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BRAID GROUP ACTION AND QUASI-SPLIT AFFINE

ıQUANTUM GROUPS I

MING LU, WEIQIANG WANG, AND WEINAN ZHANG

Abstract. This is the first of our papers on quasi-split affine quantum sym-

metric pairs
(
Ũ(ĝ), Ũı

)
, focusing on the real rank one case, i.e., g = sl3

equipped with a diagram involution. We construct explicitly a relative braid

group action of type A
(2)
2 on the affine ıquantum group Ũ

ı. Real and imag-

inary root vectors for Ũ
ı are constructed, and a Drinfeld type presentation

of Ũı is then established. This provides a new basic ingredient for the Drin-
feld type presentation of higher rank quasi-split affine ıquantum groups in the
sequels.
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1. Introduction

1.1. Background. Besides the Drinfeld-Jimbo presentation, affine quantum groups
admit a second presentation due to Drinfeld [Dr87,Dr88,Da93,Be94,Da15], which
is a remarkable quantum analog of the current presentation of affine Lie algebras.
The Drinfeld (current) presentation has played a fundamental role in representation
theory and mathematical physics; cf., e.g., [CP91,FR99,FM01], and see the survey
[CH10] for extensive references.

The ıquantum groups Uı arising from quantum symmetric pairs (U,Uı) associ-
ated to Satake diagrams [Let99] (see [Ko14]) can be viewed as a vast generalization
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of Drinfeld-Jimbo quantum groups associated to Dynkin diagrams; see the survey
[W22] and references therein. In this paper, we shall work with universal ıquantum

groups (Ũ, Ũı) following [LW22a,WZ22], where Ũ is the Drinfeld double quantum
group, as this allows us to formulate the relative braid group action conceptually.

Just as the quantum group U is obtained by Ũ by a central reduction, a central re-
duction from universal ıquantum groups recovers ıquantum groups with parameters
[Let02,Ko14].

In [LW21a], two authors of this paper obtained a Drinfeld type presentation for
affine ıquantum groups of split ADE type; here “split” means that the underlying
Satake diagram contains only white nodes and a trivial diagram involution, and this
class of algebras appeared in [BB10] in connection to boundary affine Toda field
theories. Subsequently, the third author streamlined some of the main arguments
in the split ADE type and succeeded in generalizing to the split BCFG type [Z22].

The affine ıquantum group of split rank one is also known as the q-Onsager
algebra in the mathematics and physics literature; cf. [T18,BB10] and references
therein. The real and imaginary root vectors for q-Onsager algebra were first con-
structed and their commutator relations in a somewhat tedious form were also
obtained in [BK20]. These relations were transformed and upgraded in [LW21a]
into a Drinfeld type relation for the (universal) q-Onsager algebra. These construc-
tions on q-Onsager algebra were instrumental for the Drinfeld presentation of split
affine ıquantum groups of higher rank.

1.2. Goal. In this paper and its sequels, we shall construct the Drinfeld type pre-
sentations of quasi-split affine ıquantum groups, where the Satake diagrams are of

affine types Ân, D̂n, Ê6 with nontrivial diagram involutions fixing the affine simple
root. This class of ıquantum groups contains 3 distinct affine ıquantum groups of
real rank one:

(i) Drinfeld-Jimbo quantum group Ũ(ŝl2);

(ii) q-Onsager algebra Ũı(ŝl2);

(iii) the ıquantum group Ũı(ŝl3, τ ) associated to the Satake diagram (I, τ ) in

(2.3), where τ is the involution on I = {0, 1, 2} of affine type Â2

τ : I −→ I, τ (0) = 0, 1
τ

←→ 2.

The goal of this paper is to give a Drinfeld type presentation for Ũı(ŝl3, τ ), the
case (iii) in the above list of 3 affine rank one types. Toward this goal, we shall also

establish the relative braid group action of twisted affine type A
(2)
2 on Ũı(ŝl3, τ ),

which is another main result of this paper. The constructions in this paper (as
well as the known Drinfeld presentations in Cases (i)–(ii)) will play a basic role in
the sequels, in which a Drinfeld type presentation for arbitrary quasi-split affine
ıquantum groups will be established.

The Drinfeld type presentations of affine ıquantum groups are expected to play a
foundational role in their representation theory, to which we shall return elsewhere.
They may have additional applications to quantum integrable systems (such as
XXZ spin chain, Sine-Gordon and Liouville field theories), cf. [BK05].

1.3. Features of new affine rank one. There are several reasons why the algebra

Ũı(ŝl3, τ ) is substantially more involved than the other 2 affine rank one types and
deserves a separate new investigation.
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While Ũı(ŝl3, τ ) is viewed as a new case (iii) of affine real rank one (a building
block which cannot be further reduced), it is a subalgebra of the quantum group

Ũ(ŝl3) and behaves with complexity of affine rank two, in contrast to Cases (i)–(ii).

As we shall see, the Drinfeld presentation of Ũı(ŝl3, τ ) requires 2 infinite series of

real (respectively, imaginary) roots and Serre relations, and moreover, Ũı(ŝl3, τ )

admits a braid group action of twisted affine type A
(2)
2 .

To construct Drinfeld presentations of all affine quantum groups including twisted

types, besides the usual type Â1, one needs to treat the twisted affine rank one type

A
(2)
2 separately; see [Da00,Da15]. In the study of geometry of twisted affine Grass-

mannians, there are two special parahoric groups for A
(2)
2r , one of which (known

as absolutely special or hyperspecial) requires a separate treatment. The quasi-split

affine ıquantum groups of type Ân with nontrivial diagram involution (which is

Ũı(ŝl3, τ ) if n = 2) has been realized geometrically in [FLLLW], and its ıcanonical
basis admits favorable positivity properties (compare [Lus93]).

The ıHall algebra constructions based on ıquivers or ıweighted projective lines
(cf. [LW22a, LR21]) can be used to realize all affine quasi-split ıquantum groups

except Â2r with nontrivial diagram involution. The simplest affine case not covered

by the current ıHall algebra approach is exactly Ũı(ŝl3, τ ). So unlike the split ADE
types [LW21b,LRW23,LR21], we do not have access to a Hall algebra construction

to gain insights into the Drinfeld type presentation for Ũı(ŝl3, τ ).

We shall denote Ũı(ŝl3, τ ) by Ũı in the remainder of this paper.

1.4. Relative braid group symmetries. The algebra Ũı is generated by Bi,Ki,
for i ∈ I = {0, 1, 2}, subject to Serre type relations (2.4)–(2.8). The relative root

system for (Ũ, Ũı), which contains 2 simple roots α0,α1, is of twisted affine type

A
(2)
2 . Very recently, two of the authors in [WZ22] constructed relative braid group

symmetries on Ũı of arbitrary finite type, confirming a longstanding conjecture of
Kolb-Pellegrini [KP11] and generalizing braid group symmetries on quantum groups

[Lus93]. It is natural to hope for automorphisms T0,T1 on Ũı which generate a

relative braid group action of type A
(2)
2 .

The automorphisms T0 and T−1
0 with respect to the simple root α0 are not

difficult to construct; see Proposition 2.5. Actually, the general constructions of
relative braid group symmetries in [WZ22] can be applied to cover this case (even

though our Ũı is not of finite type), and the formulas for the actions on generators

of Ũı essentially arise from finite type considerations (compare [KP11,LW21a]).
In contrast, the automorphisms T1 and T−1

1 with respect to α1 are difficult to
establish.

Theorem A (Theorems 2.7–2.8). There exists a Q(v)-algebra automorphism T1

on Ũı such that

T1(K1) = v−1K−1
2 , T1(K2) = v−1K−1

1 , T1(K0) = v2K0K
2
1K

2
2,

T1(B1) = −v−2B1K
−1
2 , T1(B2) = −v−2B2K

−1
1 ,

T1(B0) = v
[[
[B0, B1]v, B2

]
, [B2, B1]v

]
−
[
B0, [B2, B1]v3

]
K1 + vB0K1K2.
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The inverse automorphism T−1
1 is given by

T−1
1 (K1) = v−1K−1

2 , T−1
1 (K2) = v−1K−1

1 , T−1
1 (K0) = v2K0K

2
1K

2
2,

T−1
1 (B1) = −vB1K

−1
1 , T−1

1 (B2) = −vB2K
−1
2 ,

T−1
1 (B0) = v

[
[B1, B2]v,

[
B2, [B1, B0]v

]]
−
[
[B1, B2]v3 , B0

]
K2 + vB0K1K2.

Moreover, T1 and T−1
1 are related by the στ -conjugation: T−1

1 = στ ◦T1 ◦στ . (For
the anti-involution στ , see Lemma 2.4.)

Let us discuss the obstacles about T1. One has to guess the explicit formulas for

the action ofT1 on generators of Ũı, and then to show it is indeed an automorphism.

The action of T1 on most generators of Ũı can be formulated without much trouble,
except T1(B0). Earlier on we guessed a formula for T1(B0) (as a polynomial in
Bi of degree 5), based on the internal consistency and desired properties of root

vectors. (Recall [Lus93] a particular braid group operator formula of type A
(2)
2 is

of degree 5 when the relevant Cartan integer is −4.) However, in contrast to the
q-Onsager algebra case as done in [BK20] (see also [T18]), it turned out to be too

difficult for a (super) computer to verify that T1 is an automorphism of Ũı (e.g.,

that the Serre relations for Ũı is preserved by T1).
The conceptual and general approach toward relative braid group action on

ıquantum groups developed in [WZ22] is conjectured to be valid for Kac-Moody
type. One advantage of this approach is a built-in mechanism for proving T1 is an

automorphism of Ũı. We follow the strategy loc. cit. to define T1 via a certain

rescaled braid operator on the Drinfeld double Ũ and the quasi K-matrix of type
AIII2 [BW18] (with an explicit formula given in [DK19]). Accordingly, we obtain
formulas for T1 on B1, B2 and Ki, for i ∈ I. It takes substantial computations
however to make this approach work to produce a neat closed formula for T1(B0)

in Theorem A (which in particular asserts that T1(B0) ∈ Ũı). This in particular

verifies [WZ22, Conjecture 5.13] (formulated for Ũı of Kac-Moody type) in the first
new case beyond finite types.

1.5. Drinfeld type presentation of Ũı. Using the “translation” braid group
operator

Tω := T0T1,

we define the real root vectors Bi,k in (4.3), for i ∈ {1, 2} and k ∈ Z (cf. [Da93,
BK20]). On the other hand, we define inductively in (4.6)–(4.8) the imaginary
v-root vectors Θi,m via commutators between real root vectors, for i ∈ {1, 2} and
m ≥ 1. The definition of Θi,m is by no means obvious; see Remark 4.1. Sometimes,
it is more convenient to work with a new set of imaginary root vectors Hi,m; see
(5.8) for its relation to Θi,m.

The Drinfeld type presentation of Ũı is built on the real and imaginary root
vectors; compare [LW21b,Z22] in split affine types for similarities and differences.
These earlier works (and also [BK20]) help us to formulate the relations in Theo-
rem B. However, the proof of this theorem remains challenging due to the affine

rank two complexity of Ũı. We shall need some notations in order to formulate
Theorem B. We shall denote [A,B]va = AB − vaBA. The shorthand notion
S(k1, k2 | l; i) is defined in (5.1) while the definition of the symmetrization Symk1,k2

can be found in §5.1.
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Theorem B (Definition 5.1, Theorem 5.5). The Q(v)-algebra Ũı has a presentation
with generators Bi,l, Hi,m, K±1

i , C±1, where i ∈ {1, 2}, l ∈ Z and m ∈ Z≥1, subject
to the following relations: for m,n ≥ 1, k1, k2, k, l ∈ Z, and i, j ∈ {1, 2},

C is central, KiKj = KjKi, KiHj,m = Hj,mKi, KiBj,l = vcτi,j−cijBj,lKi,

(1.1)

[Hi,m, Hj,n] = 0,

(1.2)

[Hi,m, Bj,l] =
[mcij ]

m
Bj,l+m −

[mcτi,j ]

m
Bj,l−mCm,

(1.3)

[Bi,k, Bi,l+1]v−2 − v−2[Bi,k+1, Bi,l]v2 = 0,

(1.4)

[Bi,k, Bτi,l+1]v − v[Bi,k+1, Bτi,l]v−1 = −Θτi,l−k+1C
kKi + vΘτi,l−k−1C

k+1Ki

−Θi,k−l+1C
lKτi + vΘi,k−l−1C

l+1Kτi,

(1.5)

S(k1, k2 | l; i)

(1.6)

= [2] Symk1,k2

∑

p≥0

v2p
[
Θτi,l−k2−pKi − vΘτi,l−k2−p−2CKi, Bi,k1−p

]
v−4p−1C

k2+p

+v[2] Symk1,k2

∑

p≥0

v2p
[
Bi,k1+p+1,Θi,k2−l−p+1Kτi − vΘi,k2−l−p−1CKτi

]
v−4p−3C

l−1.

If we set all the summands involving C to zero in the above relations, the above

presentation is essentially reduced to the Drinfeld presentation for half of Ũ(sl3).
Theorem B admits a generating function reformulation in terms of Bi(z), Θi(z),
Hi(z) (i = 1, 2) and Δ(z) from (5.9); see Theorem 5.7.

Denoting by DrŨı the Q(v)-algebra with generators and relations given in The-

orem B, we are reduced to establish an algebra isomorphism Φ : DrŨı −→ Ũı,

which matches generators in the same notations (for Ũı they stand for the root
vectors). Assume that Φ is a homomorphism for now. One shows that Φ is sur-

jective by checking all generators of Ũı lie in the image of Φ. The ıquantum

group Ũı is a filtered algebra with its associated graded algebra isomorphic to
U− ⊗ Q(v)[K±1

i | i ∈ I]; see Proposition 2.1. The injectivity of Φ is then reduced
by some filtration arguments to the corresponding isomorphism for the Drinfeld

presentation of ŝl3.
It remains to show that Φ is a homomorphism, which is the most involved part

of the proof, i.e., to verify all the relations stated in Theorem B are satisfied by

the root vectors in Ũı. As explained in §6.1, the overall strategy of the verification
of the relations is an inductive argument which goes like a big spiral. The earlier

approaches in [Da93,BK20] for affine quantum group Ũ(ŝl2) and q-Onsager algebra

Ũı(ŝl2) have provided us a helpful roadmap but we have to deal with additional
complexity of affine rank two. It is worth noting that some crucial proofs here follow
more closely the approach in [Z22] (instead of [LW21b]), especially in establishing
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the relation (1.3) and the Serre relation (1.6). Along the way, we establish the Tω-
invariance of Θi,n below, which is intimately related to the commutativity among
Θi,n, for all i = 1, 2 and n ≥ 1.

Theorem C (Theorem 6.17). We have

Tω(Θi,n) = Θi,n, for all n ≥ 1 and i = 1, 2.

1.6. The organization. The paper is organized as follows. In Section 2, we for-

mulate the algebra Ũı and some basic properties. We then formulate the relative

braid group symmetries T±1
0 and T±1

1 on Ũı. The detailed proof of Theorem A
regarding T±1

1 is given in Section 3. Some additional technical computations for
an identity used in the proof of Theorem A can be found in Appendix A.1.

