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Julia for biologists
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Huda Nassar5, Christopher Rackauckas    6,7,8, Timothy E. Holy    9  
& Michael P. H. Stumpf    1,2,10,11 

Major computational challenges exist in relation to the collection, curation, 
processing and analysis of large genomic and imaging datasets, as well as the 
simulation of larger and more realistic models in systems biology. Here we 
discuss how a relative newcomer among programming languages—Julia—is 
poised to meet the current and emerging demands in the computational 
biosciences and beyond. Speed, flexibility, a thriving package ecosystem 
and readability are major factors that make high-performance computing 
and data analysis available to an unprecedented degree. We highlight how 
Julia’s design is already enabling new ways of analyzing biological data and 
systems, and we provide a list of resources that can facilitate the transition 
into Julian computing.

Computers are tools. Like pipettes or centrifuges, they allow us to per-
form tasks more quickly or efficiently, and like microscopes, they give 
us new, more detailed insights into biological systems and data. Com-
puters allow us to develop, simulate and test mathematical models of 
biology and compare models with complex datasets. As computational 
power evolved, solving biological problems computationally became 
possible, then popular and, eventually, necessary1. Entire fields such 
as computational biology and bioinformatics emerged. Without com-
puters, the reconstruction of structures from X-ray crystallography, 
NMR or cryogenic electron microscopy methods would be impossible. 
The same goes for the 1000 Genomes Project2, which used computer 
programs to assemble and analyze the DNA sequences generated. 
More recently, vaccine development has benefited from advances in 
algorithms and computer hardware3.

Programming languages are also tools. They make it possible 
to instruct computers. Some languages are good at specific tasks 
(think Perl for string processing tasks or R for statistical analyses), 
whereas others—including C/C++ and Python—have been used with 
success across many different domains. In biomedical research, the 
prevailing languages have arguably been R4 and Python5. Much of the 
high-performance backbone supporting computationally intensive 

research that is hidden from most users, however, continues to rely on 
C/C++ or Fortran. Computationally intensive studies are often initially 
designed and prototyped in R, Python or MATLAB and subsequently 
translated into C/C++ or Fortran for increased performance. This is 
known as the two-language problem6.

This two-language approach has been successful but has limita-
tions (Fig. 1a). When moving an implementation from one language to 
another, faster, programming language, verbatim translation may not 
be the optimal route: faster languages often provide the programmer 
with higher autonomy to choose how memory is accessed or allocated 
or to employ more flexible data structures7. Exploiting such features 
may involve a complete rewrite of the algorithm to ensure faster imple-
mentation or better scaling as datasets grow in size and complexity. 
This requires expertise across both languages, but also rigorous testing 
of the code in both languages.

Julia8 is a relatively new programming language that overcomes 
the two-language problem. Users do not have to choose between ease 
of use and high performance. Julia has been designed to be easy to 
program in and fast to execute (Fig. 1b). This efficiency and the grow-
ing ecosystem of state-of-the-art application packages (Table  1 and 
Fig. 2) and introductions7,9 make it an attractive choice for biologists.
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In this article, we discuss each language feature and its rele-
vance in the context of one concrete biological example per feature.  
An additional example per feature can be found in the Supplementary 
Information. Furthermore, in Supplementary Table 1, we provide a sum-
mary of why we believe Julia is a good programming language for biolo-
gists. Supporting online material is provided in a GitHub repository at 

Biological systems and data are multifaceted by nature, and to 
describe them or model them mathematically requires a flexible 
programming language that can connect different types of highly 
structured data (Fig. 1c). Three hallmarks of the language make Julia 
particularly suitable for meeting current and emerging demands of 
biomedical science: speed, abstraction and metaprogramming.
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Fig. 1 | Julia is a tool enabling biologists to discover new science. a, In the 
biological sciences, the most obvious alternatives to the programming language 
Julia are R, Python and MATLAB. Here we contrast the two potential pathways to 
new biology with a mountaineering analogy. The top of the mountain represents 
new biology49. There are two potential base camps for the ascent: base camp 1 
(left, red) is R/Python/MATLAB. Base camp 2 (right, green) is Julia. To get to the 
top, the mountaineer, representing a researcher, needs to overcome certain 
obstacles, such as a glacier and a chasm. These represent research hurdles, such 
as large and diverse datasets or complex models. Starting at the Julia base camp, 
the mountaineer has access to efficient and effective tools, such as a bridge over 

