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ABSTRACT

Multi-GPU systems have emerged as a desirable platform to deliver
high computing capabilities and large memory capacity to accom-
modate large dataset sizes. However, naively employing multi-GPU
incurs non-scalable performance. One major reason is that execu-
tion efficiency suffers expensive address translations in multi-GPU
systems. The data-sharing nature of GPU applications requires
page migration between GPUs to mitigate non-uniform memory
access overheads. Unfortunately, frequent page migration incurs
substantial page table invalidation overheads to ensure translation
coherence. A comprehensive investigation of multi-GPU address
translation efficiency identifies two significant bottlenecks caused
by page table invalidation requests: (i) increased latency for demand
TLB miss requests and (ii) increased waiting latency for performing
page migrations. Based on observations, we propose IDYLL, which
reduces the number of page table invalidations by maintaining an
“in-PTE" directory and reduces invalidation latency by batching
multiple invalidation requests to exploit spatial locality. We show
that IDYLL improves overall performance by 69.9% on average.

CCS CONCEPTS

« Computer systems organization — Single instruction, mul-
tiple data; - Software and its engineering — Virtual memory.
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1 INTRODUCTION

Multi-GPU systems (such as NVIDIA’s DGX [48] and DGX-2 [49],
Intel Xe [30]) have become the preferred platform in achieving
scalable performance for real-world applications [20, 25, 26, 28, 33,
42,71, 79, 82]. Multi-GPU systems generally employ unified virtual
memory (UVM) to simplify the programming across GPUs [51, 63].
Despite its advantages, UVM performance highly depends on effi-
cient address translation which involves hierarchical TLB lookups
and GPU local page table walks. During the translation process,
one major performance penalty is page far fault which is generated
when the page is not present in GPU local memory. The number
of far faults can be significant, especially when multiple GPUs fre-
quently share pages. To reduce the number of far faults and enable
efficient data sharing among GPUs, modern multi-GPU systems
(such as Nvidia Ampere GPUs [18]) employ remote mapping as well
as counter-based page migrations. Specifically, a GPU can maintain
the address translation of a remote page (i.e., a page residing in
another GPU’s local memory) in its local page table. When the
GPU requests this remote page, the request is routed to the remote
GPU and the requested data is supplied by the remote GPU. De-
pending on the intensity of remote access, a page can be migrated
across GPUs to enhance the page access locality. This is realized
by implementing a page counter and the migration is determined
by thresholds [27, 51, 63]. When a page migration occurs, existing
page table entries (PTEs) on other GPUs mapping to the same page
must be invalidated to ensure translation coherence. The invali-
dations are broadcasted to all GPUs for consistency. When pages
are frequently accessed from different GPUs, frequent page migra-
tion incurs a significant number of invalidations in each GPU. The
invalidations contend with existing demand TLB miss requests,
therefore severely degrading application performance.

While many prior studies have explored GPU address translation
optimizations and page migration optimizations, we are unaware of
any studies that investigate the effects of frequent page migration
invalidations in multi-GPU systems. We provide a comprehensive
summary of the prior art and compare our approach with them
in Table 1. First, prior TLB optimizations include translation clus-
tering [56], page coalescing [57], address compression [70], and
TLB prefetching [9, 74]. While these techniques effectively improve
TLB reach and reduce far faults, they help little with the page
sharing caused page migration. Specifically, whenever a page mi-
grates, the translation changes and a TLB shootdown is necessary
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Techniques Reduce Improve Write Multi
invalidation PTW intensive | -GPU
TLB optimizations [31, 77] No Yes No No
[11, 54, 56, 57, 70, 74]
PW-cache design [14, 43, 44, 55] Yes Yes No
Page walk scheduling [61, 65] No Yes Yes No
Large page [7, 53, 58] No No
Dynamic page migration [10] No No Yes Yes
Page replication [22, 47] Yes No No No
Our approach Yes Yes Yes Yes

Table 1: Comparison with prior techniques.

to ensure correctness [5]. Second, existing page walk cache opti-
mizations [14, 43, 44, 55] can accelerate the page table walks for
invalidation requests by reducing page walk cache misses. However,
the substantial invalidations thrash the page walk cache and lead
to frequent eviction of useful entries required by existing demand
TLB miss requests. Third, page walk scheduling works [61, 65]
enable a trade-off between page table walk throughput and fair-
ness. However, these works are not applicable to page migration
invalidations as they do not help with the significant amount of
invalidations generated by intensive page sharing across GPUs.
Fourth, a large page [7, 53, 58] increases the TLB reach and reduces
the contention in page table walk in a single GPU. However, in
multi-GPU, when a large page is frequently shared among different
GPUgs, the false sharing may introduce more page migrations and
additional invalidation requests. Fifth, the dynamic page migra-
tion [10] is effective in reducing remote data access, however, the
PTE invalidation overheads caused by page migration have yet to
be addressed. Finally, page replication [22, 47] enables pages to be
accessed locally without page migration, therefore reducing the
number of invalidations. However, it is not feasible for applications
where the shared pages have read-write properties, as write op-
erations still require invalidating PTEs and pages. Further, with
substantial page sharing among multiple GPUs, page replication is
not scalable [40, 62]. In a nutshell, none of the prior works investi-
gate the effect of invalidations in UVM-managed multi-GPU.

This paper quantitatively shows that contention between de-
mand TLB miss requests and page migration-induced page table
invalidation requests significantly limits multi-GPU performance.
We propose In-PTE DirectorY and Lazy InvaLidation (IDYLL) which
employs two key mechanisms to minimize this contention. First,
we reduce the number of unnecessary invalidation requests by
employing an “in-PTE" directory that leverages unused bits in the
page table entry to record which GPUs hold valid address mappings
for the corresponding PTE. Second, we minimize interference be-
tween invalidation requests by employing lazy invalidation which
exploits spatial locality in page table updates by batching multi-
ple invalidation requests with nearby virtual addresses. We design
a hardware structure called Invalidation Request Merging Buffer
(IRMB) to temporarily hold these batched invalidation requests and
lazily write them back to the page table. Specifically, the IRMB is
checked in parallel with the GPU L2 TLB lookup. For those TLB
misses, if they are found in the IRMB, the corresponding page table
walks are removed to avoid accessing stale PTEs and to ensure the
correctness of the translation.

The major contributions of this work include:

e We show that a major performance bottleneck in UVM-managed
multi-GPU is due to a significant amount of page table invali-
dations. We provide a detailed analysis of how the page table
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Figure 1: Page table invalidation overhead.

invalidations affect demand TLB miss requests and page migra-
tion waiting latency.

e We propose IDYLL, a software-hardware co-design to mitigate
the page table invalidation overhead and improve overall applica-
tion performance. IDYLL maintains a software-managed “in-PTE"
directory that filters unnecessary invalidation requests and a
lightweight hardware-managed structure to temporarily buffer
invalidation requests, removing them from the contention of page
table walk resources while maintaining execution correctness.

e We show that IDYLL improves overall performance by 69.9% on
average across our suite of multi-GPU applications. We show that
IDYLL outperforms large pages, page replication, and page table
walk optimization. IDYLL is orthogonal to these approaches and
can be combined with them to further improve performance.