In Section 4, we construct the real and imaginary v-root vectors for Ũı. We
further identify the classical limits as v � 1 of these v-root vectors and their
Drinfeld type relations.

In Section 5, we formulate the Drinfeld type presentation for Ũı, and prove
Theorem B except the verification of the relations. The lengthy proofs of the
relations are given in Section 6. Theorem C is proved along the way.

2. Relative braid group action

2.1. Quantum groups. Let I = {0, 1, 2} and (cij)i,j∈I be the Cartan matrix of

affine type Â2. Let g := sl3 be the simple Lie algebra of type A2 corresponding to

I0 = {1, 2}, and ĝ be the affine Lie algebra of affine type A
(1)
2 . Let {αi | i ∈ I} be

the simple roots of the affine Lie algebra ĝ, and

δ = α0 + α1 + α2

be the basic imaginary root. Let ZI :=
⊕

i∈I
Zαi be the root lattice with a sym-

metric bilinear form

(·, ·) : ZI× ZI −→ Z, (αi, αj) = cij .(2.1)

Let W be the affine Weyl group of type Â2. Let P = Zω1 ⊕ Zω2 be the weight

lattice for g where ωi, i = 1, 2 are the fundamental weights. Let Ŵ := S3 � P be
the extended affine Weyl group, where S3 denotes the symmetric group of 3 letters.

Let v be the quantum parameter. For n ∈ Z, r ∈ N, denote the quantum binomial
coefficients by

[n] =
vn − v−n

v − v−1
, [r]! = [r]!v =

r∏

i=1

[i]v,

[
n
r

]
=

[n][n− 1] . . . [n− r + 1]

[r]!
.

For A,B in a Q(v)-algebra, we shall denote [A,B]va = AB−vaBA, and [A,B] =

AB − BA. The Drinfeld double quantum group Ũ = Ũ(ĝ) is generated by
Ei, Fi,K

±1
i ,K ′±1

i , for i ∈ I, subject to the relations KiKj = KjKi,K
′
iK

′
j

= K ′
jK

′
i,KiK

′
j = K ′

jKi, KiEj = vcijEjKi,KiFj = v−cijFjKi, K
′
iEj = v−cijEjK

′
i,

K ′
iFj = vcijFjK

′
i, and standard quantum Serre relations. Note that KiK

′
i are cen-

tral in Ũ. The Drinfeld-Jimbo quantum group U = U(ĝ) is recovered from Ũ by a
central reduction:

U = Ũ/〈KiK
′
i − 1 | i ∈ I〉.

Let Br(W ) is the braid group associated to W :

Br(W ) = 〈s0, s1, s2 | sisjsi = sjsisj , ∀i �= j ∈ I〉.
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Let Ti (i ∈ I) be the braid group automorphism on Ũ defined by (see [LW22b])

Ti(Ki) = K−1
i , Ti(Kj) = KiKj , Ti(Ei) = −FiKi, Ti(Fi) = −K ′

iEi,

Ti(K
′
i) = (K ′

i)
−1, Ti(K

′
j) = K ′

iK
′
j , Ti(Ej) = [Ei, Ej ]v−1 , Ti(Fj) = [Fj , Fi]v,

for 0 ≤ i �= j ≤ 2. These formulas (by setting K ′
i = K−1

i ) recover Lusztig’s braid
group action on U [Lus93].

We also have

(2.2) Tω1
= �T2T1, Tω2

= �
−1T1T2

where � is the diagram automorphism given by �(0) = 1,�(1) = 2,�(2) = 0.

2.2. The ıquantum group. Let τ be the following diagram automorphism given
by swapping vertices 1 and 2 while fixing 0:

(2.3)

1 2

�
�
��

�
�
��

0

�� τ

Recall I = {0, 1, 2}. Let Ũı := Ũı(ĝ) be the universal quasi-split ıquantum group
associated to the Satake diagram (2.3) (with all nodes white); see [LW22a,CLW21]

(also cf. [Let99,Ko14]). By definition, Ũı is generated by Bi,Ki (i ∈ I), where Ki

are invertible, subject to the following relations:

KiKj = KjKi, KiBj = vcτi,j−cijBjKi (i, j ∈ I),(2.4)

B2B
2
1 − [2]B1B2B1 +B2

1B2 = −[2](vK1B1 + vB1K2),(2.5)

B1B
2
2 − [2]B2B1B2 +B2

2B1 = −[2](vK2B2 + vB2K1),(2.6)

B0B
2
i − [2]BiB0Bi +B2

i B0 = 0 (i = 1, 2),(2.7)

BiB
2
0 − [2]B0BiB0 +B2

0Bi = −v−1K0Bi (i = 1, 2).(2.8)

Note that K0 is central. It helps to make (2.4), say for i = 1, explicit (the relations
remain valid up to a swap of indices 1 ↔ 2):

K1B1 = v−3B1K1, K1B2 = v3B2K1, K1B0 = B0K1.(2.9)

There are some flexibility on scaling on the generators Ki; our convention on Ki

and relations (2.4)–(2.8) gives us an embedding ı : Ũı −→ Ũ (compare [LW22a,
§6.1]) by letting

Bi �→ Fi + EτiK
′
i, K0 �→ −v2K0K

′
0, Kj �→ KjK

′
τj , ∀i ∈ I, j �= 0.(2.10)

We often identify Ũı with a subalgebra of Ũ through the embedding ı, and then
identify Bi = Fi + EτiK

′
i, and so on.

For μ =
∑

i∈I
aiαi ∈ ZI, define Kμ =

∏
i∈I

K
ai

i and

Kδ = K0K1K2.

The algebra Ũı is endowed with a filtered algebra structure

Ũı,0 ⊂ Ũı,1 ⊂ · · · ⊂ Ũı,m ⊂ · · ·(2.11)
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by setting

Ũı,m = Q(v)-span{Bi1Bi2 . . . BisKμ | μ ∈ ZI, i1, . . . , is ∈ I, s ≤ m}.(2.12)

Note that

Ũı,0 =
⊕

μ∈NI

Q(v)Kμ,(2.13)

is the Q(v)-subalgebra generated by Ki for i ∈ I. The following is a Ũı-variant of
a basic result of Letzter and Kolb on quantum symmetric pairs (U,Uı).

Proposition 2.1 (Cf. [Let02, Ko14]). The associated graded algebra gr Ũı with
respect to (2.11)–(2.12) admits the following identification:

gr Ũı ∼= U− ⊗Q(v)[K±1
i | i ∈ I],

Bi �→ Fi, Ki �→ Ki (i ∈ I).
(2.14)

Lemma 2.2. The Q(v)-algebra Ũı is ZI-graded by

deg(Bi) = αi, deg(Ki) = αi + ατi, for i ∈ I.(2.15)

For any γ ∈ ZI, we denote by Ũı
γ the homogeneous subspace of degree γ, and

then

Ũı =
⊕

γ∈ZI

Ũı
γ .(2.16)

Recall the bilinear form (·, ·) on ZI.

Lemma 2.3. We have

KiX = v−(αi−ατi,γ)XKi,

for i ∈ I and X ∈ Ũı
γ (γ ∈ NI). In particular, we have KiX = XKi, for X ∈ Ũı

kδ

(k ∈ Z).

Proof. We first observe from (2.4) that KiX = v−(αi−ατi,deg(X))XKi, for all gener-
ators X = Kj , Bj . The formula for general X follows. The special case follows by
(·, δ) = 0. �

The diagram involution τ gives rise to an involution τ̂ on the algebra Ũı:

τ̂ (Bi) = Bτi, τ̂ (Ki) = Kτi, ∀i = 0, 1, 2.(2.17)

Lemma 2.4 follows by inspection of the defining relations of Ũı.

Lemma 2.4. There exists a Q(v)-algebra anti-involution στ : Ũı → Ũı such that

στ (Bi) = Bi, στ (Ki) = Kτi, ∀i ∈ I.

2.3. Relative braid group operators T±1
0 . Set

α0 := α0, α1 := (α1 + α2)/2.

The relative root system with simple roots {α0,α1} is of twisted affine type A
(2)
2 :

◦ ◦
10
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Let Br(W, τ ) = 〈r0, r1〉 be the free group of two generators, which can be re-

garded as the braid group associated to the Weyl group of twisted affine type A
(2)
2 .

We have a group embedding

Br(W, τ ) → Br(W )

r0 �→ s0, r1 �→ s1s2s1.

The diagram involution τ induces an involution on Br(W ), si �→ sτi for all i.
Then we can identify Br(W, τ ) with the τ -fixed subgroup Br(W )τ via the above
embedding.

Following the proposal [KP11] as established in [WZ22] for ıquantum groups

of finite types, one expects a relative braid group action of Br(W, τ ) on Ũı. Our
first main goal is to construct the braid group operators T0,T1 (and respectively,
T−1

0 ,T−1
1 ) explicitly corresponding to r0, r1. We start with the easier one T±1

0 . The
formulas for the braid operator T±1

0 essentially coincide with the ones appearing in
finite type; cf. [KP11,LW21a].

Proposition 2.5 ([WZ22]). There exists a Q(v)-algebra automorphism T0 : Ũı →

Ũı such that

T0(Kγ) = Ks0γ , T0(B0) = B0K
−1
0 , T0(Bi) �→ [Bi, B0]v,(2.18)

for γ ∈ NI, and i = 1, 2. Its inverse is given by

T−1
0 (Kγ) = Ks0γ , T−1

0 (B0) = B0K
−1
0 , T−1

0 (Bi) = [B0, Bi]v.(2.19)

Moreover,

T−1
0 = στT0στ .(2.20)

Proof. The formulation of T0 and its proof are covered by the constructions in
[WZ22] (see Remark 5.8 therein), even though the formulation loc. cit. is focused
on finite types. �

2.4. Relative braid group operators T±1
1 . Formulating and establishing the

braid group operator T1 on Ũı turns out to require a significant amount of new
work. We caution that the process of formulating T1 in this subsection involves
some extension of the field Q(v), but the final formulas for the action of T1 on

generators of Ũı are valid over Q(v).
Recall the Satake diagram of quasi-split affine A2 type (2.3). Setting ς� =

−v−1/2, we denote by Ψ� the scaling automorphism on Ũ defined by

Ψ� :Ũ −→ Ũ, Ki �→ ς
1/2
� Ki, K ′

i �→ ς
1/2
� K ′

i, Ei �→ ς
1/2
� Ei, Fi �→ Fi.

Following [WZ22, §2.3], we define the rescaled braid group operators on Ũ as
follows:

T̃j := Ψ−1
� ◦ Tj ◦Ψ� (j ∈ {1, 2}),

T̃−1
r1

:= T̃−1
1 T̃−1

2 T̃−1
1 = T̃−1

2 T̃−1
1 T̃−1

2 .
(2.21)

(The scaling looks a little different from loc. cit., but leads to the same T̃j .)

Let Υ̃1 be the quasi K-matrix for the universal quantum symmetric pair asso-
ciated to the rank one Satake subdiagram ({1, 2}, τ ); cf. [BW18]. The following
formula is due to [DK19] (who works in the setting of ıquantum groups with pa-
rameters).
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Lemma 2.6 ([DK19]). We have

Υ̃1 =

( ∑

m≥0

v−m(m−1)/2(−1)m

[m]!
[E1, E2]

m
v−1

)( ∑

m≥0

v−m(m−1)/2(−1)m

[m]!
[E2, E1]

m
v−1

)
.

(2.22)

Theorem 2.7 is an affine analogue of [WZ22, Theorem B], where we treat T−1
1

as a symbol for now.

Theorem 2.7. There exists an automorphism T−1
1 of Ũı such that

(2.23) T−1
1 (x) · Υ̃1 = Υ̃1 · T̃

−1
r1

(x), for all x ∈ Ũı.

More explicitly, the action of T−1
1 is given by

T−1
1 (K1) = v−1K−1

2 , T−1
1 (K2) = v−1K−1

1 , T−1
1 (K0) = v2K0K

2
1K

2
2,(2.24)

T−1
1 (B1) = −vB1K

−1
1 , T−1

1 (B2) = −vB2K
−1
2 ,(2.25)

T−1
1 (B0) = v

[
[B1, B2]v,

[
B2, [B1, B0]v

]]
−
[
[B1, B2]v3 , B0

]
K2 + vB0K1K2.(2.26)

The proof of Theorem 2.7 is highly nontrivial and lengthy; it will occupy Sec-
tion 3.

Theorem 2.8. There exists a Q(v)-algebra automorphism T1 : Ũı → Ũı such that

T1(K1) = v−1K−1
2 , T1(K2) = v−1K−1

1 , T1(K0) = v2K0K
2
1K

2
2,(2.27)

T1(B1) = −v−2B1K
−1
2 , T1(B2) = −v−2B2K

−1
1 ,(2.28)

T1(B0) = v
[[
[B0, B1]v, B2

]
, [B2, B1]v

]
−
[
B0, [B2, B1]v3

]
K1 + vB0K1K2.(2.29)

Moreover, T−1
1 and T1 are mutual inverses, and

T−1
1 = στT1στ .(2.30)

Proof. Just as the automorphismT−1
1 is defined by the intertwining property (2.23),

the automorphism T1 can be characterized by the following intertwining property
(cf. [WZ22, Theorem 6.1]):

(2.31) T1(x) · T̃r1
(Υ̃−1

1 ) = T̃r1
(Υ̃−1

1 ) · T̃r1
(x), for all x ∈ Ũı.

The formulas (2.27)–(2.28) were already established in [WZ22, Proposition 6.2-6.3],
which are valid over Kac-Moody setting. The proof of the formula (2.29) is a version
of the proof for T−1

1 given in Section 3, and will be omitted.
The proof that T−1

1 and T1 are mutual inverses is the same as for [WZ22,
Theorem 6.7]; it formally boils down to the uniqueness of the intertwining properties
(2.23) and (2.31).

The identity (2.30) follows by comparing the formulas (2.24)–(2.26) and (2.27)–
(2.29) and using Lemma 2.4. �

Lemma 2.9. We have

T−1
1 (B0) =

[
B2,

[
[B1, B2]v, [B1, B0]v

]
v

]
v
− v

[
B2, [B1, B0]v3

]
v−2K2

−
[
B1, [B2, B0]v

]
v2K2 − v−1[2]

[
B2, [B1, B0]v

]
v4K1 + vB0K1K2.(2.32)

T1(B0) =
[[
[B0, B1]v, [B2, B1]v

]
v
, B2

]
v
− v

[
[B0, B1]v3 , B2

]
v−2K1

−
[
[B0, B2]v, B1

]
v2K1 − v−1[2]

[
[B0, B1]v, B2

]
v4K2 + vB0K1K2.(2.33)
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Proof. We shall verify the formula (2.32). Indeed, we have
[
B2,

[
[B1, B2]v, [B1, B0]v

]
v

]
v

= v
[
[B1, B2]v,

[
B2, [B1, B0]v

]]
− v

[
[B1, B0]v,

[
B2, [B1, B2]v

]
v

]
v−1

= v
[
[B1, B2]v,

[
B2, [B1, B0]v

]]
− v

[
[B1, B0]v, [2](v

−1B2K2 + v2B2K1)
]
v−1

= v
[
[B1, B2]v,

[
B2, [B1, B0]v

]]
+ v2[2]

[
B2, [B1, B0]v

]
v−2K2

+ v−1[2]
[
B2, [B1, B0]v

]
v4K1.

