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Abstract While Reinforcement learning (RL), especially Deep RL (DRL),
has shown outstanding performance in video games, little evidence has shown
that DRL can be successfully applied to human-centric tasks where the ulti-
mate RL goal is to make the human-agent interactions productive and fruitful.
In real-life, complex, human-centric tasks, such as education and healthcare,
data can be noisy and limited. Batch RL is designed for handling such situa-
tions where data is limited yet noisy, and where building simulations is chal-
lenging. In two consecutive empirical studies, we investigated Batch DRL for
pedagogical policy induction, to choose student learning activities in an Intelli-
gent Tutoring System. In Fall 2018 (F18), we compared the Batch DRL policy
to an Expert policy, but found no significant difference between the DRL and
Expert policies. In Spring 2019 (S19), we augmented the Batch DRL-induced
policy with a simple act of explanation by showing a message such as ”The AI
agent thinks you should view this problem as a Worked Example to learn how
some new rules work.”. We compared this policy against two conditions, the
Expert policy, and a student decision making policy. Our results show that 1)
the Batch DRL policy with explanations significantly improved student learn-
ing performance more than the Expert policy; and 2) no significant differences
were found between the Expert policy and student decision making. Overall,
our results suggest that pairing simple explanations with the Batch DRL pol-
icy can be an important and effective technique for applying RL to real-life,
human-centric tasks.
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1 Introduction

Reinforcement Learning (RL) is one of the most promising approaches to in-
duce effective policies that determine the best action for an agent to take in
any given situation, so as to maximize a cumulative reward. In recent years,
deep neural networks have enabled significant progress in RL research and
Deep Reinforcement Learning (DRL) has been shown to be a very powerful
technique on a wide range of applications. For example, Deep Q-Networks
(DQNs) [43] have successfully learned to play Atari games at or exceeding
human level performance by combining deep convolutional neural networks
and Q-learning. Since then, DRL has achieved notable successes in a variety
of complex tasks such as robotics control [2] and the game of Go [62]. From
DQN, various DRL methods such as Double DQN [66] or Actor-Critic meth-
ods [53,54] were proposed and shown to be more effective than the classic
DQN. Despite DRL’s great success, there are still many challenges preventing
DRL from being applied more broadly in practice, including applying it to ed-
ucational systems. One major problem is sample inefficiency of current DRL
algorithms. For example, it takes DQN hundreds of millions of interactions
with the environment to learn a good policy and generalize to unseen states,
while we seek to learn policies from datasets with around 800 student-tutor
interaction logs or fewer and they are often noisy, given the nature of the
task. In this work, we used batch RL, which is a sub-field of RL that deals
with the inability to explore the environment, and all the learning is induced
from a fixed, pre-existing limited yet noisy dataset that was obtained from
human-agent interactive environments using some unknown behavior policy.

In our work, we applied Batch DRL to induce pedagogical policies that
specify how each problem should be presented to the students. In our approach,
we employ a Gaussian Process (GP) method for automatically inferring the
immediate rewards from delayed ones in our training corpus and then use those
results to train a DQN agent for making pedagogical decisions. In Fall 2018, we
empirically evaluated the batch DRL policy against an expert-designed policy
and found no significant differences (as described in Section 6). Such results,
while disappointing, were in line with a large body of research on improving
ITS effectiveness by applying RL (e.g. [18,13,50,60,3,57,12]). So the question
is: can pedagogical policies induced by our batch DRL be more effective than
the Expert designed rules? In this work, we investigated two aspects related
to pedagogical decisions: communication and agency.

Communication: while RL especially DRL has achieved superhuman per-
formance in several complex games [62,63,68,2] where the ultimate goal is to
make the agent effective, in human-centric tasks such as ITSs, the ultimate
goal is for the agent to make the human-system interactions productive and
fruitful. Therefore, we argue it is important to communicate the agent’s ped-
agogical decisions to students. Prior work on applying RL to ITSs primarily
focused on inducing effective pedagogical policies for the tutor to act, but the
tutor rarely ”explains” to students why certain pedagogical decisions are made.
As far as we know, no prior research has been done on exploring the effective-
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ness of explaining pedagogical policies to students. On the other hand, prior
research in Self-Determination Theory (SDT) suggests that explanations could
be a powerful tool to increase student engagement and autonomy in learning.
For example, it was shown that explaining the benefits of learning a specific
task to students would increase their sense of control over their own learning,
which can improve their learning outcomes [15,52,31,29,70,61]. In this work,
we address the limitation of communication by providing students with sim-
ple explanations of the Batch DRL pedagogical policy. We hypothesize that
combining a DQN-based policy with simple explanations would outperform
an Expert policy in that the former would result in better student learning
performance (Communication Hypothesis).

Agency: who should be the decision maker, the student or the tutor?
Rather than inducing pedagogical policies so that the tutor can decide effec-
tively, would it be more effective if we just let students make certain peda-
gogical decisions? Prior research has shown that it is desirable for students
to experience a sense of control over their own learning, which could enhance
their motivation and engagement [15,29,1] and improve their learning experi-
ence [52,70]. People are more likely to persist in constructive activities, such
as learning, exercising, or quitting smoking, when they are given choices and
make decisions.Thus, we investigated the effectiveness of letting students make
pedagogical decisions vs. the traditional tutor-driven Expert rule approach. We
hypothesize that letting students make their own pedagogical decisions can be
more effective than an Expert policy (Agency Hypothesis).

Through two empirical classrooms studies, our results show that in terms of
the Communication Hypothesis, the Batch DRL policy with explanations can
improve student learning performance more than our Expert policy (Spring
2019) while the Batch DRL policy without explanations does not; in terms
of Agency Hypothesis, no significant difference was found between student
decision making and the Expert policy. In summary, this work suggests that
neither letting the tutor make Expert or DRL-induced pedagogical policy de-
cisions alone, nor letting students make decisions alone, may be sufficient to
improve student learning. A more effective way may be letting the tutor make
effective pedagogical decisions while communicating the decisions with stu-
dents through simple explanations.