the glacier and a rocket to simply fly over the chasm. These represent Julia’s top 
three language design features: abstraction, speed and metaprogramming. With 
these tools, the journey to the top of the mountain becomes much easier for the 
excursionist. Julia allows biologists to not be held back by the problems discussed 
in b and c. b, The two-language problem refers to having separate languages for 
algorithm development and prototyping (such as R or Python) and production 
runs (such as C/C++ or Fortran), respectively. Julia was designed to be good at both 
tasks, which can reduce programming efforts and software complexity. c, The 
expression problem refers to the effort required by users to define new (optimized) 
data types and functions that can be added to existing external code bases.
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https://github.com/ElisabethRoesch/Perspective_Julia_for_Biologists/
tree/main/examples/Abstraction/Example_Structural_bioinformat-
ics_with_composable_packages. First, the online material shows code 
for the examples discussed here. Code examples have been chosen and 
designed to be accessible to a wide audience. We group them based on 
computational focus (high- and low-level user case) and access points 
(for example, Julia files and interactive notebooks). Second, a summary 
of helpful resources for starting with Julia and building Julia solutions 
is provided. The latter include, for example, platform-specific Julia 
installation guides, links to introductory Julia courses and a selection 
of pointers to relevant Julia communities.

Speed
The speed of a programming language is not just a matter of conveni-
ence that allows us to complete analyses more quickly (Fig. 3). It can 
enable new and better science. Speed is important for analyzing large 
datasets10 that are becoming the norm across many areas of modern 
biomedical research. Slow computations might not hold back scientific 

discovery when performed a small number of times. However, when 
performed repeatedly on large datasets, the execution speed of a pro-
gramming language can become the limiting factor. Similarly, simu-
lation of large and complex computational models is only possible 
with fast implementations. For example, digital twins11,12 in precision 
medicine will be useless without fast computation.

The speed of the programming language also determines how 
extensively we can test statistical analysis or simulation algorithms 
before using them on real data. Thorough testing of a new statisti-
cal algorithm can be expected to be around two to three orders of 
magnitude more costly in computational terms than a single produc-
tion run13. Furthermore, the quality of approximations depends on 
many factors (for example, the number of tested candidates14,15 and 
grid step sizes16), and faster code enables better analysis. Here and in 
the Supplementary Information we provide insights into the design 
features underlying Julia’s speed6. The speed rivals that of statically 
compiled languages such as Fortran and C/C++. Higher-level language 
features—hallmarks of R, Python, MATLAB and Julia—typically lead 

Table 1 | Julia provides a rich package ecosystem for biologists

Community Topic Example packages

JuliaData Data manipulation, storage, and input and output DataFrames.jl, JuliaDB.jl, DataFramesMeta.jl and CSV.jl

JuliaPlots Data visualization Plots.jl, Makie.jl, StatsPlots.jl and PlotlyJS.jl

JuliaStats Statistics and machine learning Distributions.jl, GLM.jl, StatsBase.jl, Distances.jl, MixedModels.jl, TimeSeries.jl, 
Clustering.jl, MultivariateStats.jl and HypothesisTests.jl.

BioJulia Bioinformatics and computational biology BioSequences.jl, BioStructures.jl, BioAlignments.jl, FASTX.jl and Microbiome.jl

JuliaImages Image processing Images.jl, ImageSegmentation.jl, ImageTransformations.jl and ImageView.jl

EcoJulia Ecological research SpatialEcology.jl, EcologicalNetworks.jl, Phylo.jl and Diversity.jl

SciML Scientific machine learning DifferentialEquations.jl, ModelingToolkit.jl, DiffEqFlux.jl and Catalyst.jl

FluxML Machine learning Flux.jl, Zygote.jl, MacroTools.jl, GeometricFlux.jl and Metalhead.jl

Related packages are organized in package communities. In this table, we present an overview of the package communities we consider to be most relevant to biologists.

