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A B S T R A C T

It is now a well-established fact that even simple topology variations can drastically change
the fracture response of structures. With the objective of gaining quantitative insight into this
phenomenon, this paper puts forth a density-based topology optimization framework for the
fracture response of structures subjected to quasistatic mechanical loads. One of the two key
features of the proposed framework is that it makes use of a complete phase-field fracture theory
that has been recently shown capable of accurately describing the nucleation and propagation
of brittle fracture in a wide range of nominally elastic materials under a wide range of loading
conditions. The other key feature is that the framework is based on a multi-objective function
that allows optimizing in a weighted manner: (𝑖) the initial stiffness of the structure, (𝑖𝑖) the
first instance at which fracture nucleates, and (𝑖𝑖𝑖) the energy dissipated by fracture propagation
once fracture nucleation has occurred. The focus is on the basic case of structures made of a
single homogeneous material featuring an isotropic linear elastic behavior alongside an isotropic
strength surface and toughness. Novel interpolation rules are proposed for each of these three
types of material properties. As a first effort to gain quantitative insight, the framework is
deployed to optimize the fracture response of 2D structures wherein the fracture is bound
to nucleate in three different types of regions: within the bulk, from geometric singularities
(pre-existing cracks and sharp corners), and from smooth parts of the boundary. The obtained
optimized structures are shown to exhibit significantly enhanced fracture behaviors compared
to those of structures that are optimized according to conventional stiffness maximization.
Furthermore, the results serve to reveal a variety of strengthening and toughening mechanisms.
These include the promotion of highly porous structures, the formation of tension-compression
asymmetric regions, and the removal of cracks and sharp corners. The particular mechanism
that is preferred by a given structure, not surprisingly, correlates directly to the elastic, strength,
and toughness properties of the material that is made of.

1. Introduction

Due to its overwhelming pervasiveness, the understanding of fracture in solid matter is a fundamental problem in mechanics
hat has had a long and rich history. By the same token, it has long been plain that having the ability to control/design the fracture
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behavior of materials and structures could drastically improve their performance and also possibly enable new technologies. Over
the past few decades, strides have been made towards achieving such control, primarily by identifying microscopic mechanisms that
lead to enhanced toughening behaviors, see, e.g., Gao and Rice (1989), Bower and Ortiz (1991), Huang and Kinloch (1992), Chen
et al. (2010), Mirkhalaf et al. (2018), Jia et al. (2020), Ritchie (2021), Brodnik et al. (2021) and Michel and Suquet (2022). Among
these, it is instructive to single out the experimental studies in Huang and Kinloch (1992) and Brodnik et al. (2021), where the
mere presence of suitably distributed pores in otherwise homogeneous materials was shown to lead to significant enhancements of
the apparent toughness. They are clear examples of the profound effects that simple topological variations can have on the fracture
response of structures. In spite of this realization, a systematic study — beyond intuitive guessing — of optimal topologies has been
out of reach because of the lack of a complete quantitative description of when and how cracks nucleate and propagate in a given
structure under arbitrary loading conditions.

In this context, a series of recent papers (Kumar et al., 2018b; Kumar and Lopez-Pamies, 2020; Kumar et al., 2020; Kumar and
Lopez-Pamies, 2021; Kumar et al., 2022) have provided a wide range of validation results for a broad spectrum of materials (silicone,
titania, graphite, polyurethane, PMMA, alumina, natural rubber, glass) and an equally broad spectrum of specimen geometries (with
large and small pre-existing cracks, V notches, U notches, and smooth boundaries) and loading conditions suggesting that the phase-
field fracture theory initiated by Kumar et al. (2018a) may indeed provide a complete framework for the description of fracture
nucleation and propagation in nominally elastic brittle materials when subjected to arbitrary quasistatic deformations. In a nutshell,
the theory of Kumar et al. (2018a) corresponds to a generalization of the classical phase-field regularization (Bourdin et al., 2000) of
the variational theory of brittle fracture of Francfort and Marigo (1998), which in turn corresponds to the mathematical statement
of Griffith’s fracture postulate in its general form of energy cost–benefit analysis (Griffith, 1921). The generalization amounts: (𝑖) to
considering the Euler–Lagrange equations of the classical phase-field regularization — and not the variational principle itself — as
the primal model and (𝑖𝑖) to adding an external driving force in the Euler–Lagrange equation governing the evolution of the phase
field to describe the macroscopic manifestation of the presence of the inherent defects in the material, that is, its strength at large.
Having the complete formulation of fracture (Kumar et al., 2018a) at our disposal, we are now in a position to study systematically
the topology optimization of the fracture response of structures under arbitrary quasistatic mechanical loads. This is precisely the
objective of this work. To do so, we put forth a density-based topology optimization framework. The focus is on structures made
of a single homogeneous isotropic linear elastic material, whose strength surface and toughness are also isotropic. The framework
introduces a multi-objective function that allows optimizing in a weighted manner of choice:

• the initial stiffness of the structure,
• the first instance at which fracture nucleates, and
• the energy dissipated by fracture propagation once fracture nucleation has occurred.

This generalizes conventional topology optimization approaches, which have traditionally targeted the maximization of the stiffness
of structures under the premise that materials remain always elastic and, in particular, that they never fracture (Bendsøe and Kikuchi,
1988; Allaire, 2002; Bendsoe and Sigmund, 2003; Wang et al., 2021; Li et al., 2022).

The paper is organized as follows. We begin in Section 2 by briefly summarizing the specialization (Kumar et al., 2020) of
the general fracture theory (Kumar et al., 2018a) to the linear elastic materials of interest in this work. We present the density-
based topology optimization framework per se in Section 3. In Section 4, we deploy the proposed topology optimization framework
to generate representative results. Precisely, we present four numerical examples that serve to illustrate the various competitions
that can take place between the topology of a structure and the elastic, strength, and toughness properties of the material that
is made of. Fig. 1 provides a schematic summary of the optimization framework proposed in Section 3 and of a representative
result from Section 4. It illustrates that the design domain may contain pre-existing cracks, sharp or rounded corners, as well as
smooth boundaries. Given a set of boundary conditions, under the constraint of a given total usage of material, the framework
seeks to optimize the fracture response of the structure by delaying the first instance at which fracture nucleates while maintaining
a sufficiently large initial stiffness and maximizing the energy dissipated by fracture propagation once the fracture has occurred.
These three objectives are manifest in part (b) of Fig. 1, where the force–displacement curve obtained by the proposed framework is
compared to that obtained from conventional stiffness maximization for one of the four examples considered in Section 4. Notably,
at the expense of a mild decrease in initial stiffness, the result shows that fracture first nucleates in the new design at a significantly
(about 100%) larger applied load than in the conventional design. What is more, the total work required to lead to the complete
failure of the structure in the new design is also significantly (about 271%) larger. We conclude this work by making a number of
final comments in Section 5. The paper is complemented by three appendices. Appendix A presents the derivation of the scaling
function proposed in the interpolation scheme. Appendix B provides details on the sensitivity analysis and convergence histories.
Appendix C presents two investigations on finite element meshes.

A comment on other topology optimization frameworks accounting for fracture. Before proceeding with the bulk of the paper, it is
appropriate to acknowledge the flurry of studies that have just recently appeared in the literature on the topology optimization of
structures that do account for fracture properties (Da et al., 2018; Xia et al., 2018; Russ and Waisman, 2019; Da and Qian, 2020;
Da and Yvonnet, 2020; Russ and Waisman, 2020; Wu et al., 2020; Li et al., 2021; Wu et al., 2021; Da et al., 2022; Da and Chen,
2022; Desai et al., 2022; Wu et al., 2022; Zhang et al., 2022).

Invariably, all of these studies employ the classical phase-field fracture theory (Bourdin et al., 2000), or some variation of
it (Miehe et al., 2010; Tanné et al., 2018), to describe fracture. Due to their use of the classical phase-field theory, the designs
2

generated by these formulations are not fully optimal in their fracture response. This is because the accurate description of fracture



Journal of the Mechanics and Physics of Solids 173 (2023) 105227Y. Jia et al.

w
a

n
f
m

o
c
(
b
t
w

2

2

m
o
p
o

w

Fig. 1. (a) Schematic of the proposed topology optimization framework to optimize the fracture response of structures made of a single homogeneous material
ith isotropic linear elastic, strength, and toughness properties. (b) Comparison of the fracture response of a structure optimized with the proposed framework
nd that of a structure optimized by the conventional stiffness maximization.

ucleation is paramount in a topology optimization process, yet, as elaborated at length in Kumar et al. (2020), the classical phase-
ield theory (Bourdin et al., 2000) cannot describe nucleation of fracture in general as it does not account for the strength of the
aterial as one of its three basic ingredients, the other two being the elasticity and the toughness.
To see that an accurate description of fracture nucleation — and not just of fracture propagation — is paramount in a topology

ptimization process consider the following scenario. Irrespectively of whether a structure contains a pre-existing crack in its initial
onfiguration, it may be that at a later time in the optimization process, the structure contains holes with sharp or smooth boundaries
as illustrated in Section 4 below, the latter is actually often the case). Fracture nucleation in such a configuration is governed either
y the strength or by mediation between the strength and the toughness of the material. Consequently, any further iterations in
he optimization process necessarily require an accurate description of fracture nucleation from all possible regions in the structure,
ithin the bulk, from geometric singularities, and from smooth parts of the boundary.