The formula (2.33) follows by (2.32) by applying the anti-involution στ and (2.30).
�

Remark 2.10. If one is willing to work over an extension field Q(v
1
2 ), it is possible

to use variants of K1,K2 rescaled by v
1
2 to make the formulas for the action of

T±1
1 on Kj , for j ∈ I, look simpler (namely, removing the v-powers in the formulas

(2.24) and (2.27)). To achieve the same effect, another option is to rescale only Ki

by a factor v, for a fixed i ∈ {1, 2} (however, there is a broken symmetry between
recaled K1,K2).

3. Proof of Theorem 2.7

In this section, we shall prove Theorem 2.7 on the relative braid group operator
T−1

1 . The proof follows the basic strategy developed in [WZ22], but the execution
requires additional technical long computations.

3.1. Steps for proof of Theorem 2.7. Let us rephrase Theorem 2.7 to facilitate
the discussion of the strategy of its proof.

(S1) For any x ∈ Ũı, there exists a unique element x′ ∈ Ũı such that x′ · Υ̃1 =

Υ̃1 · T̃
−1
r1

(x).

(S2) Sending x �→ x′ defines an injective homomorphism of Ũı, denoted by T−1
1 .

(S3) The formulas for T−1
1 (x), with x = Ki (i ∈ I), x = Bi (i = 1, 2), and x = B0

are given by (2.24), (2.25), and (2.26), respectively. That is, the identity

T−1
1 (x) · Υ̃1 = Υ̃1 · T̃

−1
r1

(x) holds, for each generator x ∈ {Ki, Bi|i ∈ I} of

Ũı.
(S4) T−1

1 is surjective (and hence an automorphism of Ũı).

Statement (S2) follows clearly from (S1) and the invertibility of Υ̃1. Since T̃−1
r1

is an automorphism, if Υ̃1 · T̃
−1
r1

(x1) · Υ̃
−1
1 ∈ Ũı and Υ̃1 · T̃

−1
r1

(x2) · Υ̃
−1
1 ∈ Ũı, for

x1, x2 ∈ Ũı, then Υ̃1 ·T̃
−1
r1

(x1x2)·Υ̃
−1
1 ∈ Ũı. This reduces the verification of (S1) for

arbitrary x to (S1) for x being generators of Ũı, i.e., (S3). Statement (S4) actually
follows when the counterparts to (S1)–(S3) for T1 in Theorem 2.8 are proved (cf.
proof of [WZ22, Theorem 6.7]).

Therefore, to complete the proof of Theorem 2.7, it remains to prove (S3).

3.2. The identity (2.23) for x = Ki (i ∈ I) or x = Bi (i = 1, 2). The statement
that the “rank one” formulas (2.24)–(2.25) satisfy the intertwining property (2.23)
were already proved in [WZ22, Proposition 4.11, Theorem 4.15]; as remarked loc.

cit., these statements are actually valid for Ũı of arbitrary Kac-Moody type. This
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settles (S3), i.e., the intertwining property (2.23), for all generators of Ũı except
for x = B0.

We shall deal with this exceptional case on T−1
1 (B0) in the remainder of this

section.

3.3. Reduction of Identity (3.1). The remainder of this section is devoted to
the challenging proof that the intertwining relation (2.23) is satisfied by T−1

1 (B0)
in (2.26), i.e.,

T−1
1 (B0) · Υ̃1 = Υ̃1 · T̃

−1
r1

(B0).(3.1)

Write B0 = F0 + E0K
′
0, and hence T̃−1

r1
(B0) = T̃−1

r1
(F0) + T̃−1

r1
(E0K

′
0). Set

F = v
[
[B1, B2]v,

[
B2, [B1, F0]v

]]
−
[
[B1, B2]v3 , F0

]
K2 + vF0K1K2,

E = v
[
[B1, B2]v,

[
B2, [B1, E0K

′
0]v

]]
−
[
[B1, B2]v3 , E0K

′
0

]
K2 + vE0K

′
0K1K2.

The desired intertwining relation (3.1) can be reformulated as

T−1
i (B0) = F+ E,

and it will follow once we verify the following 2 identities:

FΥ̃1 = Υ̃1T̃
−1
r1

(F0),(3.2)

EΥ̃1 = Υ̃1T̃
−1
r1

(E0K
′
0).(3.3)

3.4. Reformulation of Identity (3.2). Lemma 3.1 is an affine counterpart of

[WZ22, Lemma 5.1] for Ũı of finite type.

Lemma 3.1. T̃−1
r1

(E0K
′
0) commutes with Υ̃1.

Proof. We first observe that the following identity holds, for i = 1, 2:

(3.4) T̃−1
τi T̃−1

i (E0) · Eτi = v2Eτi · T̃
−1
τi T̃−1

i (E0).

Indeed, it follows by definition of the rescaled braid operators (2.21) that

(3.5) T̃−1
τi T̃−1

i (E0) = ς
−3/2
�

[
[E0, Eτi]v−1 , [Ei, Eτi]v−1

]
v−1 .

Hence, the identity (3.4) follows from (3.5) and the following two v-commuting
relations:

[E0, Eτi]v−1Eτi = vEτi[E0, Eτi]v−1 , [Ei, Eτi]v−1Eτi = vEτi[Ei, Eτi]v−1 .

These two v-commuting relations are simple reformulations of the Serre relations

in Ũ.
The identity (3.4) admits the following two equivalent reformulations:

T̃−1
r1

(E0)T̃
−1
i (Eτi) = v2T̃−1

i (Eτi)T̃
−1
r1

(E0);(3.6)
[
T̃−1
r1

(E0K
′
0), T̃

−1
i (Eτi)

]
= 0.(3.7)

Note that T̃−1
i (Eτi) = ς

−1/2
� [Eτi, Ei]v−1 and T̃−1

τi (Ei) = ς
−1/2
� [Ei, Eτi]v−1 are

terms appearing in the formula (2.22) for Υ̃1. Hence, the lemma follows by (3.7). �
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By [WZ22, Proposition 2.15, Lemma 5.1], we have

B1Υ̃1 = Υ̃1(F1 + v−1E2K1), B2Υ̃1 = Υ̃1(F2 + v−1E1K2), F0Υ̃1 = Υ̃1F0.

Hence, we obtain

F · Υ̃1 = Υ̃1 · F̈,

where

F̈ := v
[
[F1 + v−1E2K1, F2 + v−1E1K2]v,

[
F2 + v−1E1K2, [F1 + v−1E2K1, F0]v

]]

−
[
[F1 + v−1E2K1, F2 + v−1E1K2]v3 , F0

]
K2K

′
1 + vF0K1K2K

′
1K

′
2.

Thus, the desired identity (3.2) is equivalent to the identity

(3.8) F̈ = T̃−1
r1

(F0).

3.5. Deduction of (3.3) from (3.8).

Lemma 3.2. There exists an automorphism ϕ of Ũ which sends, for i = 1, 2,

Fi �→ EτiK
′
i, Ei �→ vFτiK

′
i
−1

, Ki �→ K ′
τi, K ′

i �→ Kτi,

F0 �→ E0K
′
0, E0 �→ v−2F0K

′
0
−1

, K0 �→ K ′
0, K ′

0 �→ K0.

Proof. By a direct computation, the images of ϕ satisfies the defining relations of

Ũ and hence ϕ is an endomorphism of Ũ. One writes down an obvious candi-
date for the inverse homomorphism ϕ−1 acting on generators, which is indeed a
homomorphism by another direct computation. Hence ϕ is an automorphism of

Ũ. �

Lemma 3.3. We have

(1) T̃−1
r1

(F0) = v
[[
F1, F2

]
v
,
[
F2, [F1, F0]v

]]
;

(2) T̃−1
r1

(E0K
′
0) = v

[[
E1, E2

]
v−1 ,

[
E1, [E0, E2]v−1

]]
K ′

0(K
′
1K

′
2)

2.

Proof. We prove (1) only, as (2) can be obtained in a similar way. We have

T̃−1
1 T̃−1

2 T̃−1
1 (F0) =

[[
[F1, F2]v,−E1(K

′
1)

−1
]
v
,
[
[F1, F2]v, [F1, F0]v

]
v

]
v
.(3.9)

Note that
[
[F1, F2]v,−E1(K

′
1)

−1
]
v
=

[
[F1, F2]v,−E1

]
(K ′

1)
−1

=
1

v − v−1
[K1 −K ′

1, F2]v(K
′
1)

−1 = F2.(3.10)

Hence, rewriting (3.9) with the help of (3.10), we have

T̃−1
1 T̃−1

2 T̃−1
1 (F0) =

[[
F2,

[
[F1, F2]v, [F1, F0]v

]
v

]
v

=
[[[

F2, [F1, F2]v
]
v
, [F1, F0]v

]
v
+ v

[[
F1, F2

]
v
,
[
F2, [F1, F0]v

]]

= v
[[
F1, F2

]
v
,
[
F2, [F1, F0]v

]]
,

where the last equality follows from the Serre relations. �
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In terms of the automorphism ϕ in Lemma 3.2, we can rephrase Lemma 3.3 as

ϕ
(
T̃−1
r1

(F0)
)
= T̃−1

r1
(E0K

′
0).(3.11)

By Lemma 3.1, the identity (3.3) is equivalent to the identity

(3.12) E = T̃−1
r1

(E0K
′
0).

The identity (3.12) follows from (3.8) by applying ϕ, thanks to the identities (3.11)
and

ϕ(F̈) = E.(3.13)

The identity (3.13) holds since by Lemma 3.2, ϕ(Fi+v−1EτiKi) = Bi and ϕ(KiK
′
τi)

= KiK
′
τi, for i = 1, 2. Therefore, we have concluded that the identity (3.3) follows

from (3.8).
Let us summarize what we have achieved in this section. We reduced in §3.1–3.2

the proof of Theorem 2.7 to the identity (3.1). Furthermore, in §3.3–3.5, we reduced
the proof of the identity (3.1), which is equivalent to the identities (3.2)–(3.3), to
the identity (3.8).

The proof of the identity (3.8) shall be given in Appendix A.1.

4. Constructions of root vectors

In this section, we shall introduce the root vectors for the quasi-split ıquantum

groups Ũı.

4.1. Real and imaginary root vectors. Fix signs o(1), o(2) ∈ {±1} such that
o(1) = −o(2).

Denote, for i ∈ I = {0, 1, 2},

Bαi
:= Bi, Kαi

:= Ki, Kδ := K1K2K0, C := −vKδ.(4.1)

Introduce the following “translation” symmetry on Ũı:

(4.2) Tω := T0T1.

Similar to [Da93,Be94,BK20,LW21b], we define the real v-root vectors

Bi,k = Bkδ+αi
:=

(
o(i)Tω

)−k
(Bi), for k ∈ Z, i ∈ {1, 2}.(4.3)

Note that

Bi,−1 = o(i)Tω(Bi) = o(i)v−1[Bi, B0]vKiC
−1

= −o(i)v−2[Bi, B0]vKiK
−1
δ .

(4.4)

Denote, for i = 1, 2 and k ∈ Z,

(4.5) Di,k := −[Bτi, Bi,k]v−1 − [Bi,k+1, Bτi,−1]v−1 .

Set Θi,0 = 1
v−v−1 . Define the imaginary v-root vectors Θi,m, for m ≥ 1, inductively:

Θi,1 = −o(i)
([
Bi, [Bτi, B0]v

]
v2 − vB0Ki

)
,(4.6)

Θi,2 = −vDi,0CK−1
τi + vΘi,0C −Θτi,0CK−1

τi Ki,(4.7)

Θi,m = vΘi,m−2C − vDi,m−2CK−1
τi , for m ≥ 3.(4.8)

For convenience, we set Θi,m = 0 for m < 0.
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Remark 4.1. Recursions (4.6)–(4.8) for Θi,m become more transparent when they
are viewed as special cases of the Drinfeld type relation (5.6). A crucial property
satisfied by Θi,m is the commutativity relation (5.11).

Remark 4.2. For the split type, there are two versions of imaginary root vectors,
following [BK20] and [LW21b]; these 2 versions differ by a simple central factor on
the generating function level (see [LW21b, (2.31)]). Accordingly a variant of the

imaginary root vectors Θ́i,m for m ≥ 1 can be defined as follows:

Θ́i,1 = Θi,1, Θ́i,0 = Θi,0,

Θ́i,2 = −vDi,0CK−1
τi + Θ́i,0C − Θ́τi,0CK−1

τi Ki,

Θ́i,m = Θ́i,m−2C − vDi,m−2CK−1
τi , for m ≥ 3.

(4.9)

The recursion (4.9) can be viewed as special cases of the Drinfeld type relation
(5.28).

By definition, we have, for k ∈ Z,m ≥ 0 and i ∈ {1, 2},

(4.10) Bi,k = (−1)kτ̂ (Bτi,k), Θi,m = (−1)mτ̂(Θτi,m),

where τ̂ is the involution in (2.17).

Recall from (2.16) that the algebra Ũı =
⊕

α∈ZI
Ũı

α is ZI-graded.

Lemma 4.3. For i = 0, 1, we have

T0(Ũ
ı
γ) ⊆ Ũı

s0(γ)
, T1(Ũ

ı
γ) ⊆ Ũı

s1s2s1(γ)
, ∀γ ∈ ZI.

Proof. This follows from the formulas for Ti in Proposition 2.5 and Theorem 2.8
since Ti are algebra automorphisms. �

Lemma 4.4. We have Bi,k ∈ Ũı
kδ+αi

, and Θi,m ∈ Ũı
mδ, for any l ∈ Z, m > 0.

Proof. The proof follows from Lemma 4.3, the definition of Bi,k in (4.3) and the
recursive definition of Θi,m in (4.6)–(4.8). �

4.2. The classical limit. Recall U is the quantum group of affine type A
(1)
2 . The

ıquantum group Uı
ς
with parameter ς = (ςi)i=0,1,2 ∈ (Q(v)×)3 (cf. [Ko14]) is a

subalgebra of U generated by Bi, for i ∈ I, and k1, via the embedding

ι : Uı
ς
−→ U

k1 �→ K1K
−1
2 , Bi �→ Fi + ςiEτiK

−1
i (i ∈ I).

Alternatively, the ıquantum group Uı
ς
can be obtained from Ũı by the central

reduction (cf. [LW22a,WZ22]):

Ũı/(K0 + v2ς0,K1K2 − ς1ς2)
�
−→ Uı

ς
,

Bi �→ Bi, K0 �→ −v2ς0, K1 �→ ς1k1, K2 �→ ς2k
−1
1 .

The enveloping algebra U(ĝ) is recovered from U at the v � 1 limit by letting

Ei � ei, Fi � fi, Ki � 1, (Ki −K−1
i )/(v − v−1) � hi.