2 Background & Related Work

2.1 Deep Reinforcement Learning (DRL) and Batch DRL

In recent years, the combination of deep learning with neural networks and
novel RL algorithms has made solving complex problems with DRL possible.
As an example of DRL, the Deep Q-Network (DQN) algorithm [43] takes
advantage of convolutional neural networks to learn to play Atari games by
observing the pixels directly. Since then, DRL has achieved success in various
complex tasks, such as robotic control [2] and playing games, including Go
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[62], Chess/Shogi [63], and Starcraft II [68]. One major challenge of these
methods is sample inefficiency where RL policies need large sample sizes to
learn optimal, generalizable policies.

Batch RL [33], a sub-field of RL, aims to fix this sample inefficiency prob-
lem by learning the optimal policy from a fixed set of a priori-known transition
samples, efficiently learning from a potentially small amount of data, to gener-
alize to unseen parts of the environment. Batch RL has also been investigated
in combination with Neural Networks, resulting in Batch Deep Reinforcement
Learning or Batch DRL. Several different Batch DRL algorithms have been
developed [16,32,34], and some of them are more effective than others at solv-
ing offline RL tasks [20]. In the work by Fujimoto et al. [21], they added a
constraint to the optimization problem, restricting the action space to make
the agent behave similarly to the training data. Another similar approach is
to pre-train a model on the training data and use it as a strong prior, and
combine it with KL-control to penalize divergence from this prior during RL
training, as shown by Jaques et al. [26]. However, all of these methods have
been evaluated on agent-centric tasks like game playing, with no human in-
volved, whereas our goal is to apply Batch DRL to learn a pedagogical policy
for an ITS. It is not clear whether these DRL methods will be effective on such
a task.

2.2 RL for Pedagogical Policy Induction

Prior research in applying Reinforcement Learning (RL) to pedagogical policy
induction can be roughly divided into classic RL vs. DRL approaches. Gener-
ally speaking, there are two major categories of RL: online and offline/batch.
Online RL algorithms learn a policy while the agent interacts with the en-
vironment; Offline/Batch RL algorithms learn the policy from pre-collected
training data. More specifically, they “take advantage of previous collected
samples, and generally provide robust convergence guarantees” [55]. Online RL
methods are generally appropriate for domains where the state representation
is clear and interacting with simulations and actual environments is relatively
computationally cheap and feasible, so most prior work on DRL mainly took
an online learning approach. On the other hand, for domains such as educa-
tion, building accurate simulations or simulating students can be especially
challenging because human learning is a rather complex, not fully understood
process; moreover, learning policies while interacting with students may not
be feasible and more importantly, may not be ethical. Therefore, some of prior
work on applying RL to ITSs is offline/batch. This approach was achieved
by, first, collecting a training corpus. One common convention, and the one
used in our study, is to collect an exploratory corpus by training a group of
students on an ITS that makes random yet reasonable decisions and then ap-
ply RL to induce pedagogical policies from that exploratory training corpus.
An empirical study was then conducted from a new group of human subjects
interacting with different versions of the system. The only difference among
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the versions was the policy employed by the ITS. Lastly, the students’ per-
formance was statistically compared. Due to cost limitations, typically, only
the best RL-induced policy was deployed and compared against some baseline
policies.

Prior research using classic RL approaches has applied both online and of-
fline/batch approaches to induce pedagogical policies for ITSs [18]. For online
RL, Beck et al. [10] applied temporal difference learning to induce pedagogi-
cal policies to minimize student time on task. Similarly, Iglesias et al. applied
Q-learning to induce policies optimized for efficient student learning [24,25].
More recently, Rafferty et al. applied an online partially observable Markov
decision process (POMDP) to induce policies for faster student learning [47].
All of these models were evaluated via simulations or classroom studies, yield-
ing improved student learning and/or behaviors as compared to some baseline
policies. For offline RL, Shen et al. applied value iteration and least squares
policy iteration on a pre-collected exploratory corpus to induce a pedagog-
ical policy that improved student learning [59,58]. Chi et al. applied policy
iteration to induce a pedagogical policy aimed at improving student learning
gains [14]. Mandel et al. [35] applied an offline POMDP to induce a policy
which aims to improve student performance in an educational game. Zhou
et al. induced a Gaussian Processes-based hierarchical RL policy to improve
student learning gains [71]. All of these Batch RL models were evaluated in
classroom studies, yielding improved student learning or performance relative
to a baseline policy.

More recently, some researchers applied both online and offline/batch DRL
approaches to induce pedagogical policies for ITSs as well [5,27,72]. For exam-
ple, we have applied batch DRL for inducing a pedagogical policy on an ITS,
and showed that the induced policy is indeed effective in improving learning
of students with high initial competency, but not the low ones [3]. Wang et al.
applied an online DRL approach to induce a policy for adaptive narrative gen-
eration in educational game using simulations [69]; the resulting DRL-induced
policies were evaluated via simulations only. In this work, based on the char-
acteristics of our task domain, we focus on batch RL with neural networks,
also known as batch Deep Reinforcement Learning (batch DRL) [26,20] and
evaluate their effectiveness in classroom studies.

3 Methods

In conventional RL, an agent interacts with an environment E over a series
of decision-making steps, which can be framed as a Markov Decision Pro-
cess (MDP). At each timestep t, the agent observes the environment E in
state st; it chooses an action at from a discrete set of possible actions; and
E provides a scalar reward rt and evolves into the next state st+1. The fu-
ture rewards are discounted by the factor γ ∈ (0, 1]. The return at time-

step t is defined as Rt =
∑T
t′=t γ

t′−trt′ , where T is the last time-step in
the episode. The agent’s goal is to maximize the expected discounted sum
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of future rewards, also known as the return, which is equivalent to finding
the optimal action-value function Q∗(s, a) for all states. Formally, Q∗(s, a) is
defined as the highest possible expected return starting from state s, taking
action a, and following the optimal policy π∗ thereafter. It can be calculated as
Q∗(s, a) = maxπ E[Rt|st = s, at = a, π] and Q∗(s, a) must follow the Bellman
Equation. We follow the batch RL formulation in that we have a fixed-size
dataset D consisting of all historical sample episodes, each formed by a se-
quence of state, action, reward tuples (s0, a0, r0, ..., sT , aT , rT ). We assume
that the state distribution and behavior policy that were used to collect D
are both unknown. We explored two batch DRL algorithms: Deep Q-Network
(DQN) and Double Deep Q-Network (Double DQN).

