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Abstract—As a non-volatile memory, currently ReRAM (Re-
sistive Random Access Memory) is emerging for the low power
and high performance Al accelerator design. However, ReRAM
always suffer from significant cycle-to-cycle variations, which
significantly degrades the inference accuracy. In this study, we
firstly fabricate ReRAM wafers and test them. Then we propose
both level optimization and pulse regulation methods to mitigate
the adverse impact of cycle-to-cycle variations of ReRAM,
improve the inference accuracy, lower the energy consumption,
and decrease the latency of the AI accelerators.

Index Terms—cycle-to-cycle variation, ReRAM (Resistive Ran-
dom Access Memory), artificial intelligence, level, pulse, accuracy,
energy, latency

I. INTRODUCTION

CMOS (complementary metal-oxide-semiconductor transis-
tor) technology based computing systems plateaus the process
scaling [1]-[7], which cannot provide enough computational
support for accelerators in Al applications, such as DNN
(Deep Neural Networks) [8], [9]. ReRAM (Resistive Random
Access Memory) is theoretically proposed in 1971 [10] and
later are successfully physically fabricated in 2008 [11]. The
ReRAM-based Al (artificial intelligence) accelerators show
great potential to enable machine-learning applications in
many critical areas [12]-[14], and characterized with high
speed and endurance, low power and complexity, and great
CMOS-compatibility. Despite extensive research being di-
rected towards ReRAM, a large-scale commercialization of
ReRAM-based Al accelerators have not yet been achieved.
This is due to the unreliability of ReRAM [15], [16], which
is caused by non-ideal device properties such as cycle-to-
cycle variations. The physical mechanism of the conductance
modulation in ReRAM is typically an ionic reconfiguration
process based on electro/thermo-dynamics. Such atomic-level
random process would result in unavoidable large variations
in ReRAM. Researchers have many previous work to sup-
press such variations in ReRAM-based Al hardware design.
Algorithm Level: In [2], algorithms of the mutual decision
between conductance of ReRAM and Boolean functions are
used to tolerate a maximum variation. In [9], a new algorithm
is proposed to map arbitrary matrix values appropriately to
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ReRAM conductance to reduce computational errors. How-
ever, because variations usually come from ReRAM devices -
hardware of Al accelerators, the algorithm level optimizations
are usually resources-consuming. Circuit Level: In [17], the
smart programming scheme and dummy column technologies
are proposed to eliminate the off-state current and improve
immunity to cycle-to-cycle variations. The experimental result
shows the accuracy is improved to 95% from 70%. However,
circuit level technologies need large additional peripheral
circuits and increase silicon areas. Device Level: In [18],
multiple ReRAM cells laid out in parallel are applied to
improve the variation tolerance. But, it unavoidably induces
area overhead of hardware. Therefore, optimization for the
cycle-to-cycle variation in ReRAM-based Al accelerators is
urgent. In this study, the ReRAM with the TiO5/TiOs_,
architecture is fabricated. Then, we propose level optimization
and pulse regulation methods to maximumly avoid the impact
of cycle-to-cycle variations, improve the inference accuracy,
lower the energy consumption, and decrease the latency of the
Al accelerators, most important, without silicon area penalty.

a b c d
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TiO2:x (100 nm)
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Fig. 1: a: A ReRAM wafer. b: A ReRAM chip. c: A
ReRAM device. d: Cross-sectional schematic of a ReRAM
with Ti05/TiO5_, structure.

Fig. 2: Testing platform.
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realistic updated conductance by pulses. LTP: long-term
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II. RERAM AND RELATED BACKGROUND
A. ReRAM Device

ReRAM wafers based on in-house technology are fabricated
and tested. The detailed image and geometry of ReRAM
with T%i04/TiO5_, structure in this paper is schematically
shown in Fig. 1. One ReRAM chip includes of 20 x 20 cells.
Physically, a ReRAM cell is a 40 ym x 40 pym two-terminal
device connecting two aluminous electrodes and sandwiching
Ti05/Ti0O5_, layers to achieve stably tunable behavior. I-V
characteristics from positive and negative voltage sweeping are
carried out using a Keysight B1500a semi-conductor parameter
analyzer in a voltage-sweep and volt-age-pulse mode. The
wafer is set on the Micro-manipulator probe station and the
pads are contacted by probe tips as shown in Fig. 2.

ReRAM arrays carry out the vector-matrix multiplication
as shown in Fig. 3. Every row of the array gets input voltage

pulses that are the vector. Each conductance of the ReRAM
in every cross point composes the matrix. Every column
of the array transmits an output current that is the sum of
multiplication by the input signal and conductance in each
cross point. To update the conductance of a ReRAM that has
multilevel conductance from the minimum to the maximum,
a positive pulse signal is applied to increase the conductance,
which is called long-term potentiation (LTP) [19]. Conversely,
long-term depression (LTD) is the process of decreasing the
conductance by supplying a negative pulse signal until the
conductance gets to the minimum [20]. Multilevel ReRAM
effectively utilize such multi-value conductance to learn the
features of data and realize an edge Al system [21], [22].