2 MOTIVATION

Migrating data from remote memory to local memory enables data
to always be accessed at local memory access bandwidth rather than
remote memory access bandwidth (which is limited by interconnect
bandwidth). Thus, page migration is crucial to address Non-Uniform
Memory Access (NUMA) bottlenecks in multi-GPU systems.

Page migration modifies the existing virtual to physical map-
ping. Consequently, all system-wide data structures (i.e., per-GPU
TLBs and per-GPU local page tables) containing the old virtual-
to-physical mapping must be invalidated. To perform this task,
conventional UVM drivers simply broadcast page table invalidation
requests to all GPUs in the system (even those GPUs that never
requested the translation). In response, GPUs receiving the page ta-
ble invalidation requests walk their respective local page table and
invalidate the corresponding PTE (even if it were invalid to begin
with). A detailed background on step-by-step multi-GPU address
translation procedure with invalidations is given in Section 3.2.

Broadcasting page table invalidation requests works well when
page migrations are infrequent. However, when applications exhibit
high page sharing between multiple GPUs (quantitatively analyzed
in Section 5.1), frequent page migrations significantly increase the
number of page table invalidation requests to invalidate GPU lo-
cal PTEs. These invalidations contend with existing demand TLB
misses thereby increasing their miss latency. Demand TLB miss
latency is performance critical and must be reduced to improve
GPU performance.

Figure 1 demonstrates the page table invalidation overheads
for representative multi-GPU applications! running on a 2-GPU
NVIDIA A100 system. We use uvm-eval [73] to profile the GPU
page table invalidation time. The figure shows that nearly half
(average 42%) of total execution time is spent on handling page
table invalidations. Applications with high page sharing (e.g., PR

!These are multi-GPU ready applications with large input sets running on real hard-
ware and are compatible with uvm-eval [73].
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Figure 2: Performance of each scheme relative to access
counter-based migration.

and ST) tend to have higher page invalidation overheads. These
results are consistent with previous GPU UVM studies [3, 16] and
strongly motivate the need for substantially reducing the page
invalidation overheads.

To illustrate the performance opportunity from eliminating page
invalidation overheads altogether, Figure 2 presents a simulation-
based study that depicts the performance of an ideal page migration
policy that incurs no page table invalidation overheads. That is, the
per-GPU page table invalidation requests incur zero latency and
bandwidth contention with the PTEs being updated instantaneously.
We use an industry-validated multi-GPU simulation framework
(MGPUsim [68], details in Section 4). Our simulated baseline system
employs access counter-based page migration (which is the baseline
on NVIDIA A100 GPUs [18]), where pages are migrated only when
remote accesses reach a given threshold. The figure shows that
an idealized system with zero page table invalidation overheads
outperforms the baseline system by 38%-1.92Xx (average 73%). For
reference, we also report the performance of (a) first-touch migration
where the page is pinned to the GPU that first accessed a page
with no further migrations (b) on-touch migration where pages
are always migrated to the requesting GPU. While both these page
migration policies can have lower page table invalidation overheads,
we observe that they generally perform worse than the access
counter-based migration policy either because of the increased
number of remote memory accesses or frequent page migrations.

The results from Figure 1 and Figure 2 clearly demonstrate the
importance of reducing page table invalidation overheads. Such
overheads stem from page table walk contention between demand
TLB miss requests and page table invalidation requests. Reducing
page invalidation overheads can be accomplished by (i) reducing
the number of invalidations sent by employing a directory to only
send page table invalidation requests to GPUs that hold the corre-
sponding address translation (ii) reducing the invalidation latency
by batching invalidation requests to exploit spatial locality between
multiple invalidation requests. Before we discuss our solution, we
provide a detailed discussion of address translations in multi-GPU
systems (Section 3) and quantitatively investigate the contentions
caused by page table invalidations (Section 5).

3 BACKGROUND

3.1 Multi-GPU Architecture

In this work, we focus on UVM-managed discrete multi-GPU sys-
tems where the GPUs have unified virtual memory address space
and use pointers to access memory in remote GPUs. The GPUs
are connected using a high-bandwidth interconnect such as PCle
or NVLink. Figure 3 shows the architecture details of the targeted
baseline multi-GPU system. Each GPU consists of multiple Shader
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Figure 3: Baseline GPU architecture.

Arrays (SAs), each of which further contains multiple compute
Units (CUs), a.k.a., SMs in NVIDIA terminology. Every CU has its
own private L1 data cache (L1V$); all CUs within an SA share the
L1 scalar cache (L1S$) and the L1 instruction cache (L1I$). There
is also a larger unified L2 cache that is shared among all the SAs.
Each GPU also features a multi-level TLB hierarchy to accelerate
address translation: each CU has a private fully associative L1 TLB,
and all CUs (in all SAs) share the L2 TLB. A discrete GPU usually
has its own local memory as well as a local page table. The GPU
Memory Management Unit (GMMU) handles GPU page table walks.
A GMMU typically consists of (i) a page walk queue for buffering
the translation requests, (ii) a page walk cache holding the entries
of page table levels used in recent translation requests, and (iii)
multi-threaded page table walker that handles multiple translation
requests concurrently. In UVM-managed multi-GPU systems, the
UVM driver on the CPU side is responsible for handling all GPU far
faults: the UVM driver maintains a centralized page table holding
the up-to-date address translations for all GPUs.

3.2 Address Translation in Multi-GPU

The address translation process is also illustrated in Figure 3. Upon
a memory request, the L1 cache and the L1 TLB lookups are per-
formed in parallel, assuming the L1 cache is virtually indexed and
physically tagged (@). If the request misses in the L1 TLB, it first
checks the L1 Miss Status Holding Register (MSHR), and the request
is sent to the L2 TLB for lookup upon MSHR miss (). Similarly,
requests missing in the L2 TLB are further sent to the GMMU (@)
to perform page table walks. The request is temporarily stored in
the page walk queue if there are no available page walk threads.
When performing a page walk, GMMU generates several memory
requests to access the local page table (®). To take advantage of
the temporal locality of the page table, the GMMU maintains page
walk cache for each level of the page table (@). If the page walk
fails, a far fault is propagated to the GMMU and held in the GPU
Fault Buffer [2, 3]. Then, the GMMU notifies the host UVM driver
about the far fault by generating an interrupt (®). The UVM driver,
on the host side, fetches the fault information, groups faults into
batches, and caches it on the host (the batch size is 256 [50]), and
later resolves the fault using the centralized page table. After these
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steps, it initiates the target data transfer and updates the request-
ing GPU’s local page table. Eventually, the GPU re-performs the
address translation after the far fault is resolved.

Remote Mapping: In a multi-GPU system, a GPU can access the
memory of a remote GPU [16]. This is realized by allowing the local
page table to store the address that maps virtual pages to physical
pages residing in remote GPU’s memory. Specifically, when a GPU
is accessing a page in the memory of another GPU for the first time,
it generates a far fault since its local page table does not yet contain
the translation information. Then, this far fault is passed to the
UVM driver and the driver sends the translation result (along with
some other information of the page) to the requesting GPU. After
this, the GPU updates the local page table, as well as fetches the
data at cacheline granularity from the remote GPU. Upon receiving
the data from the remote GPU, the data is directly sent to the CU
but is not cached in the cache hierarchy [24]. Consequently, future
GPU accesses to the remote data can be translated by the local page
table and the data will be serviced by the remote GPU.