3.1 DQN

The DQN algorithm [43] is fundamentally a version of Q-learning which uses
neural networks to approximate the true Q-values. In order to train the DQN
algorithm, two neural networks with equal architectures are employed: one for
calculating the Q-value of the current state and action Q(s, a), and another
neural network to calculate the Q-value of the next state and action Q(s′, a′).
The former is the main network and its weights are denoted θ and the latter
is the target network, and its weights are denoted θ−. Equation 1 shows its
corresponding Bellman Equation. It is trained through gradient descent to
minimize the squared difference of the two sides of the equality. Online DQN
uses an experience replay buffer to store the recently collected data and to
uniformly sample (s, a, r, s′) steps from it. When inducing our batch RL policy,
the whole D is in the experience replay buffer.

Q(s, a;θ) = E
s′∼E

[r + γmax
a′

Q(s′, a′;θ−)] (1)

The main network is trained on every training iteration, while the tar-
get network is frozen for a number of training iterations. Every n training
iterations, the weights of the main neural network are copied into the target
network. This is one of the techniques used in order to avoid divergence during
the training process. In practice, DQN also uses an experience replay buffer
to store the recently collected data and to uniformly sample (s, a, r, s′) steps
from it. By sampling uniformly, it breaks the correlations between samples
of the same episode, making the learning process more robust and stable. In
this work, as we are doing batch RL, our whole dataset will be the experience
replay buffer, and it will not change during the training process.

3.2 Double-DQN

To improve upon the weaknesses of DQN, the Double-DQN algorithm was
proposed by Van Hasselt et al. [66] by combining the idea behind Double Q-
Learning [23] with the neural network advances of the DQN algorithm to form
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Double-DQN. The intuition behind it is to decouple the action selection from
the action evaluation. To achieve this, the Double-DQN algorithm uses the
main neural network for action selection first, and then the target network
evaluates its Q-value. This trick has been proven to significantly reduce over-
estimation in Q-value calculations, resulting in better final policies. With this
technique, the modified Bellman Equation becomes:

Q(s, a;θ) = E
s′∼E

[r + γQ(s′, argmax
a′

Q(s′, a′,θ);θ−)] (2)

3.3 Inferring the Immediate Rewards

One of the most important problems that needs to be solved to effectively
induce an effective Batch DRL policy is the Credit Assignment Problem [42].
When the rewards have a temporal delay, it can be challenging to appropriately
assign reward/blame for each of the actions in a sequence, and Reinforcement
Learning algorithms struggle to learn a correct value or policy function for
each state and action pair. This problem is particularly relevant when all the
learning has to be performed offline, as in the case of Batch DRL, and when
there is limited data available. Solving the Credit Assignment Problem would
allow us to induce more effective DRL policies for education, and less data
would be required, which would ultimately result in improved student learn-
ing. For this reason, to tackle the delayed reward problem, in this work we
follow the Gaussian Processes (GP) approach described in [7,4,6] to estimate
immediate rewards given the delayed rewards for a historical dataset D con-
sisting of m trajectories, and containing n unknown immediate rewards. The
delayed rewards are used to calculate the immediate rewards, employing a
minimum mean square error (MMSE) estimator in the Bayesian setting [28,
19,22]. Assume that R = Dr + ε is a linear process where D is a known linear
model matrix that is used to associate the immediate rewards with the delayed
rewards in the same episode. In that equation, r is a Rn×1 random vector of
unknown immediate rewards, R is a Rm×1 vector of observed delayed rewards
and ε is a vector of independent and identically distributed noise with mean of
zero and standard deviation of σR. In order to train the GP, we assume that
the discounted sum of the immediate rewards is equal to the delayed rewards
for each episode.

We assume that the immediate rewards follow a Gaussian Process defined
as r ∼ N (µr,Crr) where µr is the a priori mean and Crr is the a priori covari-
ance defined by an appropriate kernel [8]. Using the theorem of conditional
distribution of multivariate Gaussian distributions [48], we can calculate the
conditional expectation of the immediate rewards given the delayed rewards
as:

E[r|R] = µr + CrrD
TCRR

−1 (R−D µr) (3)

and we can calculate the posterior covariance of the inferred immediate
rewards given the delayed rewards as:
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C[r|R] = Crr −CrrD
TCRR

−1DCT
rr (4)

where CRR = DCrrD
T + σ2

RI and I is the identity matrix.
Algorithm 1 shows how we inferred the immediate rewards. Estimation of

the mean and covariance of the random column vector r in Equations 3 and 4
requires the inverse of the matrix CRR. By introducing several intermediary
variables, this algorithm provides an efficient solution to matrix inversion us-
ing the Cholesky decomposition similar to the Gaussian Processes algorithm
implementation [48].

Algorithm 1 Immediate reward approximation algorithm.

Inputs: R, µr, Crr, D, σ2
R

L = Cholesky
(
DCrrDT + σ2

RI
)

β = L\ (R−D µr) forward-substitution algorithm
α = LT\β back-substitution algorithm
k = DCT

rr
v = L\k
E [r|R] = µr + k

T
α

C [r|R] = Crr − vTv
return: E [r|R] and C [r|R]

4 Our Logic Tutor and Context

Deep Thought (DT) is a data-driven Intelligent Tutoring System (ITS) for
open-ended multi-step propositional logic problems with data-driven features
including next-step hints [64,9], adaptive assistance [37], and pedagogical poli-
cies for worked example presentation induced via reinforcement learning [59,
60,11,3]. In this section we describe the tutor, its population, and the curric-
ular context.