. The phase-field fracture theory

.1. The three basic constitutive ingredients for a complete theory of fracture nucleation and propagation

When viewed collectively, as discussed at length in Kumar and Lopez-Pamies (2020) and Kumar et al. (2020), the vast
acroscopic experimental observations that have been accumulated since the early 1900s on the fracture behavior of a wide range
f ceramics, metals, and polymers alike provide a complete — albeit partly qualitative — picture of how fracture nucleate and
ropagate in nominally elastic brittle materials when subjected to mechanical loads that are applied quasistatically. In sum, nucleation
f fracture

• in the bulk of an elastic brittle material (under uniform states of stress) is governed by its strength,
• from large pre-existing cracks is governed by the Griffith competition between its elastic energy and fracture energy,
• from boundary points, be them smooth or sharp, and small pre-existing cracks is governed by the interaction among its strength,
elastic energy, and fracture energy,

hile propagation of fracture

• is, much like nucleation from large pre-existing cracks, also governed by the Griffith competition between the elastic and
fracture energies of the material.
3
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It follows, that any formulation that aims at providing a complete macroscopic theory of nucleation and propagation of fracture
n elastic brittle materials must account for three basic constitutive ingredients:

(i) the elasticity of the material,
(ii) its strength, and
(iii) its critical energy release rate.

emark 1. The ingredient of strength here merits explicit clarification. It refers to the general definition of strength introduced
n Kumar and Lopez-Pamies (2020) and Kumar et al. (2020), which we recall here for the reader’s convenience. When any piece of
he elastic brittle material of interest is subjected to a state of monotonically increasing uniform but otherwise arbitrary stress, the
racture will nucleate from one or more of its inherent defects at a critical value of the applied stress. The set of all such critical
tresses defines a surface in stress space. In terms of the Cauchy stress tensor 𝝈, we write  (𝝈) = 0. This definition generalizes the
arious notions of ‘‘tensile’’ and ‘‘shear’’ strengths that were proposed on the heels of the introduction of the stress tensor (Cauchy,
823) by numerous pioneers of continuum mechanics including Lamé, Clapeyron, Tresca, and Mohr; see, e.g., the historical account
n the rupture of solids in the classic monograph by Love (1906, Section 83).

.2. The basic case of isotropic linear elastic materials with isotropic strength and toughness

As announced in the Introduction, the focus of this work is on structures that are made of a single homogeneous material featuring
n isotropic linear elastic behavior alongside an isotropic strength surface and toughness. Accordingly, the three basic ingredients
f elasticity, strength, and toughness are described by the stored-energy function

𝑊 (𝐄) = 𝜇 tr 𝐄2 + 𝜆
2
(tr 𝐄)2, (1)

an isotropic strength surface


(

𝜎1, 𝜎2, 𝜎3
)

= 0,

nd the constant critical energy release rate

𝐺𝑐 . (2)

In these expressions, 𝜆 and 𝜇 stand for the first and second Lamé moduli of the material, 𝐄 = 1
2 (∇𝐮+∇𝐮𝑇 ) is the infinitesimal strain

tensor, 𝐮 is the displacement field, and 𝜎1, 𝜎2, 𝜎3 denote the Cauchy principal stresses.
In practice, routine experiments suffice to measure the Lamé moduli 𝜆 and 𝜇 and the critical energy release rate 𝐺𝑐 of a given

material of interest. By contrast, it is difficult to measure its entire strength surface 
(

𝜎1, 𝜎2, 𝜎3
)

. In fact, only the uniaxial tensile
and compressive strengths of materials are typically available in the literature. To deal with this lack of experimental results, one
usually resorts to the use of a model that can fit and extrapolate the available strength data to the entire stress space. For definiteness,
throughout this work, we make use of the Drucker–Prager strength surface


(

𝜎1, 𝜎2, 𝜎3
)

=
√

𝐽2 +
𝜎𝚌𝚜 − 𝜎𝚝𝚜

√

3(𝜎𝚌𝚜 + 𝜎𝚝𝚜)
𝐼1 −

2𝜎𝚌𝚜𝜎𝚝𝚜
√

3(𝜎𝚌𝚜 + 𝜎𝚝𝚜)
= 0, (3)

where

𝐼1 = tr 𝝈 = 𝜎1 + 𝜎2 + 𝜎3, 𝐽2 =
1
2
tr 𝝈2

𝐷 = 1
6
(

(𝜎1 − 𝜎2)2 + (𝜎1 − 𝜎3)2 + (𝜎2 − 𝜎3)2
)

,

ith 𝝈𝐷 = 𝝈 − 1∕3 (tr 𝝈) 𝐈, and where 𝜎𝚝𝚜 and 𝜎𝚌𝚜 are the uniaxial tensile and compressive strengths. The two-material-parameter
trength surface (3) was originally introduced by Drucker and Prager (Drucker and Prager, 1952) to model the yielding of soils. As
omparisons with experiments have later demonstrated, it is a surface that is capable of describing reasonably well the strength of
any nominally brittle materials; see Chapter 10 in Munz and Fett (1999) and Section 2 in Kumar et al. (2020).

2.3. The governing equations

Consider a structure made of an isotropic linear elastic brittle material, with stored-energy function (1), strength surface (3),
and critical energy release rate (2), that occupies an open bounded domain Ω ⊂ R3, with boundary 𝜕Ω and unit outward normal 𝐍,
in its undeformed and stress-free configuration at time 𝑡 = 0. At a later time 𝑡 ∈ (0, 𝑇 ], due to an externally applied displacement
𝐮(𝐗, 𝑡) on a part 𝜕Ω of the boundary and a traction 𝐭(𝐗, 𝑡) on the complementary part 𝜕Ω = 𝜕Ω ⧵ 𝜕Ω, the position vector 𝐗 of a
aterial point moves to a new position specified by

𝐱 = 𝐗 + 𝐮(𝐗, 𝑡)

n terms of the displacement field 𝐮. In addition to the above-described deformation, the externally applied mechanical stimuli may
lso result in the nucleation and subsequent propagation of cracks in the material. We describe those in a regularized fashion via
n order parameter or phase field

𝑣 = 𝑣(𝐗, 𝑡)
4
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taking values in the range [0, 1]. Precisely, the value 𝑣 = 1 identifies the sound regions of the material and 𝑣 = 0 those that have
been fractured, while the transition from 𝑣 = 1 to 𝑣 = 0 is set to occur smoothly over regions of small thickness of regularization
length scale 𝜀 > 0.

According to the theory in Kumar et al. (2020), the displacement field 𝐮(𝐗, 𝑡) and phase field 𝑣(𝐗, 𝑡) at any material point
∈ Ω = Ω ∪ 𝜕Ω and time 𝑡 ∈ [0, 𝑇 ] are determined by the system of coupled partial differential equations (PDEs)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Div
[

𝑣2 𝜕𝑊
𝜕𝐄

(𝐄(𝐮))
]

= 𝟎, (𝐗, 𝑡) ∈ Ω × [0, 𝑇 ],

𝐮 = 𝐮(𝐗, 𝑡), (𝐗, 𝑡) ∈ 𝜕Ω × [0, 𝑇 ],
[

𝑣2 𝜕𝑊
𝜕𝐄

(𝐄(𝐮))
]

𝐍 = 𝐭(𝐗, 𝑡), (𝐗, 𝑡) ∈ 𝜕Ω × [0, 𝑇 ]

(4)

and

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Div
[

𝜀𝐺𝑐∇𝑣
]

= 8
3
𝑣𝑊 (𝐄(𝐮)) − 4

3
𝑐𝚎(𝐗, 𝑡) −

𝐺𝑐
2𝜀

, if 𝑣̇(𝐗, 𝑡) < 0, (𝐗, 𝑡) ∈ Ω × [0, 𝑇 ]

Div
[

𝜀𝐺𝑐∇𝑣
]

≥ 8
3
𝑣𝑊 (𝐄(𝐮)) − 4

3
𝑐𝚎(𝐗, 𝑡) −

𝐺𝑐
2𝜀

, if 𝑣(𝐗, 𝑡) = 1 or 𝑣̇(𝐗, 𝑡) > 0, (𝐗, 𝑡) ∈ Ω × [0, 𝑇 ]

Div
[

𝜀𝐺𝑐∇𝑣
]

≤ 8
3
𝑣𝑊 (𝐄(𝐮)) − 4

3
𝑐𝚎(𝐗, 𝑡) −

𝐺𝑐
2𝜀

, if 𝑣(𝐗, 𝑡) = 0, (𝐗, 𝑡) ∈ Ω × [0, 𝑇 ]

∇𝑣 ⋅ 𝐍 = 0, (𝐗, 𝑡) ∈ 𝜕Ω × [0, 𝑇 ]

(5)

ith 𝐮(𝐗, 0) ≡ 𝟎 and 𝑣(𝐗, 0) ≡ 1, where 𝑐𝚎(𝐗, 𝑡) is a driving force whose specific constitutive prescription depends on the particular
orm of strength surface. For the Drucker–Prager strength surface (3), we make use of one of the prescriptions provided in Kumar
t al. (2022). It reads

𝑐𝚎(𝐗, 𝑡) = 𝛽𝜀2
√

𝐽2 + 𝛽𝜀1𝐼1 + 𝛽𝜀0 ,

where 𝐼1 and 𝐽2 are the invariants

𝐼1 = tr 𝝈 = (3𝜆 + 2𝜇)𝑣2tr 𝐄(𝐮), 𝐽2 =
1
2
tr 𝝈2

𝐷 = 2𝜇2𝑣4tr 𝐄2
𝐷(𝐮) with 𝐄𝐷 = 𝐄 − 1

3
(tr 𝐄) 𝐈

of the Cauchy stress tensor

𝝈(𝐗, 𝑡) = 𝑣2 𝜕𝑊
𝜕𝐄

(𝐄(𝐮)),

hile 𝛽𝜀0 , 𝛽
𝜀
1 , 𝛽

𝜀
2 are the 𝜀-dependent coefficients

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛽𝜀0 = 𝛿𝜀
3𝐺𝑐
8𝜀

𝛽𝜀1 = −
(

(1 + 𝛿𝜀)(𝜎𝚌𝚜 − 𝜎𝚝𝚜)
2𝜎𝚌𝚜𝜎𝚝𝚜

)

3𝐺𝑐
8𝜀

+
𝜎𝚝𝚜

6(3𝜆 + 2𝜇)
+

𝜎𝚝𝚜
6𝜇

𝛽𝜀2 = −

(√

3(1 + 𝛿𝜀)(𝜎𝚌𝚜 + 𝜎𝚝𝚜)
2𝜎𝚌𝚜𝜎𝚝𝚜

)

3𝐺𝑐
8𝜀

+
𝜎𝚝𝚜

2
√

3(3𝜆 + 2𝜇)
+

𝜎𝚝𝚜
2
√

3𝜇

.

In these last expressions, 𝛿𝜀 is a dimensionless 𝜀-dependent parameter whose calibration needs to be carried out by following the
procedure laid out in Section 4.3.2 of Kumar et al. (2020).

Remark 2. The regularization length 𝜀 in Eqs. (4)–(5) is just a regularization parameter that is void of any further physical meaning.
In practice, it should be selected to be smaller than the smallest characteristic length scale in the structural problem at hand.

