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BRAID GROUP ACTION AND QUASI-SPLIT AFFINE
1QUANTUM GROUPS 1

MING LU, WEIQIANG WANG, AND WEINAN ZHANG

ABSTRACT. This is the first of our papers on quasi-split affine quantum sym-
metric pairs (f](/g\),ﬁz), focusing on the real rank one case, i.e., g = sl3
equipped with a diagram involution. We construct explicitly a relative braid
group action of type Agm on the affine :quantum group U*. Real and imag-
inary root vectors for U*® are constructed, and a Drinfeld type presentation
of U is then established. This provides a new basic ingredient for the Drin-
feld type presentation of higher rank quasi-split affine :quantum groups in the

sequels.
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1. INTRODUCTION

1.1. Background. Besides the Drinfeld-Jimbo presentation, affine quantum groups
admit a second presentation due to Drinfeld [Dr87, Dr88,Da93, Be94, Dal5], which
is a remarkable quantum analog of the current presentation of affine Lie algebras.
The Drinfeld (current) presentation has played a fundamental role in representation
theory and mathematical physics; cf., e.g., [CP91,FR99,FMO01], and see the survey
[CH10] for extensive references.

The tquantum groups U* arising from quantum symmetric pairs (U, U*) associ-
ated to Satake diagrams [Let99] (see [Kol4]) can be viewed as a vast generalization
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of Drinfeld-Jimbo quantum groups associated to Dynkin diagrams; see the survey
[W22] and references therein. In this paper, we shall work with universal i.quantum
groups (U, UY) following [LW22a, WZ22], where U is the Drinfeld double quantum
group, as this allows us to formulate the relative braid group action conceptually.
Just as the quantum group U is obtained by U by a central reduction, a central re-
duction from universal :quantum groups recovers :quantum groups with parameters
[Let02,Kol4].

In [LW21a], two authors of this paper obtained a Drinfeld type presentation for
affine tquantum groups of split ADE type; here “split” means that the underlying
Satake diagram contains only white nodes and a trivial diagram involution, and this
class of algebras appeared in [BB10] in connection to boundary affine Toda field
theories. Subsequently, the third author streamlined some of the main arguments
in the split ADE type and succeeded in generalizing to the split BCFG type [Z22].

The affine 1quantum group of split rank one is also known as the g-Onsager
algebra in the mathematics and physics literature; cf. [T18, BB10] and references
therein. The real and imaginary root vectors for q-Onsager algebra were first con-
structed and their commutator relations in a somewhat tedious form were also
obtained in [BK20]. These relations were transformed and upgraded in [LW21a]
into a Drinfeld type relation for the (universal) g-Onsager algebra. These construc-
tions on g-Onsager algebra were instrumental for the Drinfeld presentation of split
affine tquantum groups of higher rank.

1.2. Goal. In this paper and its sequels, we shall construct the Drinfeld type pre-
sentations of quasi-split affine :«quantum groups, where the Satake diagrams are of
affine types En, ﬁn, EG with nontrivial diagram involutions fixing the affine simple
root. This class of squantum groups contains 3 distinct affine :quantum groups of
real rank one:

(i) Drinfeld-Jimbo quantum group Ulsly);
(ii) g-Onsager algebra UZ(E[Q)
(iii) the zquantum group U’(ﬁ[g, ) associated to the Satake diagram (I, 7) in
(2.3), where 7 is the involution on I = {0, 1,2} of affine type A

71— 1, 7(0) =0, 15 2.

The goal of this paper is to give a Drinfeld type presentation for I~JZ(5A[3, 7), the
case (iii) in the above list of 3 affine rank one types. Toward this goal, we shall also

establish the relative braid group action of twisted affine type Ag) on sz(g\lg, T),
which is another main result of this paper. The constructions in this paper (as
well as the known Drinfeld presentations in Cases (i)—(ii)) will play a basic role in
the sequels, in which a Drinfeld type presentation for arbitrary quasi-split affine
rquantum groups will be established.

The Drinfeld type presentations of affine :quantum groups are expected to play a
foundational role in their representation theory, to which we shall return elsewhere.
They may have additional applications to quantum integrable systems (such as
XXZ spin chain, Sine-Gordon and Liouville field theories), cf. [BKO05].

1.3. Features of new affine rank one. There are several reasons why the algebra
U (5[3, ) is substantially more involved than the other 2 affine rank one types and
deserves a separate new investigation.
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While I~JZ(5A[3, T) is viewed as a new case (iii) of affine real rank one (a building
block which cannot be further reduced), it is a subalgebra of the quantum group
INJ(;[3) and behaves with complexity of affine rank two, in contrast to Cases (i)—(ii).
As we shall see, the Drinfeld presentation of U* (5A[37 7) requires 2 infinite series of
real (respectively, imaginary) roots and Serre relations, and moreover, ﬁl(;[g,T)
admits a braid group action of twisted affine type Aéz).

To construct Drinfeld presentations of all affine quantum groups including twisted
types, besides the usual type 217 one needs to treat the twisted affine rank one type
AgQ) separately; see [Da00,Dal5]. In the study of geometry of twisted affine Grass-
mannians, there are two special parahoric groups for Aéi), one of which (known
as absolutely special or hyperspecial) requires a separate treatment. The quasi-split
affine squantum groups of type gn with nontrivial diagram involution (which is
U'(sls, 7) if n = 2) has been realized geometrically in [FLLLW], and its scanonical
basis admits favorable positivity properties (compare [Lus93]).

The :Hall algebra constructions based on iquivers or tweighted projective lines
(cf. [LW22a,LR21]) can be used to realize all affine quasi-split :quantum groups
except A\QT with nontrivial diagram involution. The simplest affine case not covered
by the current +Hall algebra approach is exactly ﬁl(g[g, 7). So unlike the split ADE
types [LW21b, LRW23,LR21], we do not have access to a Hall algebra construction
to gain insights into the Drinfeld type presentation for U* (5A[3, 7).

We shall denote ﬁt(f:\lg,, 7) by U" in the remainder of this paper.

1.4. Relative braid group symmetries. The algebra U is generated by B;, K;,
for i« € T = {0,1,2}, subject to Serre type relations (2.4)—(2.8). The relative root
system for (INJ, 61)7 which contains 2 simple roots «, o, is of twisted affine type
A§2). Very recently, two of the authors in [WZ22] constructed relative braid group
symmetries on U" of arbitrary finite type, confirming a longstanding conjecture of
Kolb-Pellegrini [KP11] and generalizing braid group symmetries on quantum groups
[Lus93]. It is natural to hope for automorphisms To, Ty on U* which generate a
relative braid group action of type AgZ).

The automorphisms Ty and T ! with respect to the simple root o are not
difficult to construct; see Proposition 2.5. Actually, the general constructions of
relative braid group symmetries in [WZ22] can be applied to cover this case (even
though our U is not of finite type), and the formulas for the actions on generators
of U essentially arise from finite type considerations (compare [KP11,LW21a]).

In contrast, the automorphisms T; and Tfl with respect to oy are difficult to
establish.

Theorem A (Theorems 2.7-2.8). There exists a Q(v)-algebra automorphism T
on U" such that

e
=
I

vIKGY, Ti(Ky) = v 'Ky, Ti(Ko) = v?KoK2KE,
T(B)) = —v ?BK; !, Ty (By) = —v ?BK[ Y,
T1(Bo) = v|[[Bo, Bilu, Ba), (B, Bulu| = [Bo, [Ba, Bilus | K + vBoKa Ko,
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The inverse automorphism Tfl is given by
T (K =07 'Ky Y, T (Ke) = o 'Ky, T (Ko) = v?KoKTKS,
T, '(B)) = —vB K, T, '(By) = —vBK; !,
T7(Bo) = v|[By, Balu, [Bz, [B1, Bolu] | = [[Br, Balus, Bo]Ka + vBoKiKo.

Moreover, Ty and T1_1 are related by the o, -conjugation: T1_1 =o0,0T 00,. (For
the anti-involution o, see Lemma 2.4.)

Let us discuss the obstacles about T;. One has to guess the explicit formulas for
the action of T on generators of fJ’, and then to show it is indeed an automorphism.
The action of T on most generators of U* can be formulated without much trouble,
except T1(Bp). Earlier on we guessed a formula for T;(By) (as a polynomial in
B; of degree 5), based on the internal consistency and desired properties of root

vectors. (Recall [Lus93] a particular braid group operator formula of type Aéz) is
of degree 5 when the relevant Cartan integer is —4.) However, in contrast to the
q-Onsager algebra case as done in [BK20] (see also [T18]), it turned out to be too
difficult for a (super) computer to verify that T; is an automorphism of U (e.g.,
that the Serre relations for U® is preserved by T1).

The conceptual and general approach toward relative braid group action on
rquantum groups developed in [WZ22] is conjectured to be valid for Kac-Moody
type. One advantage of this approach is a built-in mechanism for proving T is an
automorphism of U'. We follow the strategy loc. cit. to define T; via a certain
rescaled braid operator on the Drinfeld double U and the quasi K-matrix of type
ATIIl, [BW18] (with an explicit formula given in [DK19]). Accordingly, we obtain
formulas for Ty on B, By and K;, for i € I. It takes substantial computations
however to make this approach work to produce a neat closed formula for T (By)
in Theorem A (which in particular asserts that T;(By) € U*). This in particular
verifies [WZ22, Conjecture 5.13] (formulated for U* of Kac-Moody type) in the first
new case beyond finite types.

1.5. Drinfeld type presentation of U Using the “translation” braid group
operator
Ty, :=ToTh,

we define the real root vectors B; j in (4.3), for i € {1,2} and k € Z (cf. [Da93,
BK20]). On the other hand, we define inductively in (4.6)—(4.8) the imaginary
v-root vectors O, , via commutators between real root vectors, for ¢ € {1,2} and
m > 1. The definition of ©; ,,, is by no means obvious; see Remark 4.1. Sometimes,
it is more convenient to work with a new set of imaginary root vectors H; ,,; see
(5.8) for its relation to ©; .

The Drinfeld type presentation of U is built on the real and imaginary root
vectors; compare [LW21b, Z22] in split affine types for similarities and differences.
These earlier works (and also [BK20]) help us to formulate the relations in Theo-
rem B. However, the proof of this theorem remains challenging due to the affine
rank two complexity of U*. We shall need some notations in order to formulate
Theorem B. We shall denote [A, B]ye = AB — v*BA. The shorthand notion
S(k1, ko | I;7) is defined in (5.1) while the definition of the symmetrization Sym,, ,
can be found in §5.1.
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Theorem B (Definition 5.1, Theorem 5.5). The Q(v)-algebra U* has a presentation
with generators By y, H; m, Kiﬂ, C*! wherei € {1,2},1 € Z and m € Z>y, subject
to the following relations: for m,n > 1,k1, ko, k,l € Z, and i,j € {1,2},
(1.1)

C is centml, KZK] = KjKi, KiHj,m = Hj,mKiv KZ‘B]'J = i T BjJK,L',

(1.2)
[(Him, Hjpn] =0,
(1.3)
me;; MCri j m
[Hi,ma Bj,l] = [ ”]Bj,l+m - [ 7’7]} Bj,l—mc P
(1.4)

[Bi.ks Biig1]o—2 — U_2[Bi,k+17 Bi 2 =0,
[Bi ks Brijit1]o — v[Bik+1, Brigly—1 = _@Ti7l—k+1CkKi + v67i7l_,€_1c’f+1Ki
(1.5)
— @i,k—l+1ClK-ri + v@i’k,l,chlKTi,

(1.6)
S(kl, ]{72 | Z,Z)
= [2] Symy, , Z 0 [0711—ky—pKi — V07411, —p—2CK, Bi,kﬁp]v,@,l Chatp
p=0
+v[2] Symm,mz“% [Bikyiptts Oiky—t—pr1 Kri = 005 py—1-p1CKr] 4, s cit
p=>0

If we set all the summands involving C to zero in the above relations, the above
presentation is essentially reduced to the Drinfeld presentation for half of INJ(s[g).
Theorem B admits a generating function reformulation in terms of B;(z), ©;(2),
H,(z) (:=1,2) and A(z) from (5.9); see Theorem 5.7.

Denoting by Dryt the Q(v)-algebra with generators and relations given in The-
orem B, we are reduced to establish an algebra isomorphism ® : Drgr —s INJ”,
which matches generators in the same notations (for U they stand for the root
vectors). Assume that ® is a homomorphism for now. One shows that ® is sur-
jective by checking all generators of U lie in the image of ®. The iquantum
group U' is a filtered algebra with its associated graded algebra isomorphic to
U~ ® Q()[KE! | i € TJ; see Proposition 2.1. The injectivity of ® is then reduced
by some filtration arguments to the corresponding isomorphism for the Drinfeld
presentation of 5A[3.