Let ς̇ , ς̇0 ∈ Q×. Assume that the parameters (ςi)i=0,1,2 ∈ Q(v)×,3 have limits as
v � 1 as follows: lim

v�1
ς0 = ς̇0, and lim

v�1
ς1 = lim

v�1
ς2 = ς̇ .
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For g = sl3, we denote by ĝ = g[t, t−1]⊕Qc the corresponding affine Lie algebra

of type Â2. Let {ei, hi, fi | i = 1, 2} (and respectively, {ei, hi, fi | i ∈ I}) be the
standard Chevalley generators of g (and respectively, ĝ). Set

b0 := f0 + ς̇0e0, bi := fi + ς̇eτi, for i ∈ {1, 2}.

Then we obtain the limits of generators of Uı
ς
as v � 1:

Bi � bi (i ∈ I), k1 � 1, (k1 − k−1
1 )/(v − v−1) � (h1 − h2).(4.11)

Introduce a shorthand notation

ċ := ς̇0ς̇
2,(4.12)

which will be often used in this section. Note that

Kδ � −ċ, C � ċ.

Denote eθ = [e1, e2], fθ = [f2, f1]. Write xk := x ⊗ tk ∈ ĝ, for x ∈ g (and so
ei,k = ei ⊗ tk, eθ,k = eθ ⊗ tk, and so on). We identify e0 = fθ ⊗ t, f0 = eθ ⊗ t−1, and
h0 = [e0, f0]. Denote by

ωτ : ĝ −→ ĝ

the involution such that

f0 �→ ς̇0e0, h0 �→ −h0, fi �→ ς̇eτi, hi �→ −hτi,

for i ∈ {1, 2}. It follows that ωτ (c) = −c. For i = 1, 2, we denote

bi,r = fi,−r + ς̇ ċreτi,r,(4.13)

ti,r = −hi,−r + ċ
rhτi,r,(4.14)

bθ,r = fθ,−r + ς̇2ċreθ,r.

Note that ti,r = −ċrtτi,−r. One checks that the Lie subalgebra of ĝ of ωτ -fixed
points, ĝωτ , has a basis

{bθ,r, bi,r, ti,m, h1 − h2 | r ∈ Z,m ∈ Z≥1, i = 1, 2}.

The enveloping algebra U(ĝωτ ) is recovered from Uı
ς
at the v � 1 limit.

Proposition 4.5. The Lie algebra ĝωτ is generated by {bi,r, ti,r | r ∈ Z, i = 1, 2}.
Moreover, the following relations in ĝωτ are satisfied: for r, s, l, k1, k2 ∈ Z,

[bi,s, bi,r] = 0,(4.15)

[bi,r, bτi,s+1]− [bi,r+1, bτi,s] = −ς̇ ċrtτi,s−r+1 + ς̇ċr+1tτi,s−r−1,

(4.16)

ti,r = −ċrtτi,−r,(4.17)

[ti,r, bi,s] = 2bi,s+r + ċ
rbi,s−r,(4.18)

[tτi,r, bi,s] = −bi,s+r − 2ċrbi,s−r,(4.19)
[
bi,k1

, [bi,k2
, bτi,l]

]
= −2ς̇ ċlbi,k1+k2−l − ς̇ ċk1bi,l+k2−k1

− ς̇ċk2bi,l+k1−k2
.(4.20)

Proof. Let us write down some details on proving (4.16) and (4.20) while skipping
the details on the remaining easier identities. Using (4.13)–(4.14), we compute

[bτi,s, bi,r] = ς̇ ċrtτi,s−r + [fτi, fi]−s−r + ς̇2ċs+r[ei, eτi]−s−r.

Then the identity (4.16) follows by using the above formula twice.
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We also compute again using (4.13)–(4.14):

[bi,k2
, bτi,l] = −bθ,k2+l + ς̇ċlti,k2−l,(4.21)

[bi,k1
,−bθ,k2+l] = −ς̇ ċk1bi,l+k2−k1

,

[bi,k1
, ς̇ċlti,k2−l] = −2ς̇ ċlbi,k1+k2−l − ς̇ċk2bi,l+k1−k2

.

Then the identity (4.20) follows from these formulas.
Finally, the generating set statement follows by (4.21). �

Remark 4.6. One can use a smaller generating set {bi,r, ti,m, t1,0 | r ∈ Z,m ∈
Z≥1, i = 1, 2} for Lie algebra ĝωτ , thanks to (4.17). By arguments similar to the
proof of Theorem 5.5, one can show the above generators and relations provide a
presentation for the Lie algebra ĝωτ . This is the classical limit of the Drinfeld type

presentation of Ũı established in this paper.

Proposition 4.7. Set o(1) = −o(2) = 1. Then the classical limits of the Drinfeld
generators Bi,r,Θi,n are bi,r, ti,n, respectively, for i = 1, 2, r ∈ Z, and n ≥ 1.

Proof. Using the formula (4.4) for Bi,−1, (6.1) for Bi,1 and (4.6) of Θi,1, we see
that the classical limits of these root vectors are bi,−1, bi,1, ti,1, respectively:

B1,−1 � [b1, b0](ς̇0ς̇)
−1 = f1,1 + (ς̇ ς̇0)

−1e2,−1 = b1,−1,

B2,−1 � −[b2, b0](ς̇0ς̇)
−1 = f2,1 + (ς̇ ς̇0)

−1e1,−1 = b2,−1,

Θ1,1 � −[b1, [b2, b0]] + ς̇b0 = −h1,−1 + ς̇0ς̇
2h2,1 = t1,1,

Θ2,1 � [b2, [b1, b0]]− ς̇b0 = −h2,−1 + ς̇0ς̇
2h1,1 = t2,1,

B1,1 �
[
[b1, b2], [b1, b0]

]
− 3ς̇ [b1, b0] = f1,−1 + ς̇0ς̇

3e2,1 = b1,1.

More generally, using [Θi,1, Bj,k] = [cij ]Bj,k+1 − [cτi,j ]Bj,k−1C from (5.4) and
(4.18)–(4.19), one shows inductively that the classical limit of Bi,r is bi,r, for r ∈ Z.
Similarly, using the recursive definition (4.6)–(4.8) of Θi,n and (4.16), one shows
inductively that the classical limit of Θi,n is ti,n, for n ≥ 1. �

Remark 4.8. Define a new Lie algebra g̃ωτ , a variant of ĝωτ , in which ċ is viewed as a
central element (instead of being a scalar), with formally the same relations (4.15)–
(4.20). Then g̃ωτ is a Z-graded Lie algebra, by assigning deg bi,r = r, deg ti,r = r,
and deg ċ = 2, and noting that the relations (4.15)–(4.20) have become homoge-
neous. Compare Remark 5.6.

4.3. A vanishing criterion. We continue the notations from Subsection 4.2. Re-
call g = sl3, which is also identified with g⊗ t0 in ĝ. Denote by k = gωτ ⊂ ĝωτ , as
we note ωτ preserves the subalgebra g of ĝ. Denote by l the (proper) Lie subalgebra
of ĝωτ generated by ti,0, bi,n, for all i ∈ {1, 2} and n ∈ Z. Denote by lev the Lie
subalgebra of ĝωτ spanned by x⊗ t2n + ωτ (x)⊗ t−2n, for all x ∈ g and n ∈ Z.

Lemma 4.9. We have lev ⊂ l.

Proof. We observe by a direct computation on [bi,m, bj,k], with m + k ∈ 2Z and
i ∈ {1, 2}, that bθ,n, ti,n ∈ l, for n even. �

Lemma 4.10. Let u ∈ U(ĝωτ ). If ad(lev)u = 0, then u = 0.
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Proof. To prove the lemma, it is equivalent to prove its counterpart in the sym-
metric algebra (in place of the enveloping algebra):

(4.22) If ad(lev)u = 0, for u ∈ S(ĝωτ ) then u = 0.

The Lie algebra ĝωτ (and hence its subalgebra lev) admits an N-filtered algebra
structure, by letting deg(x⊗ tn+ωτ (x)⊗ t−n) = n, for all nonzero x ∈ g and n ∈ N.
Then the associated graded algebras can be identified as follows: gr ĝωτ ∼= k⊕ tg[t]
and gr lev ∼= k⊕ t2g[t2].

The proof of the claim (4.22) is reduced to the proof of the following counterpart
in the associated graded algebra:

(4.23) If ad(gr lev)u = 0, for u ∈ S(gr ĝωτ ) then u = 0.

The proof of (4.23) is entirely analogous to the ones of [M07, Lemmas 2.8.1, 1.7.4],
by analyzing the action of gr lev,2 ∼= g ⊗ t2 on u, where lev,2 is the subspace of lev
spanned by x⊗ t2 + ωτ (x)⊗ t−2, for all x ∈ g. We omit the detail.

(The proof of the lemma could have proceeded directly as for [M07, Lemmas
2.8.1, 1.7.4] without referring to the filtration and associated graded algebra ex-
plicitly, though it would involve somewhat messy notations if one insists on writing
out details.) �

Lemma 4.11. If u ∈ U(ĝωτ ) commutes with bi,l and ti,0, for all i ∈ {1, 2} and
l ∈ Z, then u = 0.

Proof. By assumption of the lemma and the definition of l, we have ad(l)u = 0 in
S(ĝωτ ), and hence ad(lev)u = 0 by Lemma 4.9. Now it follows by Lemma 4.10 that
u = 0. �

Lemma 4.12 is the main point of this subsection.

Lemma 4.12. Let X ∈ Ũı be a noncommutative polynomial of B1, B2, B0 with
coefficients in Q(v)[K±1

i , i ∈ I] without constant term. If Tω(X) = X and [X,Bi] =
[X,Ki] = 0 for i ∈ {1, 2}, then X = 0.

Proof. By assumption, X commutes with Ki and Bi,l = T−l
ω
(Bi), for all i ∈

{1, 2}, l ∈ Z; in particular, X commutes with the finite type part of Ũı (gener-
ated by Bi,Ki for i = 1, 2). We prove by contradiction, by assuming that X is
nonzero. Write X as a linear combination of a monomial basis (due to Letzter and
Kolb for Uı). Then X descends to a nonzero element in a central reduction Uı and
then to a nonzero element x ∈ U(ĝωτ ), which commutes with ti,0 and bi,l, for all
i ∈ {1, 2}, l ∈ Z. This contradicts with Lemma 4.11. �

5. A Drinfeld type presentation

In this section, we shall give a Drinfeld type presentation for the quasi-split affine

ıquantum group Ũı of rank one.

5.1. The definition. Recall I = {0, 1, 2} and (cij)i,j∈I denotes the Cartan matrix

of affine type A
(1)
2 . We shall denote by Symk1,k2

the symmetrization with respect to
(current) indices k1, k2 ∈ Z in the sense Symk1,k2

f(k1, k2) = f(k1, k2) + f(k2, k1);
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we will never apply the symmetrization to indices in I. Introduce the shorthand
notation

S(k1, k2|l; i) := Symk1,k2

(
Bi,k1

Bi,k2
Bτi,l − [2]Bi,k1

Bτi,lBi,k2
+Bτi,lBi,k1

Bi,k2

)
.

(5.1)

Definition 5.1. Let DrŨı be the Q(v)-algebra generated by the elements Bi,l,

Hi,m, K±1
i , C±1, where i ∈ {1, 2}, l ∈ Z and m ∈ Z≥1, subject to the following

relations: for m,n ≥ 1, l, k, k1, k2 ∈ Z, and i, j ∈ {1, 2},

C is central, KiKj = KjKi, KiHj,m = Hj,mKi, KiBj,l = vcτi,j−cijBj,lKi,

(5.2)

[Hi,m, Hj,n] = 0,

(5.3)

[Hi,m, Bj,l] =
[mcij ]

m
Bj,l+m −

[mcτi,j ]

m
Bj,l−mCm,

(5.4)

[Bi,k, Bi,l+1]v−2 − v−2[Bi,k+1, Bi,l]v2 = 0,

(5.5)

[Bi,k, Bτi,l+1]v − v[Bi,k+1, Bτi,l]v−1 = −Θτi,l−k+1C
kKi + vΘτi,l−k−1C

k+1Ki

−Θi,k−l+1C
lKτi + vΘi,k−l−1C

l+1Kτi,

(5.6)

S(k1, k2 | l; i)

(5.7)

= [2] Symk1,k2

∑

p≥0

v2p
[
Θτi,l−k2−pKi − vΘτi,l−k2−p−2CKi, Bi,k1−p

]
v−4p−1C

k2+p

+v[2] Symk1,k2

∑

p≥0

v2p
[
Bi,k1+p+1,Θi,k2−l−p+1Kτi − vΘi,k2−l−p−1CKτi

]
v−4p−3Cl−1.

Here Hi,m are related to Θi,m by the following equation:

1 +
∑

m≥1

(v − v−1)Θi,mum = exp
(
(v − v−1)

∑

m≥1

Hi,mum
)
.(5.8)

Remark 5.2. Using Proposition 4.7, one can show that the classical limits of rela-
tions (5.2)–(5.7) are given by (4.15)–(4.20); see also Remark 4.8.

The Q(v)-algebra DrŨı admits the following translation symmetry.

Lemma 5.3. There exists an automorphism ω of the algebra DrŨı given by

ω(Bj,k) = Bj,k−1, ω(Hj,m) = Hj,m, ω(Kj) = KjC
−1, ω(C) = C,

(and hence ω(Θj,m) = Θj,m), for all k ∈ Z,m ≥ 1, and j ∈ {1, 2}.

Proof. The proof follows by inspection of the defining relations for DrŨı in Defini-
tion 5.1. �
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We introduce the following generating functions in a variable z:

Bi(z) =
∑

k∈Z

Bi,kz
k, Θi(z) = 1 +

∑

m≥1

(v − v−1)Θi,mzm,

Hi(z) =
∑

m≥1

Hi,mzm, Δ(z) =
∑

k∈Z

Ckzk,
(5.9)

where Θi(z) and Hi(z) are related by

Θi(z) = exp
(
(v − v−1)Hi(z)

)
.(5.10)

Lemma 5.4 will be used later.

Lemma 5.4. The following equivalences hold:

(1) The identity (5.3) is equivalent to

[Θi,m,Θj,n] = 0, ∀i, j = 1, 2, and m,n ≥ 1.(5.11)

(2) The identity (5.4) is equivalent to

[Θi,m, Bj,k] + vci,j−cτi,j [Θi,m−2, Bj,k]v2(cτi,j−ci,j )C(5.12)

− vci,j [Θi,m−1, Bj,k+1]v−2ci,j − v−cτi,j [Θi,m−1, Bj,k−1]v2cτi,jC = 0,

for any m > 0 and k ∈ Z.

Proof. The equivalence in (1) follows directly from (5.8).
The proof of the equivalence in (2) is very similar to [LW21b, Proposition 2.8],

via a generating function formalism (5.9). We outline the main steps below.
The identity (5.4) can be equivalently reformulated as a generating function

identity

(v − v−1)[Hi(z),Bj(w)] = ln
(1− v−cijzw−1)(1− vcτi,jzwC)

(1− vcijzw−1)(1− v−cτi,jzwC)
·Bj(w).

Via integration and (5.10), this identity is equivalent to the identity

Θi(z)Bj(w)Θi(z)
−1 =

(1− v−cij zw−1)(1− vcτi,jzwC)

(1− vcij zw−1)(1− v−cτi,jzwC)
Bj(w),

or equivalently,

Θi(z)Bj(w) =
(1− v−cijzw−1)(1− vcτi,jzwC)

(1− vcijzw−1)(1− v−cτi,jzwC)
Bj(w)Θi(z).