3.3 Page Migration Scheme

Frequent accesses to remote data can incur significant performance
bottlenecks since remote GPU memory access bandwidth over the
interconnection network can be an order of magnitude lower than
local GPU memory access bandwidth. One approach to address
the remote data access performance bottleneck is to migrate pages
from remote memory to local memory. There exist multiple page
migration schemes:

On-touch migration: Every time a GPU accesses a page residing
in another GPU, the page is migrated into the requesting GPU
memory. While it guarantees page accesses are going to local pages,
frequent “ping-pong” migration may decrease the performance.
This is the “On-touch” bar in Figure 2.

First-touch migration: A page is migrated from the CPU to the
GPU on the GPU’s first access. After this initial migration, this page
is pinned on that GPU, i.e., it will never be migrated to another
GPU. Compared to on-touch migration, first-touch migration does
not incur frequent page migrations and thus avoids the invalida-
tion/migration overheads. However, remote memory accesses may
incur high latency. This is the “First-touch” bar in Figure 2.
Access counter-based migration: Recent Nvidia GPUs (Volta and
newer generations [63]) use page access counters to delay the mi-
gration of pages. On each remote memory access, the corresponding
page access counter is incremented. A page migration is only per-
formed when this counter reaches a certain threshold (e.g., 256 [50]).
There are four steps for access counter-based page migration. First,
the GPU initiates a migration request to the UVM driver. Second,
the UVM driver broadcasts the invalidation requests to every GPU
in the system since the UVM driver is unaware of which GPU(s)
have the translation of this page. Third, upon receiving invalidation
requests, each GPU performs TLBs shootdown and invalidates the
page table entries to ensure translation coherence [10]. The PTE in-
validation is performed in a way similar to the conventional address
translation procedure: the GMMU starts a page walk which may
contend with other page walk requests. Finally, the UVM driver
initiates the data transfers. This scheme incurs fewer remote mem-
ory accesses compared to first-touch migration, and fewer page
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[ Module [ Configuration |
CU 1.0 GHz, 64 per GPU
L1 Vector Cache 16 KB, 4-way
L1 Inst Cache 32 KB, 4-way
L1 Scalar Cache 16 KB, 4-way

L2 Cache 256 KB, 16-way

DRAM 4GB

L1 TLB 32 entries, 32-way, 1-cycle lookup latency,
CU private, LRU replacement policy

L2 TLB 512 entries, 16-way, 10-cycle lookup latency,

CUs shared, LRU replacement policy

GMMU 8 shared page table walker [61, 65, 75],
100-cycle latency per level [29]

Page walk cache 128 entries shared across page table walker [61]
Page walk queue 64 entries

Access counter threshold 256 [50]

Inter-GPU network 300GB/s NVLink-v2

CPU-GPU network 32GB/s PCle-v4

Table 2: Baseline multi-GPU configuration.

Page table walk

’ Abbr. | Application Be"sci‘i't’:a'k ‘ MPKI ‘ I‘:ﬁz;
KM KMeans Hetero-Mark 50.67 Adjacent
PR PageRank Hetero-Mark 78.21 Random
BS Bitonic Sort AMDAPPSDK | 3.42 Random
MM Matrix Multiplication | AMDAPPSDK | 11.21 Scatter-Gather
MT Matrix Transpose AMDAPPSDK 185.52 Scatter-Gather
N Simple Convolution AMDAPPSDK | 15.76 Adjacent
ST Stencil 2D SHOC 36.24 Adjacent
C2D Convolution 2D DNN-Mark 21.42 Adjacent
M Image to Column DNN-Mark 18.31 Scatter-Gather

Table 3: List of applications.

migrations compared to on-touch migration. This is the bar labeled
“Access counter-based” in Figure 2.

4 METHODOLOGY

We use MGPUSim [68], a multi-GPU simulator that is validated
against industrial GPU architecture.

Baseline GPU configuration: We target a 4-GPU system where
each GPU has its local page table. The baseline configurations are
listed in Table 2. In the baseline, we assume 4KB page size and
leave the study of large page to Section 7.2. In all experiments, the
CTA scheduling policy is (i) round-robin for CUs within a GPU
and (ii) greedy across GPUs which considers intra-GPU locality.
This scheduling approach captures the GPU inter-CTA locality and
also ensures the computing balance across CUs. We use access
counter-based migration policy in both baseline and our approach.
Applications: We use several representative applications from
various benchmark suites (see Table 3) including Hetero-Mark [69],
AMDAPPSDK [4], SHOC [21], and DNN Mark [23]. We use
the multi-GPU implementations of these applications available
from [68], which is also widely adopted and evaluated in prior
works [10, 41, 62]. Note that, the applications cover different data
access/sharing patterns in multi-GPU execution. Specifically, (PR,
BS) exhibit random access pattern where each GPU can generate
reads and writes to any other GPU in an unpredictable manner.
On the other hand, (KM, SC, ST, C2D) exhibit adjacent access pattern
where the input data is batched and shared with the neighboring
GPUs. Finally, (MM, MT, IM) exhibit scatter-gather access pattern
where each GPU stores a fraction of input and output matrices,
and each GPU reads/writes data from local/remote GPUs. Since
different sharing behaviors bring different intensities of address
invalidations, these representative sharing patterns allow us to eval-
uate how our design is generic to a wide spectrum of applications.
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We also provide the L2 TLB misses per kilo instructions (MPKI) in
Table 3.

5 PAGE SHARING AND OVERHEADS

We now show that substantial page sharing is the root cause for
invalidations and provide a detailed contention analysis.

5.1 Multi-GPU Page Sharing Characterization

In a multi-GPU system, PTE invalidations are triggered during
page migration when a page is frequently referenced by multiple
GPUs. As such, we first investigate the page sharing behavior of
applications in a multi-GPU environment. Page sharing in multi-
GPU applications is common as threads running on different GPUs
may access the same data structures. In this paper, we define the
page access sharing ratio as the ratio of total shared page accesses
to the total accesses. Figure 4 shows that there exists significant
page sharing among multiple GPUs. For example, in MM, PR and KM,
almost all accesses are to pages shared by all GPUs. In MT, C2D, BS,
a large fraction of accesses is concentrated on the pages that are
shared by 2 GPUs. This is because, PR has random access pattern
where any GPU needs to both read and write data from/to the
entire GPU address space. C2D needs to access input data from
surrounding indices that are resident on other GPUs.

5.2 Page Table Walk Characterization

As described in Section 3.3, when a page needs to be migrated in
the remote mapping approach, all GPUs need to perform local page
table walks to invalidate their corresponding page table entries
before the page can be migrated. Figure 5 provides the distribution
of requests to the page walker in terms of PTE invalidation requests
(necessary and unnecessary) and demand TLB miss requests. One
can observe the number of invalidation requests accounts for a
quarter (i.e., 27.2%) of total requests to the page walker. For ap-
plications with excessive page access sharing, they have a higher
percentage of invalidation requests, such as MM, PR, and KM. This is
because a large number of pages are heavily accessed by multiple
GPUs, which causes a large number of page migrations and thus
significant PTE invalidation requests.

