
Cycle-to-Cycle Variation Suppression in

ReRAM-Based AI Accelerators

Jingyan Fu*

Electrical and Computer Engineering

North Dakota State University

Fargo, ND, USA

jingyan.fu@ndsu.edu

Zhiheng Liao*

Electrical and Computer Engineering

North Dakota State University

Fargo, ND, USA

zhiheng.liao@ndsu.edu

Jinhui Wang

Electrical and Computer Engineering

University of South Alabama

Mobile, AL, USA

jwang@southalabama.edu

AbstractÐAs a non-volatile memory, currently ReRAM (Re-
sistive Random Access Memory) is emerging for the low power
and high performance AI accelerator design. However, ReRAM
always suffer from significant cycle-to-cycle variations, which
significantly degrades the inference accuracy. In this study, we
firstly fabricate ReRAM wafers and test them. Then we propose
both level optimization and pulse regulation methods to mitigate
the adverse impact of cycle-to-cycle variations of ReRAM,
improve the inference accuracy, lower the energy consumption,
and decrease the latency of the AI accelerators.

Index TermsÐcycle-to-cycle variation, ReRAM (Resistive Ran-
dom Access Memory), artificial intelligence, level, pulse, accuracy,
energy, latency

I. INTRODUCTION

CMOS (complementary metal-oxide-semiconductor transis-

tor) technology based computing systems plateaus the process

scaling [1]±[7], which cannot provide enough computational

support for accelerators in AI applications, such as DNN

(Deep Neural Networks) [8], [9]. ReRAM (Resistive Random

Access Memory) is theoretically proposed in 1971 [10] and

later are successfully physically fabricated in 2008 [11]. The

ReRAM-based AI (artificial intelligence) accelerators show

great potential to enable machine-learning applications in

many critical areas [12]±[14], and characterized with high

speed and endurance, low power and complexity, and great

CMOS-compatibility. Despite extensive research being di-

rected towards ReRAM, a large-scale commercialization of

ReRAM-based AI accelerators have not yet been achieved.

This is due to the unreliability of ReRAM [15], [16], which

is caused by non-ideal device properties such as cycle-to-

cycle variations. The physical mechanism of the conductance

modulation in ReRAM is typically an ionic reconfiguration

process based on electro/thermo-dynamics. Such atomic-level

random process would result in unavoidable large variations

in ReRAM. Researchers have many previous work to sup-

press such variations in ReRAM-based AI hardware design.

Algorithm Level: In [2], algorithms of the mutual decision

between conductance of ReRAM and Boolean functions are

used to tolerate a maximum variation. In [9], a new algorithm

is proposed to map arbitrary matrix values appropriately to

Both authors contributed equally to this research. This work was supported
in part by the National Science Foundation under grants 2247343, 2218046,
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ReRAM conductance to reduce computational errors. How-

ever, because variations usually come from ReRAM devices -

hardware of AI accelerators, the algorithm level optimizations

are usually resources-consuming. Circuit Level: In [17], the

smart programming scheme and dummy column technologies

are proposed to eliminate the off-state current and improve

immunity to cycle-to-cycle variations. The experimental result

shows the accuracy is improved to 95% from 70%. However,

circuit level technologies need large additional peripheral

circuits and increase silicon areas. Device Level: In [18],

multiple ReRAM cells laid out in parallel are applied to

improve the variation tolerance. But, it unavoidably induces

area overhead of hardware. Therefore, optimization for the

cycle-to-cycle variation in ReRAM-based AI accelerators is

urgent. In this study, the ReRAM with the T iO2/T iO2−x

architecture is fabricated. Then, we propose level optimization

and pulse regulation methods to maximumly avoid the impact

of cycle-to-cycle variations, improve the inference accuracy,

lower the energy consumption, and decrease the latency of the

AI accelerators, most important, without silicon area penalty.

Fig. 1: a: A ReRAM wafer. b: A ReRAM chip. c: A

ReRAM device. d: Cross-sectional schematic of a ReRAM

with T iO2/T iO2−x structure.

Fig. 2: Testing platform.
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Fig. 3: Hardware implementation of the

vector-matrix-multiplication using ReRAM. Vi, Gij , and Ij
represent the input signal in ith row, the conductance of the

ReRAM in jth column and ith row, and the output current

that represent the dot product result of V and G, respectively.

Fig. 4: Cycle-to-Cycle variation of ReRAM. Cycle-to-cycle

variation is the deviation between target conductance and

realistic updated conductance by pulses. LTP: long-term

potentiation, LTD: long-term depression.

II. RERAM AND RELATED BACKGROUND

A. ReRAM Device

ReRAM wafers based on in-house technology are fabricated

and tested. The detailed image and geometry of ReRAM

with T iO2/T iO2−x structure in this paper is schematically

shown in Fig. 1. One ReRAM chip includes of 20 x 20 cells.