Remark 3. On their own, Eqs. (4) and (5) are second-order elliptic PDEs for the displacement field 𝐮 and the phase field 𝑣.
Accordingly, their numerical solution is amenable to a standard finite-element (FE) staggered scheme in which (4) and (5) are
discretized with finite elements and solved iteratively one after the other until convergence is reached. A FEniCS implementation
of such a scheme1 is available in GitHub.

3. The proposed topology optimization framework

In this section, we introduce a density-based topology optimization framework built on the phase-field fracture theory (4)–(5)
that is aimed at optimizing the fracture response of structures subjected to quasistatic mechanical loading. We begin in Sections 3.1
and 3.2 by introducing the design parameterization and associated interpolations for all three types of material — elastic, strength,
and toughness — properties. In Section 3.3, we present the multi-objective topology optimization theory that defines the optimal
fracture response of structures. Finally, in Section 3.4, we describe the numerical implementation to solve the resulting optimization
problem.

1 https://github.com/adityakr42/FEniCS_Fracture_Kumar_Lopez-Pamies
5
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3.1. Design parameterization

In a given design domain Ω, density-based topology optimization introduces a dimensionless continuous scalar field 𝜌(𝐗) ∈ [0, 1],
referred to as the design variable, in terms of which the physical density field 𝜌(𝐗) ∈ [0, 1] that parameterizes the topological space
is defined (Bendsoe and Sigmund, 2003). For well-known computational reasons (to reduce space-discretization dependencies, to
eliminate checker-board patterns, and to also enhance the discreteness of final designs, i.e., to ensure the 0–1 solution), we define
the latter in terms of the former by the relation

𝜌(𝐗) = tanh(𝛽𝜃) + tanh(𝛽(𝜌̃(𝐗) − 𝜃))
tanh(𝛽𝜃) + tanh(𝛽(1 − 𝜃))

, (6)

where

𝜌̃(𝐗) =
∫Ω

𝑤(𝐗,𝐗′)𝜌(𝐗′)d𝐗′

∫Ω
𝑤(𝐗,𝐗′)d𝐗′

. (7)

In these expressions, 𝛽 is the sharpness parameter, 𝜃 = 0.5 is the projection threshold value, and the coefficient 𝑤(𝐗,𝐗′) =
max{0, 𝑅 − |𝐗 − 𝐗′

|} is a weighting factor determined by the filter radius 𝑅 and the Euclidean distance between material points
𝐗 and 𝐗′ (Bourdin, 2001).

Following the standard convention, the value 𝜌 = 0 represents a void, the value 𝜌 = 1 represents the solid (physical material),
while the intermediate values 0 < 𝜌 < 1 describe an interpolated material. In terms of this parameterization, we write the stored-
energy function in a given design domain Ω as 𝑊 (𝐄(𝐮); 𝜌), the tensile and compressive strengths as 𝜎𝚝𝚜(𝜌) and 𝜎𝚌𝚜(𝜌), the critical
energy release rate as 𝐺𝑐(𝜌), and the dimensionless parameter as 𝛿

𝜀
(𝜌). In a similar fashion, we write the corresponding displacement

and phase fields as 𝐮(𝐗, 𝑡; 𝜌) and 𝑣(𝐗, 𝑡; 𝜌).

The parameterized phase-field equations. Given the above-defined parameterization, the phase-field fracture equations (4)–(5) need to
be generalized to describe a material system with spatially heterogeneous elastic, strength, and toughness properties, as characterized
by the physical density variable 𝜌(𝐗). This raises the question of whether additional ‘‘interfacial’’ strength and toughness should be
ccounted for at material discontinuities. Since the focus here is on structures made of a single homogeneous material that may
ontain voids, it is sensible to discard the presence of such additional ‘‘interfacial’’ properties. The relevant parameterized phase-field
quations are then simply obtained by augmenting the fields in (4)–(5) with their dependence on 𝜌(𝐗). We thus have

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Div
[

𝑣2 𝜕𝑊
𝜕𝐄

(𝐄(𝐮); 𝜌)
]

= 𝟎, (𝐗, 𝑡) ∈ Ω × [0, 𝑇 ],

𝐮 = 𝐮(𝐗, 𝑡), (𝐗, 𝑡) ∈ 𝜕Ω × [0, 𝑇 ],
[

𝑣2 𝜕𝑊
𝜕𝐄

(𝐄(𝐮); 𝜌)
]

𝐍 = 𝐭(𝐗, 𝑡), (𝐗, 𝑡) ∈ 𝜕Ω × [0, 𝑇 ]

(8)

and
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Div
[

𝜀𝐺𝑐 (𝜌)∇𝑣
]

= 8
3
𝑣𝑊 (𝐄(𝐮); 𝜌) − 4

3
𝑐𝚎(𝐗, 𝑡; 𝜌) −

𝐺𝑐 (𝜌)
2𝜀

, if 𝑣̇(𝐗, 𝑡; 𝜌) < 0, (𝐗, 𝑡) ∈ Ω × [0, 𝑇 ]

Div
[

𝜀𝐺𝑐 (𝜌)∇𝑣
]

≥ 8
3
𝑣𝑊 (𝐄(𝐮); 𝜌) − 4

3
𝑐𝚎(𝐗, 𝑡; 𝜌) −

𝐺𝑐 (𝜌)
2𝜀

, if 𝑣(𝐗, 𝑡; 𝜌) = 1 or 𝑣̇(𝐗, 𝑡; 𝜌) > 0, (𝐗, 𝑡) ∈ Ω × [0, 𝑇 ]

Div
[

𝜀𝐺𝑐 (𝜌)∇𝑣
]

≤ 8
3
𝑣𝑊 (𝐄(𝐮); 𝜌) − 4

3
𝑐𝚎(𝐗, 𝑡; 𝜌) −

𝐺𝑐 (𝜌)
2𝜀

, if 𝑣(𝐗, 𝑡; 𝜌) = 0, (𝐗, 𝑡) ∈ Ω × [0, 𝑇 ]

∇𝑣 ⋅ 𝐍 = 0, (𝐗, 𝑡) ∈ 𝜕Ω × [0, 𝑇 ]

(9)

with

𝑐𝚎(𝐗, 𝑡; 𝜌) =
(

−

(√

3(1 + 𝛿
𝜀
(𝜌))(𝜎𝚌𝚜(𝜌) + 𝜎𝚝𝚜(𝜌))

2𝜎𝚌𝚜(𝜌)𝜎𝚝𝚜(𝜌)

)

3𝐺𝑐 (𝜌)
8𝜀

+

√

3𝜎𝚝𝚜(𝜌)

2𝐸(𝜌)

)

𝑣2𝐸(𝜌)
1 + 𝜈(𝜌)

√

1
2
tr

(

𝐄(𝐮) − 1
3
(tr 𝐄(𝐮)) 𝐈

)2
+

(

−

(

(1 + 𝛿
𝜀
(𝜌))(𝜎𝚌𝚜(𝜌) − 𝜎𝚝𝚜(𝜌))
2𝜎𝚌𝚜(𝜌)𝜎𝚝𝚜(𝜌)

)

3𝐺𝑐 (𝜌)
8𝜀

+
𝜎𝚝𝚜(𝜌)

2𝐸(𝜌)

)

𝑣2𝐸(𝜌)
1 − 2𝜈(𝜌)

tr 𝐄(𝐮) + 𝛿
𝜀
(𝜌)

3𝐺𝑐 (𝜌)
8𝜀

, (10)

here, for consistency with the topology optimization literature, we have favored the use of the Young’s modulus and Poisson’s
atio

𝐸(𝜌) =
𝜇(𝜌)

(

3𝜆(𝜌) + 2𝜇(𝜌)
)

𝜆(𝜌) + 𝜇(𝜌)
and 𝜈(𝜌) =

𝜆(𝜌)

2(𝜆(𝜌) + 𝜇(𝜌))

instead of the Lamé moduli as the elastic material constants.
6
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3.2. Proposed interpolation rules for the material constants

Having identified (8)–(9) as the equations governing deformation and fracture in the design domain, the next step is to specify
appropriate interpolation rules for all the underlying material properties: 𝐸(𝜌), 𝜈(𝜌), 𝜎𝚝𝚜(𝜌), 𝜎𝚌𝚜(𝜌), 𝐺𝑐 (𝜌), and 𝛿

𝜀
(𝜌).

.2.1. Elastic constants
For the Young’s modulus 𝐸(𝜌) in the design domain, we make use of the interpolation rule

𝐸(𝜌) = 1
√

𝑠(𝜌)

(

𝜂𝐸 + (1 − 𝜂𝐸 )𝜌
𝑝𝐸
)

𝐸, (11)

which is a modification of the commonly used SIMP rule (Bendsøe and Sigmund, 1999). Here, we recall that 𝐸 is the Young’s
modulus of the actual material, 𝑠(𝜌) is a proposed strictly positive scaling function with extremal values 𝑠(0) = 𝑠(1) = 1 to be
specified further below, 𝜂𝐸 is a small positive number that serves to regularize the vanishingly small stiffness of the voids (ersatz
material) in the design, and 𝑝𝐸 is a positive number typically chosen such that 𝑝𝐸 ≥ 3.

For the Poisson’s ratio 𝜈(𝜌), we make use of the conventional choice that its value is the same as that of the actual material for
ny 𝜌, to wit,

𝜈(𝜌) = 𝜈. (12)

3.2.2. Strength constants
For the tensile and compressive strengths 𝜎𝚝𝚜(𝜌) and 𝜎𝚌𝚜(𝜌) in the design domain, we select the SIMP rule

⎧

⎪

⎨

⎪

⎩

𝜎𝚝𝚜(𝜌) =
(

𝜂𝜎𝚝𝚜 + (1 − 𝜂𝜎𝚝𝚜 )𝜌
𝑝𝜎
)

𝜎𝚝𝚜
𝜎𝚌𝚜(𝜌) =

(

𝜂𝜎𝚌𝚜 + (1 − 𝜂𝜎𝚌𝚜 )𝜌
𝑝𝜎
)

𝜎𝚌𝚜
, (13)

where 𝜂𝜎𝚝𝚜 and 𝜂𝜎𝚌𝚜 stand for two sufficiently small positive numbers that serve to regularize the vanishingly small strength of the
voids in the design, the penalty parameter 𝑝𝜎 is a positive number typically chosen such that 𝑝𝜎 ≥ 1, and where we recall that 𝜎𝚝𝚜
and 𝜎𝚌𝚜 are the tensile and compressive strengths of the actual material.