We also show the percentage of unnecessary PTE invalidation
requests in Figure 5. Specifically, since each migration broadcasts
invalidation requests to all GPUs, those GPUs that have not ac-
cessed the page (or their corresponding PTEs are already invalid)
still need to perform page table walks. This is because they do
not have information on whether the local PTE is valid without
actually walking the page table. We refer to these invalidations as
unnecessary invalidation requests. On average, the results in the
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figure indicate that nearly one-third (i.e., 32%) of PTE invalidations
broadcasted are unnecessary.

We now study the performance impact caused by PTE invalida-
tion request contention. We identify two latencies that are affected
by PTE invalidation requests: (i) demand TLB miss request latency,
defined as the address translation latency of requests that miss
L2 TLB, and (ii) page migration waiting latency, defined as the la-
tency between a page receiving a migration request and the actual
migration of the page.

Figure 6 assumes a hypothetical system where the PTE invalida-
tion requests incur no contention to demand TLB requests. In such
a system, when the GPU receives invalidation requests from the
UVM driver, all latency and contention from invalidation requests
are removed, including waiting in the page walk queue, page walk
cache lookup, and performing page table walks. The figure shows
the demand TLB miss request latency of such a system normalized
to the demand TLB miss request latency in the baseline system with
PTE invalidations. We also plot the actual values of averaged cycles
shown as lines in the figure corresponding to the right y-axis. The
result shows that without the interference of invalidation requests,
the demand TLB miss request latency is on average reduced by
55.8% of the baseline. This is because invalidation requests follow
the same page table walk process as demand TLB miss requests,
which includes waiting in the page walk queue, lookup the page
walk cache, and walking the page table after the page walk cache
miss. Therefore, the invalidation requests (i) extend the page table
walk queuing time for demand TLB miss requests, (ii) thrash the
page walk cache, which may reduce the page walk cache hit rate
for demand TLB miss requests, and (iii) increase the contention of
page table walk threads in the GMMU.

Once a page is determined to migrate, those requests accessing
that page will need to wait for the page migration to complete
and establish new translation mapping before those requests can
access the page. Since the invalidation delays the page migration
process (specifically, translation resolve time), it also extends the
waiting latency of those requests. Figure 7 plots these extra page
migration waiting latency caused by invalidation requests. We
observe the extra waiting latency is 38.3% of the page migration
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latency. However, we want to mention that, not all these waiting
latencies contribute to performance degradation because they are
not on the critical path and can be hidden by the computation
context switching in GPU. But also note that, for memory-intensive
applications, there is not much computation to hide these latencies
and they play a sizable role in the overall performance.

6 IN-PTE DIRECTORY AND LAZY
INVALIDATION (IDYLL)

6.1 High Level Overview

The primary goal of our work is to retain the benefits of state-of-
the-art counter-based page migration policy while addressing the
overheads associated with frequent page table invalidation requests.
We propose IDYLL that consists of two mechanisms: (i) a software
in-PTE directory invalidation mechanism to reduce unnecessary
page table invalidations, and (ii) a hardware mechanism called
Invalidation Request Merging Buffer (IRMB), which implements an
invalidation batching scheme to amortize invalidation overheads
and a lazy update of page table to minimize the contention between
demand TLB miss requests and invalidations. However, there are
three challenges to implementing IDYLL. First, the UVM driver
should only send the invalidation requests to those GPUs that have
valid translation mappings instead of broadcasting. Therefore, it
is important to record which GPUs have valid mappings. Second,
it is crucial not to perform invalidations blindly upon receiving
invalidation requests, so as to reduce unnecessary contentions with
the demand TLB miss requests and page migration wait time. Finally,
the proposed IDYLL should involve minimal hardware overheads.

6.2 In-PTE Directory Invalidation

Section 5.2 showed that a large fraction of PTE invalidations are
unnecessary. We propose to filter the needless PTE invalidation
requests using an In-PTE Directory Invalidation design on the host
side. This approach avoids contention and queuing delays in the
page walk queues, page walk caches and further reduces several
operations on those GPUs that do not hold a valid translation to
begin with. We now discuss our In-PTE Directory Invalidation
design in detail.

Which GPUs to invalidate? The In-PTE Directory Invalidation
should be aware of all translation mappings in each GPU and which
GPU has these valid translation mappings. However, keeping track
of such a high volume of entries can cause a lot of memory overhead.
Fortunately, the host-side page table holds all valid and up-to-date
address translations for all GPUs. We only need to add information
of which GPUs hold these valid mappings to the corresponding
address translation entries. To this end, we leverage unused bits
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Figure 8: Page table entry format for 4 KB pages.

in the host-side PTEs as access bits for each GPU to store the GPU
access information. Figure 8 shows the page table entry format in 4
KB pages?. Specifically, bits 51 to 12 store the physical page number
for the virtual address, bits 62-52 and 11-9 are unused bits, and
the remaining bits store metadata about the page. Note that, the
maximum number of unused bits in the current PTE format is 14
bits. When the number of GPUs exceeds the maximum unused bits,
the GPUs access bits cannot be mapped one-to-one with the unused
bits. Therefore, we use a modular hash function to map multiple
GPUs access bits to one unused bit. To simplify the calculation, we
only use unused bits 62-52 for access bits. Specifically, the hash
function is h(GPU;y) = GPU;4 % m + 52, where m represents the
number of unused bits used for access bits, which is equal to 11 in
our design®. For example, in our default 4-GPU system, the unused
bits 55-52 of PTE correspond to the access bit of GPU3-GPUj (as
shown in the green box of Figure 8). Mapping multiple GPU access
bits into a single slot can lead to false positives, which only lead
to unnecessary requests being sent to the GPU, but do not affect
correctness. Nevertheless, the number of unnecessary requests
sent to the GPU is significantly reduced compared to the baseline.
Initially, all access bits in the host-side PTE are set to 0. When a
GPU, for example, GPU)y, accesses a page for the first time, it will
miss all local GPU TLBs and the local page table entry of this page
is also invalid. A far fault is generated and sent to the host side.
The host-side page table is then walked to get the desired address
translation. At this point, the access bit for GPUy in the host-side
PTE (the unused bit 52) is set to 1, as GPUy will establish a valid
mapping to its page table when the address translation is replayed.

Lookup procedure: The UVM driver, upon receiving a page
migration request, performs a page table walk in the host-side page
table to invalidate the corresponding mapping, as well as obtain
the access bits information. Then, the driver sends the invalidation
request only to GPUs with access bits set to 1. The access bits
are also cleared to 0, as the corresponding remote mappings in
each GPU will be invalidated to ensure translation coherence. Note
that in the baseline, the invalidations are broadcasted before the
host-side page table walk is completed. In our design, we must
wait since we leverage the host-side page table walk to determine
which GPUs should be sent the invalidation requests, thus adding
additional latency in sending invalidation requests. However, we
emphasize that even in the baseline, the host side has to perform a
page table walk to invalidate its corresponding PTE. Sending the
invalidation requests early does not bring significant performance

2Unused bits stay constant with different page sizes [15].
3We evaluate scalability with 4 unused bits in Section 7.2.
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Figure 9: Overview of IDYLL.

and this additional latency is marginal to the overall performance.
Nevertheless, we include these overheads in our later evaluation.