4.1 DT Tutor Interface

Figure 1 shows the tutor interface: the left window is the workspace where
students construct solutions, the central window lists the domain rule buttons,
and the right window provides instructions and information such as the rules
that are meant to be practiced in the current problem [36]. The pedagogical
policy decides whether to represent each problem in the training levels 2-6
as a Worked Examples (WE) or as a Problem Solving (PS). Figure 1 shows
the user interface for PS, and Figure 2 shows the interface for WE. Each
logic statement is graphically represented as a node. Deep Thought shows
several problem-provided statements (that are meant to be used as existing or
known facts) at the top of the workspace, and a conclusion to derive at the
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Fig. 1: Problem Solving (PS) Interface in Deep Thought

Fig. 2: Worked Example (WE) Interface in Deep Thought

bottom. In a PS problem, students carry out problem-solving steps by deriving
new statements from old ones using domain rules. This is a typical procedure
used across STEM domains to apply principles or rules to known information
to derive new facts [45]. In this work, a problem-solving step consists of a
new derived statement and its justification, where the justification includes
specifying the domain rule and the source statements used to show the new
derived statement is true. Problem-solving continues until the conclusion is
the derived statement in a step that is justified.

Figure 1 shows an example problem with three nodes 1-4 for the problem-
provided statements (2: B, 1: A→ C, 3: C → E, 4: D∧¬E) at the top of the
workspace. The conclusion to be derived (C: ¬A ∧ B) is at the bottom, with
a question mark above it indicating that it is not yet justified. Each problem-
solving step involves the same process: clicking on 1-2 source nodes and a rule
button, and entering the new derived statement. The tutor verifies whether the
source nodes and rule correctly justify the derived statement. Once verified, a
new node appears, colored based on the frequency of its necessity to previous
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student solutions1, where green is frequent, yellow is infrequent, and gray is
never. These colors provide an indication of whether a step is in an optimal
problem-solving path.

4.2 Problem Solving in DT

We now walk through a student’s experience of solving the problem in Figure
1 to obtain the solution shown in Figure 3 [36]. First, the student clicks on
node 4 and rule Simp, and types the new derived statement, D. The tutor
verifies the correct justification, and draws node 5, labeled with Simp and
an arrow from node 4 to 5. Next, the student applies the same process to
derive and justify node 6, which is green since it was frequently necessary
in historical solutions. To derive node 7, the student clicks node 1 and rule
Impl, and types in the derived statement ¬A ∨ C. The student then clicks
“Get Hint” to request a hint, and “Try to derive ¬C” appears in the message
box. Additionally, when a hint is shown, the Info Box (Figure 1) also shows
the information of the node that should be derived next, but no help is given
about what rules should be used to derive that node. Next, the student tries to
follow the hint by selecting nodes 3 and 6 and the rule MP. The tutor detects
this incorrect rule application, records the error in the data log, and provides
a text-based descriprion of what caused the failure during the rule application,
but since it was a mistake, no new node is created. Since nodes 3 and 6 are still
selected, the student clicks on the correct rule – MT, and types in the derived
statement ¬C. This process correctly justified the hint content statement ¬C,
so node 8 appears with MT with arrows from nodes 3 and 6. The student
similarly clicks on nodes 7 and 8, and rule DS to derive node 9. Finally, the
student clicks on nodes 2 and 9, and rule Conj to derive the conclusion, and
the tutor detects that the problem is complete.

On the other hand, in a worked example, the tutor shows the most effi-
cient solution to logic problems. Students can navigate back and forth through
the problem-solving steps carried out by the tutor using the left/right arrows
shown in Figure 2, but are not asked to justify these steps. The Message Box
also shows a short description of the last node derivation shown in each step.

4.3 Tutor Pretest, Training, and Posttest

The tutor provides students with practice solving logic problems, divided into
four sections: introduction, pretest, training, and posttest. The introduction
presents two worked examples to familiarize students with the tutor interface.
Next, students solve two problems in a pretest. Pretest problems are straight-
forward, with short optimal solution lengths (Mean = 3.5, SD = 0.71). Next,
students are assigned to training conditions using stratified sampling on the

1 A node is ‘needed’ when its deletion would make a solution incomplete.
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Fig. 3: A walkthrough of problem solving in Deep Thought.

pretest performance, where they complete 20 problems spanning five train-
ing levels. Each level contains a set of eight problems, which consist of seven
training problems (ordered linearly in difficulty) and a level posttest (most
difficult problem in the set). Upon starting a new level, students receive a
problem (PS or WE) with medium difficulty (no. #4 in the linear ordering of
difficulty), and then the problem selector selects the next problem adapting to
student performance in the current problem. Students may skip up to three
PS problems per level, with each skip taking them to an easier PS problem.
A skipped problem is considered an incomplete solution. Students may also
restart problems. For each level, students must complete three training prob-
lems (WE, or PS with hints), after which they must solve the level posttest
problem (PS with no hints). Training problems are of medium difficulty, with
optimal solution lengths: Mean = 4.99 steps, (SD = 1.32). Training condi-
tions differ only in the pedagogical policy used to select which level training
problems are WE or PS. Finally, after the training phase is complete, students
take a more difficult posttest with four problems, with longer optimal solution
lengths compared to the other sections (Mean = 7.25, SD = 1.89).Students
always receive immediate feedback on rule application errors for all the PS
problems in the pretest, training phase, and posttest. However, hints are only
available in the training phase.

The score used to evaluate the problem-solving ability of students in the
pretest and posttest problems is calculated using two key metrics: the number
of incorrect actions taken by the student, and the time spent in the problem.
Making fewer mistakes in a problem and solving it faster will result in higher
scores. However, the grade obtained by the students is not affected by this
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scoring system, it is for research use only and not shared with the students.
This score function was defined by the professor who teaches the course, who
has over 20 years of experience on the subject.