It remains to show that ® is a homomorphism, which is the most involved part
of the proof, i.e., to verify all the relations stated in Theorem B are satisfied by
the root vectors in U*. As explained in §6.1, the overall strategy of the verification
of the relations is an inductive argument which goes like a big spiral. The earlier
approaches in [Da93, BK20] for affine quantum group INJ(sA[g) and g-Onsager algebra
INJ"(;[Q) have provided us a helpful roadmap but we have to deal with additional
complexity of affine rank two. It is worth noting that some crucial proofs here follow
more closely the approach in [Z22] (instead of [LW21b]), especially in establishing
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the relation (1.3) and the Serre relation (1.6). Along the way, we establish the T,-
invariance of ©; , below, which is intimately related to the commutativity among
O;p, foralli=1,2and n > 1.

Theorem C (Theorem 6.17). We have
To(©in) =0ipn, foralln>1andi=1,2.

1.6. The organization. The paper is organized as follows. In Section 2, we for-
mulate the algebra U and some basic properties. We then formulate the relative
braid group symmetries Tad and Tiﬂ on U'. The detailed proof of Theorem A
regarding T1il is given in Section 3. Some additional technical computations for
an identity used in the proof of Theorem A can be found in Appendix A.1.

In Section 4, we construct the real and imaginary v-root vectors for U. We
further identify the classical limits as v ~» 1 of these v-root vectors and their
Drinfeld type relations.

In Section 5, we formulate the Drinfeld type presentation for INJ’, and prove
Theorem B except the verification of the relations. The lengthy proofs of the
relations are given in Section 6. Theorem C is proved along the way.

2. RELATIVE BRAID GROUP ACTION

2.1. Quantum groups. Let I = {0,1,2} and (c¢;;); jer be the Cartan matrix of
affine type As. Let g := sl3 be the simple Lie algebra of type A, corresponding to
Io = {1,2}, and g be the affine Lie algebra of affine type Agl). Let {a; | i € I} be
the simple roots of the affine Lie algebra g, and

0 =g+ a1+ as
be the basic imaginary root. Let ZI := @
metric bilinear form

(21) (,) : ZI x ZH—)Z, (ai,aj) = Cjj.

ic1 Za; be the root lattice with a sym-

Let W be the affine Weyl group of type Ay. Let P = Zw, & Zws be the weight
lattice for g where w;,7 = 1,2 are the fundamental weights. Let W= Ss x P be
the extended affine Weyl group, where S3 denotes the symmetric group of 3 letters.

Let v be the quantum parameter. For n € Z,r € N, denote the quantum binomial
coefficients by

n

v — v~ \ . L n njln—1|...[n—r+1
= b == I | < bt

For A, B in a Q(v)-algebra, we shall denote [A, Bl,« = AB—v*BA, and [4, B] =
AB — BA. The Drinfeld double quantum group U = ﬁ(ﬁ) is generated by
Ei,Fi,Kiﬂ,K{il, for i € I, subject to the relations K;K; = K;K; KK}
= K}K|, KK} = KjK;, K;Ej = v E;K;, K;Fj = v~ [ K;, K[ Ej = v~ E; K],
K|F; = v% F;K], and standard quantum Serre relations. Note that K; K/ are cen-

tral in U. The Drinfeld-Jimbo quantum group U = U(g) is recovered from U by a
central reduction: _
U=U/(K;K|—1|iel).
Let Br(W) is the braid group associated to W:
Br(W) = (so, 51,52 | $i5j8; = sj5;5;,Vi # j €1).
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Let T; (i € I) be the braid group automorphism on U defined by (see [LW22b)])
Ti(K) =K', T(K;) =KK; T(E)=-FK; T(F)=-KE,
Ti(Kj) = (K)~', Ti(K}) = K{K}, Ti(E;) = [Ei,Ejl,-1, Ti(Fy) = [F}, Fil,,

for 0 < i # j < 2. These formulas (by setting K/ = K, ') recover Lusztig’s braid
group action on U [Lus93].
We also have
(2.2) T, =®TTy, T, =® 'T\T,
where ® is the diagram automorphism given by ®(0) = 1, ®(1) = 2, ®(2) = 0.

2.2. The quantum group. Let 7 be the following diagram automorphism given
by swapping vertices 1 and 2 while fixing 0:

e

(2.3 \ /
0

Recall T = {0,1,2}. Let U =T (9) be the universal quasi-split 2quantum group

associated to the Satake diagram (2.3) (with all nodes white); see [LW22a, CLW21]

(also cf. [Let99,Kol4]). By definition, U* is generated by By, K; (i € I), where K;
are invertible, subject to the following relations:

(2.4) KK, =K;K;, K;Bj=v""BK; (i,j€l),
(2.5) ByB} — [2]B1 By By + BiBy = —[2](vKy By + vB1Ky),
(2.6) By B3 — [2|BaB1 By + B2B; = —[2](vKy By + vBaKy),
(2.7) ByB? — [2]BiBoB; + BBy =0  (i=1,2),

(2.8) B;B2 — [2]ByB;By + B:B; = —v 'KoB; (i =1,2).

Note that Kq is central. It helps to make (2.4), say for ¢ = 1, explicit (the relations
remain valid up to a swap of indices 1 <> 2):

(29) KlBl = UﬁSBlKl, KlBQ = ’UngKl, KlBO = BOKl-

There are some flexibility on scaling on the generators K;; our convention on K;

and relations (2.4)—(2.8) gives us an embedding ¢ : U* — U (compare [LW22a,
§6.1]) by letting

(2.10) B, — Fi + B K.,  Ko— —0*KoK), K;— K;K!

R

Viel,j+0.

We often identify U with a subalgebra of U through the embedding :, and then
identify B; = F; + E,; K/, and so on.
For pp =),y aa; € ZI, define K, = [, K{* and

Ks = KoK; K.
The algebra U" is endowed with a filtered algebra structure
(2.11) ULlcUc...cU»™c-..
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by setting

(2.12) U™ = Q(v)-span{B;, B,, ... B, K, | n€Zli,... is €l,s <m}.
Note that

(2.13) U = @B Q)K,,

peNI

is the Q(v)-subalgebra generated by K; for ¢ € I. The following is a U'-variant of
a basic result of Letzter and Kolb on quantum symmetric pairs (U, U").

Proposition 2.1 (Cf. [Let02,Kol4]). The associated graded algebra grU* with
respect to (2.11)—(2.12) admits the following identification.:

o U= U~ 0 Q)[KE' [i €],

(2.14) o V
B; — F;, K; — K; (ZE]I)

Lemma 2.2. The Q(v)-algebra U is ZI-graded by
(2.15) deg(B;) = oy, deg(K;) =a; +ar, foriel

For any v € ZI, we denote by INJ”7 the homogeneous subspace of degree ~, and
then

(2.16) U =u.
YEZI

Recall the bilinear form (-,-) on ZI.

Lemma 2.3. We have
K; X = o~ (@-arin) XK,

forieland X € [NJ?Y (v € NI). In particular, we have K; X = XK, for X € ﬁzé
(keZ).

Proof. We first observe from (2.4) that K; X = v~ (@i—eri:dee(X) XK, for all gener-
ators X = K;, B;. The formula for general X follows. The special case follows by
(-,8) =0. O

The diagram involution 7 gives rise to an involution 7 on the algebra U
(2.17) 7(B;) = B, T(K;) = Ky, Vi=0,1,2.

Lemma 2.4 follows by inspection of the defining relations of U
Lemma 2.4. There exists a Q(v)-algebra anti-involution o : U* — U such that

or(B;) =B, o0:(K;) =K, Viel
2.3. Relative braid group operators Toil. Set
g = ag, a; = (a1 + ag)/2.

The relative root system with simple roots {ag, a1} is of twisted affine type Aéz):

o —0

0 1
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Let Br(W,7) = (ro,r1) be the free group of two generators, which can be re-

garded as the braid group associated to the Weyl group of twisted affine type A(QQ).
We have a group embedding

Br(W, 1) — Br(W)
ro — So, ry — S1S52S871.

The diagram involution 7 induces an involution on Br(W), s; — s,; for all i.
Then we can identify Br(W,7) with the 7-fixed subgroup Br(W)™ via the above
embedding.

Following the proposal [KP11] as established in [WZ22] for :quantum groups
of finite types, one expects a relative braid group action of Br(W,7) on U'. Our
first main goal is to construct the braid group operators Ty, T; (and respectively,
Tal, Tfl) explicitly corresponding to ro,r;. We start with the easier one Ta—Ll. The
formulas for the braid operator T(jfl essentially coincide with the ones appearing in
finite type; cf. [KP11,LW21a].

Proposition 2.5 ([WZ22)). There exists a Q(v)-algebra automorphism T : Ut —
U" such that

(2.18) To(K,) =Ky, To(Bo) = BoKy', To(B;i)+~ [Bi, Bolu,
for v e NI, and i = 1,2. Its inverse is given by

(2.19) Ty (Ky) =Koy, Tg'(Bo) = BoKy ', Ty'(Bi) = [Bo, Bilo-
Moreover,

(2.20) T, =0, Too,.

Proof. The formulation of T and its proof are covered by the constructions in
[WZ22] (see Remark 5.8 therein), even though the formulation loc. cit. is focused
on finite types. O

2.4. Relative braid group operators Tfl. Formulating and establishing the
braid group operator T; on U’ turns out to require a significant amount of new
work. We caution that the process of formulating T; in this subsection involves
some extension of the field Q(v), but the final formulas for the action of T; on
generators of U* are valid over Q(v).
Recall the Satake diagram of quasi-split affine Ay type (2.3). Setting ¢, =
—v~ 12, we denote by W, the scaling automorphism on U defined by
U, U-—U, K —<PK, KwedP?Kl, Ewd/*E, F,—F,.
Following [WZ22, §2.3], we define the rescaled braid group operators on U as
follows:
(2.21) T=U oTyo¥,  (je{L,2}),
‘ Tt =T T T = Ty T Ty
(The scaling looks a little different from loc. cit., but leads to the same Tj)

Let T; be the quasi K-matrix for the universal quantum symmetric pair asso-
ciated to the rank one Satake subdiagram ({1,2},7); cf. [BW18]. The following
formula is due to [DK19] (who works in the setting of :quantum groups with pa-
rameters).
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Lemma 2.6 ([DK19]). We have
(2.22)

T (%

m>0

Ufm(mfl)/Q(_l)m

e ) (3

m>0

vfm(mfl)/Q(_l)m

[m]! [EQ’El]vmﬂ).

Theorem 2.7 is an affine analogue of [WZ22, Theorem B], where we treat Tfl
as a symbol for now.
Theorem 2.7. There exists an automorphism Tfl of U* such that
(2.23) Ty (x) - Ty =Ty Ty (2), forallz e U
More explicitly, the action of Tfl is given by
(2.24) T7HK) = v 'Ky, T7HKR) = v 'K, T7H(Kg) = v?KoKIK2,
(2.25) T (By) = —vBi K[, T, Y(By) = —vBK; !,
By)

(2.26) T, '(

U[[Bl, Boly, B2, [Bi, BO]’U]:| — [[B1, Ba]us, Bo] Kz + vBoK1 K.

The proof of Theorem 2.7 is highly nontrivial and lengthy; it will occupy Sec-
tion 3.

Theorem 2.8. There exists a Q(v)-algebra automorphism Ty : U* — U* such that
(227) Ti(Ky) =v'Ky', Ti(Kp) =v'Ki', Ti(Ko) = v’KoKIK3,

(2.28) Ti(B)) = —v ?BK; ", T (By) = —v 2BK;?,

(2.29) Ty(By) = U[HBO, Bilv, Bo], [32731}4 — [Bo, [B2, Bi1]y2| K1 + vBoK K.

Moreover, T1_1 and Ty are mutual inverses, and
(2.30) T, ! =0.Ti0,.

Proof. Just as the automorphism Tfl is defined by the intertwining property (2.23),
the automorphism T, can be characterized by the following intertwining property
(cf. [WZ22, Theorem 6.1]):

(2.31) Ty(z) - Tp, (Y74 = Th,(X7Y) - Ty, (z),  for all z € U™

The formulas (2.27)—(2.28) were already established in [WZ22, Proposition 6.2-6.3],
which are valid over Kac-Moody setting. The proof of the formula (2.29) is a version
of the proof for T;l given in Section 3, and will be omitted.