After the page migrates to anew GPU, a new translation mapping
is established. The new mapping also needs to be updated in the
host-side page table. The corresponding access bit is set to 1 when
the host PTE is updated.

6.3 Lazy Invalidation

In-PTE Directory Invalidation eliminates unnecessary invalidations
while helping little with those GPUs that hold the valid transla-
tions and must perform the page table invalidations. Due to the
significant page sharing in multi-GPU, there are still substantial
valid translation mappings that need to be invalidated when per-
forming page migrations. These invalidation requests introduce
extra latency for both existing demand TLB miss requests and page
migration waiting time as specified in Section 5.2. Therefore, we de-
sign a lightweight hardware component called Invalidation Request
Merging Buffer (IRMB) in each GPU. The IRMB acts as a “valve”
for the invalidation requests by temporally buffering incoming in-
validation requests and lazily updating the local page table with
minimum impact to existing demand TLB miss requests. Note that,
we only perform lazy updates to the PTE while keeping the TLB
shootdown process as it is in the baseline. That is, upon receiving
an invalidation request, the TLB is immediately invalidated.
Invalidation Request Merging Buffer (IRMB): The IRMB
tracks the virtual page number (VPN) of invalidation requests that
are received from the UVM driver. In particular, we observe that
in many applications, pages being migrated are nearby to each
other in the address space. Therefore, the virtual addresses (VAs)
of invalidation requests are also nearby and share a significant
number of identical bits in the addresses. Based on this observation,
we design compressed entries for IRMB. The key idea behind this
is to exploit the similarity of VAs where the VPN of invalidation
requests in the IRMB at a certain period has a large number of
identical bits. These identical bits can be merged so that IRMB
can accommodate more invalidation requests. Besides, the nearby
invalidations that are merged into one entry can leverage the same
page walk cache when updating the invalidations to the page table
to amortize the invalidation overheads. Therefore, in our design,
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we merge the invalidation request with the same high-level VPN
into one entry. Figure 9 illustrates the microarchitecture of the
IRMB. Specifically, the VPN of a page is partitioned into a 36-bit
base (L5-L2 level of VA), and a 9-bit offset (L1 level of VA). The
VPN with the same base coalesces into one merged entry. The IRMB
consists of 32 merged entries with different bases, and each merged
entry comprises 16 different offsets®.

IRMB insertion and eviction: When a GPU receives the inval-
idation request from the UVM driver, bits L5-L2 of the VA of the
invalidation request are used to match the bases. If the bits match
the base in IRMB, the L1 bits of the VA are inserted into the merged
entry. Otherwise, a new merged entry is created with the bits L5-L2
of the VA of the invalidation request as the base, and the L1 bits
are inserted into the new-created merged entry (@). It can happen
that the IRMB is full during invalidation request insertion, and the
eviction of the merged entry is required. First, if the base is full,
we use the LRU replacement policy which evicts the least recently
used merged entry (®) and uses the slot to store the newly-arrived
invalidation request. The reason for choosing an LRU merged entry
is that, if a page is recently migrated, there is a high probability that
its neighboring pages will be migrated later due to the data access
locality. Therefore, if a PTE needs to be invalidated, its neighboring
PTE may also be invalidated later, so we can keep this merged entry
in the IRMB to coalesce more invalidation requests and invalidate
them in once. Second, if the offset is full, we evict all offsets in the
corresponding merged entry and insert the L1 bits into this entry.
Note that, all the eviction will trigger the invalidation to propagate
to the page table.

IRMB writeback: In our design, we use the IRMB to temporar-
ily record the invalidation request first. It is crucial to propagate
invalidations without introducing significant latencies to the criti-
cal path execution. Ideally, the invalidations should overlap with
normal executions so that the invalidation overheads could be hid-
den. Therefore, first, in our design, when the page table walker
is available, we invalidate the LRU merged entry corresponding
PTEs and also evict this merged entry in the IRMB. In such a case,
the invalidation will neither affect demand TLB miss requests nor
page migration. Second, in the case of the IRMB being full, the
propagation of invalidations is essential. Therefore, when an evic-
tion happens in the IRMB, all PTEs corresponding to VAs in the
evicted merged entry are invalidated sequentially. This allows the
invalidations to be handled in a batch, and improves the L2 level
page walk cache hit rate since all these invalidations have the same
higher level of the VA.

IRMB lookup: Figure 9 also illustrates the lookup procedure
in the IRMB. Specifically, When a translation request misses GPU
L1 TLB, the L2 TLB (€)) and the IRMB (@) are searched in parallel.
Three different scenarios may happen. First, if the request hits
the L2 TLB, the lookup in IRMB is abandoned, and the request is
handled the same as the baseline. Second, if the request misses
the L2 TLB and also misses the IRMB, which implies the desired
PTE is up-to-date, whether valid or invalid. Therefore, the request
behaves the same as the baseline, waiting in the page walk queue,
looking up the page walk cache, and walking the page table. Third,
if the request misses the L2 TLB but hits the IRMB, which indicates

“We also evaluate different IRMB sizes in Section 7.2.
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that the translation mapping in the page table cannot be used as it
should be invalidated. Then the request bypasses the local page table
walk and directly raises a far fault to alert the UVM driver (@). By
doing so, the latency of demand TLB miss requests that eventually
cause far faults is further reduced. Note that the corresponding
PTE invalidation process may also be bypassed in this case. This is
because a far fault is generated, and a new translation mapping will
be received after the host-side page table walk. Therefore, we can
update the PTE directly after a new mapping is replayed without
invalidating it. It can happen that the corresponding entry is evicted
from the IRMB before the new mapping is received due to capacity
conflicts. In this case, the evicted entries follow the IRMB eviction
process and perform the PTE invalidation in the page table, even
though these invalidations are unnecessary. Note that, before a new
mapping is received, there won’t be any subsequent requests to
the same page being sent to GMMU for page table walk. This is
because the original request that triggers the new mapping resides
in the L2 TLB MSHR. All subsequent requests to the same page
will be blocked and held at the L2 TLB MSHR. Therefore, if the
corresponding entry is not found in the IRMB and a new mapping
is not received, it is guaranteed that the request does not access a
stale translation. Note also that, upon receiving a new mapping, the
IRMB is checked if the corresponding VPN is present in the IRMB.
If it is not in the IRMB, the new mapping is directly inserted into
the page table walk queue for PTE update. If it is found in the IRMB,
the particular offset from the merged entry in IRMB is removed,
since this translation mapping is established in the page table as a
valid translation.

Correctness: The TLB is flushed immediately whenever this
is a page migration in both baseline and our approach, we expect
the security to be the same in both baseline and our approach. Our
Lazy Invalidation will keep the stale entry in the page table and
use IRMB to indicate it for execution correctness.

Overheads: In our configuration, the IRMB has a total of 32
merged entries. Each merged entry comprises 16 offsets and a base.
The base is 4 X 9 = 36 bits, and the offset is 16 X 9 = 144 bits.
Therefore, each merged entry occupies 180 bits. The total size of
IRMB is (36 + 144) x 32/8 = 720 bytes. We use CACTI [72] to
estimate the areas and the results show that IRMB is 0.9% compared
to the areas of GPU L2 TLB.