4.4 Population and Curricular Context

DT is used in the undergraduate Discrete Mathematics course at North Car-
olina State University. The course is typically composed of about 60% sopho-
mores, 30% juniors, 9% seniors, and 1% freshmen. The course is taken by
approximately 32% of the students in the NC State College of Engineering,
including computer science, computer engineering, and electrical engineering
majors. In Fall 2018, college demographics include 25.3% women, 67.2% white,
8.3% Asian, 6.5% Non-resident Alien, 0.3% American Indian/Native Ameri-
can, 3.3% Black/African American, 4.8% Hispanic/Latinx, 4.83% from two or
more underrepresented minorities, and 5.9% with unknown race/ethnicity2.

The empirical studies were carried out in the Fall 2018 (F18) and Spring
2019 (S19) semesters, where our ITS was given as one of the regular homework
assignments, and students had one week to complete it.

5 Pedagogical Decisions & Pedagogical Policy Induction

The tutor includes several training conditions with different pedagogical poli-
cies, with students randomly assigned using stratified sampling on the pretest
to balance incoming competence across conditions. This allows us to perform
empirical classroom studies to compare pedagogical policies. Our baseline ped-
agogical policy is designed by the instructor, who has more than 20 years of
experience on the subject, and it is referred to as the Expert policy. Based on
our ITS, prior instructional experience, and prior research on WE vs. PS, the
Expert policy consists of alternating between PS and WE, so if a problem is
shown as a PS the next one will be a WE. The exception for this rule is the
last problem in each level, which is fixed as a PS for all the policies.

5.1 Pedagogical Decisions

When comparing the effectiveness of students’ pedagogical decision-making
vs. batch DRL, we control the instructional content to be equivalent for all
students in that our ITS uses the same problem selection algorithm for all
students, and we focused on tutorial decisions that cover the same domain
content: Problem-Solving (PS) versus Worked Examples (WE). As described
above, in PS, students are given tasks or problems to complete either inde-
pendently or with assistance of ITSs while in WE, students are given detailed
solutions.

2 More details can be found on Fall 2018 student demographics at NCSU at
https://www.engr.ncsu.edu/ir/fast-facts/fall-2018-fast-facts/
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A great deal of research has investigated the impacts of WEs vs. PSs
on learning. [65,41,39,38,49,56,44,51]. Generally speaking, it is shown that
studying WEs can significantly reduce the total time on task while keeping
the learning performance comparable to doing PS [41,39,38]; alternating WE
and PS can be more effective than PS only [65,38,49,56,44,51]. Despite prior
work, there is little consensus on how they should be combined effectively and
thus when deciding between PS and WE, most existing ITSs always choose
PS [30,67]. Since there is no widespread consensus on how or when each alter-
native should be used, we apply batch DRL to derive pedagogical strategies
directly from empirical data.

5.2 Training Corpus

Our training corpus consists of 786 historical student-ITS trajectory inter-
actions over 5 different semesters, one trajectory per student. All students
go through a standard pretest, training on ITS, and posttest procedure and
each student spent around 2-3 hours on the ITS. To represent the learning
environment, 142 state features from five categories were extracted:

– Autonomy: 10 features describing the amount of work done by the stu-
dent. This category describes the amount of work the student has done
recently or in a certain period of time.

– Temporal: 29 time-related information features about the student’s be-
havior, such as the average time per step avgStepTime, or the total time on
training so far timeOnTutoring. It also includes the time spent on PS, the
time spent on WE, and so on. This category reflects the student’s working
speed or the amount of effort he/she has put into learning.

– Problem Solving: 35 features such as the difficulty of the current prob-
lem, the number of easy and difficult problems solved on the current level,
the number of PS and WE problems seen in the current level, or the num-
ber of nodes the student added in order to reach the final solution. This
category also provides information about the current task the student is
working on.

– Performance: 57 features such as the number of incorrect steps, and the
ratio of correct to incorrect rule applications for different types of rules.
This category reflects the student’s current competence level.

– Hints: 11 features such as the total number of hints requested or the
number of hints the tutor provided without the student asking for them.
This category describes the student’s hint usage behavior.

The primary goal of our RL-induced pedagogical policy is to improve stu-
dent Learning Gain, measured by the difference between the posttest and the
pretest scores with a range of [−200,+200]. Since in RL immediate rewards
are often more efficient than delayed ones, here we applied Gaussian Processes
(GP) [7] to infer the immediate rewards for non-terminal states from the final
delayed reward (students’ Learning Gain).
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Fig. 4: Importance sampling results. The x axis shows the twelve candidate
neural network models and the y axis shows the PDIS values for each model
(the higher the better). The red line shows the PDIS value for a random target
policy.

5.3 Policy Induction

For both DQN and Double DQN, we explored using Fully Connected (FC)
vs. Long Short Term Memory (LSTM) to estimate the action-value function
Q. Our FC network consists of four fully connected layers of 128 units each,
with Rectified Linear Unit (ReLU) as the activation function. Our LSTM ar-
chitecture consists of two layers of 100 LSTM units each with ReLU activation
functions, and a fully connected layer as output. Additionally, for both FC and
LSTM, for a given time t, we explored three input settings: 1) k = 1 that use
only the last state st; 2) k = 2 that uses to use the last two states: st−1 and
st; and 3) k = 3 for using st−2, st−1 and st. L2 regularization was employed
to get a model that generalizes better to unseen data and avoid overfitting.
We trained our models for 50,000 iterations, using a batch size of 200.