Physically, a ReRAM cell is a 40 µm x 40 µm two-terminal

device connecting two aluminous electrodes and sandwiching

T iO2/T iO2−x layers to achieve stably tunable behavior. I-V

characteristics from positive and negative voltage sweeping are

carried out using a Keysight B1500a semi-conductor parameter

analyzer in a voltage-sweep and volt-age-pulse mode. The

wafer is set on the Micro-manipulator probe station and the

pads are contacted by probe tips as shown in Fig. 2.

ReRAM arrays carry out the vector-matrix multiplication

as shown in Fig. 3. Every row of the array gets input voltage

pulses that are the vector. Each conductance of the ReRAM

in every cross point composes the matrix. Every column

of the array transmits an output current that is the sum of

multiplication by the input signal and conductance in each

cross point. To update the conductance of a ReRAM that has

multilevel conductance from the minimum to the maximum,

a positive pulse signal is applied to increase the conductance,

which is called long-term potentiation (LTP) [19]. Conversely,

long-term depression (LTD) is the process of decreasing the

conductance by supplying a negative pulse signal until the

conductance gets to the minimum [20]. Multilevel ReRAM

effectively utilize such multi-value conductance to learn the

features of data and realize an edge AI system [21], [22].

B. Cycle-to-Cycle Variation

A ReRAM cell can change its conductance from minimum

to maximum when pulse voltage is larger than a threshold

voltage [23]. At the same time, cycle-to-cycle variations gen-

erate different final conductance when the same number of

pulses is applied in different updating cycles in a ReRAM,

even when the ReRAM has the same beginning conductance,

as indicated in Fig. 4. For example, if some given number of

pulses are applied, a ReRAM starts at conductance A and aims

to B, may reach between C and D due to variations, as shown

in Fig. 4. ReRAM exhibit cycle-to-cycle variations because

of the shape of the conductive filament, the oxygen vacancy

distribution at and around the filament, and the changing

location of the active filament between one cycle to the next.

These three mechanisms originate from the coexistence of

multiple sub-filaments and the active, current-carrying filament

may change from cycle to cycle [24]. Thus, the cycle-to-cycle

variation is a type of inherent randomness associated with

the randomness in internal atomic configurations [25]. One

of the major obstacles for the implementation of redox-based

multilevel memristive memory or logic technology is the large

cycle-to-cycle variation.

C. Level Optimization (LO)

Following the working flow of Fig. 5, the number of levels

of conductance is set for a ReRAM. It means, between the

maximum and the minimum conductance, ReRAM can change

a certain number of levels. Usually, higher number of levels

would achieve higher inference accuracy. Such a number of

levels will map to the width of the pulse that is generated from

the pulse generator in hardware implementation. The higher

number of the levels corresponding to the narrower pulses and

simultaneously, the system can achieve higher accuracy. But,

a higher number of the levels also would bring larger cycle-to-

cycle variations. This is because the pulse generator produces

more pulses to tune the conductance when the algorithm

calculates the same ∆weight than that system has a lower

number of the levels. Therefore, finding the optimized number

of levels is necessary. In this work, we the number of the levels

is a parameter and set from 10 to 200 and the step is 10.
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Fig. 5: Working flow of level optimization

Fig. 6: Architecture of ReRAM-based AI accelerator

D. Pulse Regulation (RP)

A pulse regulation (RP) method is also proposed in our

study. In PR method, only one pulse is applied to update

conductance each time and keeps the original width of writing

pulses. At circuit level, MUXs are added to generate one

pulse whenever a conductance of a ReRAM cell needs to be

tuned according to the algorithm, as shown in Fig. 6. The

decoder is also used to pick a signal from an ALU for each

row update. At the same time, registers store the values of

∆weight that are calculated by an ALU. Then these values

are transmitted to MUXs as control signals. MUXs select one

writing pulse that comes from a pulse generator as output

when control signals are enabled. The enabled signal means

that the corresponding ReRAM cell needs to be updated and

that corresponding ∆weight value is greater than or equals

weight change by one pulse. In this case, the PR method

directly optimize each weight update, reduce the number of

pulses, and mitigate the impact of cycle-to-cycle variations as

expected.

III. EXPERIMENTS RESULTS

A. Experiment Environment

To verify the proposed level optimization and pulse regula-

tion (PR) methods, the multi-layer perceptron platform (MLP

platform) is utilized to emulate the learning classification

scenario with Modified National Institute of Standards and

Technology handwritten dataset. We adopt NeuroSim+ [26]

with the fully connected networks structure and the parameters

of devices are tested results of the maunfactured ReRAM

mentioned in Section II. This platform contains a three-

layer neural networks with 5 algorithms: SGD, Momentum,

AdaGrad, RMSProp, and Adam. For the level scaling method,

each evaluation trains 125 epochs. For the PR method, each

evaluation trains 200 epochs. Note that, the networks will

continually learn the feature of an input data after the last

epoch since this platform is online learning networks. The

conductance of a ReRAM with multilevel as shown in Fig. 4, is

increased by supplying a positive pulse until the conductance

gets to the maximum. This increasing process is long-term

potentiation (LTP). Conversely, long-term depression (LTD)

is the process of decreasing the conductance by supplying a

negative pulse until the conductance gets to the minimum.