6.4 IDYLL-InMem: An Alternate Design

In the event that the unused bits in page table entry are reserved
for other purposes (e.g., implementing custom memory manage-
ment policies, setting access permissions) [37, 54, 67], we propose
an alternative in-memory directory design, IDYLL-InMem, that
tracks GPU translation residency for all pages in the system. The
in-memory directory, referred to as the VM-Table, achieves the
same functionality as the In-PTE Directory. Specifically, each entry
in the VM-Table is 64 bits and stores VPN (45 bits) and GPU access
bits (19 bits, all initialized to 0s). If the system has more than 19
GPUs, we employ the same hash function as the In-PTE Directory
approach to hash the GPU access bits.

Having every translation to access the in-memory VM-Table
for page residency involves memory accesses that incur additional
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Figure 10: Overview of IDYLL-InMem.

memory bandwidth and latency overheads. To mitigate the over-
heads, we propose a hardware-managed cache (VM-Cache) to cache
frequently-accessed entries from the VM-Table. The VM-Cache has
64 entries (4-way associative) and uses write allocate and write
back policy. Figure 10 illustrates our proposed design.

The execution flow is as follows. When UVM receives a page
migration request, it looks up the VM-Cache to obtain the GPU
access bits (@) and sends invalidations to those GPUs. The lookup
occurs in parallel to the host-side page table walk. If the entry is
found in the VM-Cache, UVM sends invalidation requests based on
the access bits. Meanwhile, all access bits, except for the bit of the
GPU that initiated the page migration, are set to 0s in the VM-Cache.
In contrast, on a VM-Cache miss, a memory access is generated to
access the VM-Table (®). Two scenarios may happen. First, if the
entry is found in the VM-Table, the corresponding entry is brought
into the VM-Cache (@) and the access bits are updated. Second,
if the entry is not found in the VM-Table, which can occur only
when the page is first accessed by a GPU, the entry is registered in
the VM-Cache. We use LRU replacement for the VM-Cache where
evicted entries are written back to the VM-Table (@). In the case
of far faults, the UVM driver performs a page table walk to get the
translation mapping and, at the same time, checks the VM-Cache
to update the GPU access bits. The checking process is similar
to the lookup process discussed above, except for updating the
corresponding GPU access bit to 1 in the entry.

Overheads: Each entry of the VM-Table is 8 bytes. Suppose the
memory footprint of an application is 2%, it needs 2(*~12) entries
in VM-Table. Therefore, the total space needed for the VM-Table
would be 2(*712) % 8 bytes = 2(*=9) which is only 0.2% of the
application’s memory footprint. The space overhead of the VM-
Table is negligible compared to the overall memory of the system.
As for the overhead of VM-Cache, we use 64 entries. The hardware
overhead would be (41 + 19) bits X 64 entries = 480 bytes. We use
CACTI to estimate the area of VM-Cache and the result shows it is
0.04% of L1 cache (32KB 8-associative CPU L1 cache) area.

7 EVALUATION

7.1 Overall Performance

Figure 11 shows the performance improvements of using Lazy
Invalidation only, In-PTE Directory Invalidation only, and our pro-
posed IDYLL normalized to the baseline. We use the end-to-end
execution time of the application to compute the normalized per-
formance. One can make the following observations. First, only
using the In-PTE Directory Invalidation achieves an average of
27.3% performance improvement over the baseline, and only using
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Figure 11: Performance of each scheme relative to baseline.

Lazy Invalidation achieves an average of 55.8%. With both opti-
mizations enabled, IDYLL can provide an average improvement of
69.9%. The improvement brought by IDYLL is smaller compared
to the sum of the improvements achieved by each optimization
individually. This is because the two optimizations are complemen-
tary to each other and both reduce the contention with demand
TLB miss requests. Second, the performance improvements of the
two mechanisms on different applications vary. Many applications
achieve higher performance improvement with Lazy Invalidation,
as it reduces the latency and contention caused by all invalidation
requests. In contrast, In-PTE Directory Invalidation only works for
unnecessary invalidations. However, one can observe that MM bene-
fits more from In-PTE Directory Invalidation. This is because the
unnecessary invalidation requests thrash the IRMB in Lazy Invali-
dation and removing these unnecessary invalidations is immensely
helpful. Finally, with both mechanisms enabled, the performance
improvement is significant for high MPKI applications (shown in
Table 3). For example, PR achieves 2.67Xx over the baseline. In con-
trast, the performance improvement of BS is moderate. However,
for MT, which has the highest MPKI value while not achieving an
expected performance improvement. This is because the percentage
of invalidation requests in MT is much lower as shown in Figure 5.
As such, invalidation requests have less impact on its performance.
We also find that IM has a relatively lower MPKI value and a small
percentage of invalidation requests, but achieves high performance
improvement. This is because IM has a memory-intensive process of
converting each patch of image data into a column, where handling
page table walk latency can hardly be hidden by the computation
context switching (e.g., warp scheduling) in GPUs. Reducing invali-
dation latency can significantly benefit the execution.

Figure 11 also shows the performance improvement of zero-
latency invalidation normalized to baseline (the last bar). Our ap-
proach achieves a comparable performance improvement against
zero-latency invalidation. Interestingly, we find that the perfor-
mance improvements for some applications in our approach (e.g.,
ST, SC, and IM) are higher than the performance improvements
of zero-latency invalidation. The reasons are twofold. First, our
In-PTE Directory Invalidation reduces unnecessary invalidation
requests being sent to GPUs, whereas in zero-latency invalidation,
all invalidation requests are still sent to all GPUs. Therefore, our
approach reduces interconnect congestion. Second, the IRMB in
our design also serves as an indicator of invalid PTE. Thus, when
a demand TLB miss request hits in the IRMB, we can bypass the
local page table walk and directly send the request to the host
(since the requested PTE would have become invalid in the local
page table had we not delayed the invalidation). This reduces the
page table walk required by the demand TLB miss compared to
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the zero-latency implementation, thereby reducing overall demand
TLB miss request latency.

We also evaluate the performance of IDYLL-InMem (discussed
in Section 6.4) in Figure 11. The IDYLL-InMem achieves a similar
performance improvement (average 70%) as IDYLL (i.e., In-PTE
Directory Invalidation design). The reason is twofold. First, both
designs employ Lazy Invalidation which effectively reduces the
contention caused by invalidation requests. Second, VM-Cache
lookup and VM-Table lookup have much less latency compared
to the host-side page table walk and can be performed in parallel
with the host-side page table walk without incurring any additional
latency compared to the In-PTE Directory Invalidation design. Fur-
thermore, we observe an average hit rate of 60.2% of the VM-Cache.
We do not observe memory bandwidth contention caused by VM-
Table accesses when missing in the VM-Cache. Given the similar
performances of both designs and the lack of space, our following
experimental results are obtained from IDYLL (i.e., In-PTE Directory
Invalidation design).
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Figure 12: Demand TLB miss request latency.
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Demand TLB miss request latency: To understand the rea-
sons behind the performance improvements, we plot the demand
TLB miss latency and page migration waiting latency when using
IDYLL. Figure 12 shows the total latency of demand TLB miss re-
quests in IDYLL normalized to the total latency of demand TLB
miss requests in the baseline execution (the lower the better). As ob-
served, the total demand TLB miss request latency of our approach
is reduced by about 60% compared to the baseline. The reductions
in demand TLB miss request latency directly translate to perfor-
mance improvements. For example, for PR and IM, the total demand
TLB miss request latency of our approach is only about 25% of the
baseline, thus achieving a significant performance improvement.
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Figure 13: Total number of invalidation requests and total
latency of invalidation requests.