The proof that T;' and T, are mutual inverses is the same as for [WZ22,
Theorem 6.7]; it formally boils down to the uniqueness of the intertwining properties
(2.23) and (2.31).

The identity (2.30) follows by comparing the formulas (2.24)-(2.26) and (2.27)-
(2.29) and using Lemma 2.4. O

Lemma 2.9. We have

T (B,) = [32, [[B1, Baly, [Br, Bol) ] — 0[Ba, [B1, Bolus], . Ko

v

(2.32) — [Bi,[Ba, Boly] . Ko — v~ (2] [Ba, [B1, Bolv] . K1 + vBK1 Ks.
T4(Bo) = |[[Bo. Bulus (B, Bilu] . Ba| = v[[Bo, Bilus, Bal, K

v—2

(233) - [[BQ, BQ]U7 Bl] v2K1 - Uil [2] [[BQ, Bl]’U7 BQ] U4K2 + ’UBQKlKQ.
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Proof. We shall verify the formula (2.32). Indeed, we have

—

BQ, HBl, BQ]va [Bl’ BO]U:I’U:|,U

—1

= [31732 vy | B2, [B1, Bo UH _U[[BlvBO}v; [32,[31,32]U]UL

[
_ [Bl, Bal, [Ba, [B1, Bo) v]} - v[[Bl, Bolu, [2](v ' BoKo + szQKl)]
[

= [31732 vy [ B2, [B1, Bo v]} +0%[2][ By, [B1, Bolu] . K2
+v71[2][Bz, [B1, Bolo] .. K1

The formula (2.33) follows by (2.32) by applying the anti-involution o, and (2.30).
O

Remark 2.10. If one is willing to work over an extension field Q(v?), it is possible
to use variants of Ky, Ky rescaled by v? to make the formulas for the action of
Tfl on K, for j € I, look simpler (namely, removing the v-powers in the formulas
(2.24) and (2.27)). To achieve the same effect, another option is to rescale only K;
by a factor v, for a fixed i € {1,2} (however, there is a broken symmetry between
recaled Ky, Ks).

3. PROOF OF THEOREM 2.7

In this section, we shall prove Theorem 2.7 on the relative braid group operator
T, !. The proof follows the basic strategy developed in [WZ22], but the execution
requires additional technical long computations.

3.1. Steps for proof of Theorem 2.7. Let us rephrase Theorem 2.7 to facilitate
the discussion of the strategy of its proof.

(S1) For any x € U, there exists a unique element 2/ € U* such that 2’ - T; =

Ty T ().

(S2) Sending x — ' defines an injective homomorphism of U, denoted by T

(S3) The formulas for T} *(z), withz =K; (i € ), x = B; (i = 1,2), and z = By
are glven by (2.24), (2 25) and (2.26), respectively. That is, the identity
Ty Y2) - Ty =Ty - . 1(z) holds, for each generator z € {K;, B;|i € I} of
U’L

(S4) T7! is surjective (and hence an automorphism of U).

Statement (S2) follows clearly from (Sl) and the invertibility of T;. Since fr_ll
is an automorphlsm 1f T, - 1(:01) T LeUand Ty - o (2e) - Tfl e U, for
T1,x9 € U’ then Tl (:leg) T 1 ¢ U*. This reduces the Verlﬁcatlon of (S1) for
arbitrary x to (S1) for x belng generators of U, i.e., (S3). Statement (S4) actually
follows when the counterparts to (S1)—(S3) for Ty in Theorem 2.8 are proved (cf.
proof of [WZ22, Theorem 6.7]).

Therefore, to complete the proof of Theorem 2.7, it remains to prove (S3).

3.2. The identity (2.23) for x =K, (i € I) or v = B; (i = 1,2). The statement
that the “rank one” formulas (2.24)—(2.25) satisfy the intertwining property (2.23)
were already proved in [WZ22, Proposition 4.11, Theorem 4.15]; as remarked loc.
cit., these statements are actually valid for U of arbitrary Kac-Moody type. This
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settles (S3), i.e., the intertwining property (2.23), for all generators of U except
for x = By.

We shall deal with this exceptional case on Tfl(BO) in the remainder of this
section.

3.3. Reduction of Identity (3.1). The remainder of this section is devoted to
the challenging proof that the intertwining relation (2.23) is satisfied by T, *(By)
in (2.26), i.e.,

(3.1) T (Bo) - Y1 =TT, (Bo).

Write By = Fyy + EgK}, and hence T, (Bo) = Tp ' (Fy) + T {(Eo K}). Set

S=v {[31, Boly, [Ba, [Bi, Fo]vﬂ — [[B1, Ba2ys, Fo| Kz + vFp K1 Ko,

¢ = v[[B1, Balu, [Ba, [Br, EoKlu] | = [[Bu, Bals, B Ka + 0B KgK1 K.
The desired intertwining relation (3.1) can be reformulated as

T, '(By) =§ + €,

and it will follow once we verify the following 2 identities:
(3.2) 3T, = Tlifll(Fo)’
(3.3) eT, = 11T (EoKy).
3.4. Reformulation of Identity (3.2). Lemma 3.1 is an affine counterpart of
[WZ22, Lemma 5.1] for U* of finite type.
Lemma 3.1. T, '(EoK}) commutes with T;.
Proof. We first observe that the following identity holds, for ¢ = 1, 2:
(3.4) T T, (Bo) - Eri = v*Eri - T T, (Eo).
Indeed, it follows by definition of the rescaled braid operators (2.21) that
(3.5) TN () = 65 [[Eo, Erilo-1, [Ei, Erily—1], .

Hence, the identity (3.4) follows from (3.5) and the following two v-commuting
relations:

[E07 Eri]vflETi = UETZ' [E07 E‘ri]v*1 5 [Eza E‘ri]vflETi - UETi [E'n E‘ri]U*I .

These two v-commuting relations are simple reformulations of the Serre relations
in U.
The identity (3.4) admits the following two equivalent reformulations:

(3.6) Tr (BT (Eri) = 0T, (Eri) Ty, (Eo);
(3.7) [T (BoKG), T, (Bri)] = 0.

Note that rfi_l(ETi) = §g1/2[E7-i7Ei]v—l and Tvq,_l-l(Ei) = ggl/z[Ei,ETi]vfl are
terms appearing in the formula (2.22) for ;. Hence, the lemma follows by (3.7). O
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y [WZ22, Proposition 2.15, Lemma 5.1], we have
BT, =T1(Fy + v 'FoKy), ByY1=Ti(F+v 'E1Ky), FyYTy =T\ F,.
Hence, we obtain
F-T="T1%
where
Fi= v[[Fl + v By Ky, Fy + 0 By Kaly, [Fy + 07 By K, [Fy + v Bo K, Fo]v]}
— By + v By Ky By + v By Ko s, Fy | Ko K + vFo K Ko K1 KD,
Thus, the desired identity (3.2) is equivalent to the identity
(3.8) § =T (Fo).
3.5. Deduction of (3.3) from (3.8).
Lemma 3.2. There exists an automorphism ¢ ofﬁ which sends, fori=1,2,
Fy— E K, E—oFLK ', K =K.,  Kl— Ky,
Fy— EoK),  Ey— v RK, ', Ky—K),  K,— K.

Proof. By a direct computation, the images of ¢ satisfies the defining relations of
U and hence ¢ is an endomorphism of U. One writes down an obvious candi-
date for the inverse homomorphism ¢! acting on generators, which is indeed a
homomorphism by another direct computation. Hence ¢ is an automorphism of
U. |

Lemma 3.3. We have
(1) Ty M (Fo) = U[[F17F2]v7 [F2, [FhFO]vH;
(2) T\ (EoK)) = v[[El,EQ]U,l, [, [EO,EQ]WHK()(KgKg)Z.

Proof. We prove (1) only, as (2) can be obtained in a similar way. We have

(3.9) Ty, M (Fy) = “[Fl,FQ]U,—El(Ki)*l]W[[FI,FQ]U,[F17FO]U]J .

v

Note that

[[F1, Polo, —Er(KD) 7Y, = [[F1, Folo, —B1 (K71
1

_ / \N—1 __
(3.10) = o B = Ky PRl (KG) T =

Hence, rewriting (3.9) with the help of (3.10), we have

TlilfzilTl FO = |: FZ, Fl;FQ v;[Fl,FO] ] :|

v

{ Py, [Fy, )] [F17F0]UL+U[[F1,F2]U, [F2,[F17F0]DH

v[[Fl,Fg]v, [F2, [F1,F0]v]},

where the last equality follows from the Serre relations. O
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In terms of the automorphism ¢ in Lemma 3.2, we can rephrase Lemma 3.3 as
(3.11) o (T (Fo)) = Tp, (B0 KY).

By Lemma 3.1, the identity (3.3) is equivalent to the identity
(3.12) ¢ =T Y(EoK}).

The identity (3.12) follows from (3.8) by applying ¢, thanks to the identities (3.11)
and

(3.13) o(F) = ¢.

The identity (3.13) holds since by Lemma 3.2, p(F;+v~'E;K;) = B; and o(K;K_;)
= K;K/,, for i = 1,2. Therefore, we have concluded that the identity (3.3) follows
from (3.8).

Let us summarize what we have achieved in this section. We reduced in §3.1-3.2
the proof of Theorem 2.7 to the identity (3.1). Furthermore, in §3.3-3.5, we reduced
the proof of the identity (3.1), which is equivalent to the identities (3.2)—(3.3), to
the identity (3.8).

The proof of the identity (3.8) shall be given in Appendix A.1.

4. CONSTRUCTIONS OF ROOT VECTORS
In this section, we shall introduce the root vectors for the quasi-split :quantum
groups U".

4.1. Real and imaginary root vectors. Fix signs o(1),0(2) € {£1} such that
o(1) = —o(2).
Denote, for i € T={0,1,2},

(41) Ba,; = Bi, Kai = Ki, K§ = KlKQKo, C = —’UK(;.

Introduce the following “translation” symmetry on U

(4.2) T, := ToT;.
Similar to [Da93, Be94, BK20,LW21b], we define the real v-root vectors
(4.3) B = Bisra, = (0(i)To) “(Bi), for ke Z,ie{1,2}.
Note that

B, _1 = 0o(i)Tw(B;) = o(i)v~Y[B;, Byl K;C~!
) 1 = o0 Tu(B) = o)™ (B, B

= —o(i)v™2[B;, Bo], KiK'
Denote, for ¢ = 1,2 and k € Z,

(4.5) D; = —[Bri, Bi ko1 — [Bik+1, Bri,—1]v-1-

Set ©;0 = U_}},l . Define the imaginary v-root vectors ©; p,, for m > 1, inductively:
(46) 91‘71 = —O(i) ( [Bl, [B‘ri; Bo}v] 02 ’UB()Ki),

(47) @LQ e —UDi7OCK;i1 + U@ivoc - @7—7;7QCK;7;1KZ‘,

(4.8) Oim =0 20 —vD;,, 2CK,  for m > 3.

For convenience, we set ©; ,,, = 0 for m < 0.
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Remark 4.1. Recursions (4.6)—(4.8) for ©, ,,, become more transparent when they
are viewed as special cases of the Drinfeld type relation (5.6). A crucial property
satisfied by ©; ., is the commutativity relation (5.11).

Remark 4.2. For the split type, there are two versions of imaginary root vectors,
following [BK20] and [LW21b]; these 2 versions differ by a simple central factor on
the generating function level (see [LW21b, (2.31)]). Accordingly a variant of the
imaginary root vectors G)”n for m > 1 can be defined as follows:

7

Oi1 = 0i1, ©i0 = O,
(49) éiyg = —’UDZ"()CK;Z-I + éz"()c — éTZ"()CK;—IKi,
éi,m = éi7m_20 — ’l}Di7m_QCK:i1, for m > 3.

The recursion (4.9) can be viewed as special cases of the Drinfeld type relation
(5.28).

By definition, we have, for k € Z,m > 0 and i € {1,2},
(410) Bi,k: = (_1)k?(37’i,k¢); Gi,m = (_1)m7/:(@7'i,m)7

where 7 is the involution in (2.17).
Recall from (2.16) that the algebra U' = ., Ul

v, is ZI-graded.
Lemma 4.3. Fori=0,1, we have

T,(U!) € U T (U) C U

so(v)? s1s251(7)?

Vv € ZI.