Comparing the coefficients of zmwk of both sides of the last identity, for m ≥ 1, k ∈
Z, we obtain the equivalent identity (5.12). �

5.2. The isomorphism.

Theorem 5.5. There is a Q(v)-algebra isomorphism Φ : DrŨı −→ Ũı, which sends

Bi,l �→ Bi,l, Θi,m �→ Θi,m, Ki �→ Ki, C �→ C, for m ≥ 1, l ∈ Z, i ∈ {1, 2}.

(5.13)

The inverse Φ−1 : Ũı −→ DrŨı sends

K0 �→ − v−1CK−1
1 K−1

2 , Ki �→ Ki, Bi �→ Bi,0, for i ∈ {1, 2},

B0 �→o(1)v−1
(
Θ1,1 − v[B1, B2,−1]v−1CK−1

2

)
K−1

1 .



1020 MING LU, WEIQIANG WANG, AND WEINAN ZHANG

(We shall refer to DrŨı the Drinfeld type presentation of Ũı. The proof that Φ is
a homomorphism requires long computations, and will be carried out in Section 6.)

Proof. To show Φ is a homomorphism, we shall verify that all the defining relations

in DrŨı (see Definition 5.1) are preserved by Φ in Section 6. More precisely, the

relations (5.2)–(5.7) in DrŨı hold for the images of the generators of DrŨı under

Φ : DrŨı → Ũı, thanks to Lemma 6.1, Propositions 6.16, 6.18, 6.6, 6.19 and 6.20,
respectively.

Next we show that Φ is surjective. To that end, it suffices to show that the

generator B0 of Ũı lies in the image of Φ (as other generators clearly do). By
definition of Θ1,1 in (4.6), Φ maps v−1o(1)

(
Θ1,1 − v[B1, B2,−1]v−1CK−1

2

)
K−1

1 to
B0, and hence the surjectivity of Φ follows.

The injectivity of Φ follows by an analogous argument as for the injectivity in
[LW21b, Theorem 3.13]. For the sake of completeness, we sketch below.

We set I0 = {1, 2} in this proof. Denote by Ũı
> (respectively, DrŨı

>) the subal-

gebra of Ũı (respectively, DrŨı) generated by Bi,m, Hi,m,Ki, for m ≥ 1, and i ∈ I0.

Then Φ : DrŨı −→ Ũı restricts to a surjective homomorphism Φ : DrŨı
> −→ Ũı

>.

The translation symmetries ω on DrŨı (see Lemma 5.3) and Tω in (4.2) are
compatible under Φ, i.e.,

Φ ◦ ω = Tω ◦ Φ.

The injectivity of Φ : DrŨı → Ũı is then reduced to the injectivity of Φ : DrŨı
> →

Ũı
>, since any element in the kernel of Φ : DrŨı → Ũı gives rise to (via a translation

automorphism ω
−N , for N � 0) to an element in the kernel of Φ : DrŨı

> → Ũı
>.

It remains to prove the injectivity of Φ : DrŨı
> −→ Ũı

>. We shall accomplish
this by examining a certain filtration and its associated graded algebra.

Define a filtration on DrŨı
> by

(DrŨı
>)

0 ⊂ (DrŨı
>)

1 ⊂ · · · ⊂ (DrŨı
>)

m ⊂ · · ·(5.14)

by setting

(DrŨı
>)

m = Q(v)-span
{
x = Bi1,m1

Bi2,m2
. . . Bir,mr

Θj1,n1
Θj2,n2

. . .Θjs,ns
Kμ

(5.15)

|μ∈NI, i1, . . . , ir, j1, . . . js,∈I0,m1, . . . ,mr, n1, . . . , ns≥1, ht+(x)≤m
}
.

Here we have denoted

ht+(x) :=
r∑

a=1

ht(maδ + αia) +
s∑

b=1

nbht(δ),(5.16)

where ht(β) denotes the height of a positive root β. Recalling Ũı,0 from (2.13), we

have (DrŨı
>)

0 = Ũı,0 = Q(v)[K±1
i | i ∈ I]. The filtration (5.14)–(5.15) on DrŨı

>

defined via a height function is compatible with the filtration (2.11)–(2.12) on Ũı

under Φ, and thus the surjective homomorphism Φ : DrŨı
> −→ Ũı

> induces a
surjective homomorphism

grΦ> : grDrŨı
> −→ grŨı

>.(5.17)

The Drinfeld presentation DrU of the affine quantum group U has generators
x±1
i,k , hi,m, K±1

i , C±1/2, for i ∈ I0, k ∈ Z,m ∈ Z\{0}, cf. [Dr87,Be94]; moreover, we

have an isomorphism φ : DrU → U. Denote by DrU−
< the Q(v)-subalgebra of U
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generated by x−
i,−k, for i ∈ I0, k > 0, and denote U−

< = φ(DrU−
<). Then φ restricts

to an isomorphism [Be94,Da15]

φ : DrU−
<

∼=
−→ U−

<.(5.18)

Recall the following algebra isomorphism from (2.14) with respect to the filtra-

tion on Ũı (2.11)–(2.12):

G : U− ⊗ Ũı,0 −→ grŨı, Fi �→ Bi, Ki �→ Ki,

where U− = 〈Fi | i ∈ I〉. The homomorphism G above restricts to an isomorphism

G : U−
< ⊗ Ũı,0 ∼=

−→ grŨı
>.(5.19)

Finally, by definition (5.15) of the filtration on DrŨı
>, its associated graded

algebra is compatible with setting C = 0 in the defining relations (5.2)–(5.7) of
DrŨı, which reproduces the defining relations of half the affine quantum group in
its Drinfeld presentation. Thus, we have a surjective homomorphism

Ξ : DrU−
< ⊗ Ũı,0 −→ grDrŨı

>,(5.20)

which sends x−
i,−k �→ Bi,k, for k > 0 (note the opposite signs in indices).

Combining (5.17)–(5.20), we have obtained the following commutative diagram

DrU−
< ⊗ Ũı,0 Ξ

��

φ,∼=

��

grDrŨı
>

grΦ>

��

U−
< ⊗ Ũı,0 G,∼=

�� grŨı
>

Since Ξ and grΦ> are surjective while φ and G are isomorphisms, we conclude that
grΦ> : grDrŨı

> −→ grŨı
> is injective (and indeed an isomorphism), and so is Ξ.

The proof of Theorem 5.5 is completed. �

Remark 5.6. By definition, the algebra DrŨı (and hence Ũı by Theorem 5.5) is
Z-graded by letting

degC = 2, degKi = 0, degBi,k = k, degΘi,n = n (i = 1, 2).

Compare Remark 4.8.

5.3. Presentation via generating functions. Recall from (5.9) the generating
functions Bi(z), Θi(z), Hi(z) and Δ(z) in a variable z. For i = 1, 2 and variables
w1, w2, we also denote

S(w1, w2 | z; i)

(5.21)

:=Symw1,w2

(
Bi(w1)Bi(w2)Bτi(z)−[2]Bi(w1)Bτi(z)Bi(w2)+Bτi(z)Bi(w1)Bi(w2)

)
.

Theorem 5.5 admits the following reformulation via generating functions.

Theorem 5.7. Ũı is isomorphic to the Q(v)-algebra generated by the elements Bil,
Hik, K

±1
i , C±1 where i = 1, 2, l ∈ Z and k > 0, subject to the following relations,
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for i, j ∈ {1, 2}:

KiKj=KjKi, KiHj(z)=Hj(z)Ki, KiBj(z)=vcτi,j−cijBj(z)Ki, C is central,

(5.22)

[Hi(z),Hj(w)] = 0,(5.23)

Θi(z)Bj(w) =
(1− v−cijzw−1)(1− vcτi,jzwC)

(1− vcijzw−1)(1− v−cτi,jzwC)
Bj(w)Θi(z),(5.24)

(v2z − w)Bi(z)Bi(w) + (v2w − z)Bi(w)Bi(z) = 0,

(5.25)

(v−1z − w)Bi(z)Bτi(w) + (v−1w − z)Bτi(w)Bi(z)

=
Δ(zw)

1− v2
(
(z − vw)KiΘτi(w) + (w − vz)KτiΘi(z)

)
,(5.26)

S(w1, w2 | z; i) = −v−1[2] Symw1,w2
Δ(w2z)

1− vw−1
2 z

1− v−2w1w
−1
2

Bi(w1)Θτi(z)Ki

+ [2] Symw1,w2
Δ(w2z)

1− vw−1
2 z

1− v2w1w
−1
2

Θτi(z)KiBi(w1)

+ v[2] Symw1,w2
Δ(w2z)

w−1
1 z − vw−1

1 w2

1− v2w−1
1 w2

Bi(w1)Θi(w2)Kτi

+ v−2[2] Symw1,w2
Δ(w2z)

vw−1
1 w2 − w−1

1 z

1− v−2w−1
1 w2

Θi(w2)KτiBi(w1).(5.27)

Proof. We simply rewrite the relations (5.2)–(5.7) in Definition 5.1 by using the gen-
erating functions (5.9). For example, the relation (5.27) is obtained by multiplying

both sides of the relation (5.7) by wk1
1 wk2

2 zl and summing over k1, k2, l ∈ Z. �

5.4. Drinfeld type presentation via different root vectors. The alternative
imaginary root vectors Θ́i,m defined in Remark 4.2 lead to the following presentation

of Ũı, which is a variant of the one given in Definition 5.1. The (new) Hi,m used
in Theorem 5.8 is defined through the old formula (5.8) (with Θim therein replaced

by Θ́i,m). Recall the notation S(k1, k2 | l; i) from (5.1).

Theorem 5.8. Ũı is isomorphic to the Q(v)-algebra generated by the elements
Bi,l, Hi,m, K±1

i , C±1, where i ∈ {1, 2}, l ∈ Z and m ∈ Z≥1, subject to the relations
(5.2)–(5.5) and the following two relations (5.28)–(5.29) (in place of (5.6)–(5.7)):

[Bi,k, Bτi,l+1]v − v[Bi,k+1, Bτi,l]v−1 = −Θ́τi,l−k+1C
kKi + Θ́τi,l−k−1C

k+1Ki

− Θ́i,k−l+1C
lKτi + Θ́i,k−l−1C

l+1Kτi,

(5.28)

S(k1, k2 | l; i)

(5.29)

= [2] Symk1,k2

∑

p≥0

v2p
[
Θ́τi,l−k2−pKi − Θ́τi,l−k2−p−2CKi, Bi,k1−p

]
v−4p−1C

k2+p

+ v[2] Symk1,k2

∑

p≥0

v2p
[
Bi,k1+p+1, Θ́i,k2−l−p+1Kτi−Θ́i,k2−l−p−1CKτi

]
v−4p−3C

l−1,
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for m,n ≥ 1, k1, k2, k, l ∈ Z, and i, j ∈ {1, 2}.

6. Verification of the current relations

In this section, we verify that all the defining relations in DrŨı are preserved by
the homomorphism Φ in (5.13). This completes the proof of Theorem 5.5.

6.1. Strategy of proofs. Let us explain the general strategy of the proofs before
getting to the technical details. The approach of [BK20] for q-Onsager algebra (see
also [Da93] for quantum affine sl2) provides a helpful though rough guideline for
the overall inductive arguments. However, our quasi-split affine rank one setting
behaves with complexity of affine rank two, as there are 2 infinite series of real
(and respectively, imaginary) root vectors as Drinfeld type generators; in contrast,
there is only one infinite series of real (and respectively, imaginary) root vectors for
q-Onsager algebra. Accordingly, the approach developed in [LW21b] and especially
in [Z22] dealing with Serre relations in higher ranks also helps to inspire new ways
to get around various technical difficulties.

A central relation (5.3) concerns about the commutativity among imaginary root
vectors Θi,n, for i = 1, 2 and n ≥ 1; a closely related property is the Tω-invariance
of Θi,n. Assuming these properties, several additional relations among root vectors

for Ũı can be proved. However, Θi,n is defined in terms of (a linear combination of)
v-commutators between real root vectors. To establish the commutativity among
Θi,n, one has to first understand to some extent commutators of Θi,n with real root
vectors, and so we would run in a vicious circle if we were not very careful.

By direct computations, we shall establish Tω(Θj,1) = Θj,1, and some formula
for the commutator [Θj,1, B1]. This suffices to derive fully the first nontrivial Re-
lation (5.5).

The actual inductive proofs of Relations (5.3), (5.4), and (5.6) run like a spiral.
Under the assumption on the partial commutativity between Θj,1 and Θi,m, for
m < n (for some fixed positive integer n), we show that Tω(Θi,n) = Θi,n, and
then establish part of (bounded by n) the relations for commutators between real
root vectors; the Serre relations (5.7) are also partially proved along the way, which
imply partial relations for commutators between imaginary and real root vectors.
We then use these to establish fully the commutativity among Θi,m, for m ≤ n,
and then all these relations hold unconditionally. The proof of Relation (5.4) by
induction independent of (the proof of) the Serre relations (5.7) follows closely the
approach developed in [Z22] (instead of [LW21b]). Finally, we fully prove the Serre

relations (5.7) for Ũı, imitating [Z22] again.

6.2. Relation (5.2).

Lemma 6.1. Relation (5.2) holds in Ũı.

Proof. Recall that C = −vKδ = −vK0K1K2. Then C is central and KiKj = KjKi

by (2.4).

We haveHj,m ∈ Ũı
mδ by using (5.8) and noting that Θj,m ∈ Ũı

mδ (see Lemma 4.4).
Hence, by Lemma 2.3, we have KiHj,m = Hj,mKi.

The last relation KiBj,l = vcτi,j−cijBj,lKi in (5.2) follows by Lemma 2.3 and
Lemma 4.4. �
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6.3. Properties of Bi,1 and Θi,1.

Lemma 6.2. For i = 1, 2, we have

Bi,1 = o(i)
([

[Bi, Bτi]v, [Bi, B0]v
]
v
− v[Bi, B0]v3Kτi − v−1[2][Bi, B0]vKi

)
.(6.1)

The proof of Lemma 6.2 is long and will be skipped (the detail can be found in
the Appendix of the arXiv version).

Lemma 6.3. We have Tω(Θi,1) = Θi,1, for i = 1, 2.

Proof. Recall from (4.6) that Θi,1 = −o(i)
([
Bi, [Bτi, B0]v

]
v2 − vB0Ki

)
. It suffices

to check that

T−1
1 T−1

0

([
B1, [B2, B0]v

]
v2 − vB0K1

)
=

[
B1, [B2, B0]v

]
v2 − vB0K1.(6.2)

Since B1,1 = o(1)T−1
1 T−1

0 (B1) by definition, we have by Lemma 6.2 that

T−1
1 T−1

0 (B1) =
([

[B1, B2]v, [B1, B0]v
]
v
− v[B1, B0]v3K2 − v−1[2][B1, B0]vK1

)
.