Invalidation requests: The bar in Figure 13 shows the total
latency of invalidation requests in IDYLL normalized to the total
latency of invalidation requests in the baseline execution, and the
line in the figure shows the percentage of invalidation requests in
IDYLL normalized to the baseline. First, our approach eliminates all
unnecessary requests so that the average number of invalidation
requests in IDYLL is reduced by 32% of the baseline. The total in-
valid request latency in our approach is reduced by 68.2% compared
to the baseline. This is because (i) the total number of invalidation
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Figure 14: Page migration waiting latency.

requests is reduced and (ii) we coalesce multiple invalidation re-
quests for page table walks, which can share the same page walk
cache entries, thereby improving the L2 level page walk cache hit
rate of invalidation requests and reducing the latency caused by
page walk cache misses.

Page migration waiting latency: Figure 14 shows the total
latency of page migration waiting in IDYLL normalized to the total
latency of page migration waiting in the baseline execution. The
results indicate an average of 71% latency reduction brought by
our approach compared to the baseline. Recall that, in the baseline,
page migration cannot start before (i) all the GPUs finish page table
walks for the invalidation requests, and (ii) the host finishes page
table walks for the invalidation. While the GPU page table walk can
happen concurrently with the host page table walk, the walking
latency on the host side is expected to be much lower compared
to the GPUs. This is because of the high bandwidth of the host
page table walk and the fewer far faults that need to be handled
by the host page table walk. As a result, our approach significantly
reduces the page migration waiting latency as our approach only
needs to perform the host-side page table walk to determine the
GPUs with valid translations and register them in the IRMB of the
corresponding GPU without performing page table walks in the
GPU. We also want to emphasize that our approach does not affect
the page data migration time as our focus is address translation
invalidations. The figure only shows page migration waiting time
which does not include the page data migrating time.

7.2 Sensitive Study
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Figure 15: IDYLL with different IRMB size. The (x,y) on the
legend indicates (size of bases, size of offsets).

IRMB size: Recall that, in our configuration of IDYLL, the IRMB
is set to 32 different bases with 16 offsets per base. In this study, we
evaluate the performance impact with different IRMB configura-
tions. The (x,y) indicates (size of bases, size of offsets). As shown
in Figure 15, first, the performance improvement decreases as the
IRMB size reduces. When IRMB size is reduced to (16, 8), the average
performance improvement is 44.8% over the baseline, which is 25.1%
lower than the default sizes (i.e., 32 bases and 16 offsets). This is
because fewer invalidation requests can be kept with a small-sized
IRMB, which leads to frequent IRMB eviction, introducing more
contention to demand TLB miss requests. Second, when increasing
the IRMB size to (64, 16), the average performance improvement
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is 76.9%, which is 7% higher than the default size. Considering the
hardware overhead, we choose (32, 16) as our configuration.
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Figure 16: IDYLL with 16- and 32-threaded page table walk.
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Number of page table walk threads: We evaluate IDYLL un-
der different numbers of page table walk (PTW) threads in GMMU.
Figure 16 shows the performance results normalized to the baseline
execution with the same number of PTW threads. IDYLL achieves an
average of 60% and 43.3% performance improvements with 16 and 32
GMMU PTW threads, respectively. Thus, with more PTW threads,
the improvements remain significant with IDYLL, though the im-
provement slightly degrades as a large number of PTW threads
reduces the contention and performance penalty caused by invali-
dations on demand TLB miss requests.
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Figure 17: IDYLL with 2048-entry L2 TLB.
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L2 TLB sizes: We evaluate IDYLL under a larger GPU L2 TLB
size (2048 entries, 64-way, and 32-set). Figure 17 shows that IDYLL
achieves 61.4% performance improvement over the baseline using
2048-entry L2 TLB. Although a larger TLB size can keep more
translations into the TLB and reduce the number of page table
walks in the GMMU, the TLB shootdown caused by page migration
makes a large TLB much less helpful.
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Figure 18: IDYLL with 8 and 16 GPUs.
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Number of GPUs: We evaluate IDYLL in 8-GPU and 16-GPU
systems. Figure 18 plots the performances of IDYLL with 8 GPUs
and 16 GPUs normalized to the baselines with 8 GPUs and 16 GPUs.
The average performance improvement of 8-GPU and 16-GPU is
75.3% and 79.1%, respectively. One can make the following obser-
vations. First, the performance improvement increases with more
GPUs. Note that, for a fair comparison, we only increase the num-
ber of GPUs without changing the application’s input dataset sizes.
As a result, with more GPUs, the pages are more frequently shared
across GPUs, and more page migrations are triggered, introducing
more invalidation requests to each GPU. Our approach is effective
in handling these significant invalidations by batch processing and
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lazy updates. Second, the trend of performance gains becomes slow
as the number of GPUs increases. This is because, in our design,
we map several GPU access bits to a single bit of the host-side
PTE, which increases the false positive rate when sending invalida-
tion requests to GPUs. However, the Lazy Invalidation mechanism
still eliminates significant invalidation request interference to de-
mand TLB miss requests. In a nutshell, IDYLL delivers performance
improvements with more GPUs.
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Figure 19: IDYLL with 4 unused bits and varying GPU count.

Number of unused bits: We next evaluate IDYLL with fewer
unused bits (i.e., 4 unused bits). Figure 19 shows the performance
of IDYLL under 8, 16, and 32 GPUs, using 4 unused bits. The results
are normalized to the baseline execution with 8, 16, and 32 GPUs,
respectively. Although the increased hash false positives when em-
ploying less number of unused bits can result in more unnecessary
invalidation requests being sent to the GPU and potentially degrade
the benefits one can obtain from In-PTE Directory Invalidation,
our approach still achieves an average performance improvement
of 56.5%, 57.1%, and 70.1%, respectively. This is mainly due to the
effectiveness of Lazy Invalidation, which plays a significant role in
enhancing the IDYLL performance.
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Figure 20: IDYLL with 512 access counter threshold.

Access counter threshold: In our discussion so far, we use the
UVM default access counter threshold (256). We next evaluate the
impact of a larger access counter threshold on IDYLL. Figure 20
shows the performances of baseline and IDYLL with a threshold
of 512 (baseline-512 and IDYLL-512); the results are all normalized
to the original baseline (baseline-256). One can make the follow-
ing observations. First, IDYLL-512 outperforms baseline-512 by
30.0%. Second, this performance improvement is less than the im-
provement with a threshold of 256 (i.e., IDYLL-256 outperforms
baseline-256 by 69.9%). This is because a higher threshold reduces
the total number of page migrations, hence reducing the number
of invalidations, making the potential for improvement less in our
approach. However, we want to emphasize that having a larger ac-
cess counter threshold does not necessarily guarantee better overall
performance. Figure 20 also presents the baseline-512 performance
normalized to the baseline-256. One can observe that the perfor-
mance drops by 10% when using a threshold of 512. This is because
a larger threshold leads to an increased number of remote accesses,
exacerbating the NUMA overheads and causing a degradation in
overall performance.
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7.3 Adopting Large-sized Pages
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Figure 21: IDYLL with 2MB pages.