Proof. This follows from the formulas for T; in Proposition 2.5 and Theorem 2.8
since T; are algebra automorphisms. O

Lemma 4.4. We have B; }, € ﬁ}ﬂ;_‘_ai, and ©; n, € ﬁfm;, foranyl € Z, m > 0.
Proof. The proof follows from Lemma 4.3, the definition of B, in (4.3) and the
recursive definition of ©; ,, in (4.6)—(4.8). O

4.2. The classical limit. Recall U is the quantum group of affine type Aél). The
wquantum group UL with parameter ¢ = (;)i=0,1,2 € (Q(v)*)? (cf. [Kold]) is a
subalgebra of U generated by B;, for i € I, and k;, via the embedding

t: U, — U
ki — KiKy', By F+gEL K ' (iel).

Alternatively, the :quantum group Ul can be obtained from U by the central
reduction (cf. [LW22a, WZ22]):

U/ (Ko + v260, K1 Ky — 6162) — U,
B, — B;, Ko —v%q, Kimraki, Ko ok’
The enveloping algebra U(g) is recovered from U at the v ~» 1 limit by letting
E; ~ e, F; ~ f;, Ki~ 1, (K — K7/ (v—v"1) ~ hy

Let ¢,ép € Q*. Assume that the parameters (s;)i—0.1.2 € Q(v)**? have limits as
v ~ 1 as follows: lim1 So = <o, and lim1 ¢ = hnfi G =¢.
(Ziaad VA (IR
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For g = sl3, we denote by g = g[t,t '] ® Qc the corresponding affine Lie algebra
of type As. Let {e;, hy, fi | i = 1,2} (and respectively, {e;, h;, fi | i € I}) be the
standard Chevalley generators of g (and respectively, g). Set

by := fo + <$oeo, b == fi +<er, forie{l,2}.
Then we obtain the limits of generators of UL as v ~ 1:
(411)  Bi~b; (i €1), ky ~ 1, (ky — kY /(v —v71) ~ (hy — ha).
Introduce a shorthand notation
(4.12) & = $o¢?,
which will be often used in this section. Note that
Ks ~ —¢, C ~¢.

Denote ep = [e1,ez], fo = [f2, f1]. Write 2 := 2 @ t* € @, for x € g (and so
€ik = €i Rk, €9k = €o @tk and so on). We identify eq = fo @1, fo = eg @t 1, and
ho = [eo, fo]. Denote by

wrig—9
the involution such that
fo = <oeo, ho = —hy, fi = <eri, hi — —hr,

for i € {1,2}. Tt follows that w,(c) = —e. For i = 1,2, we denote

(4.13) bir = fi,—r + S €rir,
(4.14) tig = —hi—r + " hriy,
bo,r = fo,—r +<°Eeg .
Note that ¢;, = —¢"t;; —,. One checks that the Lie subalgebra of g of w,-fixed

points, g*7, has a basis
{bgm, bi,rati,ma hl — h2 | re Z,m S ZZlai = ]., 2}
The enveloping algebra U(g*¥~) is recovered from U. at the v ~ 1 limit.

Proposition 4.5. The Lie algebra g** is generated by {b;,,t;, | r € Z,i = 1,2}.
Moreover, the following relations in g7 are satisfied: for r,s,l, ki, ko € Z,

(4.15) [bis,bir] =0,
(4.16)
[Bi vy bri 1] = [Birs1, bris) = =S trispy1 + S Moy,

(4.17) Lig = —C"lri—r,

(4.18) [tir, bis] = 2b; s4r + € i s—r,

(4.19) [trip bis] = —bi gpr — 2¢"bj s,

(4.20) [Bi,ker s [Biskea s brit]] = —26€M05 1y oot — SEF by 1by—iy — $EM2b7 1k — s

Proof. Let us write down some details on proving (4.16) and (4.20) while skipping
the details on the remaining easier identities. Using (4.13)—(4.14), we compute

[b‘ri,su bi,r] = ééTt‘ri,sfr + [friu fi]fsfr + <2¢S+T[ei7 e‘ri]fsf'r-

Then the identity (4.16) follows by using the above formula twice.
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We also compute again using (4.13)—(4.14):

..l
(4.21) [Bi ks brit] = —b0 ko1 + SE i py—1,
.k
Bi k1 s =00 ky 1) = —SE i 14 ky—er »
..l ..l .k
[Bi ky s S s ky—1] = —26E b4 kg +hg—1 — SE2b4 1t k) — koo -

Then the identity (4.20) follows from these formulas.
Finally, the generating set statement follows by (4.21). |

Remark 4.6. One can use a smaller generating set {b; ,,tim,t10 | 7 € Z,m €
Z>1,i = 1,2} for Lie algebra g“~, thanks to (4.17). By arguments similar to the
proof of Theorem 5.5, one can show the above generators and relations provide a
presentation for the Lie algebra g*v. This is the classical limit of the Drinfeld type
presentation of U" established in this paper.

Proposition 4.7. Set o(1) = —o(2) = 1. Then the classical limits of the Drinfeld
generators B; »,0©; , are b; ., t; ,, respectively, fori=1,2, r € Z, and n > 1.

Proof. Using the formula (4.4) for B; 1, (6.1) for B;; and (4.6) of ©;1, we see
that the classical limits of these root vectors are b; _1,b;1,%; 1, respectively:

By 1~ [b1,bol(S0¢) ™t = fii+ (ééo)_lezfl =b1,_1,
By, 1 ~ —[ba,bo](¢0¢) "t = fa1 + (¢S0) " rer 1 = ba 1,
O1.1 ~ —[b1, [ba, bo]] + b = —h1,_1 + So¢%hoy = 1,1,
g1 ~ [ba, [b1,bo]] — ¢bo = —ha,_1 + <o¢2hy 1 = t21,
By~ HblabZ]; [bl,bo]] —3¢[b1,bo] = f1,-1 + 505362,1 =b11.

More generally, using [0; 1, B; ] = [¢ij]Bjk+1 — [¢ri j]Bj.x—1C from (5.4) and
(4.18)—(4.19), one shows inductively that the classical limit of B; , is b; ., for r € Z.
Similarly, using the recursive definition (4.6)—(4.8) of ©,, and (4.16), one shows
inductively that the classical limit of ©; ,, is ¢; ,,, for n > 1. O

Remark 4.8. Define a new Lie algebra g+, a variant of g7, in which ¢ is viewed as a
central element (instead of being a scalar), with formally the same relations (4.15)—
(4.20). Then g“~ is a Z-graded Lie algebra, by assigning degb; , = r,degt;, =7,
and deg ¢ = 2, and noting that the relations (4.15)—(4.20) have become homoge-
neous. Compare Remark 5.6.

4.3. A vanishing criterion. We continue the notations from Subsection 4.2. Re-
call g = sl3, which is also identified with g ® ¢t° in g. Denote by £ = g*= C g*, as
we note w, preserves the subalgebra g of g. Denote by [ the (proper) Lie subalgebra
of g¥7 generated by ¢; 0, b, for all i € {1,2} and n € Z. Denote by [, the Lie
subalgebra of g spanned by z ® t*" + w,(z) ® 2", for all € g and n € Z.

Lemma 4.9. We have [, C L.

Proof. We observe by a direct computation on [b; m, b k], with m + k € 2Z and
i € {1,2}, that by .t €[, for n even. ]

Lemma 4.10. Let u € U(g¥"). If ad(ley)u = 0, then u = 0.
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Proof. To prove the lemma, it is equivalent to prove its counterpart in the sym-
metric algebra (in place of the enveloping algebra):

(4.22) If ad(ley)u = 0, for u € S(g“7) then u = 0.

The Lie algebra g7 (and hence its subalgebra lo,) admits an N-filtered algebra
structure, by letting deg(z ®t™ +w,(x) ®t~™) = n, for all nonzero x € g and n € N.
Then the associated graded algebras can be identified as follows: gr g“ = ¢ ® tglt]
and grlo, = €@ t2g[t?].

The proof of the claim (4.22) is reduced to the proof of the following counterpart
in the associated graded algebra:

(4.23) If ad(gr loy)u = 0, for u € S(grg®™) then u = 0.

The proof of (4.23) is entirely analogous to the ones of [M07, Lemmas 2.8.1, 1.7.4],
by analyzing the action of grl,, 2 = g® t?2 on u, where lev,2 is the subspace of [¢y
spanned by z ® t2 + w, (z) ® t 72, for all x € g. We omit the detail.

(The proof of the lemma could have proceeded directly as for [M07, Lemmas
2.8.1, 1.7.4] without referring to the filtration and associated graded algebra ex-
plicitly, though it would involve somewhat messy notations if one insists on writing
out details.) O

Lemma 4.11. If u € U(g¥") commutes with b;; and t;, for all i € {1,2} and
leZ, thenu=0.

Proof. By assumption of the lemma and the definition of [, we have ad(l)u = 0 in
S(g“7), and hence ad(le,)u = 0 by Lemma 4.9. Now it follows by Lemma 4.10 that
u=0. |

Lemma 4.12 is the main point of this subsection.

Lemma 4.12. Let X € U be a noncommutative polynomial of By, Ba, By with
coefficients in Q(v)[KE!, i € 1) without constant term. If To,(X) = X and [X, Bj] =
[X,K;] =0 forie {1,2}, then X = 0.

Proof. By assumption, X commutes with K; and B;; = T_!Y(B;), for all i €
{1,2},1 € Z; in particular, X commutes with the finite type part of U (gener-
ated by B;,K; for i = 1,2). We prove by contradiction, by assuming that X is
nonzero. Write X as a linear combination of a monomial basis (due to Letzter and
Kolb for U*). Then X descends to a nonzero element in a central reduction U* and
then to a nonzero element z € U(g*7), which commutes with t; 0 and b;;, for all
i € {1,2},1 € Z. This contradicts with Lemma 4.11. O

5. A DRINFELD TYPE PRESENTATION

In this section, we shall give a Drinfeld type presentation for the quasi-split affine
rquantum group U® of rank one.

5.1. The definition. Recall I = {0, 1,2} and (c¢;;)i jer denotes the Cartan matrix

of affine type Aél). We shall denote by Symy, . the symmetrization with respect to
(current) indices k1, ko € Z in the sense Symy, ;. f(k1,k2) = f(k1, k2) + f(ka, k1);
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we will never apply the symmetrization to indices in I. Introduce the shorthand
notation

(5.1)
S(k1, kall; i) := Symy, &, (Bi,kl B kyBrig — [2]Bi g, BriiBi g, + Bri,lBi,lei,kQ)-

Definition 5.1. Let PrU* be the Q(v)-algebra generated by the elements B,
H; m, K?ﬂ, C*!, where i € {1,2}, | € Z and m € Z>1, subject to the following
relations: for m,n > 1,1, k, k1, ko € Z, and i,j € {1, 2},

(5.2)
Cis central, KlK] = KjKi, KiHj,m = Hj,mKia KiBjJ = O T Bj,lKi7

(5.3)

[Hi,m, Hjn] =0,
(5.4)

[Him, Bji] = —[mCij]Bj,ler - 4[m07i’j]3j,lfmcm7

m

(5.5)

[Bik, Bijit1]o-2 — U72[Bi,k+1, Bii],2 =0,
[Bi g, Brig+1lo — v[Bigs1, Briglo-1 = —Orii—k11CFK; + 00,411 CFHK;
(5.6)
— 0 4—141C'Kyi + 00, 4 1-1C K,

(5.7)
S(kh kg | l, Z)
= [2] Symy, 4, Z VP[00 ky—pKi — V0141 —p—2CK, Biky—p)yp Chatp
p=>0
+v[2] Symkl,kgz V® [B; kiipts Oi ks —1—pt1 Kri — 00 g1 p—1COK i y-ap-s C' 1.
p>0

Here H; ,,, are related to ©; ,, by the following equation:

(5.8) 1+ Z (v —v 1O mu™ = exp ((v —vh Z Hi,mum).

m>1 m>1

Remark 5.2. Using Proposition 4.7, one can show that the classical limits of rela-
tions (5.2)—(5.7) are given by (4.15)—(4.20); see also Remark 4.8.

The Q(v)-algebra Dry* admits the following translation symmetry.
Lemma 5.3. There exists an automorphism w of the algebra bryge gien by
w(Bjx) = Bjp-1, w(Hjm)=Hjm, w(kK;)=KC™, w(C)=C,
(and hence W(©;m) = Ojm), for allk € Z,m > 1, and j € {1,2}.

Proof. The proof follows by inspection of the defining relations for Dry* in Defini-
tion 5.1. (]
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We introduce the following generating functions in a variable z:

B;(z) = ZBmzk, O,(z)=1+ Z (v =010 2™,

(5.9> keZ m2>1
H,(z) = Z H;.n2m, A(z) = ZC’“Z’“,
m>1 kez
where ©;(z) and H;(z) are related by
(5.10) 0;(2) = exp ((v — v HH;(z)).

Lemma 5.4 will be used later.