Data:

DataFrames.jl
CSV.jl

Graphs.jl
Images.jl

Visualization:

Plots.jl
StatPlots.jl

PhyloPlots.jl
PyPlot.jl
Gadfly.jl

Advanced models:

ModelingToolkit.jl
Di�erentialEquations.jl
DynamicalSystems.jl
Catalyst.jl,Turing.jl

BifurcationKit.jl

Bioinformatics

Inferences and optimization:

InformationMeasures.jl
Optim.jl
GpABC.jl
JuMP.jl

Julia for Biologists

Data handling and
visualization

Mathematical modeling

Domain data:

BioSequences.jl
CellFishing.jl

FASTX.jl

Statistics:

HypothesisTests.jl
MultiVariateStats.jl

MixedModels.jl

Tools:

Miocrobiome.jl
BioStructures.jl
BioAlignments.jl
PhyloNetworks.jl

MIToS.jl

Deep learning:

Flux.jl
Di�EqFlux.jl

ChainRules.jl
Zygote.jl

Traditional machine
learning:

NearestNeighbors.jl
DecisionTrees.jl

Clustering.jl
MLJ.jl
GLM.jl

Dimensionality
reduction:

TSne.jl
UMAP.jl

Statistical and machine
learning

Integration of non-Julia
code

RCall.jl
PyCall.jl

MATLAB.jl
CxxWrap.jl
JavaCall.jl

Fig. 2 | Overview of Julia’s package ecosystem, presented by topic group. Julia consists of packages related to five main biological topics: bioinformatics, 
mathematical modeling, statistical and machine learning, data handling and visualization, and the integration of non-Julia code.
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to shorter development times. Going from an initial idea to working 
code can be orders of magnitude faster than, for example, C/C++. This 
is in no small measure helped by the flexible Jupyter and Pluto.jl note-
book user interfaces (which fulfill similar functions to, for example,  

R’s Shiny) and flexible software editing environments. Julia combines 
fast development with fast run-time performance and is therefore 
appropriate for both algorithm/method prototyping and time- and 
resource-intensive applications.
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Fig. 3 | Julia’s speed feature. a, Speed-up examples relevant to biology. 
Left, comparison of the time required to calculate the mutual information 
for all possible pairs of genes of a single-cell dataset13. Right, benchmark of 
ODE solvers implemented in Julia, Fortran, C, MATLAB, Python and R for the 

Lotka–Volterra model (more systems are described in ref. 50). b, Schematic 
of the speed up of vectorizable code (as in a). c, Schematic of the speed up of 
nonvectorizable code (as in b).
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Example: network inference from single-cell data
In single-cell biology, we can measure expression levels of tens of thou-
sands of genes in tens of thousands of cells17. Increasingly, we are able 
to do this with spatial resolution. However, searching for patterns in 
complex and large datasets is computationally expensive. Even appar-
ently simple tasks, such as calculating the mutual information across 
all pairs of genes in a large dataset can quickly become impossible.

Gene regulatory network inference from single-cell data is a sta-
tistically demanding task and one for which Julia’s speed helps. Chan 
et al.13 used higher-order information theoretical measures to infer 
gene regulatory networks from transcriptomic single-cell data of a 
range of developmental and stem cell systems. The mutual informa-
tion has to be calculated for gene pairs, but a multivariate information 
measure—partial information decomposition—is also considered 
to separate out direct and indirect interactions18, and this requires 
consideration of all gene triplets.

The run time of algorithms implemented in the Julia package 
InformationMeasures.jl can be compared with that of the minet R 
package19 (Fig. 3a, left). For small numbers of genes, differences are 
considerable but not prohibitive. Inferring a network with 100 genes 
takes around 0.3 s in Julia compared with 1.5 s in R, but already for 1,000 
genes the inference times differ substantially (17 s in Julia and 390 s 
(>20-fold difference) in R). For datasets with 3,500 genes and 600 cells 
(by today’s standards, small datasets), R needs over 2.5 h compared 
with Julia’s 134 s (~64-fold difference) and, in real-world applications, 
400-fold speed differences are possible (this corresponds to comput-
ing times of hours versus weeks). Here we reach the threshold of what 
can be tested and evaluated rigorously in many high-level languages. 
Overall, multivariate information measures would almost certainly be 
unfeasible in pure R or Python implementations.