We performed off-policy evaluation to all our different model settings in
order to select the highest performing pedagogical policy. We compared all
the different models (FC vs. LSTM, DQN vs. Double-DQN, k={1, 2, 3})
using Per-Decision Importance Sampling (PDIS) and selected the policy with
the highest PDIS value for our final pedagogical policy. This method is one
of the most robust off-policy evaluation methods [46]. It re-scales the rewards
obtained using a behavior policy, by multiplying them by the Importance

Sampling (IS) ratio (π(si,ai)µ(si,ai)
). The IS ratio is the ratio between the probabilities

given by the target policy and the behavior policy. PDIS is an alternative to
regular Importance Sampling, which reduces variance in the estimations. The
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PDIS formula is shown in Equation 5. In the formula, M is the number of
episodes containing the state-action pair (s, a) and tm is the first time when
(st, at) = (s, a) in the episode number m. γ is the discount factor and rt is
the reward at time-step t. Finally, π(si, ai) is the target policy and µ(si, ai) is
the behavior policy, which is random in our case. The PDIS results of the 12
models are shown in Figure 4. This evaluation was performed by training the
different policies on 80% of the students, and evaluating it on the remaining
20%. The PDIS result of a random target policy is used to set y = 0 (the red
line). Much to our surprise, while Double-DQN has shown to be much more
robust in online DRL applications, its performance is generally worse than
DQN here, especially when k = 1 and k = 2. Figure 4 shows that the best
policy is induced using DQN with the LSTM architecture for k = 3, and thus
is selected as our DQN policy for the empirical studies. This means that every
time a decision is made, the network is using information from the last three
problem states.

PDIS(s, a) =
1

M

M∑
m=1

[

Tm−tm∑
k=1

[γk−1rtm+k

tm+k−1∏
i=tm+1

π(si, ai)

µ(si, ai)
]] (5)

We also compared the policy that was trained using the inferred rewards to
the one that used the delayed rewards. For the comparison, we employed the
Expected Cumulative Reward (ECR) value, which averages the Q-values of
all the initial states to obtain an estimate of how much reward the policy will
collect on average. Our train/validation split was performed using the same
80%/20% ratio as for the PDIS calculation. The policy we used for the ECR
calculation was the policy that was selected for the study (DQN with LSTM
layers and k = 3 observations). The evolution of the ECR during the training
process for the inferred and delayed rewards can be seen on Figure 5.

5.4 Simple Explanations

The design of our explanation is rather straightforward. We followed the ”low-
controllingness” principle described in [17]. Our explanations are action-based
in that they focused on explaining the benefit of taking the subsequent tutorial
actions. Our simple, action-based explanations were primarily based on the
prior research on learning science and cognitive science. For example, a large
amount of research showed that studying WEs can be more beneficial if it is
a problem involving new level of difficulty or content [41,40] and thus if the
current problem was the first problem in a level, our action-based explanation
for WE would state ‘The AI agent thinks you should view this problem as a
Worked Example to learn how some new rules work.” Our simple action-based
explanation for other WE states: ”The AI agent thinks you would benefit from
viewing this problem as a worked example.” Similarly, if the policy decided that
the next problem should be a PS, then the message shown stated something
like: ”The AI agent thinks you should solve this problem yourself.”
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Fig. 5: Evolution of the ECR during the training process for the policies with
inferred (DQN Inf) and delayed (DQN Del) rewards.

6 Experiment 1: Fall 2018 (F18)

6.1 Hypothesis & Experiment Setup

In this experiment, our hypothesis is that a Batch DRL based pedagogical
policy, using the DQN algorithm, will be more effective than an Expert policy.
To evaluate our hypothesis, we performed a classroom experiment with college
students. A total of 84 students were randomly assigned to the two conditions
using stratified sampling based on the pretest score to ensure that the two
conditions had similar prior knowledge. As a result, we have N = 41 students
for the DQN condition and N = 43 for the Expert baseline condition. Here
the tutor in the DQN condition followed the induced DQN policies described
in Section 4 without explanations. A one-way ANOVA test using the condition
as a factor showed no significant difference in the pretest scores for the DQN
(M = 59.23, SD = 30.63) and the Expert conditions (M = 57.42, SD = 30.95):
F (1, 82) = 0.07, p = 0.79.

6.2 Learning Performance & Training Time

Learning Performance: The second column in Table 1 shows the mean
(SD) posttest scores of the two conditions. Overall, no significant difference
was found on the posttest between DQN and Expert-Baseline. A one-way
ANCOVA analysis on posttest scores using Condition as factor and pretest
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Table 1: Results of F18 study by condition.

Log Analysis

PostTest Training Time PS Count WE Count Hint Count

DQN 48.6 (22.7) 60.4 (104.0) 8.5 (2.5) 7.4 (2.0) 22.8 (39.4)

Expert Baseline 54.0 (18.3) 65.8 (77.6) 7.6 (1.0) 7.6 (1.0) 15.3 (27.7)

scores as a covariate shows that there was no significant difference: F (1, 81) =
1.76, p = 0.19.

Training Time: The third column in Table 1 shows the mean (SD) time
spent by the students in each condition during the training phase of the tutor.
A one-way ANOVA test using the condition as a factor showed no significant
difference on the total training time: F (1, 82) = 0.073, p = 0.788.

6.3 Log Analysis:

We performed a log analysis to compare the behavior of both conditions using
several of the available features. We compared the number of PS and WE pro-
vided to each student by each policy, as well as the number of hints requested
by the students in each condition. This analysis will help us better understand
how the DQN agent behaves, and whether it favors one of the instructional
interventions over the other one, and how users behaved in each condition.
The reader should note that, in this analysis, the number of PS and WE the
students can receive is not fixed, despite the fact that all students need to solve
20 training problems. The reason for this is that the tutor allows for a problem
to be restarted or skipped, as described in Section 4.3, and the new problem
can potentially be represented in a different way, following the decision made
by the pedagogical policy.

The last three columns in Table 1 show the PS, WE, and hint counts of the
two conditions. We performed a series of one-way ANOVA tests to measure
differences in the PS, WE and hint counts, using the condition as a factor. The
results showed no significant differences on the total number of WE (F (1, 82) =
0.19, p = 0.664), or the number of hints (F (1, 82) = 1.019, p = 0.316). We only
found a marginal difference on the amount of PS provided by the two policies:
F (1, 82) = 3.84, p = 0.053, where the DQN policy provided more PS than the
Expert policy.