Lemma 5.4. The following equivalences hold:
(1) The identity (5.3) is equivalent to

(5.11) ©im,0;n] =0, Vi,j=12, and m,n>1.
(2) The identity (5.4) is equivalent to
(5.12) [ei,m; BjJJ + p©d T [@iym—Qv Bj7k]v2(cﬂ7j—ci,j) C

=09 [Osm—1, Bj k1], 2005 — 07T [O4m—1, Bjr—1],2e0:,C =0,
for any m >0 and k € Z.

Proof. The equivalence in (1) follows directly from (5.8).
The proof of the equivalence in (2) is very similar to [LW21b, Proposition 2.8],
via a generating function formalism (5.9). We outline the main steps below.
The identity (5.4) can be equivalently reformulated as a generating function
identity
(1 — v zw™ 1) (1 — veid zwC')

(v - Uﬁl)[Hi(Z% Bj (w)] =In (1 — S zw_l)(l — p—Crijg Z’LUC) ’ Bj (’LU)

Via integration and (5.10), this identity is equivalent to the identity
(1 —v=%izw= 1) (1 — verii zwC)
(1 —v%izw=1)(1 — v=%iizwC)

0,(2)B;(w)0,(z) ' = B;(w),

or equivalently,

O3B (1) = oo A B ()0 (2),

Comparing the coefficients of 2™ w" of both sides of the last identity, for m > 1,k €
Z, we obtain the equivalent identity (5.12). O

5.2. The isomorphism.

Theorem 5.5. There is a Q(v)-algebra isomorphism ® : bryg — U, which sends
(5.13)
Bii—Bii, ©im—0inm KK, C—C, form>11€Z,iec{l,2}
The inverse @1 : U* — PrU" sends

Ko = — v 'CK{'K;', K; = K;, Bij+ Bio, forie{l,2},

By —o(1)v " (01,1 — v[By, B2, —1],-1 CK; K .
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(We shall refer to Dry* the Drinfeld type presentation of U". The proof that ® is
a homomorphism requires long computations, and will be carried out in Section 6.)

Proof. To show ® is a homomorphism, we shall verify that all the defining relations
n Drge (see Definition 5.1) are preserved by ® in Section 6. More precisely, the
relations (5.2)-(5.7) in PU* hold for the images of the generators of P*U* under
& : DrU* — U, thanks to Lemma 6.1, Propositions 6.16, 6.18, 6.6, 6.19 and 6.20,
respectively.

Next we show that & is surjective. To that end, it suffices to show that the
generator By of U" lies in the image of ® (as other generators clearly do). By
definition of ©1; in (4.6), ® maps U_lo(l)(@m — v[Bl,Bgﬁ,l]vaCK;l)Kfl to
By, and hence the surjectivity of ® follows.

The injectivity of ® follows by an analogous argument as for the injectivity in
[LW21b, Theorem 3.13]. For the sake of completeness, we sketch below.

We set Ip = {1,2} in this proof. Denote by UZ (respectively, PrU" %) the subal-
gebra, of U (respectlvely, DrUZ) generated by B; , Him,K;, form > 1, and ¢ € I,.
Then & : P*U* —s U* restricts to a surjective homomorphism @ : DrUZ — Uz

The translation symmetries w on P*U* (see Lemma 5.3) and Ty, in (4.2) are
compatible under @, i.e.,
Pow=T, 0.

The injectivity of ® : Dry* — U* is then reduced to the injectivity of @ : DrUZ

U>7 since any element in the kernel of @ : Dryge — U gives rise to (via a translation

automorphism w™" for N > 0) to an element in the kernel of & : DrU; — U’>.
It remains to prove the injectivity of @ : Drﬁ; — I~ﬁ> We shall accomplish

this by examining a certainjiltration and its associated graded algebra.
Define a filtration on P*U% by
(5.14) (oL’ c (ULt e e (L) ©
by setting
(5.15)
(DrUz>)m = Q(v)—span{x = Bil,m1Bi2,m2 s Bimmr@jl,m@jzﬂm cee GJS,HSKH
|weNL iy, ... i, j1,. G5, EDgy M, ooy M, ,n521,ht+(x)§m}.

Here we have denoted

(5.16) ht* (z Z ht(med + a;,) + Z npht (8

where ht(5) denotes the height of a positive root 8. Recalling U*° from (2.13), we
have (P*UL)? = U0 = Q(v)[KE! | 4 € T]. The filtration (5.14)-(5.15) on PrU%
defined via a height function is compatible with the filtration (2.11)-(2.12) on U*
under @, and thus the surjective homomorphism & : DrUl — Ul> induces a
surjective homomorphism
(5.17) &P grDrﬁ; — ngNJ;.
The Drinfeld presentation P*U of the affine quantum group U has generators
;t,i, Pims Kiil, ct1/2 for i € Io, k € Z,m € Z\{0}, cf. [Dr87,Be94]; moreover, we
have an isomorphism ¢ : P"U — U. Denote by P*UZ the Q(v)-subalgebra of U



QUASI-SPLIT AFFINE :QUANTUM GROUPS 1021

generated by z;_,, for i € Iy, k > 0, and denote UZ = ¢(P"UZ). Then ¢ restricts
to an isomorphism [Be94,Dalb]

(5.18) ¢: DUz S UL

Recall the following algebra isomorphism from (2.14) with respect to the filtra-
tion on U* (2.11)—(2.12):

GZU7®GZ’O —>grfJ’, FiP—)FZ', KZD—)K,“
where U™ = (F; | i € I). The homomorphism G above restricts to an isomorphism
(5.19) G:U_-® U0 = grﬁ;.

Finally, by definition (5.15) of the filtration on Drﬁ;, its associated graded
algebra is compatible with setting C' = 0 in the defining relations (5.2)—(5.7) of
DrINJl, which reproduces the defining relations of half the affine quantum group in
its Drinfeld presentation. Thus, we have a surjective homomorphism

(5.20) 2: DUz U — g UL,

which sends z; _, — B;, for k > 0 (note the opposite signs in indices).
Combining (5.17)—(5.20), we have obtained the following commutative diagram

DrUz ® 61,0 = grDrfj‘z>
l%u lgr¢>
~ G, ~
U- U gruy

Since = and &' ®-, are surjective while ¢ and G are isomorphisms, we conclude that
&P grDYUZ> — grUY is injective (and indeed an isomorphism), and so is Z.
The proof of Theorem 5.5 is completed. O

Remark 5.6. By definition, the algebra Drye (and hence U by Theorem 5.5) is
Z-graded by letting

deg C' = 2, degK; =0, deg B; , = k, deg®;, =n (i=1,2).
Compare Remark 4.8.

5.3. Presentation via generating functions. Recall from (5.9) the generating
functions B;(z), ©;(z), H;(z) and A(z) in a variable z. For ¢ = 1,2 and variables
w1, Wy, we also denote

(5.21)

S(wy,ws | ;1)

= Sy, 1, (Biw1)Bi (w2) Bri(2) — 21Bi(w1) By (2)Bi(w2)+Boi (2) Bi(w1)By(w2) )
Theorem 5.5 admits the following reformulation via generating functions.

Theorem 5.7. U is isomorphic to the Q(v)-algebra generated by the elements By,
Hi, ]K;H, C*! where i =1,2,1 € Z and k > 0, subject to the following relations,
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fori,j € {1,2}:
(5.22)

KK, =K,K;, KH;(2)=H;(2)K;, K;B,;(z)=0v""%B;(2)K;, C is central,
(5.23)  [Hi(2), H;(w)] =

1 — v % zw ) (1 — vorii zwC)

(5:24) 1 —v%izw 1) (1 — v=¢riizwC) 5()8i(z)
(5.25)
(v?z — w)B;(2)B;(w) + (v?w — 2)Bi(w)B;(z) = 0,
(v 2 — w)Bi(2)Bri(w) + (v 'w — 2)Br(w)By(2)
A
(5.26) =7 (—ZZQ) ((z = vw)KiOri(w) + (w — v2)K;;0;(2)),
=1
S(wi, ws | 24) = —v[2] Symy, v, Alwzz)— Y2 2 B ()@, (=)K,
’ 1 — v 2wiwy
e
+ 2] Symy, w, A(wgz)%(aﬂ(z)KiBi(wl )
’ 1 —v2wiwy
I
V[2] Sy, 1, Alwsz) AL 2B (1))@, (ws) Ky
’ 1 — v2wy we
B
(5.27) + v (2] Symy, L, Alwyz) 2 E1 2@, (wy) K, By (ws).

1— v 2w we

Proof. We simply rewrite the relations (5.2)—(5.7) in Definition 5.1 by using the gen-
erating functions (5.9). For example the relation (5.27) is obtained by multiplying
both sides of the relation (5.7) by w1 w];z 2! and summing over ki, ko,l € Z. ]

5.4. Drinfeld type presentation via different root vectors. The alternative
imaginary root vectors ©; ,,, defined in Remark 4.2 lead to the following presentation

of U*, which is a variant of the one given in Definition 5.1. The (new) H; , used
in Theorem 5.8 is defined through the old formula (5.8) (with ©,,, therein replaced
by ©;.m). Recall the notation S(ky, ko | 1;4) from (5.1).

Theorem 5.8. U is isomorphic to the Q(v)-algebra generated by the elements
By, Him, Kfl, C*', wherei e {1,2}, 1 € Z and m € Z>1, subject to the relations
(5.2)—(5.5) and the following two relations (5.28)—(5.29) (in place of (5.6)—(5.7)):
[Bik, Brijt1)o — v[Biks1, Briglo-1 = =071 k41CFK; + 0,011 CFK;
(5.28)
—0ip 110Ky + 6, 1 1CFK L,
(5.29)
S(kl, kg | l; Z)

k
Symkyl ko Zv ‘rzl ko— pK ®‘rzl ko—p— QCKwB'L ki— p] —d4p— 1C 2P

p>0

+v[2] Symy, ., ZUQP [Bi ktpiis O ks —1—pr1 Ko _éi,kg—l—p—chn’] p—dp—3 c
p=>0
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form,yn > 1,ky, ko, k,l €Z, and i,j € {1,2}.

6. VERIFICATION OF THE CURRENT RELATIONS

In this section, we verify that all the defining relations in Dryt are preserved by
the homomorphism @ in (5.13). This completes the proof of Theorem 5.5.

6.1. Strategy of proofs. Let us explain the general strategy of the proofs before
getting to the technical details. The approach of [BK20] for ¢-Onsager algebra (see
also [Da93] for quantum affine sly) provides a helpful though rough guideline for
the overall inductive arguments. However, our quasi-split affine rank one setting
behaves with complexity of affine rank two, as there are 2 infinite series of real
(and respectively, imaginary) root vectors as Drinfeld type generators; in contrast,
there is only one infinite series of real (and respectively, imaginary) root vectors for
¢-Onsager algebra. Accordingly, the approach developed in [LW21b] and especially
in [Z22] dealing with Serre relations in higher ranks also helps to inspire new ways
to get around various technical difficulties.

A central relation (5.3) concerns about the commutativity among imaginary root
vectors ©; ,,, for ¢ = 1,2 and n > 1; a closely related property is the T,-invariance
of ©; . Assuming these properties, several additional relations among root vectors
for U* can be proved. However, O, ,, is defined in terms of (a linear combination of)
v-commutators between real root vectors. To establish the commutativity among
O, n, one has to first understand to some extent commutators of ©; ,, with real root
vectors, and so we would run in a vicious circle if we were not very careful.

By direct computations, we shall establish T,,(0;1) = 0,1, and some formula
for the commutator [0, 1, B1]. This suffices to derive fully the first nontrivial Re-
lation (5.5).

The actual inductive proofs of Relations (5.3), (5.4), and (5.6) run like a spiral.
Under the assumption on the partial commutativity between ©;; and ©;,, for
m < n (for some fixed positive integer n), we show that T, (0;,) = ©;,, and
then establish part of (bounded by n) the relations for commutators between real
root vectors; the Serre relations (5.7) are also partially proved along the way, which
imply partial relations for commutators between imaginary and real root vectors.
We then use these to establish fully the commutativity among ©; ,,,, for m < n,
and then all these relations hold unconditionally. The proof of Relation (5.4) by
induction independent of (the proof of) the Serre relations (5.7) follows closely the
approach developed in [Z22] (instead of [LW21b]). Finally, we fully prove the Serre
relations (5.7) for U*, imitating [Z22] again.

6.2. Relation (5.2).

Lemma 6.1. Relation (5.2) holds in U".

Proof. Recall that C = —vKs; = —vKoK;Ky. Then C is central and K;K; = K;K;
by (2.4).