In this study, we evaluate how IDYLL works with a 2MB large
page. To sufficiently stress the virtual memory subsystem with 2MB
pages, we enlarge the input sizes for each application. Figure 21
shows the performance improvement of IDYLL with 2MB page size
normalized to the baseline execution with 2MB page size. The re-
sults indicate that IDYLL achieves an average of 36.3% performance
improvement. It is expected that the gains drop from 4KB page size
as the large page size increases TLB reach, page walk cache hit
rate, and reduces the page walk contention. However, our approach
remains effective, especially for those applications with substantial
page sharing (such as PR). This is because adopting a large page
size increases false sharing and still incurs a sizable amount of
invalidation requests in the system.

7.4 Compared to Page Replication
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Figure 22: IDYLL with page replication.

We next compare IDYLLwith page replication. Different from
access counter-based remote mapping, page replication allows the
page to be duplicated among GPUs so read accesses do not re-
quire page migration. It consumes more physical memory space
but avoids NUMA overheads as in access counter-based remote
mapping. Figure 22 shows the performance of IDYLL normalized
to the page replication. IDYLL achieves an average of 25.0% perfor-
mance improvement. Comparing the results with the performance
of access counter-based page migration in Figure 11, the improve-
ment is less, especially for PR, ST, and SC. This is because these
applications are read-intensive applications and the invalidation
requests are significantly reduced, which makes less room for op-
timization. However, when a GPU performs a write/modification
operation, the page replication approach coalesces all replications
into a single page and each GPU needs to perform a page table walk
to invalidate the corresponding PTE. Therefore, for write-intensive
applications such as IM and C2D, our approach still significantly out-
performs page replication. Note that, we do not simulate the over-
subscription in this comparison experiment. Thus, with substantial
sharing among multiple GPUs, page replication is not scalable and
may decrease the overall performance.
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Figure 23: Comparison to Trans-FW [40].

7.5 Compared to State-of-the-art

We compare IDYLL with the state-of-the-art Trans-FW [40]. The
Trans-FW expedites the far faults by leveraging the valid translation
information residing in remote GPU’s page tables. It implements
false-positive hardware structures to perform remote lookups. For
a fair comparison, we reduce the hardware overhead of Trans-FW
to 720 bytes with 443 fingerprints in PRT (original 813 bytes with
500 fingerprints) to match our IRMB design hardware overhead. All
other configuration parameters are kept the same as in Trans-FW.
Figure 23 shows the performance of Trans-FW, IDYLL, and Trans-
FW+IDYLL normalized to the baseline execution. One can make
the following observations. First, Trans-FW achieves an average of
30% performance improvement over the baseline, and IDYLL out-
performs Trans-FW by an average of 39.9% (69.9% — 30%). This
is because Trans-FW does not optimize the invalidation requests,
which is one of the major performance factors in multi-GPU ex-
ecutions. Second, our approach can be combined with Trans-FW
to further improve the address translation efficiency. Specifically,
IDYLL+Trans-FW achieves an average of 86.3% performance im-
provement over the baseline. This is because most unnecessary page
table walks in the GMMU are reduced when combined IDYLL and
Trans-FW, and the contention of page table walk threads in GMMU
is further mitigated. Note that, Trans-FW and IDYLL are not com-
pletely orthogonal, this is because in our approach, we also bypass
a fraction of unnecessary page table walks when requests hit IRMB.

7.6 DNN workloads
We also evaluate IDYLL with

0 1.2

E 5 1.0 real DNN workloads, VGG16 and
E E 0.8 ResNet18. The layers of the DNN
2806 workloads are parallelized across

VEC18  Reshertd multiple GPUs [39]. We use Tiny-

Figure 24: IDYLL with Imagenet-200 [36], which contains
DNN workloads. 100,000 images of 200 classes, and
each class consists of 500 training images, 50 validation images, and
50 test images. We do not use large datasets as the simulation time
is too long (over months) on large datasets. As shown in Figure 24,
IDYLL achieves a performance improvement of 15.9% and 12.0%
on VGG16 and ResNet18, respectively. As the computation of each
layer requires the use of the weights stored on each GPU, such
substantial weight sharing causes page migrations and PTE invali-
dations, bringing the potential for performance improvement to our
approach. The results demonstrate that the proposed IDYLL works
with real-world multi-GPU workloads.

8 RELATED WORK

TLB Optimizations: Substantial prior works have focused on TLB
optimizations, including software TLB optimizations [5, 12, 19, 34,
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35, 77], and hardware optimizations [7, 38, 59, 60, 66, 75, 78, 80]. Li
et ai. [41] proposed least-TLB design which leverages translation
sharing and spilling to reduce TLB redundancy and improve the
performance of multi-application execution. Mazumdar et al. [45]
proposed a storage-efficient dead block predictor in the last level
TLB to improve TLB hit rate. Shahar et al. [64] implemented a soft-
ware address translation mechanism to build memory-mapped files
on GPUs. Compared to TLB optimizations, our approach focuses
on reducing the contention of page table walk resources caused by
invalidation requests, which is orthogonal or complementary to
the TLB optimizations.

Page Table Walk Optimizations: Techniques to accelerate the
page table walk have been explored extensively, including opti-
mizations of MMU cache, page migration, and prefetching [8, 29,
43, 44, 52, 55, 65]. Achermann et al. [1] proposed to reduce the
NUMA effects of page walks by replicating and migrating page
tables. Pratheek et al. [61] introduced a dynamic page walk steal-
ing, which restricts uncontrolled interference in page walks for
multi-tenancy. However, none of these efforts considered the per-
formance impact of invalidation page table walks introduced by
page migrations. In our work, we reveal the significant bottlenecks
caused by invalidation requests. We propose a software-hardware
co-design to effectively eliminate the performance burdens.
NUMA Optimizations: Non-Uniform Memory Access (NUMA)
systems arise as computing becomes more and more heterogeneous
across multiple processors within a single system [15, 17]. In order
to optimize NUMA systems, prior works [10, 13, 22, 32, 46, 76, 81]
have focused on improving the performance of multi-GPU scenar-
ios. Besides, Multi-Chip Module (MCM) designs have emerged to
cope with the growing demand for computing capabilities with
small chiplets. Arunkumar et al. [6] proposed MCM-GPU, which
takes advantage of preserving locality by allocating threads close
to the data. Pratheek et al. [62] proposed MCM-aware GPU virtual
memory to improve the performance over shared TLB. These works
focused on page migration optimizations to reduce remote data
access, while no one has looked at the address translation issues
caused by page migration.

9 CONCLUSION

This paper analyzes the impact of page table invalidations on the
performance of address translation in multi-GPU systems. Our
investigation reveals that page table invalidation requests signif-
icantly increase the demand TLB miss request latency and page
migration waiting latency. To address this problem, we propose
IDYLL that employs an In-PTE Directory Invalidation mechanism
to reduce unnecessary invalidations sent to the GPU, and a Lazy
Invalidation that batches invalidations and lazy updates them to the
GPU local page table. Experimental results show that the IDYLL im-
proves performance by 69.9% on average.
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