To summarize, our DQN-induced batch DRL policy did not outperform the
Expert baseline policy, so we conclude that the experiment did not confirm
that the DRL policy is better than the Expert policy.
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7 Experiment 2: Spring 2019 (S19)

7.1 Two Hypotheses & Experiment Setup

In this study, we investigated two hypotheses: Communication Hypothesis
and Agency Hypothesis. The former states that combining a Batch DRL ped-
agogical policy with simple explanations (communication) is more effective at
improving student learning than an Expert-crafted policy while the latter hy-
pothesizes that giving students the choices (agency) over how they want to
solve each problem will be more effective than an Expert-designed policy.

To evaluate the two hypotheses, 83 students were randomly assigned to
three conditions through stratified sampling: DQN + Explanation (DQN+Exp)
(N = 30), Student Choice (N = 30), and the Expert baseline (N = 23). The
difference in size between the two experimental conditions is due to the fact
that we gave priority to have a sufficient number of participants in the expla-
nation group to perform a meaningful analysis of how the explanations are
accessed and perceived, accounting for the fact that some users might not
access the explanation functionality. In the Student Choice condition, once a
next problem is presented the students will make decisions on whether they
want the ITS to show them how to solve the next problem (WE) or they
want to solve the next problem themselves (PS). They are only required to
choose at least one PS and one WE per level, which is a constraint defined by
the course instructor. A one-way ANOVA test showed no significant difference
in the pretest scores among the three conditions: F (1, 81) = 0.26, p = 0.61.
More specifically, we have DQN+Exp (M = 54.2, SD = 30.0), Student Choice
(M = 50.3, SD = 31.3), and Expert Baseline (M = 49.9, SD = 35.8). Our
results suggested that all conditions were balanced in incoming competence in
S19.

7.2 Learning Performance & Training Time

The S19 study had two hypotheses: the Communication Hypothesis is about
whether DQN with simple explanations (DQN+Exp) would be more effective
than the Expert baseline policy, and the Agency Hypothesis is about whether
Student Choice can be more effective than the Expert baseline policy. In the
following, we will first compare the three conditions in terms of learning per-
formance and then perform a log analysis.
Learning Performance:

The second column in Table 2 shows a comparison of the posttest scores
among the three conditions, showing the mean (and SD). A one-way ANOVA
test using the condition as a factor showed a significant difference in the
posttest scores: F (1, 81) = 4.47, p = 0.037. Furthermore, a one-way AN-
COVA analysis on posttest scores using the condition as factor and the pretest
scores as a covariate confirms a significant difference in the posttest scores:
F (1, 80) = 4.25, p = 0.042.
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Table 2: Results of S19 study by condition.

PostTest Training Time

DQN+Exp 41.61 (25.07) 93.0 (109.6)

Student Choice 34.24 (20.09) 75.5 (104.0)

Expert Baseline 29.44 (16.43) 65.8 (87.7)

To evaluate the Communication Hypothesis, we compared DQN+Exp vs.
Expert and contrast analysis revealed that the DQN+Exp condition signifi-
cantly outperformed the Expert condition: t(79) = 2.02, p = 0.046, d = 0.574.
For the Agency Hypothesis, we compared Student Choice vs. Expert, and no
significant difference was found between the two: t(79) = 0.81, p = 0.42, d =
0.261. Additionally, no significant difference was found between the DQN+Exp
and Student Choice conditions: t(79) = 1.30, p = 0.20, d = 0.324. In short, our
results confirm the Communication Hypothesis in that on the posttest scores,
DQN+Exp significantly outperforms the Expert condition, while the Agency
Hypothesis was not confirmed.

Training Time: The last column in Table 2 shows the average amount of
total training time (in minutes) students spent on the tutor for each condition.
Despite the differences among the three conditions, a one-way ANOVA test
using the condition as a factor showed no significant difference in time on task
among them: F (1, 81) = 0.97, p = 0.33.

7.3 Log Analysis

Table 3: Log analysis of S19 study by condition.

PS Count WE Count Hint Count

DQN+Exp 9.40 (2.42) 6.10 (1.21) 9.1 (10.59)

Student Choice 8.06 (3.15) 7.46 (2.14) 7.36 (8.93)

Expert Baseline 8.13 (1.74) 7.34 (1.26) 7.74 (8.42)

Table 3 shows the mean (SD) number of PSs, WEs, and hints that each
condition experienced in S19. A one-way ANOVA test on the number of total
PS shown, using the condition as factor, showed a marginal difference among
the three conditions: F (1, 81) = 3.54, p = 0.063. Subsequent contrasts analyses
showed a significant difference in the number of PS between the DQN+Exp
and Expert conditions (t(51) = 2.12, p = 0.038), where the DQN+Exp policy
provided more PS than the Expert policy. Furthermore, a marginal difference
was found between the DQN+Exp and Student Choice conditions (t(58) =
1.83, p = 0.071), where the DQN+Exp policy provided more PS than Student
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Choice. No significant difference was found between the Student Choice and
the Expert conditions.

A one-way ANOVA test on the number of total WE shows, using the con-
dition as a factor, showed a significant difference: F (1, 81) = 8.32, p = 0.005.
Subsequent contrasts analyses showed a significant difference in the number
of WE between the DQN+Exp and Expert conditions (t(51) = 3.64, p <
0.001, d = 1.003), as well as between the DQN+Exp and Student Choice con-
ditions (t(58) = 3.03, p = 0.003, d = 0.782). No significant difference was found
between the Student Choice and the Expert conditions.

Finally, we analyze the number of hints received by the students in each
group during the training phase of the tutor. A one-way ANOVA test using
the condition as a factor showed no significant difference in the number of
hints shown: F (2, 80) = 0.276, p = 0.76.

To summarize, our log analysis shows that DQN+Exp generated more PS
and less WE than the other two conditions and no significant difference was
found between the Student Choice and Expert conditions. No significant dif-
ference was found in the number of hints received per group.