B. Cycle-to-Cycle Variation

A ReRAM cell can change its conductance from minimum
to maximum when pulse voltage is larger than a threshold
voltage [23]. At the same time, cycle-to-cycle variations gen-
erate different final conductance when the same number of
pulses is applied in different updating cycles in a ReRAM,
even when the ReRAM has the same beginning conductance,
as indicated in Fig. 4. For example, if some given number of
pulses are applied, a ReRAM starts at conductance A and aims
to B, may reach between C and D due to variations, as shown
in Fig. 4. ReRAM exhibit cycle-to-cycle variations because
of the shape of the conductive filament, the oxygen vacancy
distribution at and around the filament, and the changing
location of the active filament between one cycle to the next.
These three mechanisms originate from the coexistence of
multiple sub-filaments and the active, current-carrying filament
may change from cycle to cycle [24]. Thus, the cycle-to-cycle
variation is a type of inherent randomness associated with
the randomness in internal atomic configurations [25]. One
of the major obstacles for the implementation of redox-based
multilevel memristive memory or logic technology is the large
cycle-to-cycle variation.

C. Level Optimization (LO)

Following the working flow of Fig. 5, the number of levels
of conductance is set for a ReRAM. It means, between the
maximum and the minimum conductance, ReRAM can change
a certain number of levels. Usually, higher number of levels
would achieve higher inference accuracy. Such a number of
levels will map to the width of the pulse that is generated from
the pulse generator in hardware implementation. The higher
number of the levels corresponding to the narrower pulses and
simultaneously, the system can achieve higher accuracy. But,
a higher number of the levels also would bring larger cycle-to-
cycle variations. This is because the pulse generator produces
more pulses to tune the conductance when the algorithm
calculates the same Aweight than that system has a lower
number of the levels. Therefore, finding the optimized number
of levels is necessary. In this work, we the number of the levels
is a parameter and set from 10 to 200 and the step is 10.
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D. Pulse Regulation (RP)

A pulse regulation (RP) method is also proposed in our
study. In PR method, only one pulse is applied to update
conductance each time and keeps the original width of writing
pulses. At circuit level, MUXs are added to generate one
pulse whenever a conductance of a ReRAM cell needs to be
tuned according to the algorithm, as shown in Fig. 6. The
decoder 1is also used to pick a signal from an ALU for each
row update. At the same time, registers store the values of
Aweight that are calculated by an ALU. Then these values
are transmitted to MUXs as control signals. MUXs select one
writing pulse that comes from a pulse generator as output
when control signals are enabled. The enabled signal means
that the corresponding ReRAM cell needs to be updated and
that corresponding Aweight value is greater than or equals
weight change by one pulse. In this case, the PR method
directly optimize each weight update, reduce the number of
pulses, and mitigate the impact of cycle-to-cycle variations as
expected.

III. EXPERIMENTS RESULTS
A. Experiment Environment

To verify the proposed level optimization and pulse regula-
tion (PR) methods, the multi-layer perceptron platform (MLP
platform) is utilized to emulate the learning classification
scenario with Modified National Institute of Standards and
Technology handwritten dataset. We adopt NeuroSim+ [26]
with the fully connected networks structure and the parameters
of devices are tested results of the maunfactured ReRAM

mentioned in Section II. This platform contains a three-
layer neural networks with 5 algorithms: SGD, Momentum,
AdaGrad, RMSProp, and Adam. For the level scaling method,
each evaluation trains 125 epochs. For the PR method, each
evaluation trains 200 epochs. Note that, the networks will
continually learn the feature of an input data after the last
epoch since this platform is online learning networks. The
conductance of a ReRAM with multilevel as shown in Fig. 4, is
increased by supplying a positive pulse until the conductance
gets to the maximum. This increasing process is long-term
potentiation (LTP). Conversely, long-term depression (LTD)
is the process of decreasing the conductance by supplying a
negative pulse until the conductance gets to the minimum.

B. Experiments with Level Optimization (LO)

In order to investigate the effectiveness of LO method, the
LTP and LTD with the different number of the levels are
verified. The inference accuries with/without cycle-to-cycle
variations, are shown in Fig. 7. It indicates the number of
the levels from 10 to 200 and step is 10 for five different
algorithms. When the experiment does not consider cycle-to-
cycle variation, the accuracy increase to the bright area from
the dark area with the increasing number of the level. Ignoring
cycle-to-cycle variations, the highest accuracy locates at the
number of the levels = 200 for both LTP and LTD in five
algorithms. Considering cycle-to-cycle variations, It concludes
that increasing the number of the levels does increase the
inference accuracy. In bright areas of the figures, the inference
accuracies are around 90% in the lower left corner and higher
than 93% in the upper right corner. The optimized accuracy
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for five algorithms are respectively: number of the levels
(LTP/LTD) for SGD: 50/40, Momentum: 60/50, AdaGrad:
60/50, RMSProp: 50/50, and Adam: 50/40. Therefore, LO
method optimizes the number of the levels, so the system
achieves higher inference accuracy by mitigating cycle-to-
cycle variations.