Remark 4. In regions where the density 𝜌 ↘ 0, fracture may nucleate because of their very small strength. To avoid this artificial
ehavior, it suffices to choose a smaller penalty parameter in (13) than in (11), that is,

𝑝𝜎 < 𝑝𝐸 .

3.2.3. Toughness
Similar to our proposed revised interpolation rule (11) for the Young’s modulus, we interpolate the critical energy release rate

n the design domain as

𝐺𝑐 (𝜌) =
1

√

𝑠(𝜌)

(

𝜂𝐺𝑐
+ (1 − 𝜂𝐺𝑐

)𝜌𝑝𝐺𝑐
)

𝐺𝑐 , (14)

where we recall that 𝐺𝑐 denotes the critical energy release rate of the actual material. Accordingly, in this expression, 𝜂𝐺𝑐
is a small

positive number that serves to regularize the vanishingly small toughness of the voids in the design, the power 𝑝𝐺𝑐
is a penalty

parameter to be chosen such that 𝑝𝐺𝑐
≥ 1, and 𝑠(𝜌) is the same strictly positive scaling function with 𝑠(0) = 𝑠(1) = 1 proposed in

(11), which we are now ready to specify.

The choice of scaling function 𝑠(𝜌), regularization parameters 𝜂𝐸 , 𝜂𝜎𝚝𝚜 , 𝜂𝐺𝑐
, and penalty parameters 𝑝𝐸 , 𝑝𝜎 , 𝑝𝐺𝑐

. Owing to the different
units of the elastic (𝑓𝑜𝑟𝑐𝑒∕𝑙𝑒𝑛𝑔𝑡ℎ2), strength (𝑓𝑜𝑟𝑐𝑒∕𝑙𝑒𝑛𝑔𝑡ℎ2), and toughness properties (𝑓𝑜𝑟𝑐𝑒∕𝑙𝑒𝑛𝑔𝑡ℎ), the Eqs. (8)–(9) feature an
inherent set of characteristic length scales. Since the focus here is, again, on structures made of a single homogeneous material that
may contain voids, it is reasonable to enforce that such a set of characteristic length scales remain the same in the design domain
irrespective of the value of the density 𝜌. We accomplish this by setting the scaling function 𝑠(𝜌) in (11) and (14) as

𝑠(𝜌) =

(

𝜂𝐸 + (1 − 𝜂𝐸 )𝜌
𝑝𝐸
)

(

𝜂𝐺𝑐
+ (1 − 𝜂𝐺𝑐

)𝜌𝑝𝐺𝑐
)

(

𝜂𝜎𝚝𝚜 + (1 − 𝜂𝜎𝚝𝚜 )𝜌
𝑝𝜎
)2

.

iven this choice, the requirement that 𝑠(0) = 𝑠(1) = 1 then implies that the parameters 𝜂𝐸 , 𝜂𝜎𝚝𝚜 , 𝜂𝐺𝑐
must be chosen subject to the

onstraint

𝜂𝐸𝜂𝐺𝑐
= 𝜂2𝜎𝚝𝚜 . (15)

ow, the scaling function 𝑠(𝜌) should be selected to make (11) and (14) deviate as little as possible from the SIMP rule. This implies
hat the penalty parameters 𝑝𝐸 , 𝑝𝜎 , 𝑝𝐺𝑐

must be chosen subject to the constraint

𝑝𝐸 + 𝑝𝐺𝑐
= 2𝑝𝜎 . (16)

𝜌) is detailed in Appendix A.
7

he derivation of the scaling function 𝑠(
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Table 1
Interpolation rules for all material constants entering the
phase-field fracture equations (8)–(9).
Material constants interpolation rules

Young’s modulus 𝐸(𝜌) revised SIMP rule (11)
Poisson’s ratio 𝜈(𝜌) constant (12)
Tensile strength 𝜎𝚝𝚜(𝜌) SIMP rule (13)1
Compressive strength 𝜎𝚝𝚜(𝜌) SIMP rule (13)2
Critical energy release rate 𝐺𝑐 (𝜌) revised SIMP rule (14)
Dimensionless parameter 𝛿

𝜀
(𝜌) fitting formula (17)

3.2.4. The dimensionless parameter 𝛿
𝜀
(𝜌)

As remarked in the calibration process laid out in Section 4.3.2 of Kumar et al. (2020), the dimensionless parameter 𝛿
𝜀
(𝜌) in the

driving force (10) takes on different values depending on the given elastic (𝐸 and 𝜈 here), strength (𝜎𝚝𝚜 and 𝜎𝚌𝚜), and toughness
𝐺𝑐) constants of the material, as well as on the value of the regularization length 𝜀 used in the calculations. In principle, for the
problem at hand, this means that 𝛿

𝜀
(𝜌) needs to be calibrated for all the densities 𝜌 ∈ [0, 1]. In practice, it suffices to calibrate the

alue of 𝛿
𝜀
(𝜌) for a discrete set of density values and then interpolate among those. In this work, we calibrate the values of 𝛿

𝜀
(𝜌)

for 𝜌 = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and use them to derive the interpolation relationship, say

𝛿
𝜀
(𝜌) = 𝛿(𝜌;𝐸, 𝜈, 𝜎𝚝𝚜, 𝜎𝚌𝚜, 𝐺𝑐 , 𝜀), (17)

for the rest of values 𝜌 ∈ [0, 1].
For the reader’s convenience, we close this subsection by summarizing in Table 1 the proposed interpolation rules for all material

constants.

3.3. The proposed multi-objective topology optimization formulation

At this stage, having introduced the design parameterization and interpolation rules for all of the material properties, we are in
a position to spell out the multi-objective function whose maximization defines the optimal fracture response of structures.

Precisely, we seek to identify structures that

• exhibit a sufficiently large initial stiffness,
• delay the onset of fracture nucleation, and
• dissipate as much energy as possible once the fracture has occurred.

To do so, we introduce the multi-objective function

𝐽 = 𝜔𝑒Π𝑒 − 𝜔𝑓Π𝑓 + 𝜔𝑤Π𝑤 with

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Π𝑒(𝜌,𝐮, 𝑣) = ∫

𝑡𝑛

0 ∫Ω
𝑣2𝑊 (𝐄(𝐮); 𝜌)d𝐗d𝑡

Π𝑓 (𝜌, 𝑣) = ∫

𝑡𝑛

0 ∫Ω
3𝐺𝑐 (𝜌)

8

( 1 − 𝑣
𝜀

+ 𝜀∇𝑣 ⋅ ∇𝑣
)

d𝐗d𝑡

Π𝑤(𝜌,𝐮, 𝑣) = ∫

𝑇

𝑡𝑛
∫𝜕Ω

[

𝑣2 𝜕𝑊
𝜕𝐄

(𝐄(𝐮); 𝜌)𝐍
]

⋅ 𝐮d𝐗d𝑡

(18)

and consider the optimization problem

⎧

⎪

⎪

⎨

⎪

⎪

⎩

maximize
0≤𝜌≤1

𝐽 (𝜌,𝐮(𝐗, 𝑡; 𝜌), 𝑣(𝐗, 𝑡; 𝜌))

subject to
⎧

⎪

⎨

⎪

⎩

𝑔(𝜌) ∶= |Ω|−1∫Ω
𝜌d𝐗 − 𝑉 ∗ ≤ 0

(𝐮, 𝑣) solution of the phase-field equations (8)–(9).

(19)

In these expressions, 𝜔𝑒, 𝜔𝑓 , 𝜔𝑤 are weighting factors of choice such that 𝜔𝑒+𝜔𝑓 +𝜔𝑤 = 1 and 𝑡𝑛 ∈ [0, 𝑇 ] stands for a time of choice
ithin the entire time period over which the structure is loaded. The first part Π𝑒 in the multi-objective function (18) is nothing

more than the total elastic energy stored by the structure from the beginning of the loading process until the chosen time 𝑡𝑛. Its
maximization controls the initial stiffness of the structure. The second part Π𝑓 in (18) is a measure2 of the energy dissipated by the
appearance of cracks from the beginning of the loading process until the chosen time 𝑡𝑛. Its minimization thus results in delaying
the instance at which fracture first nucleates. The third part Π𝑤 in the multi-objective function (18) denotes the work done by the
applied forces from the chosen time 𝑡𝑛 until the end of the loading process. Its maximization then serves to maximize the energy
dissipated by fracture propagation once fracture nucleation has occurred. Finally, 𝑉 ∗ in the inequality constraint (19)2 denotes the
maximum volume fraction of the actual material that is permitted to be present in the design. Fig. 2 provides a schematic of the
physical meaning of the three sub-objectives Π𝑒, Π𝑓 , and Π𝑤.

2 As opposed to the classical phase-field theory wherein the quantity  = ∫Ω 3∕8[(1−𝑣)∕𝜀+ 𝜀∇𝑣 ⋅∇𝑣] d𝐗 represents exactly the surface of cracks, in the context
8

of the phase-field theory (8)–(9),  scales with the surface of cracks but is not exactly equal to it.
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Fig. 2. Schematic of the proposed multi-objective function and its maximization leading to structures with optimized fracture response. The schematic includes
comparison between the force–displacement response of a structure optimized with the proposed framework and that of a structure optimized by conventional
tiffness maximization.

The multi-objective function (18) generalizes several objective functions that have been recently utilized in the literature to
optimize the fracture response of structures. Specifically, the multi-objective function (18) reduces to those put forth in Russ and
Waisman (2020) and Desai et al. (2022) by setting 𝑡𝑛 = 𝑇 , while it reduces to those in Da and Yvonnet (2020) and Li et al. (2021)
by setting 𝑡𝑛 = 0. Note that the choice 𝑡𝑛 = 𝑇 may promote the prevention of any crack and hence may lead to designs that are stiff
but that catastrophically fail at the first nucleation of fracture. On the other hand, the choice 𝑡𝑛 = 0 may promote the presence of
too many cracks and hence may lead to designs that fail prematurely. The ability to choose the value of 𝑡𝑛 as well as the weighting
factors 𝜔𝑒, 𝜔𝑓 , 𝜔𝑤 in the multi-objective function (18) allows greater flexibility to identify structures with the desired type of fracture
performance.

