. Solving of the
reaction systems then proceeds by calling the appropriate simulation
tool from DifferentialEquations.jl. For adeterministic model, the reac-
tion network s directly converted into asystem of ordinary differential
equations (via ODESystem). The same reaction network canbe directly
converted intoamodelthatis specified by SDEs (viaSDEProblem) or a
discrete-time stochastic process model (via DiscreteProblem). Each of
these cases leads to the creation of a distinct model that can be simu-
lated or analyzed; yet, all of the models share the underlying structure
ofthe samereaction network. To simulate one of the resulting models,
the user needs to specify only the necessary assumptions required for a
simulation (thatis, the parameter values and initial conditions), as well
asany further assumptionsrequired that are specific to the model type
(forexample, the choice of noise model for asystem of SDEs). Adapting
the model toinclude nuclear shuttling*® of ERK, as in Fig. 6¢, or extrinsic
noise upstream of ERK** is easily achieved using metaprogramming.

Thefitting of models to data, or estimation of their parameters, is
alsosupported by theJulia package ecosystem. Parameter estimation
by evaluating the likelihood, the posterior distribution or a cost func-
tionisstraightforward using the Optim.jl* or JuMP.jl*’ packages. Also,
because of Julia’s speed, it has become much easier to deploy Bayesian
inference methods. Here, too, metaprogramming helps tools such as
the probabilistic programming tool Turing.jl*’. Approximate Bayesian
computation approaches** also benefit fromJulia’s speed, abstraction
and metaprogramming and are implemented in GpABC.jI*.

The code for thisexample can be found at https://github.com/Elis-
abethRoesch/Perspective_Julia_for_Biologists/tree/main/examples/
Metaprogramming/Example_Biochemical_reaction_networks.

Outlook

Computer languages, like human languages, are diverse and changing
to meet new demands. When selecting a programming language, we
have many choices, but often they reduce to essentially two options:
using awidely used language that everybody else is using or using the
best language for the problem. Traditional languages have an enviable
track record of success in biological research. A frightening propor-
tion of the Internet and modern information infrastructure probably
depends on legacy software that would not pass modern quality con-
trol. However, it does the job, for the moment. Similarly, scientific
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a b Large-scale, automated model development
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Analogy: 3 i ! 3 | : 1 3
/- Transcription factor \ i [ ; v v v 3 “\
b ) @S i
DNA —  RNA —  Protein e O ——— )
¢ Mathematical model description Metaprogramming syntax in Julia
k—1 ko ErkModel = @reaction_network begin
M + MKK — M_MKK — Mp + MKK ”
k1 p (ki,k-1), M + MKK <-—> M_MKK
ks k kz, M_MKK -—> Mp + MKK
Mp + MKK <= Mp_MKK RN Mpp + MKK (ks,k-3), Mp + MKK <——> Mp_MKK
3 ka, Mp_MKK  --> Mpp + MKK
—
h_1 ha (hi,h-1), Mpp + MKP <--> Mpp_MKP
—
Mpp + MKP — Mpp-MKK — Mp + MKP hz, Mpp_MKP —-> Mp + MKP
! (hs,h-3), Mp + MKP <—-> Mp_MKP
Mp + MKP =X Mp MKP 745 M + MKP ha, Mp_MKP —=—=> M + MKP
hs end ki k2 ks ka h1 h2 hs hsa k-1 k-3 h-1 h-s
Proposed model / i Final model
ErkModel Does the model describe ErkModel

given data well?