Then we compute

T−1
1 T−1

0

([
B1, [B2, B0]v

]
v2

)

= T−1
1

([
T−1

0 (B1), [[B0, B2]v, B0K
−1
0 ]v

]
v2

)

= T−1
1

([
T−1

0 (B1), [[B0, B2]v, B0]v
]
v2

)
K−1

0

= T−1
1

([
T−1

0 (B1), B2K0

]
v2

)
K−1

0

= T−1
1

([
T−1

0 (B1), B2

]
v2

)

=
[[
[B1, B2]v, [B1, B0]v

]
v
− v[B1, B0]v3K2 − v−1[2][B1, B0]vK1,−vB2K

−1
2

]
v2

= −v
[[
[B1, B2]v, [B1, B0]v

]
v
− v[B1, B0]v3K2 − v−1[2][B1, B0]vK1, B2

]
v−1

K−1
2

=
[
B2,

[
[B1, B2]v, [B1, B0]v

]
v
− v[B1, B0]v3K2 − v−1[2][B1, B0]vK1

]
v
K−1

2

=
[
B2,

[
[B1, B2]v, [B1, B0]v

]
v

]
v
K−1

2

− v
[
B2, [B1, B0]v3K2

]
v
K−1

2 − v−1[2]
[
B2, [B1, B0]vK1

]
v
K−1

2

=
[
B2,

[
[B1, B2]v, [B1, B0]v

]
v

]
v
K−1

2 − v
[
B2, [B1, B0]v3

]
v−2

− v−1[2]
[
B2, [B1, B0]v

]
v4K1K

−1
2 .

Also, by the formula (2.26) for T−1
1 (B0), we have

−vT−1
1 T−1

0 (B0K1) = −T−1
1 (B0)K

−1
2

= −v
[
[B1, B2]v,

[
B2, [B1, B0]v

]]
K−1

2 +
[
[B1, B2]v3 , B0

]

− vB0K1.
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Summing the above 2 computations and using the Serre relation (2.6), we have

T−1
1 T−1

0

([
B1, [B2, B0]v

]
v2 − vB0K1

)

=
[
B2,

[
[B1, B2]v, [B1, B0]v

]
v

]
v
K−1

2 − v
[
B2, [B1, B0]v3

]
v−2

− v−1[2]
[
B2, [B1, B0]v

]
v4K1K

−1
2

− v
[
[B1, B2]v,

[
B2, [B1, B0]v

]]
K−1

2 +
[
[B1, B2]v3 , B0

]
− vB0K1

= −[2]
[
[B1, B0]v, B2K2 + v3B2K1

]
v−1

K−1
2 − v

[
B2, [B1, B0]v3

]
v−2

− v−1[2]
[
B2, [B1, B0]v

]
v4K1K

−1
2 +

[
[B1, B2]v3 , B0

]
− vB0K1

= −[2]
[
[B1, B0]v, B2

]
v2 − v

[
B2, [B1, B0]v3

]
v−2 +

[
[B1, B2]v3 , B0

]
− vB0K1

=
[
B1, [B2, B0]v

]
v2 − vB0K1.

The lemma is proved. �

We prove a very special m = 1 case of (5.12) (equivalent to relation (5.4)).

Lemma 6.4. For i = 1, 2, and l ∈ Z, we have

[Θi,1, Bj,l] = [cij ]Bj,l+1 − [cτi,j ]Bj,l−1C.(6.3)

Proof. We only need to consider i = 1, thanks to the symmetry τ̂ .
First, assume j = 1. The identity (6.3) for l = 0 reads as

(6.4) [Θ1,1, B1] = [2]B1,1 +B1,−1C.

Then (6.3) for a general l follows by applying the (−l)th power of Tω to (6.4) since
Θi,1 is fixed by Tω (see Lemma 6.3). Hence, it remains to prove the identity (6.4).

To that end, we compute

[Θ1,1, B1] =− o(1)
[[
B1, [B2, B0]v

]
v2 − vB0K1, B1

]

= −o(1)
[[
B1, [B2, B0]v

]
v2 , B1

]
+ vo(1)[B0K1, B1]

= −o(1)
[[
B1, [B2, B0]v

]
v2 , B1

]
+ v−2o(1)[B0, B1]v3K1.

On the other hand, we compute
[[
B1, [B2, B0]v

]
v2 , B1

]

= −v2
[
B2,

[
B1, [B1, B0]v

]
v−1

]
v−1

+
[
[B1, B0]v, [B2, B1]v

]
v

+ v3
[
B0,

[
B1, [B1, B2]v

]
v−1

]
v−3

− v−1
[
[B1, B2]v, [B1, B0]v

]
v3

= −[2]
[
[B1, B2]v, [B1, B0]v

]
v
− v[2][B0, B1]v−3K1 − v4[2][B0, B1]v−3K2.

Combining the above 2 computations, we obtain

[Θ1,1, B1] = [2]o(1)
[
[B1, B2]v, [B1, B0]v

]
v
+ [2]vo(1)[B0, B1]v−3K1

+ [2]v4o(1)[B0, B1]v−3K2 + v−2o(1)[B0, B1]v3K1.

This formula can then be converted to the desired identity (6.4) by using (4.4) and
(6.1).
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Now assume j = 2. As above, the proof of (6.3) for a general l follows from the
case with l = 0; that is, it remains to prove

(6.5) [Θ1,1, B2] = −B2,1 − [2]B2,−1C = −B2,1 + v[2]B2,−1Kδ.

Indeed, we have

[Θ1,1, B2] =− o(1)
[[
B1, [B2, B0]v

]
v2 − vB0K1, B2

]

= −o(1)
[[
B1, [B2, B0]v

]
v2 , B2

]
+ vo(1)[B0K1, B2]

= −o(1)
[[
B1, [B2, B0]v

]
v2 , B2

]
+ v4o(1)[B0, B2]v−3K1

= o(1)
[
[B2, B1]v, [B2, B0]v

]
v
+ v4o(1)[B0, B2]v−3K1.

This formula can be converted to (6.5) by using (4.4), (6.1) and o(1) = −o(2). �

6.4. Relation (5.5).

Lemma 6.5. For i ∈ {1, 2} and k ∈ Z, we have [Bi,k−1, Bi,k]v−2 = 0.

Proof. We note that the formula in the lemma for different k are equivalent by
applying suitable powers of Tω.

It remains to prove the desired formula for k = 1. By the formula (4.4) for Bi,−1,
we have

−v2o(1) · [Bi,−1, Bi]v−2 = [Bi, B0]vKiBiK
−1
δ − v−2Bi[Bi, B0]vKiK

−1
δ

= v−3
[
[Bi, B0]v, Bi

]
v
KiK

−1
δ = 0,

where the last equality follows by the Serre relation (2.7). �

Proposition 6.6. Relation (5.5) holds in Ũı, i.e.,

[Bi,k, Bi,l+1]v−2 + [Bi,l, Bi,k+1]v−2 = 0,

for i ∈ {1, 2}, and k, l ∈ Z.

Proof. Without loss of generality, we assume that i = 1. It follows by (6.3) that

(6.6)
[
[2]Θ1,1 +Θ2,1, B1,k

]
= [3]B1,k+1.

Denote Fk = [B1,k, B1,1]v−2 + [B1, B1,k+1]v−2 , for k ∈ Z. Then we have

(6.7)
[
[2]Θ1,1 +Θ2,1,Fk

]
= [3](Fk+1 +T−1

ω
Fk−1).

In particular, we have
[
[2]Θ1,1 + Θ2,1,F0

]
= [3](F1 + T−1

ω
F−1). Since F0 = 0 by

Lemma 6.5 and F1 = T−1
ω

F−1, we obtain F1 = F−1 = 0. It then follows by (6.7)
and an induction on k that Fk = 0, for all k ∈ Z.

The desired relation now follows by applying a suitable power of Tω to Fk−l =
0. �

6.5. Partial commutativity and Tω-invariance of Θi,n. Recall Di,n and Θi,n

defined in (4.5) and (4.8), respectively.

Lemma 6.7. For i = 1, 2, we have

Di,−1 = −[Bτi, Bi,−1]v−1 − [Bi, Bτi,−1]v−1 = −v−1(Θτi,1Ki +Θi,1Kτi)C
−1.(6.8)
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Proof. We assume i = 1. By (4.4) and (4.6), we have

−[B1, B2,−1]v−1 = −v−1Θ1,1K2C
−1 − o(1)v−1B0K

−1
0 ,(6.9)

−[B2, B1,−1]v−1 = −v−1Θ2,1K1C
−1 − o(2)v−1B0K

−1
0 .

Hence, (6.8) follows. �

We prove a very special m = 2 case of (5.12) (equivalent to Relation (5.4)).

Lemma 6.8. For i = 1, 2, we have

[Θi,2, Bi] + v3[Θi,0, Bi]v−6C = v2[Θi,1, Bi,1]v−4 + v[Θi,1, Bi,−1]v−2C.

Proof. We assume i = 1. We shall compute [Θ1,2, B1]. Using C = −vK2K1K0 from
(4.1), recall Θ1,2 from (4.7):

Θ1,2 = −v2
(
[B2, B1]v−1 + [B1,1, B2,−1]v−1

)
K1K0 + vΘ1,0C −Θ2,0CK−1

2 K1.

(6.10)

The main part in [Θ1,2, B1] is

−v2
[
[B1,1, B2,−1]v−1K1K0, B1

]
= v2

[
B1, [B1,1, B2,−1]v−1

]
v−3K1K0

=v2
[
[B1, B1,1]v−2 ,B2,−1

]
v−2K1K0+

[
B1,1, [B1, B2,−1]v−1

]
v
K1K0

=v2
[
Θ1,1, B1,1

]
v−4 + v−1o(1)[B1,1, B0]vK1,(6.11)

where we used [B1, B1,1]v−2 = 0 (by Lemma 6.5) and (6.9) in the last step.
Next, we compute the term [B1,1, B0]v in (6.11). Recall the formula for Bi,1

from (6.1):

Bi,1 = o(i)
([

[Bi, Bτi]v, [Bi, B0]v
]
v
− v[Bi, B0]v3Kτi − v−1[2][Bi, B0]vKi

)
.(6.12)

Then the main part in [B1,1, B0]v is

o(1)
[[
[B1, B2]v, [B1, B0]v

]
v
, B0

]
v

= o(1)
[
[B1, B2]v,

[
[B1, B0]v, B0

]
v−1

]
v3

− vo(1)
[
[B1, B0]v,

[
[B1, B2]v, B0

]
v2

]
v−2

= o(1)
[
[B1, B2]v,

[
[B1, B0]v, B0

]
v−1

]
v3

− vo(1)
[
[B1, B0]v,

[
B1, [B2, B0]v

]
v2

]
v−2

+ v2o(1)
[
[B1, B0]v,

[
B2, [B1, B0]v

]]
v−2

= −o(1)v−1
[
[B1, B2]v, B1

]
v3K0

+ v−1
[
Θ1,1 + vo(1)B0K1, [B1, B0]v

]
v2 +

[
Θ2,1 − vo(1)B0K2, [B1, B0]v

]

= −o(1)
(
v−1

[
[B1, B2]v, B1

]
v3K0 −

[
B0K1, [B1, B0]v

]
v2 + v

[
B0K2, [B1, B0]v

])

+ o(1)v2
(
v−1

[
Θ1,1, B1,−1

]
v2 +

[
Θ2,1, B1,−1

])
K2K0.
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Plugging this new formula into the computation of [B1,1, B0]v via the formula (6.12),
we obtain

− v−1o(1)[B1,1, B0]vK1 + v[Θ1,1, B1,−1]v−2C

=
(
v−2

[
[B1, B2]v, B1

]
v3K0K1 − v−1

[
B0K1, [B1, B0]v

]
v2K1 +

[
B0K2, [B1, B0]v

]
K1

)

+
(
v−1

[
Θ1,1, B1,−1

]
v2 +

[
Θ2,1, B1,−1

])
C

+
[
[B1, B0]v3K2, B0

]
v
K1 + v−2[2]

[
[B1, B0]vK1, B0

]
v
K1 + v[Θ1,1, B1,−1]v−2C.

This can be simplified by collecting the like terms together:

−v−1o(1)[B1,1, B0]vK1 + v[Θ1,1, B1,−1]v−2C

=
[
[2]Θ1,1 +Θ2,1, B1,−1

]
C + v−2

[
[B1, B2]v, B1

]
v3K1K0

+ v−1[3](B1B
2
0 − [2]B0B1B0 +B2

0B1)K
2
1

= [3]B1C + v−2
[
[B1, B2]v, B1

]
v3K1K0 − v−2[3]B1K

2
1K0,(6.13)

where we have used (6.6) and the Serre relation (2.8) in the last equality. Arranging
the pieces (6.10), (6.11) and (6.13) together, we have

[Θ1,2, B1] + v3[Θ1,0, B1]v−6C − v2[Θ1,1, B1,1]v−4 − v[Θ1,1, B1,−1]v−2C

= −v2
[
[B2, B1]v−1K1K0, B1

]
+

v

v − v−1
[K2

1K0, B1]

− v−2
[
[B1, B2]v, B1

]
v3K1K0 + v−2[3]B1K

2
1K0

= 0.

The lemma is proved. �

Lemma 6.9. Let n ≥ 1, and i, j ∈ {1, 2}. Assume that
{
Tω(Θi,m) = Θi,m, for m ≤ n,

[Θj,1,Θi,m] = 0, for m < n.

Then [Θj,1,Θi,n] = [cij ](1−Tω)Θi,n+1.

Proof. By definition of Di,k and using Lemma 6.4, we have

[Θi,1, Di,n−2]

= [Bτi,1, Bi,n−2]v−1 + [2][Bτi,−1, Bi,n−2]v−1C − [2][Bτi, Bi,n−1]v−1

− [Bτi, Bi,n−3]v−1C + [Bi,n−1, Bτi]v−1 + [2][Bi,n−1, Bτi,−2]v−1C

− [2][Bi,n, Bτi,−1]v−1 − [Bi,n−2, Bτi,−1]v−1C

= [2](1− CTω)Di,n−1 −T−1
ω

(1− CTω)Di,n−3,

for any n ≥ 0. By the assumption Tω(Θi,m) = Θi,m for m ≤ n, we have

(1− CTω)Di,n−1 = (1− CTω)
(
− v−1Θi,n+1KτiC

−1 +Θi,n−1Kτi

)

= −v−1(1−Tω)Θi,n+1KτiC
−1,

(1− CTω)Di,n−3 = (1− CTω)
(
− v−1Θi,n−1KτiC

−1 +Θi,n−3Kτi

)
= 0.

So

[Θi,1, Di,n−2] = −v−1(1−Tω)Θi,n+1KτiC
−1.
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Replace Di,n−2 by −v−1Θi,nKτiC
−1+Θi,n−2Kτi. By the assumption [Θi,1,Θi,n−2]

= 0, we have

[Θi,1,Θi,n]KτiC
−1 = [2](1−Tω)Θi,n+1KτiC

−1,

and then the desired formula follows.
For j = τi, the proof is entirely similar by using now the identity

[Θτi,1, Di,n−2] = −(1− CTω)Di,n−1 + [2]T−1
ω

(1− CTω)Di,n−3.

We omit the details. �

Corollary 6.10 will be used repeatedly in the subsequent inductive arguments.