B. Experiments with Level Optimization (LO)

In order to investigate the effectiveness of LO method, the

LTP and LTD with the different number of the levels are

verified. The inference accuries with/without cycle-to-cycle

variations, are shown in Fig. 7. It indicates the number of

the levels from 10 to 200 and step is 10 for five different

algorithms. When the experiment does not consider cycle-to-

cycle variation, the accuracy increase to the bright area from

the dark area with the increasing number of the level. Ignoring

cycle-to-cycle variations, the highest accuracy locates at the

number of the levels = 200 for both LTP and LTD in five

algorithms. Considering cycle-to-cycle variations, It concludes

that increasing the number of the levels does increase the

inference accuracy. In bright areas of the figures, the inference

accuracies are around 90% in the lower left corner and higher

than 93% in the upper right corner. The optimized accuracy

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on December 25,2023 at 05:17:22 UTC from IEEE Xplore.  Restrictions apply. 



for five algorithms are respectively: number of the levels

(LTP/LTD) for SGD: 50/40, Momentum: 60/50, AdaGrad:

60/50, RMSProp: 50/50, and Adam: 50/40. Therefore, LO

method optimizes the number of the levels, so the system

achieves higher inference accuracy by mitigating cycle-to-

cycle variations.

C. Experiments with Pulse Regulation (PR)

The PR method improves all accuries for five algorithms,

as shown in Fig. 8. Note that, for evaluating the effect of the

PR method, 100 epochs with 500 images for each epoch are

set. The only negative impact of the PR method is to slow

down the learning speed, which, however, only exits at the

several beginning learning epochs and is reflected by the red

curves below the blue curves in Fig. 8. However, all inference

accuracies of five algorithms have significant improvement

with the PR method after 100 epochs. In addition, the PR

method effectively produces a smoother convergence of the

training process, which reduces the excessive fluctuation of

the inference accuracy.

Furthermore, because the updating pulses truncate to one in

each conductance update, the number of updating pulses and

energy have been significantly decreased in 100 epochs. For

example, in Momentum and RMSProp algorithms, energy con-

sumption are saved up to 12.888% and 16.104% and latency

are decreased up to 26.062% and 27.854% as shown in Table I.

This is because every iteration has the designated reading

latency since the process of a vector-matrix multiplication is

executed using a parallel reading strategy. However, the system

updates its weight row by row, which indicates a parallel

writing strategy cannot be implemented for all rows at the

same time, otherwise, the system will have unacceptable area

overhead [27]. Each row’s writing latency is determined by the

maximum number of writing pulses as a critical path. Thereby,

the main latency for ReRAM arrays is writing latency that

strongly depends on the maximum update pulses of each row.

With the PR method, the maximum number of the writing

pulses decreases to one, which reduces the total latency of the

system. Without the PR method, each row needs registers and

counter to record and control the updating process since the

time of updating process in the different training iterations is

probably different [26], [28]±[30]. With the PR method, those

two components (registers and counter) are not needed because

the selected row only uses one pulse to update the conductance

of ReRAM-based AI accelerators. Instead, one multiplexer

is added to the system, as shown in Fig. 6. Therefore, the

PR method optimizes the inference accuracy, improves energy

efficiency, and reduces system latency and area.

IV. DISCUSSIONS

As shown in Fig. 9, the number of the levels with the

highest accuracy decreases through the increasing of the

variations. In fact, the reason for this correspondence is that

an excessively large number of levels will cause the value of

the variation exceeds the conductance value of a single level.

Simultaneously, a too small level number will cause that the

weight value loses too much precision and reduces the final

inference accuracy.

According to the mechanism of the cycle-to-cycle variation,

the PR method efficiently reduces the cycle-to-cycle variation

by compressing the number of up-date pulse to one. For

every updating, the cycle-to-cycle variation is limited with one

pulse’s impact, which minimizes the cycle-to-cycle variation.

Note that, the inference accuracies have significant improve-

ment with the PR method. The reasons are two aspects. 1) The

PR method minimizes the cycle-to-cycle variation. 2) Each

update step uses at most one pulse to tune conductance. One

pulse to tune conductance means smaller steps is achieved in

the direction of convergence, while a big step will make the

learning jump over minimum point of weight. What’s more,

energy consumption and system latency are correspondingly

reduced when the PR method is adopted in the system by

compressing the number of update pulse to one.

V. CONCLUSION

We propose the level scaling and the PR methods that

are simple, feasible, and universal methods to effectively

mitigate the impact of cycle-to-cycle variations in ReRAM-

based AI accelerators. We prove that because of cycle-to-

cycle variations, the inference accuracy in the maximum

number of the levels is not optimal for the real device. As

for different materials based multilevel ReRAM, the level

scaling method can be used to optimize accelerators through

selecting appropriately the number of the levels. Similarly, the

PR method mitigates the impact of cycle-to-cycle variation by

compressing the number of updating pulses to one as well as

improves energy efficiency up to 16.104% and reduce system

latency up to 27.854%. Besides accuracy improvement, the

level scaling and the PR methods can also lower the energy

consumption and decrease the latency of the ReRAM-based

AI accelerators.
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