The reason for this performance difference is Julia’s ability to 
optimize vectorizable code6 (Fig. 3b). Users of Python and R are familiar 
with vectorized functions, such as maps and element-wise operations. 
Julia’s performance improves by combining just-in-time compilation, 
whereby computer code is compiled at run time (and the compiler can 
therefore be informed by the current state of the program and data), 
rather than ahead of execution, using vectorized functions via a trick 
known as operator fusion. When writing a chain of vector expressions, 
such as D = A × B + C (where A, B, C and D are n-dimensional vectors), 
libraries such as NumPy call optimized code, which is typically writ-
ten in languages such as C/C++, and these operations are computed 
sequentially (Fig. 3c). To evaluate A × B, C code is called to produce a 
temporary array, tmp, then tmp + C is evaluated (using C) to produce 
D. Allocating memory for the temporary intermediate tmp and the 
final result D is O(n) (which means that the time it takes to complete the 
computation increases approximately linearly with n, the length of the 
vectors) and scales proportionally to the compute cost; thus, no matter 
what the size of the vectors, there is a major unavoidable overhead. Julia 
uses the “.” (“dot”) operator to signify element-wise action of a function, 
and we write D = A.× B.+ C. When the Julia compiler sees this so-called 
broadcast expression, indicated by the “.” operator, it fuses all nearby 
dot operations into a single function and just-in-time compilation 
compiles this function at run-time into a loop. Thus, NumPy makes 
two function calls and spends time generating two arrays, whereas 
Julia makes a single function call and reuses existing memory. This 
and similar performance features are now leading package authors 
of statistical and data science libraries to recommend calling Julia 
for such operations, such as the recommendation by the principal 
author of the R lme4 linear mixed effects library to use JuliaCall to 
access MixedModels.jl in Julia (both written by the same author) for 
an approximately 200× acceleration20.

The code for this example can be found at https://github.com/ 
ElisabethRoesch/Perspective_Julia_for_Biologists/tree/main/ 
examples/Abstraction/Example_Structural_bioinformatics_with_com-
posable_packages.

Abstraction
Julia allows an exceptionally high level of abstraction21. We can illus-
trate the advantages of abstraction by drawing an analogy to a stand-
ard laboratory tool: the pipettor. Pipettors produced by different 
manufacturers have slightly different designs. Nevertheless, they 
all perform the same task in a similar way. It thus takes minimum 
effort to get used to a new pipettor without having to retrain on every 
aspect of an experimental protocol. Abstraction achieves the same 
for software. Similar to the described abstract interface pipettor, in 
Julia we have interfaces such as the AbstractArray interface (Fig.  4  
and discussed in detail in the Supplementary Information). All of 
its implementations are array-like structures that provide the same 
core functionalities that an array-like structure is expected to have. 
This allows us to easily and flexibly switch between different imple-
mentations of the same interface22.

Abstraction is especially advantageous in the biological sciences 
where data are frequently heterogeneous and complex23,24. This can 
pose challenges for software developers22 and data analysis pipelines, 
as changes to data may require substantial rewriting of code for pro-
cessing and analysis. We may either end up with separate implementa-
tions of algorithms for different types of data or we may remove details 
and nuance from the data to enable analysis by existing algorithms. 
With abstraction, we do not have to make such choices. Julia’s abstrac-
tion capabilities provide room for both specialization and generaliza-
tion through features such as abstract interfaces and generic functions 
that can exploit the advantages of unique data formats with vary-
ing internal characteristics without an overall performance penalty. 
Here we illustrate the effect of Julia’s abstraction via an example of a 
structural bioinformatics pipeline. Additionally, we provide a second, 
more technical abstraction example focusing on image analysis in 
Supplementary Fig. 1.