7.4 Correlation Analysis:

We performed a correlation analysis to determine whether the training time,
the number of PS and WE, or the number of hints provided are significantly
correlated with the posttest score.

– Training Time and Posttest: A Pearson’s correlation test showed no
significant correlation between the training time and the posttest score
for all students combined: r(81) = −0.102, p = 0.359. When perform-
ing Pearson’s correlation tests on all three conditions separately, the re-
sults showed no significant correlation for either of the conditions: r(21) =
−0.116, p = 0.596 (Expert), r(28) = −0.128, p = 0.499 (Student Choice),
and r(28) = −0.141, p = 0.456 (DQN+Exp).

– PS count and Posttest A Pearson’s correlation test showed no significant
correlation between the number of PS and the posttest score for all students
combined: r(81) = 0.126, p = 0.255. When performing Pearson’s correla-
tion tests on all three conditions separately, the results showed no signifi-
cant correlation for either of the conditions: r(21) = −0.228, p = 0.294 (Ex-
pert), r(28) = 0.017, p = 0.929 (Student Choice), and r(28) = 0.261, p =
0.163 (DQN+Exp).

– WE count and Posttest A Pearson’s correlation test showed a sig-
nificant correlation between the number of WE and the posttest score
for all students combined: r(81) = −0.264, p = 0.015. When perform-
ing Pearson’s correlation tests on all three conditions separately, the re-
sults only showed a significant correlation for the DQN+Exp condition:
r(21) = −0.068, p = 0.757 (Expert), r(28) = −0.067, p = 0.722 (Student
Choice), and r(28) = −0.520, p = 0.003 (DQN+Exp). The number of WEs
students received is negatively correlated with their posttest scores, and
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such a negative correlation is especially noticeable for DQN+Exp. It is
possible that our explanations of WEs are not very effective or encour-
aging, leading to negative impacts on student learning as a result. It is
possible, as well, that WEs were simply not an effective choice for this par-
ticular group of students, at the particular point in their learning process.
Future studies must therefore investigate further on the impact of WEs
and the explanations associated with them.

– Hint count and Posttest A Pearson’s correlation test showed no sig-
nificant correlation between the number of hints and the posttest score
for all students combined: r(81) = −0.144, p = 0.193. When perform-
ing Pearson’s correlation tests on all three conditions separately, the re-
sults showed no significant correlation for either of the conditions: r(21) =
−0.328, p = 0.126 (Expert), r(28) = −0.151, p = 0.425 (Student Choice),
and r(28) = −0.111, p = 0.559 (DQN+Exp).

We conclude that, overall, our analysis indicates that none of these factors
are correlated with the posttest score, as we only found a significant corre-
lation between the number of WE and the posttest score for the DQN+Exp
condition. This further shows that it is our DQN policy combined with the
simple explanations that result in higher posttest learning.

8 Conclusion, Discussion and Future Work

This work explored one potential way to combine data-driven methods such
as DRL with other educational strategies that increase student autonomy and
agency, and we observe that it can benefit student learning in an Intelligent
Tutoring System. In this work, we investigated the impact of 1) providing
students with simple explanations for the decisions of a batch DRL policy
and 2) the impact of students’ pedagogical decision-making on learning. We
focused on whether to give students a WE or to engage them in PS. We strictly
controlled the domain content to isolate the impact of the pedagogical policy
from the content.

In two classroom empirical studies, we compared a batch DRL policy (with
and without explanations), a Student Choice pedagogical decision making and
an Expert baseline. Overall, our results detected no difference, when decid-
ing whether to approach the next problem as PS or WE, between the batch
DRL-induced policies and the Expert baseline policy, or between the Student
Choice policy and the Expert baseline policy. However, by combining batch
DRL-induced policies with simple explanations, we can significantly improve
students’ learning performance more than our Expert-designed baseline policy.
One potential hypothesis is that simple explanations can promote students’
buy-in to pedagogical decisions made by batch DRL induced policies. However,
further survey studies are needed to determine this hypothesis. Interestingly,
our study found no difference between students’ problem-level decisions and
the Expert baseline policy. Surprisingly, students selected as many PSs and
WEs as the Expert policy, which might indicate that students don’t know
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which type of intervention is best for their learning process. Alternatively, it
might indicate that students thought a 50/50 mix of WEs and PSs is most
effective. For this reason, we think that future research should focus on induc-
ing data-driven pedagogical policies that maximize student learning, instead
of letting students choose.

We believe that the results from this research can shed some light on how
to apply DRL for human-centric tasks such as ITSs. Our results indicate that
students could benefit from RL-based pedagogical policies combined with ex-
planations, and we believe these results justify further investigation and a
follow-up study to reproduce our results. Furthermore, further research is re-
quired to fully understand why the combination of DRL and simple explana-
tions are an effective strategy, and whether they can be applied effectively to
other domains. However, in this work, we have only explored straightforward,
human-expert designed explanations, which can sometimes be limiting. In the
future, explainable Deep Learning techniques could be used to understand why
the Neural Network has taken the decision to provide PS or WE, and measure
the relevance of each state feature in taking each decision. Methods such as
the permutation feature importance method could be used to determine the
importance of each feature, and find out how the neural network gets impacted
by the different features in the data. Better understanding of the neural net-
work decisions could be used to build a data-driven, personalized explanation
system, resulting in more powerful and accurate explanations. Furthermore,
recent advances in Natural Language Processing (NLP) such as transformers
allow the creation of powerful generative models that can learn to write co-
herent sentences and even long paragraphs. This could be used to generate
adaptive, data-driven explanations that are suited to help each student suc-
ceed. To summarize all the future research directions, we devise a future where
Batch DRL is used to train a policy from a past dataset of experiences; then,
an explainable Neural Network algorithm explains why the DRL agent took
each decision; and finally a powerful NLP system uses that information to
generate explanation messages that adapt to each student’s needs. This com-
bination of algorithms could result in students feeling more engaged in the
activity, while following the decisions of a policy designed to optimize their
learning process.
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