Corollary 6.10. Let n ≥ 1 and i, j ∈ {1, 2}. Assume that [Θj,1,Θi,m] = 0, for all
m < n. Then Θi,m are fixed by Tω, for 1 ≤ m ≤ n.

Proof. The proof follows from Lemmas 6.3, 6.9 and an induction on m. �

6.6. The commutator [Θi,n, Bj ]. For i = 1, 2 and n ≥ 0, we denote by Hi,n the

Q(v)-subalgebra of Ũı generated by {Θi,m,K1,K2,K0 | 1 ≤ m < n}.

Proposition 6.11. Let n ≥ 1, and assume that [Θj,1,Θi,m] = 0 for all i, j ∈ {1, 2}

and all m < n. Then there exist X
(i)
k,n ∈ Hi,n, for −n ≤ k ≤ n, such that

[Θi,n, B1] =
n∑

k=−n

B1,kX
(i)
k,n.(6.14)

In order to prove Proposition 6.11, we need to prepare some notations and lem-
mas. For any k1, k2 ∈ Z and i = 1, 2, we denote

R(k1, k2|l; i) := Symk1,k2

[
− v−1Θτi,l−k2+1C

k2Ki +Θτi,l−k2−1C
k2+1Ki, Bi,k1

]
v

+ Symk1,k2

[
− v−1Θi,k2−l+1C

lKτi +Θi,k2−l−1C
l+1Kτi, Bi,k1

]
v
,(6.15)

P(k1, k2|l; i) := Symk1,k2

[
Bi,k1

,−v−1Θτi,l−k2+1C
k2−1Ki +Θτi,l−k2−1C

k2Ki

]
v

+ Symk1,k2

[
Bi,k1

,−v−1Θi,k2−l+1C
l−1Kτi +Θi,k2−l−1C

lKτi

]
v
.(6.16)

Recall S(k1, k2|l; i) from (5.1).

Lemma 6.12. Let n ≥ 3, and i ∈ {1, 2}. Assume that [Θi,1,Θi,m] = [Θτi,1,Θi,m] =
0 for all m < n. Then, for |k1 − l| ≤ n− 1, |k2 − l| ≤ n− 1,

S(k1 + 1, k2|l; i) + S(k1, k2 + 1|l; i)− [2]S(k1, k2|l + 1; i) = [2]R(k1, k2|l; i),(6.17)

S(k1 − 1, k2|l; i) + S(k1, k2 − 1|l; i)− [2]S(k1, k2|l − 1; i) = [2]P(k1, k2|l; i).(6.18)

Proof. If [Θi,1,Θi,m] = [Θτi,1,Θi,m] = 0 for all m < n, then Θ1,m,Θ2,m, 1 ≤ m ≤ n
are fixed by Tω by Corollary 6.10. Thus, by applying Tω to the identity (4.8) we
obtain the relation (5.6) for |l − k| ≤ n− 1.
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Below we shall work only with i = 1. For |k1 − l| ≤ n − 1, |k2 − l| ≤ n − 1, we
compute

S(k1 + 1, k2|l; 1) + S(k1, k2 + 1|l; 1)

= Symk1,k2

(
B1,k1+1B1,k2

B2,l − [2]B1,k1+1B2,lB1,k2
+B2,lB1,k1+1B1,k2

)

+ Symk1,k2

(
B1,k1

B1,k2+1B2,l − [2]B1,k1
B2,lB1,k2+1 +B2,lB1,k1

B1,k2+1

)

= Symk1,k2

(
v2B1,k2

B1,k1+1B2,l − [2]B1,k1+1B2,lB1,k2
+B2,lB1,k1+1B1,k2

)

+ Symk1,k2

(
B1,k1

B1,k2+1B2,l − [2]B1,k1
B2,lB1,k2+1 + v−2B2,lB1,k2+1B1,k1

)

= [2] Symk1,k2

(
vB1,k1

B1,k2+1B2,l −B1,k1
B2,lB1,k2+1 −B1,k1+1B2,lB1,k2

+ v−1B2,lB1,k1+1B1,k2

)

= [2] Symk1,k2

(
vB1,k1

[B1,k2+1, B2,l]v−1 − [B1,k1+1, B2,l]v−1B1,k2

)
,

where the second equality follows from Symk1,k2
[B1,k1

, B1,k2+1]v−2 = 0; see Propo-
sition 6.6.

Hence, we have

S(k1 + 1, k2|l; 1) + S(k1, k2 + 1|l; 1)− [2]S(k1, k2|l + 1; 1)(6.19)

= [2] Symk1,k2

(
vB1,k1

[B1,k2+1, B2,l]v−1 − [B1,k1+1, B2,l]v−1B1,k2

)

+ [2] Symk1,k2

(
vB1,k1

[B2,l+1, B1,k2
]v−1 − [B2,l+1, B1,k1

]v−1B1,k2

)
.

Applying the relation (5.6) for |l − k| ≤ n − 1 (which holds as shown in the first
paragraph of this proof) to sum up each of the 2 columns of the right hand side of
(6.19), we have

S(k1 + 1, k2|l; 1) + S(k1, k2 + 1|l; 1)− [2]S(k1, k2|l + 1; 1)

= [2] Symk1,k2

[
− v−1Θ2,l−k2+1C

k2K1 +Θ2,l−k2−1C
k2+1K1, B1,k1

]
v

+ [2] Symk1,k2

[
− v−1Θ1,k2−l+1C

lK2 +Θ1,k2−l−1C
l+1K2, B1,k1

]
v

(6.20)

= [2]R(k1, k2|l; 1).

This proves the identity (6.17).
The proof of the remaining identity (6.18) is similar and will be omitted here. �

Lemma 6.13. Let n ≥ 3 and assume that [Θi,1,Θi,m] = [Θτi,1,Θi,m] = 0 for any
i = 1, 2, and all m < n. We have, for |k1 − l| ≤ n− 2, |k2 − l| ≤ n− 2,

R(k1 − 1, k2|l; i) + R(k1, k2 − 1|l; i)− [2]R(k1, k2|l − 1; i)

(6.21)

= P(k1 + 1, k2|l; i) + P(k1, k2 + 1|l; i)− [2]P(k1, k2|l + 1; i).

In particular, for |k − l| ≤ n− 2, we have

R(k − 1, k|l) + R(k, k − 1|l)− [2]R(k, k|l − 1)(6.22)

= P(k + 1, k|l) + P(k, k + 1|l)− [2]P(k, k|l + 1).

Proof. The proof follows by replacing both R-terms and P-terms in (6.21) by the
S-terms via (6.17)–(6.18). �
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For m ≥ 0, k ∈ Z, we define

Y k
1,m := [Θ1,m, B1,k] + v3[Θ1,m−2, B1,k]v−6C − v2[Θ1,m−1, B1,k+1]v−4(6.23)

− v[Θ1,m−1, B1,k−1]v−2C,

Y k
2,m := [Θ2,m, B1,k] + v−3[Θ2,m−2, B1,k]v6C − v−1[Θ2,m−1, B1,k+1]v2(6.24)

− v−2[Θ2,m−1, B1,k−1]v4C.

(Note that the desired relation (5.4) can be formulated as Y k
1,m = 0 = Y k

2,m, by

Lemma 5.4.) For convenience, we set Y l
1,−m = 0 = Y l

2,−m for m > 0, l ∈ Z. We
rewrite (6.22) as

(Y k
2,l−kC − v−1Y k

2,l−k+2)C
k−1K1 + (v3Y k

1,k−lC − v2Y k
1,k−l+2)C

l−1K2 = 0,

for |k − l| ≤ n− 2.

(6.25)

Lemma 6.14. Let n ≥ 1, and assume that [Θj,1,Θi,m] = 0, for i, j = 1, 2 and all
m < n. Then we have

(6.26) Y k
1,n = 0, Y k

2,n = 0, ∀k ∈ Z.

Proof. Since Θi,m,Θτi,m, 1 ≤ m ≤ n are fixed by Tω by Corollary 6.10, Tω acts
on Y k

i,m by shifting the superscript k. Hence, for fixed 1 ≤ m ≤ n, if Y k
i,m = 0 for

some k, then Y k
i,m = 0 for all k ∈ Z.

Denote Yi,m = Y 0
i,m. It remains to show by induction on n that Yi,n = 0 for

i = 1, 2. This holds for n = 1, 2 by Lemma 6.4 and Lemma 6.8. Let n ≥ 3.
Applying a suitable power of Tω to (6.25) gives us the identity

(6.27) (Y2,l−kC − v−1Y2,l−k+2)C
k−1K1 + (v3Y1,k−lC − v2Y1,k−l+2)C

l−1K2 = 0,

for |k− l| ≤ n− 2. For n = 3, set k− l = 1 in (6.27). Note Yi,p = 0 for p ≤ 0. Then

Y1,3K2 = −v−3Y2,1CK1 + vY1,1CK2 = 0.

Similarly, we have Y2,3K1 = vY2,1CK1 − v3Y1,1CK2 = 0. Let n ≥ 4. Setting
k− l = n−2 in (6.27) gives us Y1,n = vY1,n−2C, while setting l−k = n−2 in (6.27)
gives us Y2,n = vY2,n−2C. Therefore, by induction on n, we have proved Yi,n = 0
for i = 1, 2. �

Proof of Proposition 6.11. For the sake of notational simplicity, we shall work with
i = 1 in this proof (the case for i = 2 is entirely similar).

We proceed by an induction on n. The statement for n = 1, 2 follows by
Lemma 6.4 and Lemma 6.8. Suppose that the statement holds for [Θ1,m, B1],
where 1 ≤ m ≤ n− 1. By Lemma 6.14 (see (6.23) for notation Y k

i,n), we have

[Θ1,n, B1] = −v3[Θ1,n−2, B1]v−6C + v2[Θ1,n−1, B1,1]v−4 + v[Θ1,n−1, B1,−1]v−2C

= −v3Θ1,n−2B1C + v−3B1Θ1,n−2C + v2Θ1,n−1B1,1 − v−2B1,1Θ1,n−1

+ vΘ1,n−1B1,−1C − v−1B1,−1Θ1,n−1C

= −v3Θ1,n−2B1C + v2Θ1,n−1B1,1 + vΘ1,n−1B1,−1C +

n∑

k=−n

B1,kZk,n(6.28)
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for some Zk,n ∈ H1,n. Furthermore, by the inductive assumption, we have

Θ1,n−2B1C = B1Θ1,n−2C +

n−2∑

k=−n+2

B1,kX
′
k,n−2,

Θ1,n−1B1 = B1Θ1,n−1 +
n−1∑

k=−n+1

B1,kX
′′
k,n−1,(6.29)

for some X ′
k,n−2 ∈ H1,n−2 and X ′′

k,n−1 ∈ H1,n−1. By applying T±1
ω

to (6.29), we
have

Θ1,n−1B1,1 = B1,1Θ1,n−1 +
n−1∑

k=−n+1

B1,k+1Ẍ
′
k,n−1,

Θ1,n−1B1,−1C = B1,−1Θ1,n−1C +

n−1∑

k=−n+1

B1,k−1Ẍ
′′
k,n−1,

for some Ẍ ′
k,n−1, Ẍ

′′
k,n−1 ∈ H1,n−1, since Tω(Θ1,n−1) = Θ1,n−1 and Tω(H1,n−1) ⊆

H1,n−1 by Corollary 6.10. Thus the desired formula (6.14) follows from (6.28). �

6.7. Relation (5.3). With all the technical preparation in the prior subsections,
we are ready to prove the crucial commutativity among the imaginary root vectors
Θi,m.

Lemma 6.15. Let n ≥ 1, and assume that [Θj,1,Θi,k] = 0 for all i, j ∈ {1, 2}, and
all k < n. Then for all 1 ≤ m1,m2 ≤ n and i, j ∈ {1, 2}, we have

(1)
[
Θi,m1

, [Θj,m2
, B1]

]
=

[
Θj,m2

, [Θi,m1
, B1]

]
;

(2) [Θi,m1
,Θj,m2

] = 0.

Proof. Without loss of generality, we assume m1 ≥ m2. Let “<” denote the lexi-
cographic ordering on N2. We use induction on (m1,m2) in lexicographic ordering.
Assume that

(6.30) [Θi,k,Θj,l] = 0

for all i, j and all (k, l) < (m1,m2). By Corollary 6.10, Θi,k,Θj,l are fixed by Tω.

By Proposition 6.11, there exist X
(i)
k,m ∈ Hi,m such that

[Θi,m, B1,r] =

m∑

k=−m

B1,r+kX
(i)
k,m,(6.31)
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for 1 ≤ m ≤ n, r ∈ Z. Hence,

[
Θi,m1

, [Θj,m2
, B1]

]
=

m2∑

l=−m2

[
Θi,m1

, B1,lX
(j)
l,m2

]

=

m2∑

l=−m2

[
Θi,m1

, B1,l

]
X

(j)
l,m2

=

m2∑

l=−m2

m1∑

k=−m1

B1,k+lX
(i)
k,m1

X
(j)
l,m2

=

m1∑

k=−m1

m2∑

l=−m2

B1,k+lX
(j)
l,m2

X
(i)
k,m1

=
[
Θj,m2

, [Θi,m1
, B1]

]
,

where the second equality follows from [Θi,m1
, Xl,m2

] = 0 by the inductive assump-
tion (6.30), and the commutativity of Xk,m1

, Xl,m2
used in the fourth equality also

follows from (6.30) and Xk,m1
∈ H1,m1

, Xl,m2
∈ H1,m2

. This proves (1).
It follows by the Jacobi identity that

[
[Θi,m1

,Θj,m2

]
, B1] = 0. By symmetry,

we also have
[
[Θi,m1

,Θj,m2

]
, B2] = 0. By Lemma 2.3 and Lemma 4.4, we have[

[Θi,m1
,Θj,m2

],Ka

]
= 0, for all a ∈ I. Therefore, Lemma 4.12 is applicable and

implies [Θi,m1
,Θj,m2

] = 0, which proves (2). �

Proposition 6.16. Relation (5.3) holds in Ũı.

Proof. Since Θi,0 = 1
v−v−1 , we have [Θj,1,Θi,0] = 0, for all i, j. Then it follows

from Lemma 6.15 that [Θi,m1
,Θj,m2

] = 0 by induction. So (5.3) holds in Ũı by
Lemma 5.4(1). �

Now we can remove the assumption in Corollary 6.10.

Theorem 6.17. We have Tω(Θi,n) = Θi,n, for all n ≥ 1 and i ∈ {1, 2}.

Proof. The proof follows by Corollary 6.10 and Proposition 6.16. �

6.8. Relation (5.4).

Proposition 6.18. Relation (5.4) holds in Ũı.

Proof. We shall prove the identity (5.12), which is equivalent to (5.4) by Lemma 5.4(2).
By Proposition 6.16, the assumption of Lemma 6.14 holds for any n ≥ 1, and

hence

Y k
1,n = 0, Y k

2,n = 0, ∀n ≥ 1, k ∈ Z.

That is, the identity (5.12) holds for j = 1; it holds also for j = 2 by the symmetry
τ̂ in (2.17). �

6.9. Relation (5.6). The proof of Relation (5.6) is rather straightforward as we
now have Theorem 6.17 at our disposal.

Proposition 6.19. Relation (5.6) holds in Ũı.