Example: structural bioinformatics with composable 
packages
Julia’s flexibility means that packages from different authors can gener-
ally be combined with ease into workflows—a feature known as com-
posability (Fig. 5). Users benefit from Julia’s flexibility just as much 
as package developers. For example, we consider a standard struc-
tural bioinformatics workflow (Fig. 5a) in which we want to download 

Pipettor
interface

Pipettor by
manufacturer A

Pipettor by
manufacturer B ...

AbstractArray
interface

O
setArray SubArray ...

Analogy:

Fig. 4 | Interfaces in Julia. It is possible for experimental scientists to switch 
between different pipettors without recreating entire experimental protocols 
because a common understanding (or interface) exists that specifies tasks 
that pipettors should be able to perform in a similar manner. In Julia, we can 
define interfaces, such as the AbstractArray class, in which we specify rules 
that any array-like computational object has to follow. Interfaces allow us to 
apply methods developed for abstract types to custom types. By building our 
algorithms around interfaces, we can make the use, reuse and refinement of  
code easier.
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and read the structure of the protein crambin from the Protein Data 
Bank. This can be done using the BioStructures.jl package25 from the 
BioJulia organization, which provides the essential bioinformatics 
infrastructure. Protein structures can be viewed using Bio3DView.jl, 
which uses the 3Dmol.js JavaScript library26 as Julia can easily connect 
to packages from other languages. We can show the distance map of the  
Cβ atoms using Plots.jl. While Plots.jl is not aware of this custom type, 
a Plots.jl recipe makes this straightforward. BioSequences.jl provides 
custom data types of sequences and allows us to represent the protein 
sequence efficiently. With this, BioAlignments.jl can be used to align 
our sequences of interest. This suite of packages can be used to carry 
out single-cell, full-length total RNA sequencing analysis27 quickly 
and with ease. A few lines of code in BioStructures.jl allow us to define 
the residue contact graph using Graphs.jl, giving access to optimized 
graph operations implemented in Graphs.jl for further analysis, such 
as calculating the betweenness centrality of the nodes. If coding and 
analysis are performed in Pluto.jl, then updating one section updates 
the whole workflow, which assists exploratory analysis (Fig. 5b).

Packages can be combined to meet the specific needs of each 
study; for example, to generate protein ensembles and predict allos-
teric sites28 or to carry out information theoretical comparisons using 
the MIToS.jl package29. In this example, we have used at least five dif-
ferent packages together seamlessly. Plots.jl, BioAlignments.jl and 
Graphs.jl do not depend on or know about BioStructures.jl, but can 
still be used productively alongside it (Fig. 5c). Abstraction means 
that the improvements in any of these packages will benefit users 
of BioStructures.jl, despite the packages not being developed with 
protein structures in mind.

Package composability is common across the Julia ecosystem and 
is enabled by abstract interfaces supported by multiple dispatch (that 
is, the ability to define multiple versions of the same function with dif-
ferent argument types). Programmers can define standard functions 
such as addition and multiplication for their own types. Abstraction 
means that functions in unrelated packages often just work despite 
knowing nothing about the custom types. This is rarely seen in lan-
guages such as Python, R and C/C++, where the behavior of an object 

PDB file of monomer

Graph of contacting
residues

b

c

Read file

Extract Cβ atom

Plot distance map

Betweenness
centrality of residues

Existing types
of Graphs.jl

Domain-specific function
finding residues for allosteric communication

Define new recipe to
customize plot for this specific type 

Reuse types by writing
generic pipelines

a

Domain-specific type
in BioStructures.jl

Existing generic function
plot of Plots.jl

Existing operation applies to new
type

New operation applies to
existing type 

Plot distance map

Graph of contacting
residuesKey steps

highlighting
flexibility

Input/output

Fig. 5 | The abstraction feature in Julia. a, Abstract Julia code enables a flexible 
structural bioinformatics pipeline. The flow chart shows a pipeline that combines 
multiple Julia packages seamlessly together. This gives developers and users 
flexibility so that the effort and time required to generate new models and 
complex workflows is substantially reduced and collaboration is made easier. 
PDB, Protein Data Bank. b, An example pipeline showing the solving of the first 
part of the expression problem (an illustration of which is provided in Fig. 1)  
via the easy code base extension to new functions (step highlighted in blue).  
c, Left, an example pipeline showing the solving of another expression  
problem: extension to new types. The step highlighted in blue represents the 
point at which a new plot recipe is defined for a domain-specific type (that is,  
we demonstrate the extension of an existing code base to new types). Right,  