C. Experiments with Pulse Regulation (PR)

The PR method improves all accuries for five algorithms,
as shown in Fig. 8. Note that, for evaluating the effect of the
PR method, 100 epochs with 500 images for each epoch are
set. The only negative impact of the PR method is to slow
down the learning speed, which, however, only exits at the
several beginning learning epochs and is reflected by the red
curves below the blue curves in Fig. 8. However, all inference
accuracies of five algorithms have significant improvement
with the PR method after 100 epochs. In addition, the PR
method effectively produces a smoother convergence of the
training process, which reduces the excessive fluctuation of
the inference accuracy.

Furthermore, because the updating pulses truncate to one in
each conductance update, the number of updating pulses and
energy have been significantly decreased in 100 epochs. For
example, in Momentum and RMSProp algorithms, energy con-
sumption are saved up to 12.888% and 16.104% and latency
are decreased up to 26.062% and 27.854% as shown in Table L.
This is because every iteration has the designated reading
latency since the process of a vector-matrix multiplication is
executed using a parallel reading strategy. However, the system
updates its weight row by row, which indicates a parallel
writing strategy cannot be implemented for all rows at the
same time, otherwise, the system will have unacceptable area
overhead [27]. Each row’s writing latency is determined by the
maximum number of writing pulses as a critical path. Thereby,
the main latency for ReRAM arrays is writing latency that
strongly depends on the maximum update pulses of each row.
With the PR method, the maximum number of the writing
pulses decreases to one, which reduces the total latency of the
system. Without the PR method, each row needs registers and
counter to record and control the updating process since the
time of updating process in the different training iterations is
probably different [26], [28]-[30]. With the PR method, those
two components (registers and counter) are not needed because
the selected row only uses one pulse to update the conductance
of ReRAM-based Al accelerators. Instead, one multiplexer
is added to the system, as shown in Fig. 6. Therefore, the
PR method optimizes the inference accuracy, improves energy
efficiency, and reduces system latency and area.

IV. DISCUSSIONS

As shown in Fig. 9, the number of the levels with the
highest accuracy decreases through the increasing of the
variations. In fact, the reason for this correspondence is that
an excessively large number of levels will cause the value of
the variation exceeds the conductance value of a single level.
Simultaneously, a too small level number will cause that the

weight value loses too much precision and reduces the final
inference accuracy.

According to the mechanism of the cycle-to-cycle variation,
the PR method efficiently reduces the cycle-to-cycle variation
by compressing the number of up-date pulse to one. For
every updating, the cycle-to-cycle variation is limited with one
pulse’s impact, which minimizes the cycle-to-cycle variation.
Note that, the inference accuracies have significant improve-
ment with the PR method. The reasons are two aspects. 1) The
PR method minimizes the cycle-to-cycle variation. 2) Each
update step uses at most one pulse to tune conductance. One
pulse to tune conductance means smaller steps is achieved in
the direction of convergence, while a big step will make the
learning jump over minimum point of weight. What’s more,
energy consumption and system latency are correspondingly
reduced when the PR method is adopted in the system by
compressing the number of update pulse to one.

V. CONCLUSION

We propose the level scaling and the PR methods that
are simple, feasible, and universal methods to effectively
mitigate the impact of cycle-to-cycle variations in ReRAM-
based Al accelerators. We prove that because of cycle-to-
cycle variations, the inference accuracy in the maximum
number of the levels is not optimal for the real device. As
for different materials based multilevel ReRAM, the level
scaling method can be used to optimize accelerators through
selecting appropriately the number of the levels. Similarly, the
PR method mitigates the impact of cycle-to-cycle variation by
compressing the number of updating pulses to one as well as
improves energy efficiency up to 16.104% and reduce system
latency up to 27.854%. Besides accuracy improvement, the
level scaling and the PR methods can also lower the energy
consumption and decrease the latency of the ReRAM-based
Al accelerators.
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TABLE I: Experimental Results with/without Pulse Regulation

Algorithm  Energy with PR Energy without PR Energy Saved (%) Latency with PR Latency without PR Latency Reduced (%)
SGD 0.313 0.361 13.310 15.059 17.728 15.057
Momentum 0.501 0.575 12.888 23912 32.340 26.062
AdaGrad 0.642 0.671 4233 31.333 37.290 15.974
RMSProp 1.451 1.729 16.104 75.962 105.288 27.854
Adam 1.072 1.197 10.394 54.422 68.703 20.787

Energy: mJ, Latency: Min. Each evaluation includes 100 epochs and each epoch includes 500 images with 50 levels of conductance.
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