We have Hj ,, € ﬁims by using (5.8) and noting that ©; ,,, € ﬁ:’né (see Lemma 4.4).
Hence, by Lemma 2.3, we have K; H; ,,, = H; K.

The last relation K;B;; = v®%i~% B; K, in (5.2) follows by Lemma 2.3 and
Lemma 4.4. (Il
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6.3. Properties of B;; and O, ;.
Lemma 6.2. Fori=1,2, we have
(6.1) Bia = o(i) ([1Bi, Brilus [Bi, Bola] , = vlBi, BolusKri = v 2][Bi, BoluK ).

The proof of Lemma 6.2 is long and will be skipped (the detail can be found in
the Appendix of the arXiv version).

Lemma 6.3. We have T,(0;1) = 0,1, fori=1,2.

Proof. Recall from (4.6) that ©;, = —o(z’)([Bi, [Bri, Bo]v]v2 — vBoKi). It suffices
to check that

(6.2) T, ' Ty ([Bu, [B2, Bols] » — vBoK1) = [Bi, [Ba, Bolu] ,, — vBoK.
Since By 1 = o(1)T Ty ' (B;) by definition, we have by Lemma 6.2 that

T, T, (B1) = ([[Bl, Bs)y, [B1, Bolu],, — v[B1, Bols Kz — v~ ![2][By, Bo]vKl).
Then we compute

T1—1T51<[B1, [Bs, BO]U}UQ)

= 1_1( Tal(Bl)v [[Bo, B2]v, BOKgl]v] vz)

_ [[[Bl, Balu, [B1, Bolu], — v[Br, BolusKs — v [2][Br, BoluKi, —szK;L
_ —v[[[Bl, Balu, [B1, Bolu], — v[B, BolysKs — v [2][Br, BoluKi, BQ]WK;
_ {BQ, [[B1, Balu, [B1, Bolu], — v[Bu, BolusKs — v *[2][By, Bo]vthKgl
_ [BQ, [[B1, Bal, [Bl,BO}U]ULKgl

— v[By, [B1, BolsKa] Ky — v [2][By, [B1, BolKi] Ky '
_ {BQ, [[B1, Bs)o, [Bl,BO}U]ULKgl — 0[Bs, [B1, Bolus ],

— v 2] [Ba, [B1, Bolo| K1 K5 .
Also, by the formula (2.26) for T;!(By), we have

—vT; ' Ty (BoKy) = =T H(Bo)K; '

= —U[[Bl,Bz]v, [Bo, [BlaBO]vHKz_l + [[B1, Balys, Bo)
- ’UB()Kl.
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Summing the above 2 computations and using the Serre relation (2.6), we have
T, 'Ty " ([B1, [B2, Bol] . — vBoK)
_ [BQ, [[B1, Bal, [Bl,Bo]v]vLKgl — 0[Ba,[B1, Bols], s
— v [2][By, [B1, Bolo] . K1 K5 !
—o[[B1, Balu, [Ba, [Br, Bolu] [ K3 + [[B1, Baluo, Bo] — vBoKs
=[] [[Bl, Bolo, BoKo + v3BQK1} K;'—0[Bu,[B1 Bol.e],
— v [2][By, [B1, Bolo] . K1 Ky ' + [[Bi, Bays, Bo] — vBoKy
= —[2][[B1, Bolv, B2| - — v[Ba, [B1, Bolws ], 2 + [[B1, Bals, Bo| — vBoKy
= [Bu1, B, Bo]v]v2 —vBoK;.
The lemma is proved. O
We prove a very special m = 1 case of (5.12) (equivalent to relation (5.4)).
Lemma 6.4. Fori=1,2, andl € Z, we have
(6.3) [©i,1, Bji] = [cij| Bji+1 — [ri 5] Bji—1C.

Proof. We only need to consider ¢ = 1, thanks to the symmetry 7.
First, assume j = 1. The identity (6.3) for [ = 0 reads as

(64) [@1’1731] = [2]31’1 + Bl,,lC.

Then (6.3) for a general [ follows by applying the (—I)th power of T, to (6.4) since
0,1 is fixed by T, (see Lemma 6.3). Hence, it remains to prove the identity (6.4).
To that end, we compute

(011, B1] = — o(1) [[Bl, [Bs, Bolu] . — vBokKi, Bl}
= (1){[317 By, Bolu) 2, B } + vo(1)[BoKy, By]
= —o(1) | [B1,[By, Bolu] .. B| + v~ 0(1)[Bo. B1],s K.
On the other hand, we compute
[[Bl, (B, Bo]v]vz,Bl}
—v?[ By, [B1, [B1, Bol] - |

+ 3 [Bo7 [Bl, [B1, B2]v]v71} _
_ _[2} UBlv BQ]U, [Bl, BO}U]U — 1)[2] [BO; Bl]v—:sKl — 1)4[2] [BOa Bl]v—3K2.

+ [[B1, Bolv, [B2, Bils]

v—1

—v ! [[B1, Ba]w, [Bi, Bo)] 03

Combining the above 2 computations, we obtain
[@1,17 Bl] = [2}0(1) [[Blv BQ]W [Bh BO]U]U + [2]U0(1)[B07 Bl]v*‘?KI
+ [2]v*0(1)[By, B1]y-sKa + v~ 20(1)[By, B1],s K.

This formula can then be converted to the desired identity (6.4) by using (4.4) and
(6.1).



1026 MING LU, WEIQIANG WANG, AND WEINAN ZHANG

Now assume j = 2. As above, the proof of (6.3) for a general [ follows from the
case with [ = 0; that is, it remains to prove

(65) [@1’1,32] = —BQJ - [2]B2’710 - _B2,1 + 'U[2]BQ’71K5.
Indeed, we have

(1,1, B2] = = o(1)| [By. [B2. Bol.] ,» — vBoKs, By|

il
(1)[[31, [Bs, Bols ]v2,BQ} + vo(1)[BoK1, Bo]
(1)[[31,[32,30] ] 2,32} +v%0(1)[Bo, BaJy-2K1
= o(1) [[BQ, Bilu, [Bo, BO]UL +v%0(1)[Bo, Ba],-sKi.
This formula can be converted to (6.5) by using (4.4), (6.1) and o(1) = —o(2). O
6.4. Relation (5.5).
Lemma 6.5. For i€ {1,2} and k € Z, we have [B; y—1, B; ],—2 = 0.

Proof. We note that the formula in the lemma for different k£ are equivalent by
applying suitable powers of T\,.

It remains to prove the desired formula for & = 1. By the formula (4.4) for B; _1,
we have

—v?0(1) - [B; 1, Bi]y-2 = [Bi, Bol,Ki BK; ' — v 2B;[B;, Bl KiKj '
= v*[[Bi, Bolu, Bi] KK; ' =0,
where the last equality follows by the Serre relation (2.7). ]
Proposition 6.6. Relation (5.5) holds in U, i.e
[Biks Bij41]o—2 + [Bit, Bigt]o-2 = 0,
forie {1,2}, and k,l € Z.
Proof. Without loss of generality, we assume that ¢ = 1. It follows by (6.3) that

(6.6) [[2]01,1 + ©2.1, B1 k] = [3] Bkt
Denote Fy, = [B1 g, B1,1]v-2 + [B1, B1,k+1]v-2, for k € Z. Then we have
(6.7) (21011 + O2,1,F)] = [3](Fry1 + Ty ' Frov).

In particular, we have [[2]@1,1 + @2,17]F0} = [3](F; + T,'F_;). Since Fy = 0 by
Lemma 6.5 and F; = T,'F_;, we obtain F; = F_; = 0. It then follows by (6.7)
and an induction on k that Fy = 0, for all k € Z.

The desired relation now follows by applying a suitable power of T, to Fp_; =
0. |

6.5. Partial commutativity and T,-invariance of ©; ,. Recall D, ,, and ©;,
defined in (4.5) and (4.8), respectively.

Lemma 6.7. Fori=1,2, we have

(6.8) D; _1 = —[Byi, Bi—1]y-1 — [Bis Bri—1]p—1 = —v (01K, + 0, 1K,;)C ™!
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Proof. We assume ¢ = 1. By (4.4) and (4.6), we have

(6.9) —[B1,Ba,—1]y-1 = —v7'01 1K20 7 — o(1)v ' BoKy !,
—[Bg, Bl,fl]v—l = _,U—1@2)1ch—1 - 0(2)1)_130]1{61.

Hence, (6.8) follows. O

We prove a very special m = 2 case of (5.12) (equivalent to Relation (5.4)).
Lemma 6.8. Fori=1,2, we have
[0i2, Bil + 0040, Bily-sC = v*[0;1, Bia]y—4 + 0[O 1, Bi 1], C.

Proof. We assume ¢ = 1. We shall compute [©7 2, B1]. Using C = —vK;K; K, from
(4.1), recall ©4 o from (4.7):

(6.10)
@172 = —’[)2([32, Bﬂv—l -+ [Bl,la BQ’,l]U—1>K1K0 =+ 1)@1700 — @270CK;1K1.
The main part in [©1 2, B] is

—0*([Bu,1, Ba,~1]o-1KiKo, B | = v*[B1, [Bi 1, 32,71]1;*1]1,73K1K0

=92 [[Bh Bl,l]v’27B2,—1]v—2K1KO+ [3171, [Bl, BQ7_1]U71L}K1K0
(6.11) =v?[01,1, B11], s + v "o(1)[B1,1, Bo]uKi,
where we used [B1, B1,1],-2 = 0 (by Lemma 6.5) and (6.9) in the last step.

Next, we compute the term [Bj 1, Bgl, in (6.11). Recall the formula for B;
from (6.1):

(6.12) By = o(i) ([[Bi: Brilus [Bi, Bolu], — v[Bi, Boloo Ko — v [2][Bi, BoluK ).
Then the main part in [By 1, Boly is

o(V)[[1Br, Balu: By, Bolu] . Bo|
= o(1) [[Bl,BQ]U, [[Bl,BOL,,BOL_l]US — vo(1) [[Bl,BO]U, [[B1, Balu, Bo) UZ]
= o(1)|[By. Balu, [[Br. Bolu. Bal .

—vo(1 )[[Bl,BO]U, [B1,[Ba, Bol) ] +v20( [[Bl,Bo]v, [By, (B, Bol. ]}

(1)U [[B1, Ba]w, B1] s Ko
“O1.1 4 vo(1) BoKy, [Br, Bolv| 2 + [©2.1 — vo(1) BoKa, [B, Bolu)

(U_l [B1, Ba]w, B1] s Ko — [BoKy, [Bi, Bolu] . + v[BoKa, [Bi, Boh])

v—2

v—2

+ o(1)v? (U_ [©11,B1,1] . + [92,1,31,71])K2K0~
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Plugging this new formula into the computation of [B; 1, By, via the formula (6.12),
we obtain

— v o(1)[B1,1, BoloK1 +v[01,1, B1,—1],-2C
= (Ufz [[B1, Ba]v, B1] s KoKy — v ! [BoKy, [B1, Bolu] K1 + [BoKy, [Bi, BO]U}Kl)

+ (U71[91,17Bl,—1}v2 + [@2,1,31,—1])0
+ [[Bl, By|sKa, BO]UKl + 0722 [[31, By, Ky, BO]UKl +v[01,1, B1,-1],-2C.
This can be simplified by collecting the like terms together:
—v~o(1)[B1,1, BoloK1 +v[01,1, B1,—1],-2C
= [[2181.1 + ©2,1, B1,-1]C + v *[[By, Balu, B1] s KiKg
+ v [3)(B1B§ — [2]BoB1 By + B3 B1)K}
(6.13) = [3]B1C + v ?[[B1, Ba]v, B1] ;K1 Ko — v ?[3] Bi1K Ko,

where we have used (6.6) and the Serre relation (2.8) in the last equality. Arranging
the pieces (6.10), (6.11) and (6.13) together, we have

(01,2, B1] + v*[01,0, B1],-sC — v*[O1,1, B11]p-4 — v[O1,1, By,—1),-2C
v
= —v?[[Ba, B1],-1KiKo, By | + m[11<§§11<§0,Bl]
— v ?[[B1, Ba]u, B1]U3K1K0 +v7?[3]B1K{ Ky
=0.
The lemma is proved. |
Lemma 6.9. Let n > 1, and i,j € {1,2}. Assume that
Tu(e)i,m) - ®i,m7 fO'l“ m S n,
[©.1,0:m] =0, form < n.
Then [@j,l, @Ln} = [Cij](l — Tw)@i,n—i-l-
Proof. By definition of D;j and using Lemma 6.4, we have
[©i1,Di n—2]
= [Brijg, Bin—2]o-1 + [2][Bri,—1, Bin—2]v-1C — [2][Bri, Bin—1]p-1
— [Bri, Bijn—3)o-1C + [Bijn—1, Bri]y-1 + [2][Bin—1, Bri,—2],-1C
- [2] [Bi,n; B‘ri,fl}v—1 - [Bi,n72a B‘ri,fl]v_lc
=[2](1 = CTw)Dipn—1— T3 (1 = CTW)D; s,
for any n > 0. By the assumption T, (0; ) = O, for m < n, we have
(1-CTy)D;ip-1=(1—- CTw)( 0710 1 KO+ @i,nflKTi)
=0 (1 -Ty,)0; 1K C™
(1 — CTw)Divnfg = (1 — CTw)( — ’U_l@iﬁnflKﬂ'C_l + @i,n73Kri) =0.
So
[0i1,Din-2]=—v" (1 -Ty)O; 1K, CL.
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Replace D; 2 by —v710; ,K-,C ™1 +0; ,,_2K,;. By the assumption [0;1,0; ,,_2]
= 0, we have

[0i1,0i,]KC71 = [2](1 — Ty)Oi 1 K C 7L,

and then the desired formula follows.
For j = 7i, the proof is entirely similar by using now the identity

(041, Din—2] = —(1 = CTy)D; 1+ 21T, (1 — CTy)Di yr3.