No

Update: Change model

Fig. 6 | Julia’s metaprogramming feature. a, lllustration of metaprogramming
and ananalogy to the central dogma of molecular biology. Similar to how a
transcription factor, initially encoded in DNA, can control gene expression

and modify RNA levels of an organism, with metaprogramming we can create
code with a feedback effect. b, An example application of metaprogramming
inbiology. Metaprogramming is especially helpful for large-scale, automated
model development. We can write code that adapts the model definition
automatically (for example, in light of new data or based on how they interact
with other submodels). For example, when constructing models of cellular
systems V,, V,, ..., V,, we can combine structurally similar models for the different

Example syntax of adding reactions

@add_reactions ErkModel begin
mM-—>02
o, Mp —> @

. n, M\pp -——> @&

3 end nmo

MAP kinases present in human cells and build compartmental models by
explicitly modeling the kinase dynamics in the nucleus and cytosol*’. ¢, Example
workflow of model construction. The adaption process of models could, for
example, start with atheoretical inferred mathematical description, captured
viathe @reaction_network syntax of the Julia package Catalyst.jl. Subsequently,
given experimental data, we evaluate an objective function of the current model,
capturing the descriptiveness of the model in light of the data. Depending on the
outcome of this evaluation, the model will be updated (for example, by adding
new reactions to the model via the macro @add_reactions). More details on the
selected example code are provided in the Supplementary Information.

progress is possible with legacy software. Python and R are far from
legacy and have plenty of lifein them, and there are tools that allow us
to overcome their intrinsic slowness®.

Here we have tried to explain why we consider Julia alanguage for
the next chapter in the quantitative and computational life sciences.
Julia was designed to meet the current and future demands of scien-
tific and data-intensive computing*. It is an unequivocally modern
language and it does not have the ballast of along track record going
all the way to the pre-big data days. The deliberate choices made by
the developers furthermore make it fast and give developers and
users of the language a level of flexibility that is difficult to achieve in
other common languages such as R and Python, but also C/C++and

Fortran.Ontop of all of that, is a state-of-the-art package manager. All
packages andJuliaitself are maintained via Git, which makes installing
and updating the Julia language, packages and their dependencies
straightforward®.

Julia has a smaller user base than R and Python, but it is grow-
ing. In some domains these languages have truly impressive package
ecosystems. Rand the associated Bioconductor project, in particular,
havebeeninstrumentalin bringing sophisticated bioinformatics, data
analysis and visualization methods to biologists. For many, they have
alsoserved asagateway into programming. In other application areas
(notably, the simulation of dynamical systems), Julia has leapfrogged
the competition”. Many of the speed advantages of Julia come from
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just-in-time compilation, which underlies and enables good run-time
performance. This, however, takes time and causes what is known as
latency. Latency canbe a problem for applications with hard real-time
constraints, suchas being the embedded code onamedical device that
requires strict accurate updates at 100-ms intervals.

Julia was designed to meet the current and future demands of
scientific and data-intensive computing. The Julia alternative that
arguably has the most traction is Rust. Rust is an emerging language
that has syntactic similarity to C++but is better at managing memory
safely. It detects discrepancies of type assignments at compile time
and not just at run time, as is the case for C/C++. For this reason, it is
beingusedin, for example, the Linux kernel. In the biological domain, it
couldbecome achoice for medical devices (as we can control latency)
or bioinformatics servers that would previously have been developed
inJavaor C/C++.

These advantages of anew language need to be balanced against
the convenience of programmers who are able to tap into the collec-
tive knowledge of vast user communities. All languages have started
smalland had to develop user bases. The Juliacommunity is growing,
including in the biomedical sciences, and it appears to be acutely
aware of the needs of newcomers to Julia (and under-represented
minorities in the computational sciences more generally*®; see, for
example, https://julialang.org/diversity/ for details), which makes
the switch toJulia easier’.

We have described the three main language design features that
make Julia interesting for the scientific computing: speed, abstrac-
tion and metaprogramming. We have provided some intuition that
fills these concepts with life, and we have illustrated how they can be
exploitedindifferent biological domains, and how speed, abstraction
and metaprogramming together enable new ways of performing bio-
logical research. Eventhough we have introduced these features sepa-
rately, they are deeplyintertwined. For example, alot of the speed-up
opportunities of Julia derive from the language’s abstraction powers;
abstraction in turn makes metaprogramming easier.
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