Julia code for defining a new type and and a new plot recipe. This example is for 
the structure MyBioStruc, which captures the results of prediction algorithms of 
amino acid sequences based on data. It is defined with the fields predicted_AA  
(a vector of characters that represent the predicted AAs), certainty_AA (a vector 
of numbers quantifying the certainty for each predicted AA), study (a string 
naming the respective study that the prediction is based on) and alg (a string 
naming the respective prediction algorithm). With the macro @recipe, we can 
specify how the function plot(…) should work for our newly specified example 
type. Here we define that this should create a line plot of the predicted amino 
acids with the mean of the certainty of the prediction shown by the opacity of  
the line, specified by the Plots.jl package as α. More details on the selected 
example code are provided in the Supplementary Information.
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is tightly confined and combining classes and functions from different 
projects requires much more (of what is known as) boilerplate code.

For example, the Biopython project30 has become a powerful 
package covering much of bioinformatics. However, extensions to 
Biopython objects are generally added to (an increasingly monolithic) 
Biopython, rather than to independent packages. This can lead to 
objects and algorithms that have the difficult task of fitting all use 
cases, including their dependencies, simultaneously31. In contrast, 
Julia’s composability facilitates writing generic code that can be used 
beyond its intended application domain. Tables.jl, for example, pro-
vides a common interface for tabular data, allowing generic code for 
common tasks on tables. Currently, some 131 distinct packages draw 
on this common core for purposes far beyond the initially conceived 
application scope. This is an example that showcases how abstraction 
ensures the interoperability and longevity of code.

The code for this example can be found at https://github.com/ 
ElisabethRoesch/Perspective_Julia_for_Biologists/tree/main/ 
examples/Abstraction/Example_Structural_bioinformatics_with_com-
posable_packages.

Metaprogramming
As our knowledge of the complexity of biological systems increases, so 
does our need to construct and analyze mathematical models of these 
systems (Fig. 6). Currently, most modeling studies in biology rely on 
programming languages that treat source code as static. Once writ-
ten, it can be processed into loaded and executing code, but it is never 
changed while running. We can compare this linear control process with 
the central dogma of biology: source code (DNA) is transformed into 
loaded code (RNA) and executing code (protein). We now know that this 
process (DNA⟶RNA⟶protein) is not linear and unidirectional. RNA 
and proteins can alter how and when DNA is expressed. Programming 
languages that support metaprogramming break the linear flow of the 
computer program in a analogous manner (Fig. 6a). With metaprogram-
ming, source code can be written that is processed into loaded and 
executing code and that can be modified during run time. This shifts 
our perception from static software to code as a dynamic instance when 
the program can modify aspects of itself during run time.

Metaprogramming originated in the LISP programming language 
in the early days of artificial intelligence research. It enables a form of 
reflection and learning by the software, but the ability of a program to 
modify computer code needs to be channeled very carefully. In Julia, 
this is done via a feature called hygenic macros32. These are flexible code 
templates, specified in the program, that can be manipulated at execu-
tion time. They are called hygenic because they prohibit accidentally 
using variable names (and thus memory locations) that are defined 
and used elsewhere. These macros can be used to generate repetitive 
code efficiently and effectively.

However, there are other uses that can enable new research, and 
this includes the development of mathematical models of biological 
systems. Unlike in physics, first principles (the conservation of energy, 
momentum and so on) offer little guidance as to how we should con-
struct models of biological processes and systems. For these notori-
ously complicated biological systems, trial and error, coupled with 
biological domain expertise and state-of-the-art statistical model 
selection, is required33. Great manual effort is spent on the formulation 
of mathematical models, the exploration of their behavior and their 
adaptation in light of comparisons with data. Metaprogramming (or 
the abilities of introspection and reflection during run time32) and the 
ability to automate parts of the modeling process open up enormous 
scope for new approaches to modeling biological systems (Fig. 6b), 
including whole cells (see Supplementary Information).