We omit the details. O

Corollary 6.10 will be used repeatedly in the subsequent inductive arguments.

Corollary 6.10. Letn > 1 and i,j € {1,2}. Assume that [©;1,0;,,] =0, for all
m < n. Then ©; ., are fizred by T, for 1 <m <n.

Proof. The proof follows from Lemmas 6.3, 6.9 and an induction on m. (]

6.6. The commutator [©; ,,B;]. For i = 1,2 and n > 0, we denote by H,; ,, the
Q(v)-subalgebra of U generated by {O; 1, K;,Kg, Ko | 1 <m < n}.

Proposition 6.11. Letn > 1, and assume that [©;1,0; »] =0 for alli,j € {1,2}
and all m < n. Then there exist X n € Hin, for —m < k < n, such that

(6.14) [©.n, B1] = Z B, kX

k=—n

In order to prove Proposition 6.11, we need to prepare some notations and lem-
mas. For any ky,ke € Z and i = 1,2, we denote

R(k1, k2|l;7) := Symy,, 4, { — 07 Ori 1y 1C K + Ok, -1 O K, Bi,klh
(6.15) + Symy, , [ — 0710, k110K + O k11 CTK Bi,klhy
P(k1, ka|l;3) := Symy, &, {Bi,kla_vilgfi,lfngrlezilKi + @Ti,lfkgflckQKz}v
(6.16) + Symy, , [Bmp —07'0; 1410 K + @i,k2—1—1ClKn‘L~
Recall S(k1, k2|l;7) from (5.1).

Lemma 6.12. Letn > 3, and i € {1,2}. Assume that[©;1,0;.m] = [0ri1,0;m] =
0 for allm <n. Then, for k1 =1 <n—1,]ke =1 <n-—1,

(618) S(kl - 1,]€2|l;i) + S(kl, k2 - 1|Z,Z) - [2]8(]{71, k2|l - 1;i) = [2]P(]€1,]€2|l,2)
Proof. It [©;1,0i,m] = [©ri1,0im] =0 for all m < n, then 61 ,,,02 ,,,1 <M <n

are fixed by T, by Corollary 6.10. Thus, by applying T, to the identity (4.8) we
obtain the relation (5.6) for |l — k| <n —1.
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Below we shall work only with ¢ = 1. For |k1 — 1] <nm—1,lke =] <n—1, we
compute

S(ky + 1, kall; 1) + Sy, by + 115 1)

= Symy,, x, (Bl,k1+1Bl7szz,l — [2]B1,ky+1B2,1B1 ks + 327131,k1+131,k2)
+ Symy, , (Bl,kl By ky+1Ba; — [2]B1 i, B2, B1 ky+1 + BZ,IBl,lel,szrl)

= Symy, , (U2Bl,kgBl,k1+1BQ,l — [2]B1,ky +1 B2, B1 ke, + 32,131,k1+131,k2>

+ Symy, k, (3171@13171@2“32,1 — [2]B1,ky B2,i B ko 1 + U72327131,k2+131,k1)
= (2] Symy, 1, (vB1k, B1,kyt1 B2,y — Big, BaBiky+1 — Bk, +1B2,1 Bk,
U_le,lB1,k1+1B1,k2)
= [2] Symy, &, (vB1,k, [B1,ks 1, B2gJo-1 — [B1ky+1, B2Ju-1B1,ky )

where the second equality follows from Symy, . [B1 x,, B1k,+1]o—2 = 0; see Propo-
sition 6.6.
Hence, we have

(6.19) S(k1 1kl 1) + Sk ko + 1) 1) — [20S(k1, kol + 1:1)
2] Symy,, 4, (UB1 ky [B1 ko1, B2ilv—1 — [Bi g, +1, Bai]v-1B1 kg)

+ [2] Symkl,kg ('UBLM BQ,Z+1aB1,k2]v—1 - [BQ,Z+1aB1,k1]v—1BLk2)'

Applying the relation (5.6) for |l — k| < n — 1 (which holds as shown in the first
paragraph of this proof) to sum up each of the 2 columns of the right hand side of
(6.19), we have

S(k?1+1 k‘gll 1) (kl,k2+1|l 1) [ ]S(k17k2|l+1;1)
= [2]Symy, 4, {— v 102 k11 CF Ky + 92,lfk2710k2+1KhBl,k1}

(6.20) + [2] Symkl’k,z { — Uﬁl@lvkz_l_;,_lclKg + @17k2_l_10”1K2, B17k1:|
= [2]R(k1, k2|l; ].)
This proves the identity (6.17).

The proof of the remaining identity (6.18) is similar and will be omitted here. O
Lemma 6.13. Let n > 3 and assume that [0;1,0; ] = [0+:.1,0;m] =0 for any
i=1,2, and allm < n. We have, for |k =1 <n—2,|ks — 1] <n -2,

(6.21)
Rk — 1, ko|l;4) + R(k1, ko — 1|1;7) — [2]R(k1, k2|l — 154)
=P(k1 + 1, ka[l;4) + P(k1, ko + 1|150) — [2]P(kq, k2|l + 1;4).
In particular, for |k —1| <n — 2, we have
(6.22) Rk —1,k|l) + R(k, k — 1|1) — [2]R(k, k|l — 1)
=Pk +1,k|l) + P(k, k + 1|I) — [2]P(k, k|l + 1).

Proof. The proof follows by replacing both R-terms and P-terms in (6.21) by the
S-terms via (6.17)—(6.18). O
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For m > 0,k € Z, we define

(6.23) Yllfm = [O1,m, Bik) + 03 [O1,m—2, Bi k) y-6C — 02[O1 1, B1 g 1)y-1
—0[O1,m—1,B1,k-1]p—2C,

(6.24) Y, = [O2m, Bl + v *[O2m—2, BilusC — v [O2m—1, B ksl
— 07?021, B1 k1], C.

(Note that the desired relation (5.4) can be formulated as Y, = 0 = Y§,_, by

Lemma 5.4.) For convenience, we set Y| | =0=Y]_, form >0,l € Z. We
rewrite (6.22) as

(6.25)
(Yzlfl—kc - Uﬁlelfl—Hz)CkflKl + (”3Y1]fk—lc - U2Y1’fk—l+2)olflK2 =0,
for |k =1 <n-—2.

Lemma 6.14. Let n > 1, and assume that [©;1,0; ] =0, fori,j =1,2 and all
m < n. Then we have

(6.26) vk =o, Yy, =0, VkeL.

Proof. Since O, Orim,1 < m < n are fixed by T, by Corollary 6. 10 T, acts
on Yf by shifting the superscript k. Hence, for fixed 1 <m < n, if ¥}’ k=0 for
some k, then Yk =0 for all k € Z.

Denote Y; ,, = Y;Om It remains to show by induction on n that Y;, = 0 for

i = 1,2. This holds for n = 1,2 by Lemma 6.4 and Lemma 6.8. Let n > 3.
Applylng a suitable power of T, to (6.25) gives us the identity

(6.27)  (You—xC — v Vo _112)CF 1Ky + (037 510 — 0?1 k—142)C 'Ky = 0,
for |[k—1| <n—2. Forn=3,set k—1=11in (6.27). Note Y; , = 0 for p < 0. Then
}/173K2 = —1)73}/271CK1 + v}/1710K2 =0.

Similarly, we have Y53K; = vY21CK; — v3Y; 1CKy = 0. Let n > 4. Setting
k—1l=n—21n (6.27) gives us Y7 ,, = vY7 ,,_2C, while setting [ —k = n—2in (6.27)
gives us Y , = vY5,_2C. Therefore, by induction on n, we have proved Y; , =0
fori=1,2. O

Proof of Proposition 6.11. For the sake of notational simplicity, we shall work with
i =1 in this proof (the case for ¢ = 2 is entirely similar).

We proceed by an induction on n. The statement for n = 1,2 follows by
Lemma 6.4 and Lemma 6.8. Suppose that the statement holds for [0y ,,, Bi],
where 1 <m < n — 1. By Lemma 6.14 (see (6.23) for notation Y}¥ ), we have

[O1,n,B1] = _U3[617n72, Bi],-sC + 'U2[91,n713 Bi)y-4 +v[O1,5-1,B1,-1],-2C

=001, 2B1C+v3B101, 2C +v?01,,_1B11 —v 2B1101,1
+v01,,-1B1,1C — ’07131,71@1,n71c

(628) = —vs@lvn_2B1C + 112@17"_13171 + v@Ln—lBl,—lO + Z Bl,ka,n

k=—n
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for some Zj ,, € H1,,. Furthermore, by the inductive assumption, we have

n—2
O1p—2B81C = B101,,2C + Z By 1 X} 25
k=—n-+2
n—1
(6.29) ©1n 1B =B1O1, 1+ Y BiaX{, 1,
k=—n-+1

for some X}, o € Hin o and X € Hy 1. By applying TS to (6.29), we
have

n—1
.,
O1n—1B11 = B1,101,n-1 + g B k41 Xy o1
k=—n-+1
n—1
/!
©1n-1B1,-1C = B1,_101,,-1C + E By k-1 Xy o1
k=—n+1

for some X;7,L_1,X,’€’7,L_1 € Hin—1, since T, (01,,-1) = O1,,—1 and T, (H1 n—1) C
H1,n—1 by Corollary 6.10. Thus the desired formula (6.14) follows from (6.28). O

6.7. Relation (5.3). With all the technical preparation in the prior subsections,

we are ready to prove the crucial commutativity among the imaginary root vectors
Oim-

Lemma 6.15. Let n > 1, and assume that [©;1,0; ] =0 for all i,j € {1,2}, and
all k < n. Then for all1 < my,ms <n andi,j € {1,2}, we have

(1) [@i’ml’ [@jvmi” Blﬂ = [@j»mza [Gi,mmBlH ;
(2) [@i,ml,@j,mg] =0.

Proof. Without loss of generality, we assume m; > mo. Let “<” denote the lexi-
cographic ordering on N2. We use induction on (mj,mz) in lexicographic ordering.
Assume that

(6.30) [©:,0,4] =0

for all 4, j and all (k,1) < (mq,mz2). By Corollary 6.10, ©, 1, ©;, are fixed by T,,.
By Proposition 6.11, there exist X0 e H; m such that

k.m

(631) [@z’,val,T] = Z Bl,r+kX]£f?m7

k=—m
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for 1 <m < n,r € Z. Hence,
mo

[@i,m]v [ej,MQaBlu = Z [@’L m17B1 le(n)zz]

l:7777,2

ma

= > [Oum. Bualx,

l:7777,2

- Z Z Blk+lem1Xl(,J3L2

l_—m2 k——ml

mq

3 Z Biin X)) X\ = [0)ms, [Oim,, Bil],

k——m1 l——mz

where the second equality follows from [©; ., , Xj m,] = 0 by the inductive assump-
tion (6.30), and the commutativity of Xy ., Xim, used in the fourth equality also
follows from (6.30) and Xy 1, € Hi,my, Xi,ms € Hi,m,. This proves (1).

It follows by the Jacobi identity that H@i,mla @j’mJ,Bl] = 0. By symmetry,

we also have [[6;m,, 0 m,],B2] = 0. By Lemma 2.3 and Lemma 4.4, we have
[[@i,mla(—)j,mg]aKa} = 0, for all @ € 1. Therefore, Lemma 4.12 is applicable and
implies [O; m, ; ©jm,] = 0, which proves (2). O

Proposition 6.16. Relation (5.3) holds in U".