3.4. Numerical implementation

In order to solve the optimization problem (19), we make use of the adjoint method (Bendsoe and Sigmund, 2003) to carry out
the pertinent sensitivity analysis. The basic details are provided in Appendix B.1. In Appendix B.2, we also present numerical results
aimed at verifying the accuracy of the sensitivity analysis. The computation of the time-dependent coupled PDEs (8)–(9) is carried out
by means of a FE approach with a staggered solver; see Remark 3. Moreover, we make use of the well-established method of moving
asymptotes (MMA) (Svanberg, 1987) to update the design variable 𝜌. Algorithm 1 provides an outline of the solution procedure.
The implementation is carried out in the open-source computing platform FEniCSx (Scroggs et al., 2022). Specifically, for solving
the coupled PDEs (8)–(9), we set the maximum staggered iteration as 100 and the relative tolerance for both the displacement and
phase fields as 10−6. In each staggered iteration, we further use the lower–upper (LU) decomposition to directly solve (8) and use
Newton–Raphson scheme to iteratively solve (9) with the generalized minimal residual (GMRES) method. All the computations
re performed in parallel.
9
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Algorithm 1: Overview of the solution procedure for the optimization problem (19)
1 Inputs: Optimization iteration counter, 𝑚 = 1; maximum iteration, 𝑚𝑚𝑎𝑥; the initial value of design variable, 𝜌 = 𝜌0;
2 while 𝑚 ≤ 𝑚𝑚𝑎𝑥 do
3 Apply the density filter (Eq. (7)) on the design variable, 𝜌, to obtain the filtered variable, 𝜌̃;
4 Apply the Heaviside projection (Eq. (6)) on the filtered design variable, 𝜌̃, to obtain the physical variable, 𝜌;
5 Obtain the material constants (𝐸, 𝜎𝚝𝚜, 𝜎𝚌𝚜, 𝐺𝑐 , 𝛿

𝜀
) through the proposed interpolation relationships (Eqs. (11), (13),

(14), (17)) based on the physical design variable, 𝜌;
6 Solve numerically via FE the displacement field, 𝐮(𝐗, 𝑡; 𝜌), and the phase field, 𝑣(𝐗, 𝑡; 𝜌), based on the material properties

(𝐸, 𝜎𝚝𝚜, 𝜎𝚌𝚜, 𝐺𝑐 , 𝛿
𝜀
);

7 Based on the field variables, 𝐮(𝐗, 𝑡; 𝜌) and 𝑣(𝐗, 𝑡; 𝜌), compute the function values, 𝐽 and 𝑔, and perform the sensitivity
analysis (the detailed procedure is given in Appendix B.1) to obtain the function gradients, d𝐽∕d𝜌 and d𝑔∕d𝜌, with
respect to the design variable, 𝜌;

8 Utilize the MMA optimizer to update the design variable, 𝜌, based on the function values, 𝐽 and 𝑔, as well as the
gradient information, d𝐽∕d𝜌 and d𝑔∕d𝜌;

9 𝑚 ← 𝑚 + 1;
10 end

Fig. 3. The dimensionless parameter 𝛿
𝜀
(𝜌) as a function of the density 𝜌 for the material constants and regularization length listed in Table 2.

. Sample results

In the sequel, we deploy the density-based framework introduced in the preceding section to examine the optimization of the
racture response of structures. With the objective of exploring a wide range of possible behaviors, we consider problems in which
racture nucleation is bound to occur in three different types of regions within the structure: within the bulk, from geometric
ingularities (pre-existing cracks and sharp corners), and from smooth parts of the boundary. More specifically, Examples 1 and 2 in
ections 4.1 and 4.2 deal with structures where fracture nucleation takes place from pre-existing cracks and sharp corners. Example 1
lso serves to showcase the effects that the choice of time 𝑡𝑛 has on the optimization process. On the other hand, Examples 3 and 4 in
ections 4.3 and 4.4 deal with structures where fracture nucleation takes place within the bulk or from smooth parts of the boundary.
n addition, Example 4 serves to showcase the effects that the choice of weighting factors 𝜔𝑒, 𝜔𝑓 , 𝜔𝑤 has on the final design. In all
four examples, we use symmetric meshes to discretize domains and ensure symmetric topology (𝜌) by applying projection techniques.
n Appendix C.2, we use Dsg. 11 to briefly illustrate the influence in structural behaviors by using symmetry and asymmetric meshes.
e also restrict attention to structures made of homogeneous materials with deterministic material properties. For this reason, it
s possible that symmetric patterns of cracks may appear in the simulations. The incorporation of stochastic material properties —
n particular, stochastic strength properties — in the optimization process would likely rule out the existence of such symmetric
olutions, however, this is beyond the scope of this work.
Table 2 summarizes the numerical values of the parameters entering the optimization problem used in all four examples. These

alues correspond to a modification of the parameters used in Kumar et al. (2020) for graphite; the modification is such that
𝐸 ← 𝐸∕10 and 𝐺𝑐 ← 10𝐺𝑐 . Generally, a smaller Young’s modulus, 𝐸, results in smaller structural stiffness and could delay the process
of maximum stress reaching the strength surface, which causes fracture nucleation. A larger critical energy release rate, 𝐺𝑐 , requires
more input energy to propagate the same length of the crack. Based on these two observations, we made these changes 𝐸 ← 𝐸∕10
and 𝐺 ← 10𝐺 in this work aiming at favoring a more balanced competition between fracture nucleation and propagation. Also,
10
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Table 2
Summary of the parameters used for all four sample results in Sections. 4.1 through 4.4.
Inputs in the optimization problem Values of the associated parameters

Young’s modulus 𝐸(𝜌) 𝐸 = 980 MPa
𝜂𝐸 = 10−5

𝑝𝐸 = 3
Poisson’s ratio 𝜈(𝜌) 𝜈 = 0.13
Tensile strength 𝜎𝚝𝚜(𝜌) 𝜎𝚝𝚜 = 27 MPa

𝜂𝜎𝚝𝚜 = 10−5

𝑝𝜎 = 2.5
Compressive strength 𝜎𝚌𝚜(𝜌) 𝜎𝚌𝚜 = 77 MPa

𝜂𝜎𝚌𝚜 = 3.51 × 10−6

𝑝𝜎 = 2.5
Toughness 𝐺𝑐 (𝜌) 𝐺𝑐 = 0.91 N/mm

𝜂𝐺𝑐
= 10−5

𝑝𝐺𝑐
= 2

Regularization length 𝜀 𝜀 = 0.15 mm
Calibrated parameter 𝛿

𝜀
(𝜌) 𝛿 = 6.48

note that the regularization length is set at 𝜀 = 0.15 mm for all four examples, which was checked to be small enough as required.
For this value of 𝜀 and all 𝜌 ∈ [0, 1], note as well that the dimensionless parameter is set at the constant value 𝛿𝜀 = 6.48. This last
prescription merits clarification. Fig. 3 shows the values of 𝛿

𝜀
(𝜌) for 𝜌 = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} as obtained from

he calibration procedure laid out in Section 4.3.2 of Kumar et al. (2020). While 𝛿
𝜀
(𝜌) is not a constant, it is nearly so for 𝜌 ≥ 0.1.

However, the influence of the value of 𝛿
𝜀
(𝜌) in the optimization process is negligible when 𝜌 ≤ 0.1; this is because the material then is

essentially ‘‘air’’. For this reason, we choose to idealize 𝛿
𝜀
(𝜌) as the constant value 𝛿𝜀 = 6.48. Unless otherwise stated, the maximum

optimization iteration is 𝑚𝑚𝑎𝑥 = 600 in all the calculations that follow. The sharpness parameter in the Heaviside projection (6) is
initially set at 𝛽 = 1. Starting from the optimization iteration 𝑚 = 181, the 𝛽 value is doubled every 60 iterations until 𝛽 = 128. The
threshold value is set at 𝜃 = 0.5, as mentioned previously. Finally, all the calculations are carried out under plane-stress conditions.

4.1. A pre-cracked beam under three-point bending

In this subsection, we consider the optimization of a pre-cracked beam under three-point bending, namely, a pre-cracked
Messerschmitt-Bölkow-Blohm (MMB) beam. Fig. 4(a) shows a schematic of the design domain, which contains a 1.2-mm-long pre-
existing crack on the bottom, and the applied boundary displacements. The design variable is fixed at 𝜌 ≡ 1 on the three indicated
non-designable regions around the two supports on the bottom and the applied displacement 𝑢 ∝ 𝑡 on the top. Also, the phase field
is fixed at 𝑣 ≡ 1 around two supports. Such a design domain is discretized by a mesh (axially symmetric with respect to 1/2 of
the domain) with 107,200 bilinear quadrilateral finite elements of size ℎ = 𝜀∕3 = 0.05 mm. The maximum value of the applied
displacement is 𝑢𝑚𝑎𝑥 = 2.72 mm for the optimization process. We also carry out a post-optimization FE analysis to evaluate the
resulting force–displacement curves to complete failure of the optimized structures. The maximum value of the applied displacement
for those is 𝑢𝑚𝑎𝑥 = 3.60 mm. For the topology-optimization-specific parameters, we use the filter radius 𝑅 = 1.2 mm and allowable
volume fraction 𝑉 ∗ = 0.45. The weighting factors are set at 𝜔𝑒 = 0.20, 𝜔𝑓 = 0.78, and 𝜔𝑤 = 0.02.

Fig. 4(b) presents the obtained designs — labeled Dsgs. 2 through 4 — for three different values of the time 𝑡𝑛, which correspond
to applied displacements 𝑢𝑛 = 1.92, 2.16, and 2.72 mm, respectively. The classical stiffness design — labeled Dsg. 1 — obtained
from conventional stiffness maximization is also included in the figure for reference. Fig. 4(b) shows the physical density field 𝜌
representing the optimized topology. Also, it shows contours of the phase field 𝑣 (only plotted when 𝑣 ≤ 0.5) at 𝑢𝑚𝑎𝑥 = 3.60 mm.
The figure also includes the critical values of the applied displacement 𝑢 = 𝑢𝑐 at which fracture first nucleates in each design. By
comparing Dsg. 1 with Dsgs. 2–4, it can be observed that the pre-crack still exists in Dsg. 1, while it is replaced by rounded corners
in Dsgs. 2–4. It is also interesting to note that the number of batches of crack nucleation in all designs is either one or two. By
increasing 𝑢𝑛, the top and bottom major members are merged into one as shown in Dsg. 3, and finally, the merged major member
is lifted as shown in Dsg. 4. This is because the tensile stress gets redistributed in these merging and lifting processes and fracture
nucleation is, in turn, delayed.