Example: biochemical reaction networks
Mathematical models of biochemical reaction networks allow us to ana-
lyze biological processes and make sense of the bewilderingly complex 

systems underlying cellular function34,35. However, the specification 
of mathematical models is challenging and requires us to specify all 
of our assumptions explicitly. We then have to solve these models 
based on these assumptions. Analyzing a given reaction network can 
involve the solution, for example, of ordinary differential equations, 
delay differential equations, stochastic differential equations (SDEs) 
or discrete-time stochastic processes. To create instances of each of 
these models would—in languages such as C/C++ or Python—typically 
require the writing of different snippets of code for each modeling 
framework. In Julia, via metaprogamming, different models can be 
generated automatically from a single block of code. This simpli-
fies workflows and makes them more efficient, but also removes the  
possibility of errors due to model inconsistencies.

For example, we can consider the ERK phosphorylation process 
shown in Fig. 6b36. Here ERK is doubly phosoporylated (by its cognisant 
kinase, MEK), upon which it can shuttle into the nucleus and initiate 
changes in gene expression. Its role and importance have made ERK a 
target of extensive further analysis, and modeling has helped to shed 
light on its function and role in cell fate decision-making systems37. 
This small system, albeit one of great importance and subtlety, forms 
building blocks for larger, more realistic biochemical reaction and 
signal transduction38 models.

In Julia, using the package Catalyst.jl39, this model can be written 
directly in terms of its reactions, with the corresponding rates. Source 
code is human readable and differs minimally from the conventional 
chemical reaction systems shown in Fig. 6c.

The science is encapsulated in this little snippet. Solving of the 
reaction systems then proceeds by calling the appropriate simulation 
tool from DifferentialEquations.jl. For a deterministic model, the reac-
tion network is directly converted into a system of ordinary differential 
equations (via ODESystem). The same reaction network can be directly 
converted into a model that is specified by SDEs (via SDEProblem) or a 
discrete-time stochastic process model (via DiscreteProblem). Each of 
these cases leads to the creation of a distinct model that can be simu-
lated or analyzed; yet, all of the models share the underlying structure 
of the same reaction network. To simulate one of the resulting models, 
the user needs to specify only the necessary assumptions required for a 
simulation (that is, the parameter values and initial conditions), as well 
as any further assumptions required that are specific to the model type 
(for example, the choice of noise model for a system of SDEs). Adapting 
the model to include nuclear shuttling40 of ERK, as in Fig. 6c, or extrinsic 
noise upstream of ERK36 is easily achieved using metaprogramming.

The fitting of models to data, or estimation of their parameters, is 
also supported by the Julia package ecosystem. Parameter estimation 
by evaluating the likelihood, the posterior distribution or a cost func-
tion is straightforward using the Optim.jl41 or JuMP.jl42 packages. Also, 
because of Julia’s speed, it has become much easier to deploy Bayesian 
inference methods. Here, too, metaprogramming helps tools such as 
the probabilistic programming tool Turing.jl43. Approximate Bayesian 
computation approaches44 also benefit from Julia’s speed, abstraction 
and metaprogramming and are implemented in GpABC.jl14.

The code for this example can be found at https://github.com/Elis-
abethRoesch/Perspective_Julia_for_Biologists/tree/main/examples/
Metaprogramming/Example_Biochemical_reaction_networks.

Outlook
Computer languages, like human languages, are diverse and changing 
to meet new demands. When selecting a programming language, we 
have many choices, but often they reduce to essentially two options: 
using a widely used language that everybody else is using or using the 
best language for the problem. Traditional languages have an enviable 
track record of success in biological research. A frightening propor-
tion of the Internet and modern information infrastructure probably 
depends on legacy software that would not pass modern quality con-
trol. However, it does the job, for the moment. Similarly, scientific 
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progress is possible with legacy software. Python and R are far from 
legacy and have plenty of life in them, and there are tools that allow us 
to overcome their intrinsic slowness45.