Proof. In the proof below, we refer to the relation (5.6) as R(k, l).
Relation R(k, k) follows by applying a suitable power of Tω to the identity (6.8),

thanks to the Tω-invariance of Θi,m by Theorem 6.17.
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Relation R(k,−1) for k ≥ 0 follows by definition of Θi,m in (4.6)–(4.8). Then
R(k, l) for k > l follows by applying Tω to the known case R(k − l − 1,−1) and
noting that Θi,m is Tω-invariant by Theorem 6.17.

For k < l, we apply the involution τ̂ in (2.17) and reduce to the case R(l, k)
already established above (the second equation below follows by a simple rewriting
of the commutators):

τ̂
(
LHS(5.6)

)
= [Bτi,k, Bi,l+1]v − v[Bτi,k+1, Bi,l]v−1

= [Bi,l, Bτi,k+1]v − v[Bi,l+1, Bτi,k]v−1

= −Θτi,k−l+1C
lKi + vΘτi,k−l−1C

l+1Ki −Θi,l−k+1C
kKτi

+ vΘi,l−k−1C
k+1Kτi.

Another application of the involution τ̂ to the right hand side above turns it into
the right hand side of (5.6). This completes the proof of the proposition. �

6.10. Relation (5.7). Finally we shall prove the Drinfeld type Serre relations.

Proposition 6.20. Relation (5.7) holds in Ũı.

Proof. Since (5.7) is equivalent to the relation (5.27) in generating function form,
it suffices to prove (5.27).

We can rewrite (6.17) as

(w−1
1 +w−1

2 − [2]z−1)S(w1, w2 | z; i) = −v−1[2] Symw1,w2
Δ(w2z)

(6.32)

×
(
(z−1−vw−1

2 )[Θτi(z)Ki,Bi(w1)]v+(w−1
2 −vz−1)[Θi(w2)Kτi,Bi(w1)]v

)
.

Similarly, we rewrite (6.18) as

(w1+w2 − [2]z)S(w1, w2 | z; i) = −v−1[2] Symw1,w2
Δ(w2z)(6.33)

×
(
(w2 − vz)[Bi(w1),Θτi(z)Ki]v+(z−vw2)[Bi(w1),Θi(w2)Kτi]v

)
.

We calculate (6.32)×[2]z +(6.33)×(w−1
1 + w−1

2 ) as follows:

(w1 − v2w2)(w
−1
2 − v−2w−1

1 )S(w1, w2 | z; i)

=− v−1[2] Symw1,w2
Δ(w2z)(w

−1
1 − v2w−1

2 )(w2 − vz)Bi(w1)Θτi(z)Ki

− v−1[2] Symw1,w2
Δ(w2z)v

−1(w1 − v2w2)(w
−1
1 − vw−1

1 w−1
2 z)Θτi(z)KiBi(w1)

(6.34)

+ v[2] Symw1,w2
Δ(w2z)(w

−1
2 − v−2w−1

1 )(z − vw2)Bi(w1)Θi(w2)Kτi

+ v−1[2] Symw1,w2
Δ(w2z)v

−1(w1 − v2w2)(vw
−1
1 − w−1

1 w−1
2 z)Θi(w2)KτiBi(w1).

Note that the constant component of (6.34) is exactly the relations (2.5)–(2.6).
Then, dividing both sides of (6.34) by (w1 − v2w2)(w

−1
2 − v−2w−1

1 ), we obtain the
desired relation (5.27). �

Therefore, we have verified that all the relations (5.2)–(5.7) are preserved under

Φ : DrŨı → Ũı; that is, Φ : DrŨı → Ũı defined in (5.13) is a homomorphism.
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Appendix A. Proof of Identity (3.8)

A.1. Proof of Identity (3.8). In this subsection, we prove the identity (3.8), and
hence complete the proof of the identity (3.1). When combining with discussions
in §3.1–§3.2, we have completed the proof of Theorem 2.7.

The identity F̈ = T̃−1
r1

(F0) in (3.8) is not homogeneous in Ũ, and it consists of
homogeneous summands of 4 different weights: −(α0+2α1+2α2), −(α0+α1+α2),
−α0, and −α0 + α1 + α2, respectively. Accordingly, the proof of the identity (3.8)
is reduced to the proofs of the 4 identities (A.1)–(A.4):

v
[[
F1, F2

]
v
,
[
F2, [F1, F0]v

]]
= T̃−1

r1
(F0),(A.1)

[[
F1, E1K2

]
v
,
[
F2, [F1, F0]v

]]
+
[[
F1, F2

]
v
,
[
E1K2, [F1, F0]v

]]

+ v
[
K1K2−K1K

′

2

v−v−1 ,
[
F2, [F1, F0]v

]]
=

[
[F1, F2]v3 , F0

]
K ′

1K2,(A.2)

[[
E2K1, E1K2

]
v
,
[
F2, [F1, F0]v

]]
+
[
[F1, E1K2]v,

[
E1K2, [F1, F0]v

]]

+ v
[
K1K2−K1K

′

2

v−v−1 ,
[
E1K2, [F1, F0]v

]]

=
[
[E2K1, F2]v3 + [F1, E1K2]v3 , F0

]
K2K

′
1 − v2F0K1K2K

′
1K

′
2,(A.3)

[[
E2K1, E1K2

]
v
,
[
E1K2, [F1, F0]v

]]
=

[
[E2K1, E1K2]v3 , F0

]
K2K

′
1.(A.4)

The identity (A.1) holds by Lemma 3.3. The proofs for (A.2)–(A.4) require only
elementary computations and are given in the following 3 subsections.

A.1.1. Proof of (A.2). Denote X := [F1, F0]v.

Lemma A.1. We have

(1) XF1 = vF1X;
(2)

[
E1, X

]
= F0K

′
1;

(3) XE1K2 = v−2E1K2X − F0K
′
1K2.

Note the third term on the left hand side of (A.2) is 0, i.e.,

[K1K2−K1K
′
2

v − v−1
,
[
F2, [F1, F0]v

]]
= 0.
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We now compute using Lemma A.1 as follows:
[
[F1, E1K2]v, [F2, X]

]
+
[
[F1, F2]v, [E1K2, X]

]

=
[
F1, E1K2

]
v
F2X −

[
F1, E1K2

]
v
XF2 − F2X

[
F1, E1K2

]
v
+XF2

[
F1, E1K2

]
v

+ [F1, F2]vE1K2X − [F1, F2]vXE1K2 − E1K2X[F1, F2]v +XE1K2[F1, F2]v

=
(
[F1, E1K2]vF2 − v−1F2[F1, E1K2]v + [F1, F2]vE1K2 − v−2[F1, F2]vE1K2

)
X

+ vF2F1F0K
′
1K2 − v4F2F0F1K

′
1K2 + [F1, F2]vF0K

′
1K2

+X
(
F2[F1, E1K2]v − v

[
F1, E1K2

]
v
F2 + E1K2[F1, F2]v − v2E1K2[F1, F2]v

)

− v−1F1F0F2K
′
1K2 + v2F0F1F2K

′
1K2 − v2F0[F1, F2]vK

′
1K2

= −F2K
′
1K2X + F1F2F0K

′
1K2 − v4F2F0F1K

′
1K2

+ v−1XF2K
′
1K2 + v3F0F2F1K

′
1K2 − v−1F1F0F2K

′
1K2

=
[
[F1, F2]v3 , F0

]
K ′

1K2.

This proves the identity (A.2).

A.1.2. Proof of (A.3). Denote again X := [F1, F0]v. Denote Ẽ1 := E1K2, Ẽ2 :=
E2K1.

Lemma A.2. We have

(1) XẼ2 = vẼ2X;

(2)
[
Ẽ2, Ẽ1]v, F2

]
v−1 = −vẼ1K1K2;

(3)
[
[Ẽ2, Ẽ1]v, X

]
v
= v2[Ẽ2, F0]v3K ′

1K2;

(4) [F1, Ẽ1]v−1 =
K′

1−K1

v−v−1 K2;

(5)
[
[F1, Ẽ1]v, X

]
v
= v2[F1, F0]v3K ′

1K2.

Proof. Parts (1)–(2) and (4) follow by a direct computation. Parts (3) and (5) follow
from (1), Lemma A.1, and the following two v-Jacobi identities, respectively:

[
[Ẽ2, Ẽ1]v, X

]
v
=

[
Ẽ2, [Ẽ1, X]v2

]
− v

[
Ẽ1, [Ẽ2, X]v−1

]
v
,

[
[F1, Ẽ1]v, X

]
v
=

[
F1, [Ẽ1, X]v2

]
− v

[
Ẽ1, [F1, X]v−1

]
v
.

The lemma is proved. �

Proposition A.3. We have

[
[Ẽ2,Ẽ1]v, [F2, X]

]
+ v

[
K1K2−K1K

′

2

v−v−1 , [Ẽ1, X]
]

=
[
[Ẽ2, F2]v3 , F0

]
K ′

1K2 − v2F0K1K2K
′
1K

′
2.(A.5)

Proof. By Lemma A.2(2)–(3), the first term on the left hand side of (A.5) is equal
to

[
[Ẽ2, Ẽ1]v, [F2, X]

]
=

[[
[Ẽ2, Ẽ1]v, F2

]
v−1 , X

]
v
+ v−1

[
F2,

[
[Ẽ2, Ẽ1]v, X

]
v

]
v

= −v2
[
Ẽ1, X

]
K1K2 + v

[
F2, [Ẽ2, F0]v3

]
v−2

K ′
1K2.
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Hence, the left hand side of (A.5) is simplified as
[
[Ẽ2, Ẽ1]v, [F2, X]

]
+ v

[
K1K2−K1K

′

2

v−v−1 , [Ẽ1, X]
]

= −v2[Ẽ1, X]K1K2 + v
[
F2, [Ẽ2, F0]v3

]
v−2

K ′
1K2 + v2[Ẽ1, X]K1K2

= v
[
F2, [Ẽ2, F0]v3

]
v−2

K ′
1K2

=
[
[Ẽ2, F2]v3 , F0

]
K ′

1K2 − v2F0K1K2K
′
1K

′
2,

as desired. Here the last equality follows by

v
[
F2, [Ẽ2, F0]v3

]
v−2

−
[
[Ẽ2, F2]v3 , F0

]

= (v−v3)F2Ẽ2F0+(v2−1)F0Ẽ2F2−Ẽ2F2F0+v3F2Ẽ2F0+F0Ẽ2F2−v3F0F2Ẽ2

= v[F2, E2]K1F0 + v3F0[E2, F2]K1

= −v
K2 −K ′

2

v − v−1
K1F0 + v3F0

K2 −K ′
2

v − v−1
K1

= −v2F0K1K
′
2.

Hence, Proposition A.3 is proved. �

Proposition A.4. We have
[
[F1, Ẽ1]v, [Ẽ1, X]

]
=

[
[F1, E1K2]v3 , F0

]
K ′

1K2.

Proof. By Lemma A.2(4)–(5), we have
[
[F1, Ẽ1]v, [Ẽ1, X]

]

=
[[
[F1, Ẽ1]v, Ẽ1

]
v−1 , X

]
v
+ v−1

[
Ẽ1,

[
[F1, Ẽ1]v, X

]
v

]
v

=
[[
[F1, Ẽ1]v−1 , Ẽ1

]
v
, X

]
v
+ v−1

[
Ẽ1,

[
F1, [Ẽ1, X]

]
v2

]
v

=
[[K ′

1 −K1

v − v−1
K2, Ẽ1

]
v
, X

]
v
+ v

[
Ẽ1, [F1, F0]v3K ′

1K2

]
v

= (v + v−1)
[
[F1, F0]v, Ẽ1

]
v2K

′
1K2 + v

[
Ẽ1, [F1, F0]v3

]
v−2K

′
1K2

(∗)
= −v(v +v−1)

[
F0, [F1, Ẽ1]v3

]
v−2K

′
1K2 − v−2

[
[F1, Ẽ1]v3 , F0

]
v4K

′
1K2

=
[
[F1, E1K2]v3 , F0

]
K ′

1K2.

where for the equation (∗) above we have used the following identities
[
[F1, F0]v, Ẽ1

]
v2 = −v

[
F0, [F1, Ẽ1]v3

]
v−2 ,

[
Ẽ1, [F1, F0]v3

]
v−2 =

[
[Ẽ1, F1]v−3 , F0

]
v4 .

The proposition is proved. �

The identity (A.3) follows by Proposition A.3 and Proposition A.4.

A.1.3. Proof of (A.4). We continue to denote Ẽ1 := E1K2, Ẽ2 := E2K1, and X :=
[F1, F0]v.

Lemma A.5. We have

(1) [Ẽ1, F1]v = v
K1−K′

1

v−v−1 K2;

(2) [Ẽ1, F0]v = [Ẽ2, F0]v = 0;
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(3) [Ẽ2, F1]v−2 = 0;

(4)
[
[Ẽ2, Ẽ1]v, Ẽ1

]
v−1 = 0;

(5)
[
Ẽ2, X

]
v−1 = 0;

(6)
[
Ẽ1, X

]
v2 = v2F0K

′
1K2;

(7)
[
[Ẽ2, Ẽ1]v, X

]
v
= v2

[
Ẽ2, F0K

′
1K2

]
.

Proof. Parts (1)–(3) are clear, (4) is a Serre relation, and (5) follows from (1)–

(3). Part (6) follows from (1)–(3) and a v-Jacobi identity
[
Ẽ1, [F1, F0]v

]
v2 =[

[Ẽ1, F1]v, F0

]
v2+v

[
F1, [Ẽ1, F0]v

]
. Part (7) follows from (5)–(6) and

[
[Ẽ2, Ẽ1]v, X

]
v

=
[
Ẽ2, [Ẽ1, X]v2

]
− v

[
Ẽ1, [Ẽ2, X]v−1

]
v
. �

We now compute the left hand side of (A.4) by applying Lemma A.5:
[[
Ẽ2, Ẽ1

]
v
, [Ẽ1, X]

]
=

[[
[Ẽ2, Ẽ1]v, Ẽ1

]
v−1 , X

]
v
+ v−1

[
Ẽ1,

[
[Ẽ2, Ẽ1]v, X

]
v

]
v

= v
[
Ẽ1,

[
Ẽ2, F0K

′
1K2

]]
v

= v
[
Ẽ1,

[
Ẽ2, F0

]
v3

]
v−2

K ′
1K2

= v
(
Ẽ1Ẽ2F0 − v3Ẽ1F0Ẽ2 − v−2Ẽ2F0Ẽ1 + vF0Ẽ2Ẽ1

)
K ′

1K2

= v(v − v−1)F0

(
− v3Ẽ1Ẽ2 + Ẽ2Ẽ1

)
K ′

1K2

= (v2 − 1)F0[Ẽ2, Ẽ1]v3K ′
1K2.

On the other side, by Lemma A.5, we have [Ẽ2, Ẽ1]v3F0 = v2F0[Ẽ2, Ẽ1]v3 , and thus
[
[Ẽ2, Ẽ1]v3 , F0

]
= (v2 − 1)F0[Ẽ2, Ẽ1]v3 .

Hence, (A.4) follows from the above computations.
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