Fig. 4(c) shows the force–displacement curves and the structural performance via a radar chart for Dsgs. 1–4. Several observations
are worth pointing out. First, compared to Dsg. 1, the first nucleation of fracture occurs both at larger forces and larger displacements
in Dsgs. 2 through 4. What is more, the overall toughness Ψ — defined as the area under the force–displacement curve — is
also significantly larger (up to 230%) for all Dsgs. 2 through 4. In spite of delaying fracture and dissipating more energy by
fracture propagation, Dsgs. 2–4 still exhibit a sufficiently large initial stiffness compared to that of Dsg. 1. In terms of the applied
displacement, the increase of 𝑢𝑛 leads to an increase in the delay of fracture nucleation.

Remark 5. The results shown in Fig. 4 were obtained by making use of a voxel-based mesh (fixed-grid method) (da Silva et al.,
2019). In Appendix C.1, using Dsg. 2 as an example, we show that making use of a body-fitted mesh produces results in good
agreement with the ones from the voxel-based mesh.
11
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Fig. 4. Design setup and results for the optimization of a pre-cracked beam under three-point bending. (a) Design domain and boundary conditions (all
ength units are in mm). (b) Optimized designs (Dsgs. 2–4) and phase-field contours at 𝑢𝑚𝑎𝑥 = 3.60 mm for three different values of displacement 𝑢𝑛 ∝ 𝑡𝑛. (c)
Force–displacement curves for the optimized designs and corresponding radar chart comparing their normalized structural performance. The classical stiffness
design (Dsg. 1) obtained from conventional stiffness maximization is included for reference.
12
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Fig. 5. Design setup and results for the optimization of a star-shaped plate under rotational displacement. (a) Design domain and boundary conditions (all
length units are in mm). (b) Optimized designs. (c) Force–displacement curve for the optimized design. The classical stiffness design (Dsg. 5) obtained from
conventional stiffness maximization is included for reference.

4.2. A star-shaped plate under rotational displacement

Next, we consider the optimization of a star-shaped plate, initially containing holes with sharp corners (in contrast to a pre-
xisting crack like the beam in the preceding subsection), subjected to a rotational displacement. The pertinent design domain and
oundary conditions are depicted in Fig. 5(a). The phase field is fixed at 𝑣 ≡ 1 in a 0.15 mm-thick ring around the circular support and
at the five corners where the displacement 𝑢 ∝ 𝑡 is applied. The design domain is discretized with an unstructured mesh (rotationally
symmetric with respect to 1/5 of the domain) of 33,840 bilinear quadrilateral finite elements of size ℎ = 𝜀∕10 = 0.015 mm. The
maximum values of the applied displacement are 𝑢𝑚𝑎𝑥 = 0.5 mm for the optimization process and 𝑢𝑚𝑎𝑥 = 1.0 mm for the post-
optimization FE analysis that is carried out to evaluate the resulting force–displacement curves to complete failure of the optimized
structures. For the topology-optimization-specific parameters, we use the filter radius 𝑅 = 0.15 mm and allowable volume fraction
𝑉 ∗ = 0.5. The weighting factors are set at 𝜔𝑒 = 0.15, 𝜔𝑓 = 0.80, and 𝜔𝑤 = 0.05. Finally, we choose the time 𝑡𝑛 such that 𝑢𝑛 = 0.35 mm.

Fig. 5(b) presents the conventional design — labeled Dsg. 5 — obtained from stiffness maximization and the one — labeled Dsg.
6 — obtained from the proposed optimization. Interestingly, contrary to Dsg. 5, Dsg. 6 does not exhibit centrosymmetry around the
regions of applied displacement. This is because the tensile and compressive strengths of the material are different. Another distinct
feature is that corners in the fracture design Dsg. 6 — but not in the stiffness design Dsg. 5 — have been completely removed by the
optimization process. Consequently, as shown by the force–displacement curves and the inset phase-field contours in Fig. 5(c), the
stiffness design Dsg. 5 fails by nucleating fracture from the corners and it does so at a much smaller critical value 𝑢 of the applied
13
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Fig. 6. Design setup and results for the optimization of a disk under rotational displacement. (a) Design domain and boundary conditions (all length units are in
mm). (b) Optimized designs for two different choices of weighting factors 𝜔𝑒, 𝜔𝑓 , 𝜔𝑤. (c) Force–displacement curves for the optimized designs and corresponding
radar chart comparing their normalized structural performance. The classical stiffness design (Dsg. 7) obtained from conventional stiffness maximization is
included for reference.

displacement (about 183.3% smaller) than that in Dsg. 6, wherein fracture nucleates from smooth boundaries near the circular
support. What is more, Dsg. 6 dissipates significantly more energy (about 271.2% more) than Dsg. 5 by the propagation of fracture
that leads to the complete failure of the structure.

4.3. A disk under rotational displacement

In this subsection, as shown in Fig. 6(a), we consider the optimization of a disk, initially containing circular holes, under a
rotational displacement 𝑢 ∝ 𝑡 that is applied at four symmetric parts on the outer boundary. The design variable and phase field
are fixed at 𝜌 ≡ 1 and 𝑣 ≡ 1 over two 2-mm-thick ring-shaped non-designable regions around the central and outer boundaries.
The design domain is discretized with an unstructured mesh (rotationally symmetric with respect to 1/4 of the domain) of 42,472
bilinear quadrilateral finite elements of size ℎ = 𝜀∕5 = 0.03 mm. The maximum values of the applied displacement are 𝑢𝑚𝑎𝑥 = 1.0 mm
for the optimization process and 𝑢𝑚𝑎𝑥 = 2.0 mm for the post-optimization FE analysis of the optimized structures. Furthermore, the
esults are generated by using the filter radius 𝑅 = 0.2 mm and the allowable volume fraction 𝑉 ∗ = 0.45. The sharpness parameter
𝛽 is doubled starting from the optimization iteration 𝑚 = 61 (instead of 𝑚 = 181) until 𝛽 = 64 (instead of 𝛽 = 128), and the time 𝑡𝑛
is chosen such that 𝑢𝑛 = 0.7 mm.

Fig. 6(b) presents the design — labeled Dsg. 7 — obtained from conventional stiffness maximization and two designs obtained
from the proposed optimization framework. Specifically, Dsg. 8 corresponds to the choice of weighting factors 𝜔𝑒 = 0.2, 𝜔𝑓 = 0.8,
𝜔𝑤 = 0, while Dsg. 9 corresponds to 𝜔𝑒 = 0.2, 𝜔𝑓 = 0.7, 𝜔𝑤 = 0.1. Similar to the finding in the preceding subsection, the stiffness
design Dsg. 7 features centrosymmetry while the fracture designs Dsgs. 8 and 9 do not. Again, this is because the tensile and
compressive strengths of the material, which are different in value, are accounted for in the fracture designs. It is also interesting to
note that Dsg. 9 — for which 𝜔𝑤 is not zero and hence for which the dissipation due to fracture propagation is partially maximized —
is similar to the highly porous structures found in Zhao and Zhang (2021a,b). This is because the presence of many pores promotes
the nucleation and renucleation of many cracks from the pore walls, which provide a toughening mechanism. To demonstrate the
convergence of the optimized designs, we present the histories of the objective (𝐽 ) and constraint (𝑔) functions for Dsg. 8 as a
representative example in Appendix B.3.

Fig. 6(c) compares the force–displacement curves of all three designs Dsgs. 7–9. The insets show the contours of the phase field
t several times along the loading process. One immediate observation is that the overall toughness Ψ — defined, again, as the
rea under the force–displacement curve — is significantly larger for the fracture Dsgs. 8 and 9 than for the stiffness design (Dsg.
14
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Fig. 7. Design setup and results for the optimization of a disk under biaxial tension. (a) Design domain and boundary conditions (all length units are in mm).
(b) Optimized design and contours of the largest (in the magnitude sense) principal stress 𝜎1 (in MPa). (c) Force–displacement curves for the optimized design
and corresponding radar chart of its normalized structural performance. The classical stiffness design (Dsg. 10) obtained from conventional stiffness maximization
is included for reference.

7). The overall toughness in Dsg. 8 is the result of a delay in the first nucleation of fracture, which occurs at a significantly larger
deformation and force than in the stiffness design Dsg. 7. The overall toughness in Dsg. 9 is due to multiple fracture nucleation
events. Also, the first nucleation of fracture in Dsg. 9 occurs at a larger deformation although at a smaller force than in Dsg. 7.

4.4. A disk under biaxial tension

Finally, we consider the optimization of the same disk considered above but now subjected to biaxial tension instead of a
rotational displacement. The design variable is fixed at 𝜌 ≡ 1 over two 2-mm-thick ring-shaped non-designable regions around
the central and outer boundaries. The phase field is fixed at 𝑣 ≡ 1 only around the inner boundary. Fig. 7(a) provides a schematic of
the design domain and the applied displacements 𝑢 ∝ 𝑡 on the outer boundary. The design domain is discretized with an unstructured
mesh (axially symmetric with respect to 1/4 of the domain) of 42,472 bilinear quadrilateral finite elements of size ℎ = 𝜀∕5 = 0.03 mm.
The maximum values of the applied displacement are 𝑢𝑚𝑎𝑥 = 0.20 mm for the optimization process and 𝑢𝑚𝑎𝑥 = 0.30 mm for the post-
optimization FE analysis of the optimized structures. For the topology-optimization-specific parameters, we use the filter radius
𝑅 = 0.2 mm, allowable volume fraction 𝑉 ∗ = 0.45, weighting factors 𝜔𝑒 = 0.15, 𝜔𝑓 = 0.80, and 𝜔𝑤 = 0.05, and time 𝑡𝑛 such that
𝑢𝑛 = 0.15 mm. The sharpness parameter 𝛽 is doubled until 𝛽 = 32 (instead of 𝛽 = 128).