Here we have tried to explain why we consider Julia a language for 
the next chapter in the quantitative and computational life sciences. 
Julia was designed to meet the current and future demands of scien-
tific and data-intensive computing46. It is an unequivocally modern 
language and it does not have the ballast of a long track record going 
all the way to the pre-big data days. The deliberate choices made by 
the developers furthermore make it fast and give developers and 
users of the language a level of flexibility that is difficult to achieve in 
other common languages such as R and Python, but also C/C++ and 

Fortran. On top of all of that, is a state-of-the-art package manager. All 
packages and Julia itself are maintained via Git, which makes installing 
and updating the Julia language, packages and their dependencies 
straightforward6.

Julia has a smaller user base than R and Python, but it is grow-
ing. In some domains these languages have truly impressive package 
ecosystems. R and the associated Bioconductor project, in particular, 
have been instrumental in bringing sophisticated bioinformatics, data 
analysis and visualization methods to biologists. For many, they have 
also served as a gateway into programming. In other application areas 
(notably, the simulation of dynamical systems), Julia has leapfrogged 
the competition47. Many of the speed advantages of Julia come from 
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Fig. 6 | Julia’s metaprogramming feature. a, Illustration of metaprogramming 
and an analogy to the central dogma of molecular biology. Similar to how a 
transcription factor, initially encoded in DNA, can control gene expression 
and modify RNA levels of an organism, with metaprogramming we can create 
code with a feedback effect. b, An example application of metaprogramming 
in biology. Metaprogramming is especially helpful for large-scale, automated 
model development. We can write code that adapts the model definition 
automatically (for example, in light of new data or based on how they interact 
with other submodels). For example, when constructing models of cellular 
systems V1, V2, ..., Vn, we can combine structurally similar models for the different 

MAP kinases present in human cells and build compartmental models by 
explicitly modeling the kinase dynamics in the nucleus and cytosol40. c, Example 
workflow of model construction. The adaption process of models could, for 
example, start with a theoretical inferred mathematical description, captured 
via the @reaction_network syntax of the Julia package Catalyst.jl. Subsequently, 
given experimental data, we evaluate an objective function of the current model, 
capturing the descriptiveness of the model in light of the data. Depending on the 
outcome of this evaluation, the model will be updated (for example, by adding 
new reactions to the model via the macro @add_reactions). More details on the 
selected example code are provided in the Supplementary Information.
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just-in-time compilation, which underlies and enables good run-time 
performance. This, however, takes time and causes what is known as 
latency. Latency can be a problem for applications with hard real-time 
constraints, such as being the embedded code on a medical device that 
requires strict accurate updates at 100-ms intervals.

Julia was designed to meet the current and future demands of 
scientific and data-intensive computing. The Julia alternative that 
arguably has the most traction is Rust. Rust is an emerging language 
that has syntactic similarity to C++ but is better at managing memory 
safely. It detects discrepancies of type assignments at compile time 
and not just at run time, as is the case for C/C++. For this reason, it is 
being used in, for example, the Linux kernel. In the biological domain, it 
could become a choice for medical devices (as we can control latency) 
or bioinformatics servers that would previously have been developed 
in Java or C/C++.

These advantages of a new language need to be balanced against 
the convenience of programmers who are able to tap into the collec-
tive knowledge of vast user communities. All languages have started 
small and had to develop user bases. The Julia community is growing, 
including in the biomedical sciences, and it appears to be acutely 
aware of the needs of newcomers to Julia (and under-represented 
minorities in the computational sciences more generally48; see, for 
example, https://julialang.org/diversity/ for details), which makes 
the switch to Julia easier9.

We have described the three main language design features that 
make Julia interesting for the scientific computing: speed, abstrac-
tion and metaprogramming. We have provided some intuition that 
fills these concepts with life, and we have illustrated how they can be 
exploited in different biological domains, and how speed, abstraction 
and metaprogramming together enable new ways of performing bio-
logical research. Even though we have introduced these features sepa-
rately, they are deeply intertwined. For example, a lot of the speed-up 
opportunities of Julia derive from the language’s abstraction powers; 
abstraction in turn makes metaprogramming easier.
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