Proof. Since 0,9 = #, we have [©,1,0,0] = 0, for all ¢,j. Then it follows
from Lemma 6.15 that [©;,,0;m,] = 0 by induction. So (5.3) holds in U* by
Lemma 5.4(1). O

Now we can remove the assumption in Corollary 6.10.
Theorem 6.17. We have T, (0;,,) = O, n, for alln > 1 and i € {1,2}.
Proof. The proof follows by Corollary 6.10 and Proposition 6.16. |
6.8. Relation (5.4).
Proposition 6.18. Relation (5.4) holds in U".

Proof. We shall prove the identity (5.12), which is equivalent to (5.4) by Lemma 5.4(2).
By Proposition 6.16, the assumption of Lemma 6.14 holds for any n > 1, and
hence

Y, =0, Yy, =0, Vn>1keLZ
That is, the identity (5.12) holds for j = 1; it holds also for j = 2 by the symmetry
7 in (2.17). O

6.9. Relation (5.6). The proof of Relation (5.6) is rather straightforward as we
now have Theorem 6.17 at our disposal.

Proposition 6.19. Relation (5.6) holds in U".

Proof. In the proof below, we refer to the relation (5.6) as R(k,1).
Relation R(k, k) follows by applying a suitable power of T\, to the identity (6.8),
thanks to the T,,-invariance of ©; ,,, by Theorem 6.17.
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Relation R(k,—1) for k > 0 follows by definition of ©; ,, in (4.6)—(4.8). Then
R(k,1) for k > [ follows by applying T, to the known case R(k — 1 — 1,—1) and
noting that ©; ,, is T,-invariant by Theorem 6.17.

For k < I, we apply the involution 7 in (2.17) and reduce to the case R(I,k)
already established above (the second equation below follows by a simple rewriting
of the commutators):

7(LHS(5.6)) = [Briks Bij+1)o — v[Brijks1, Biglo—
= [Bit; Brik+1lo — v[Biiy1, Briglo-1
= =0, 5-1410'K; + 10, 11 CTK; — 0,111 CFK;
+ 00,1 CF K.

Another application of the involution 7 to the right hand side above turns it into
the right hand side of (5.6). This completes the proof of the proposition. O

6.10. Relation (5.7). Finally we shall prove the Drinfeld type Serre relations.

Proposition 6.20. Relation (5.7) holds in U".

Proof. Since (5.7) is equivalent to the relation (5.27) in generating function form,
it suffices to prove (5.27).
We can rewrite (6.17) as

(6.32)

(wi 4wyt = [2]27H)S(wr, wa | 2;4) = —v™![2] Sym A(wzz)

w1, w2

X ((z—1 —vwy H[O4(2)Ks, Bi(wi)]o+ (wy ' —vz ) [©;(ws) Ky, Bi(wl)]v).
Similarly, we rewrite (6.18) as

(6.33) (wi+wz — [2]2)S(wi,ws | 2;1) = —v~'[2] Sym,,, ,,, A(w2z)

x ((w2 —02)[Bi(w1), ©1i(2)Kily + (2 —vws) [Bi(wy), @i(wg)Kﬂ]U).

We calculate (6.32)x[2]z +(6.33)x (w;* +w; ') as follows:

*wi N)S(wy, we | 251)

(w1 — v?wg)(wy ' — v~
= — v [2]Sym A(woz)(w ! — vPwy ) (we — v2)Bi(w1)O4i(2)K;
(6.34)

— v 12] Sym

+o[2] Sym,, .,

+ v~ 12] Sym

w1, w2

wiws A(wgz)vfl(wl - v2w2)(w1_1 - vwl_lwglz)@Ti(z)KiBi(wl)
A(wgz)(wgl - U72w1_1)(2 — va)Bi(wl)G)i(ua)KTi

wr vy A(W22)v ! (wy — v2wy) (vwy ! — wi twy 1 2) @ (woe) KBy (w1).

Note that the constant component of (6.34) is exactly the relations (2.5)—(2.6).

Then, dividing both sides of (6.34) by (w; — v?ws)(wy ' — v~ 2w; '), we obtain the
desired relation (5.27). O

Therefore, we have verified that all the relations (5.2)—(5.7) are preserved under
® : PrU* — U that is, ® : P"U* — U* defined in (5.13) is a homomorphism.
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APPENDIX A. PROOF OF IDENTITY (3.8)

A.1. Proof of Identity (3.8). In this subsection, we prove the identity (3.8), and
hence complete the proof of the identity (3.1). When combining with discussions
in §3.1-§3.2, we have completed the proof of Theorem 2.7.

The identity § = T;ll(Fo) in (3.8) is not homogeneous in U, and it consists of
homogeneous summands of 4 different weights: —(a+2a1 +2a3), —(ag+ a1 +a2),
—ap, and —ag + a3 + ag, respectively. Accordingly, the proof of the identity (3.8)
is reduced to the proofs of the 4 identities (A.1)—(A.4):

(A1) o[[F R, B [Py, Rl | = T (Fo),

“FhEle]v, [Fy, [FhFo]vH + “Flan]v, [E1 Ko, [FlaFo]vH

(AQ) +'U|:M, I:F27[F17F0]v}:| = I:[FI;FQ]U:;aFO]K]{KQ)

v—v— 1

(B2 B Ks) (o, [Fy, Folu] | + [[Fy B Kol [BvKo, [Fy Foll ]

+U[M, [E1 Ko, [Fl,Fo}vH

v—v—1

(A.3) = [[B2K1, Falus + [Fi, B1 Koy, Fo] KoK — v Fy K Ko K K,

(A.4) [[E2K1,E1K2L7 [E1 Ko, [FlaFO]vH = [[E2K1, E1 K23, Fo| Ko K.

The identity (A.1) holds by Lemma 3.3. The proofs for (A.2)-(A.4) require only
elementary computations and are given in the following 3 subsections.

A.1.1. Proof of (A.2). Denote X := [Fy, Fpyly.

Lemma A.1. We have

(1) XFl = UFlX,'
(2) [E17X] = FOKi;
(3) XElKQ = ’U_2E1K2X - FOK{KQ

Note the third term on the left hand side of (A.2) is 0, i.e.,
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We now compute using Lemma A.1 as follows:

[F1, E1 K3y, [F2, X]] + [[F1, Folo, [E1 K2, X]]

= [F1, B\ K] FoX — [F, E\K,] XFo — BX[F,E\ K] + XF[Fy, B K],
+ [F1, Pyl B1 Ko X — [, Bo|o X E1 Ko — En Ko X[, Fa], + X E1 Ko [Fy, Fh,

= (IR BsKaloP2 = v ' BolFy, By Kl + [Py, Bl Ea K — v 2[Ry, Bl Eu K ) X
+ By FyK Ko — v4F2F0F1K1K2 + [y, By, Fo K1 Ko
+ X(Fz[Fl, ErKs)y —v[F1, B1 Ky Fo + E1Ko[Fy, Fo], — v* E1 Ko [F, F2]v>
— v 'Ry B K Ky + v Ry PR K Ky — v B[Py, Py, K Ko

= —REK| KX + AR K| Ky — v*FFy L KK,
+ v ' X B K Ky + VP Fy Py LK Ky — v ' FyFo K Ko

= [[Fy, Flus, Fo) K} K.

This proves the identity (A.2).

A.1.2. Proof of (A.3). Denote again X := [F, Fy],. Denote Ey = E1Ko, Ey =
By K.

Lemma A.2. We have

1) XE; = vEyX;

2 [E27E1]1}7F2:|,U—1 -

E ) = —vE K 1 K>;

(3) [[B2, Erlo, X], = v?[Eq, Folys K| Ko;
(4)

(5)

4) [Fi, Ei]y1 = Iﬁ;f(f Ks;
5 [[FlaEl}v;X]U :U2[F1,F0]USK{K2.

Proof. Parts (1)—(2) and (4) follow by a direct computation. Parts (3) and (5) follow
from (1), Lemma A.1, and the following two v-Jacobi identities, respectively:

HEQ,El]U,X]U = [EQ, [El,X]U2] — ’U[El, [EQ,X],U—l]U,

[[F1, Erlo, X, = [F1, [Br, X)p2] —v[By, [ XD

v

The lemma is proved. g

Proposition A.3. We have

v—ov—1

(B2, Erl, [Fo, X]] + v | S50 1By x|
(A.5) = [[B2, Po]ys, Fo| K1 Ko — v Fo K1 Ko K K.

Proof. By Lemma A.2(2)—(3), the first term on the left hand side of (A.5) is equal

to
[[Ba, Brly, [Fa, X = [[[EQ, B Bo), .y, X} 4ol [FQ, ([, Brl, X]J

v v

= —?| B, X[ Ki K + 0| Py, [Ba Fols | K{ K.

v
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Hence, the left hand side of (A.5) is simplified as
I:[EQv El]vv [FQa XH +v [Ma [Eh X]:|

v—v1
= 2By, XK, K + v[FQ, [Es, Fo]vsL_QK{Kg + 0 [Ey, X]K Ky
= o[ By, [Ba Folus | KiK
= [[E2, Fal o, Fo) K1 K — v Fy K1 Ko K K,
as desired. Here the last equality follows by
o B, [EQ,FO]U.QLQ — [[Ba, Falys, Fo]

= (U—US)F2E2F0+(U2—1)F0E2F2—E2F2F0+U3F2E2FO+FOE2F2—'UBFOFQEQ
= v[Fy, Bo] K1 Fy + 03 Fy[Ba, Fo) Ky
K K}
= —’UMI(HFQ + ’U3F0—2K1
v—v v
= —0 F0K1K2.
Hence, Proposition A.3 is proved. ]
Proposition A.4. We have
|:[F1; El]va [Ela X]j| = [[Fla E1K2]v3aF0] K£K2
Proof. By Lemma A.2(4)—(5), we have

(1, Bl (B, x|

[P B, B, 0 X
i
=

,E1 N
v

4+t {El, [[FlaEﬂU’X]v}

v v

v

,XL ol {El, [y, [El,X]L}z}

v

Kg,El] XL +0[Ey, [Fi, Fol s K1 K] |

= (v+ )[[Fl, Folo, B1] , K1 Ko + v[Ey, [Fy, Folys], . K1 Ko
)

(x - ~ _ ~
= —v(v+v ") [Fo, [F1, Erlwe], oK1 Ky — v 2 [[Fy1, Erlys, Fo) K Ko

= [[F1, B\ Ks)ys, Fo | K} K.
where for the equation (x) above we have used the following identities
[[F1, Folo, Br] o = —v[Fo, [F1, E1lwa] sy [Ev, [F1 Folus],_o = [[E1, Filo-s, Fo] .
The proposition is proved. (Il
The identity (A.3) follows by Proposition A.3 and Proposition A.4.

A.1.3. Proof of (A.4). We continue to denote El = F1 Ko, EQ = Fy K4, and X :=
[F1, Folo-
Lemma A.5. We have

(1) [By, Fi], = 052 KQ,

(2) [Er, Foly = [EQ,FO]U =
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(3) [EQ,Fl] —2 =0y

(4) [[EZ;El v,E1] L =0;

(5) [E27X] 0;

(6) [Eh X, , = v’ R K{Ks;

(7) [[E2, Erlo, X], = v?[E2, FoK{ Ka).

Proof. Parts (1)—(3) are clear, (4) is a Serre relation, and (5) follows from (1)-
(3). Part (6) follows from (1)—(3) and a v-Jacobi identity [El,[Fl,FO]U]Uz

[El, Fily, FO} L Fv[F1, [Er, Fyly]. Part (7) follows from (5)—(6) and [[E2, E1 ., X]U
= [Bs, [E1, X],2] — v[Ey, [B2, X],1],. O

We now compute the left hand side of (A.4) by applying Lemma A.5:
“1772751]1,, [Ele]} = [[[527E1]07E1]v_1aX} +U71{E17 [[Ez,El]v,X]v}

v

23 FOKlKQH

—o[B,

:U{El, B, Fo Ug}w KK,
=B ByFy — 3By FyBy — v 2By Fy By + UFOEQE)K{Kz
=v(v—v HE (—v E1E2+E2E1)K1K2
= (v — 1) Fy[Bo, B s K{ K.

On the other side, by Lemma A.5, we have [Eg, Eﬂvs Fy = v?F, [Eg, El]vs, and thus

[[EQ, El]v?’a Fo} = (’U2 - 1)F‘0[£§‘27 El]’u?’

Hence, (A.4) follows from the above computations.
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