Fig. 7(b) presents the obtained design considering fracture and, for reference, the classical design obtained from conventional
tiffness maximization; they are labeled Dsg. 11 and Dsg. 10, respectively. The left parts show the density field 𝜌, while the right
parts show contours of the largest (in the magnitude sense) principal stress 𝜎1 at the applied displacement 𝑢 = 0.08 mm. Rather
interestingly, the fracture design Dsg. 11 is a self-equilibrated ring-shaped structure that is fully detached from the middle support.
While the stiffness design Dsg. 10 is dominated by tensile stresses, the fracture design Dsg. 11 favors the presence of compressive
stresses.

Fig. 7(c) shows the force–displacement curves and the structural performance via a radar chart for Dsgs. 10 and 11. The insets
show the contours of the phase field several times along the loading process. It is clear that the initial stiffness of Dsg. 10 is
considerably larger than that of Dsg. 11. On the other hand, the first nucleation of fracture takes place at a significantly larger
15

applied displacement with multiple fracture nucleation events in Dsg. 11, which also exhibits a larger overall toughness.
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5. Final comments

The sample results presented in Section 4 provide ample encouraging evidence to continue studying the optimization framework
roposed in this work — which, again, is built on a complete theory of fracture nucleation and propagation — in order to explore
he optimization of the fracture response of structures subjected to quasistatic mechanical loads.
The results have also served to make clear that the traditional design of structures based on stiffness maximization leads

o structures with poor fracture responses. In addition, the optimized structures considering fracture have revealed a variety of
trengthening and toughening mechanisms. For example, depending on the elastic, strength, and toughness properties of the material
nd the applied loads, it may be more advantageous to replace pre-existing cracks with rounded corners. The same may be true for
harp corners. The use of structures without centrosymmetry may be preferred when the tensile and compressive strengths of the
aterial are very different. The presence of numerous pores may also render structures with tougher overall behaviors as they may
ead to multiple nucleation and renucleation events from the pore walls.
An obvious next step is to confront the optimized designs generated by the proposed framework with experiments in order

o validate their performance. We are currently working in this direction. Another direction of interest would be to transcribe
he strengthening and toughening mechanisms found here to the realm of microstructures in order to design new materials with
nhanced fracture properties.
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Appendix A. The scaling function 𝒔(𝝆)

As pointed out in Section 3.2.3, the fact that the phase-field equations (8)–(9) contain as material inputs the Young’s modulus
𝐸(𝜌), the tensile and compressive strengths 𝜎𝚝𝚜(𝜌) and 𝜎𝚌𝚜(𝜌), and the critical energy release rate 𝐺𝑐 (𝜌) implies that they feature a
uilt-in range of material length scales (morally speaking, the length scales of the process zones). Taking the tensile strength 𝜎𝚝𝚜(𝜌)
as the dominant strength parameter, that range of material lengths can be reduced to the single characteristic material length scale

𝜀𝑐(𝜌) =
3𝐸(𝜌)𝐺𝑐(𝜌)

8𝜎2
𝚝𝚜
(𝜌)

.

In this context, it is reasonable to enforce that this characteristic length scale remains the same in the design domain irrespective
of the value of the density 𝜌.

To this end, we begin by introducing the intermediate characteristic length

𝜀𝑐(𝜌) =
3𝐸(𝜌)𝐺𝑐 (𝜌)

8𝜎2
𝚝𝚜
(𝜌)

n terms of the classical modified SIMP rules (Bendsøe and Sigmund, 1999)

⎧

⎪

⎪

⎨

⎪

⎪

𝐸(𝜌) =
(

𝜂𝐸 + (1 − 𝜂𝐸 )𝜌
𝑝𝐸
)

𝐸

𝐺𝑐 (𝜌) =
(

𝜂𝐺𝑐
+ (1 − 𝜂𝐺𝑐

)𝜌𝑝𝐺𝑐
)

𝐺𝑐

𝜎𝚝𝚜(𝜌) =
(

𝜂𝜎 + (1 − 𝜂𝜎 )𝜌𝑝𝜎
)

𝜎𝚝𝚜

.
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By defining the scaling function

𝑠(𝜌) ∶=
𝜀𝑐 (𝜌)
𝜀𝑐 (1)

=
3𝐸(𝜌)𝐺𝑐 (𝜌)

8𝜎2
𝚝𝚜
(𝜌)

8𝜎2
𝚝𝚜
(1)

3𝐸(1)𝐺𝑐 (1)
=

(

𝜂𝐸 + (1 − 𝜂𝐸 )𝜌
𝑝𝐸
)

(

𝜂𝐺𝑐
+ (1 − 𝜂𝐺𝑐

)𝜌𝑝𝐺𝑐
)

(

𝜂𝜎𝚝𝚜 + (1 − 𝜂𝜎𝚝𝚜 )𝜌
𝑝𝜎
)2

and using the proposed interpolation rules (11), (13), (14) in the main body of the text, it follows that

𝜀𝑐(𝜌) =

3 1
√

𝑠(𝜌)

(

𝜂𝐸 + (1 − 𝜂𝐸 )𝜌
𝑝𝐸
)

𝐸 1
√

𝑠(𝜌)

(

𝜂𝐺𝑐
+ (1 − 𝜂𝐺𝑐

)𝜌𝑝𝐺𝑐
)

𝐺𝑐

8
[(

𝜂𝜎𝚝𝚜 + (1 − 𝜂𝜎𝚝𝚜 )𝜌
𝑝𝜎
)

𝜎𝚝𝚜
]2

=
3𝐸𝐺𝑐

8𝜎2
𝚝𝚜

= constant

as desired.
Now, taking into account that the modified SIMP rules (𝐸 and 𝐺𝑐) effectively penalize the intermediate physical density, 𝜌 ∈ (0, 1),

and guarantee that the interpolated material properties satisfy the physical bounds, it is also reasonable to require that the proposed
interpolation rules (𝐸 and 𝐺𝑐) deviate as little as possible from 𝐸 and 𝐺𝑐 . That is, we want that 𝑠(0) = 𝑠(1) = 1 and that, for 𝜌 ∈ (0, 1),
𝑠(𝜌) ≈ 1. This is accomplished by the prescriptions (15)–(16) introduced in the main body of the text.

Appendix B. Sensitivity analysis and convergence histories

B.1. The general procedure of sensitivity analysis

In this appendix, we outline the sensitivity analysis used to solve the optimization problem (19). First, in order to deal with the
inequalities in (9), following Section 4.1 in Kumar et al. (2018a), we use a penalty method and rewrite

Div
[

𝜀𝐺𝑐 (𝜌)∇𝑣
]

= 8
3
𝑣𝑊 (𝐄(𝐮); 𝜌) − 4

3
𝑐𝚎(𝐗, 𝑡; 𝜌) −

𝐺𝑐 (𝜌)
2𝜀

+ 4
3
𝜕𝑊 𝑣(𝑣; 𝜌)

𝜕𝑣
, (𝐗, 𝑡) ∈ Ω × [0, 𝑇 ], (B.1)

where

𝑊 𝑣(𝑣; 𝜌) =
𝛼(𝜌)
2

[

(|𝑣| − 𝑣)2 + (|1 − 𝑣| − (1 − 𝑣))2
]

ith

𝛼(𝜌) = 103 max

{

𝐺𝑐(𝜌)
𝜀

,
3𝐺𝑐 (𝜌)𝛿

𝜀
(𝜌)

8𝜀

}

.

Given the coupled PDEs in (8) and (B.1), we can perform the standard FE analysis and derive the corresponding matrix forms.
e define 𝐔𝑘(𝝆̄) and 𝐕𝑘(𝝆̄) as global displacement and phase field vectors associated with the physical density vector 𝝆̄ at the time

step 𝑡𝑘, respectively. We also denote 𝐑𝐔,𝑘 = 𝐑𝐔(𝝆̄,𝐔𝑘(𝝆̄),𝐕𝑘(𝝆̄)) and 𝐑𝐕,𝑘 = 𝐑𝐕(𝝆̄,𝐔𝑘(𝝆̄),𝐕𝑘(𝝆̄)) as global residual vectors for (8) and
(B.1) at the time step 𝑡𝑘, respectively. Then we can evaluate the sensitivity of the objective and constraint functions with respect to
the design variables by using the adjoint method (Bendsoe and Sigmund, 2003). Specifically, the Lagrangian

𝑓 (𝝆̄,𝐔0(𝝆̄),𝐔1(𝝆̄),… ,𝐔𝑀 (𝝆̄),𝐕0(𝝆̄),𝐕1(𝝆̄),… ,𝐕𝑀 (𝝆̄))

of any time-discretized objective or constraint function

𝑓 (𝝆̄,𝐔0(𝝆̄),𝐔1(𝝆̄),… ,𝐔𝑀 (𝝆̄),𝐕0(𝝆̄),𝐕1(𝝆̄),… ,𝐕𝑀 (𝝆̄))

can be constructed as

𝑓 (𝝆̄,𝐔0(𝝆̄),𝐔1(𝝆̄),… ,𝐔𝑀 (𝝆̄),𝐕0(𝝆̄),𝐕1(𝝆̄),… ,𝐕𝑀 (𝝆̄))

= 𝑓 (𝝆̄,𝐔0(𝝆̄),𝐔1(𝝆̄),… ,𝐔𝑀 (𝝆̄),𝐕0(𝝆̄),𝐕1(𝝆̄),… ,𝐕𝑀 (𝝆̄)) +
𝑀
∑

𝑘=0

(

𝝀𝐔,𝑘𝐑𝐔,𝑘
)

+
𝑀
∑

𝑘=0

(

𝝀𝐕,𝑘𝐑𝐕,𝑘
)

(B.2)

where the parameters 𝝀𝐔,𝑘 and 𝝀𝐕,𝑘 for 𝑘 = 0, 1,… ,𝑀 are arbitrary adjoint vectors to be determined.
Taking the derivative of (B.2) with respect to the density 𝜌̄𝑒 of the element 𝑒 yields

d𝑓
d𝜌̄𝑒

=
𝜕𝑓
𝜕𝜌̄𝑒

+
𝑀
∑

𝑘=0

(

𝜕𝑓
𝜕𝐔𝑘

𝜕𝐔𝑘
𝜕𝜌̄𝑒

+
𝜕𝑓
𝜕𝐕𝑘

𝜕𝐕𝑘
𝜕𝜌̄𝑒

)

+
𝑀
∑

𝑘=0

[

𝝀𝐔,𝑘
( 𝜕𝐑𝐔,𝑘

𝜕𝜌̄𝑒
+

𝜕𝐑𝐔,𝑘
𝜕𝐔𝑘

𝜕𝐔𝑘
𝜕𝜌̄𝑒

+
𝜕𝐑𝐔,𝑘
𝜕𝐕𝑘

𝜕𝐕𝑘
𝜕𝜌̄𝑒

)]

+
𝑀
∑

[

𝝀𝐕,𝑘
( 𝜕𝐑𝐕,𝑘 +

𝜕𝐑𝐕,𝑘 𝜕𝐔𝑘 +
𝜕𝐑𝐕,𝑘 𝜕𝐕𝑘

)]

.

17

𝑘=0 𝜕𝜌̄𝑒 𝜕𝐔𝑘 𝜕𝜌̄𝑒 𝜕𝐕𝑘 𝜕𝜌̄𝑒



Journal of the Mechanics and Physics of Solids 173 (2023) 105227Y. Jia et al.

A
t

B

(

w
t
s
t
w
d

Fig. B.8. Comparisons of the sensitivities of the (a) elastic energy (Π𝑒), (b) fracture energy (Π𝑓 ), and (c) total work (Π𝑤) obtained from the proposed formula
and the finite difference analysis. For each pair of comparisons, 100 finite elements are randomly sampled and the final sensitivities are sorted in increasing
order for better visualization.

Rearranging terms renders

d𝑓
d𝜌̄𝑒

=
𝜕𝑓
𝜕𝜌̄𝑒

+
𝑀
∑

𝑘=0

(

𝝀𝐔,𝑘
𝜕𝐑𝐔,𝑘
𝜕𝜌̄𝑒

+ 𝝀𝐕,𝑘
𝜕𝐑𝐕,𝑘
𝜕𝜌̄𝑒

)

+
𝑀
∑

𝑘=0

{[

𝜕𝑓
𝜕𝐔𝑘

+
( 𝜕𝐑𝐔,𝑘

𝜕𝐔𝑘

)⊤

𝝀𝐔,𝑘 +
( 𝜕𝐑𝐕,𝑘

𝜕𝐔𝑘

)⊤

𝝀𝐕,𝑘

]

𝜕𝐔𝑘
𝜕𝜌̄𝑒

}

+
𝑀
∑

𝑘=0

{[

𝜕𝑓
𝜕𝐕𝑘

+
( 𝜕𝐑𝐔,𝑘

𝜕𝐕𝑘

)⊤

𝝀𝐔,𝑘 +
( 𝜕𝐑𝐕,𝑘

𝜕𝐕𝑘

)⊤

𝝀𝐕,𝑘

]

𝜕𝐕𝑘
𝜕𝜌̄𝑒

}

.

t this stage, we can solve for the adjoint vectors 𝝀𝐔,𝑘 and 𝝀𝐕,𝑘 by eliminating the coefficients of the computationally expensive
erms 𝜕𝐔𝑘∕𝜕𝜌̄𝑒 and 𝜕𝐕𝑘∕𝜕𝜌̄𝑒. We then have

d𝑓
d𝜌̄𝑒

=
𝜕𝑓
𝜕𝜌̄𝑒

+
𝑀
∑

𝑘=0

(

𝝀𝐔,𝑘
𝜕𝐑𝐔,𝑘
𝜕𝜌̄𝑒

+ 𝝀𝐕,𝑘
𝜕𝐑𝐕,𝑘
𝜕𝜌̄𝑒

)

.

Finally, the sensitivities with respect to the physical density vector can be expressed in tensorial form as

d𝑓
d𝝆̄ =

𝜕𝑓
𝜕𝝆̄

+
𝑀
∑

𝑘=0

[

( 𝜕𝐑𝐔,𝑘
𝜕𝝆̄

)⊤

𝝀𝐔,𝑘 +
( 𝜕𝐑𝐕,𝑘

𝜕𝝆̄

)⊤

𝝀𝐕,𝑘

]

.

To compute the sensitivities with respect to the design density vector d𝑓∕d𝝆, one simply needs to apply the chain rule. It should
be noted that the history dependence is explicitly considered through the time-dependent displacement fields, 𝐔0, 𝐔1, . . . , 𝐔𝑀 , and
phase fields, 𝐕0, 𝐕1, . . . , 𝐕𝑀 .

.2. Sensitivity verification

To verify the accuracy of the sensitivity analysis of this work, we compare the sensitivities obtained from the derived formula
d𝑓∕d𝝆) and the finite difference method (d𝑓∕d𝝆). The sensitivity of the element 𝑒 obtained from the finite difference method can
be expressed as

d𝑓
d𝜌𝑒

=
𝑓 (𝝆 + 𝜼) − 𝑓 (𝝆)

𝜂
,

here 𝜂 is a moderately small perturbation (𝜂 = 10−5 is used herein) to balance the truncation and rounding errors. All the entries of
he vector 𝜼 are equal to 0 except that the 𝑒th entry is 𝜂. Specifically, we use the Dsg. 8 as a representative example to perform the
ensitivity verification. We randomly sample 100 finite elements satisfying the uniform distribution, and then separately compute
he sensitivities of the elastic energy (Π𝑒), fracture energy (Π𝑓 ), and total work (Π𝑤) in the multi-objective function (Eq. (18))
ith respect to the design variable, 𝜌. The comparisons of sensitivities obtained from the derived formula (dΠ̂𝑒∕d𝝆, dΠ̂𝑓∕d𝝆, and
Π̂𝑤∕d𝝆) and the finite difference method (dΠ𝑒∕d𝝆, dΠ𝑓∕d𝝆, and dΠ𝑤∕d𝝆) are shown in Fig. B.8. It can be observed that the
difference between the sensitivities obtained from the derived formula and the finite difference analysis is negligible. Also, the
relative 2-norms of errors of the sensitivities of Π𝑒, Π𝑓 , and Π𝑤 are 7.39 × 10−6, 1.01 × 10−4, and 9.10 × 10−5, respectively, indicating
the accuracy of the sensitivity analysis in Appendix B.1.
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Fig. B.9. Convergence histories of the objective (𝐽 ) and constraint (𝑔) functions. Four representative intermediate density fields (𝜌) and the associated phase
fields (𝑣, plotted only when 𝑣 ≤ 0.5) correspond to the optimization iterations, 𝑚=1, 224, 229, and 500, respectively. The sharpness parameter, 𝛽, is doubled at
iterations 𝑚=61, 121, 181, 241, 301, and 361 as indicated by the black circles.

B.3. Convergence histories

As shown in Fig. B.9, we use Dsg. 8 as a representative example to show the histories of the objective (𝐽 ) and constraint (𝑔)
functions. It can be observed that both the objective and constraint functions can converge in the end based on the correct sensitivity
analysis in Appendix B.1. The jumps in the history of the objective function result from the updates of the sharpness parameter, 𝛽,
in the Heaviside projection. Also, the fracture is naturally sensitive to the slight change in the topology, which can further promote
jumps in the histories (e.g., from iterations 𝑚=224 to 229).

Appendix C. Numerical verification of meshes used in topology optimization

C.1. Verification of the voxel-based mesh

In this appendix, we take the Dsg. 2 as an example to show the comparison of crack paths and force–displacement curves predicted
by the voxel-based mesh (fixed-grid method) (da Silva et al., 2019) in density-based topology optimization and the body-fitted mesh
commonly used to manufacture designs. As for the body-fitted mesh, we use an unstructured mesh and 61,210 linear quadrilateral
finite elements of size ℎ = 𝜀∕3 = 0.05 mm. It can be observed from Fig. C.10 that the designs of voxel-based and body-fitted meshes
result in similar crack paths, and the corresponding force–displacement curves are also close to each other. The small discrepancies
in force–displacement curves are due to the difference in element shapes in different meshes, and crack evolution is a local behavior
sensitive to geometries. Therefore, it is reasonable to utilize the voxel-based mesh in density-based topology optimization to optimize
fracture properties.

C.2. Verification of the symmetric mesh

It should be noted that, while topology optimization generally favors design symmetry, the symmetry of a FE discretization of
space to carry out the pertinent calculations could have an impact on the results that are generated for fracture behaviors. To gain
insight into this issue, we provide a few preliminary results. As a representative case, Fig. C.11 compares the results obtained for
Dsg. 11 when generated with a symmetric mesh and an asymmetric mesh. Both results are seen to exhibit similar two stages of
fracture (at the outer and inner rings, consecutively). In the result generated with the asymmetric mesh, cracks appear at the top
and bottom parts of the design. By plotting the principal stress (𝜎1) at critical loading steps, 𝑢 = 0.15 and 0.16 mm in Fig. C.11(b),
we observe the stress redistribution process between the two consecutive fracture stages. Immediately after the first fracture stage
(from 𝑢 = 0.15 to 0.16 mm), the principal stress is released at the left and right of the outer ring and is redistributed to the inner
ring, leading to the second stage of fracture at the top and bottom parts. We also observe that cracks appear earlier than in the
result generated with the symmetric mesh, and the total work required to lead to the complete failure of the structure with the
asymmetric discretization is also smaller. At any rate, both force–displacement curves show similar trends (two stages of cracks)
and exhibit crack displacements (𝑢𝑐 = 0.17 and 0.15 mm for the symmetric and asymmetric meshes, respectively) greater than or
equal to the prescribed value (𝑢𝑛 = 0.15 mm).
19



Journal of the Mechanics and Physics of Solids 173 (2023) 105227Y. Jia et al.

P

Fig. C.10. Comparison of the voxel-based mesh in density-based topology optimization and the body-fitted mesh commonly used to manufacture designs. (a)
hase field plots representing crack evolution. (b) Comparison of force–displacement curves.

Fig. C.11. Comparison of the structural behaviors of using symmetric and asymmetric meshes of Dsg. 11. (a) Phase field plots representing crack evolution for
(i) symmetric mesh and (ii) asymmetric mesh. (b) Comparison of force–displacement curves. Two inlets show the principal stress, 𝜎1 (in MPa), of the asymmetric
mesh at critical loading steps, 𝑢 = 0.15 and 0.16 mm, respectively, where 𝜎1 > 30 MPa is denoted as 30 MPa and 𝜎1 < −10 MPa is denoted as −10 MPa for better
visualization.
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