
Database Memory Forensics: Identifying Cache Patterns for Log Verification

James Wagnera, Mahfuzul I. Nissana, Alexander Rasinb

aUniversity of New Orleans, New Orleans, LA, USA
bDePaul University, Chicago, IL, USA

Abstract

Cyberattacks continue to evolve and adapt to state-of-the-art security mechanisms. Therefore, it is critical for security
experts to routinely inspect audit logs to detect complex security breaches. However, if a system was compromised
during a cyberattack, the validity of the audit logs themselves cannot necessarily be trusted. Specifically, for a database
management system (DBMS), an attacker with elevated privileges may temporarily disable the audit logs, bypassing
logging altogether along with any tamper-proof logging mechanisms. Thus, security experts need techniques to validate
logs independent of a potentially compromised system to detect security breaches.

This paper demonstrates that SQL query operations produce a repeatable set of patterns within DBMS process
memory. Operations such as full table scans, index accesses, or joins each produce their own set of distinct forensic
artifacts in memory. Given these known patterns, we propose that collecting forensic artifacts from a trusted memory
snapshot allows one to reverse-engineer query activity and validate audit logs independent of the DBMS itself and
outside the scope of a database administrator’s privileges. We rely on the fact the queries must ultimately be processed
in memory regardless of any security mechanisms they may have bypassed. This work is generalized to all relational
DBMSes by using two representative DBMSes, Oracle and MySQL.

Keywords: Memory Forensics, Database Forensics, Digital Forensics

1. Introduction

In a compromised environment, security experts can
employ forensic techniques to verify the integrity of data
and files, including the audit logs. Research has consid-
ered one-way hash functions [1, 2, 3], hash chains [4, 5, 6],
and append-only files (e.g., [7]) to verify an audit log and
detect tampering. However, none of these approaches con-
sider activity that completely bypasses the logs. For exam-
ple, consider a privileged user (or an attacker who gained
access to such an account) who has the legitimate ability
to suspend logging. The audit logs could be temporarily
disabled while a malicious query is executed. Not identify-
ing this missing activity could significantly delay security
breach detection and response.

In this paper, we analyze database management sys-
tems (DBMS) memory contents and demonstrate that SQL
query operations produce repeatable patterns in the buffer
cache; we generalize these patterns by evaluating query ar-
tifacts in two representative DBMSes, Oracle and MySQL.
We then present an example use case that leverages these
patterns to verify the integrity of audit logs files and ex-
plore the lifetime of memory artifacts. A tool that is ready
for deployment and considers a wide variety of workload
scenarios is beyond the scope of this paper. We argue

Email addresses: jwagner4@uno.edu (James Wagner),
minissan@uno.edu (Mahfuzul I. Nissan), arasin@depaul.edu
(Alexander Rasin)

that our approach is a promising direction to address this
security gap because while queries can be omitted from
logs, they must ultimately be processed in memory. For
example, some query operations read data into memory
and other operations manipulate this data in memory; all
of these operations produce memory artifacts.

In our adversary model (see Section 3), we assume a
trusted DBMS process snapshot as an input and use mem-
ory forensics to carve (extract) data and metadata. We
then use forensic artifacts to identify patterns produced
by query operations; we demonstrate that query opera-
tions (e.g., index accesses, joins, sorting) produce repeat-
able patterns in memory. For log verification, if an oper-
ation cannot be attributed to a known logged query, we
flag it as suspicious. The major paper contributions are:
1. We demonstrate that query operations produce repeat-

able patterns in memory for two representative DBM-
Ses, Oracle and MySQL (Section 4).

2. We define atomic query operations (e.g., a table scan)
and a process to reverse-engineer memory patterns into
individual operations (Section 4).

3. Given a trusted memory snapshot, we present an ap-
proach to identify missing log activity, specifically re-
trieval queries, i.e., SELECT (Section 5).

4. We explore the lifetime of query artifacts in various
workload sizes (Section 6).

Preprint submitted to DFRWS USA 2023 February 24, 2024

2. Related Work

2.1. Database Forensics
We achieve our unique approach in this paper by using

database forensics, specifically data carving. Traditional
file carving directly reconstructed files without relying on
the file system as a “dead analysis” on disk images [8, 9].
More recently, memory forensics has sought to perform
a “live analysis” [10]. One example includes inspecting
runtime code for malware (e.g., [11]).

Since DBMSes manage their own internal storage sep-
arately from a file system, they require their own carving
approaches. Database forensics was explored in [12, 13,
14, 15]. However, the work in database forensics has only
been concerned with carving data as part of a “dead anal-
ysis”, where our goal in this paper works toward detecting
unusual DBMS access patterns as a “live analysis” similar
to the ideas of malware detection in memory. Nissan et
al. extracted values from database memory using string
searches, and then used support vector machines to deter-
mine the query operations that cached the data [16]. Our
approach extracts forensic artifacts from memory snap-
shots using database page carving [17]. In this paper, we
borrow from the idea of page carving to extract metadata,
which allows us to collect additional information beyond
simple string searches.

Wagner et al. previously abstracted DBMS memory ar-
chitecture into four main areas based on DBMS documen-
tation and database textbooks [18]. In this paper, we focus
on analysis of the I/O buffer and the sort area in mem-
ory. DBMS-specific names for the I/O buffer include buffer
pool (MySQL & PostgreSQL), buffer cache (Oracle), and
page cache (SQL Server); specific sort area names include
sort buffer (MySQL), work mem (PostgreSQL), SQL work
areas (Oracle), and work table (SQL Server). The I/O
buffer caches table and index pages recently accessed from
disk, typically with the least recently used (LRU) algo-
rithm. DBMSes reserve the sort area for memory-intensive
operations, e.g., DISTINCT, ORDER BY, merge joins, and hash
joins. For example, hash join constructs a key-based hash
table in memory to perform the join operation.

To facilitate an understanding of our results, we visu-
alize some of our data collected from memory using RAM
spectroscopy graphs, which were proposed by Wagner et
al. in [18]. RAM spectroscopy graphs measure the amount
of data stored at a given memory offset. Figure 1 pro-
vides an example of a RAM spectroscopy graph for I/O
buffer layout. The x-axis represents the byte offset with
the DBMS memory snapshot (normalized to a percent-
age). For example, 50% represents 50 MB offset in a 100
MB snapshot or 800 MB offset in a 1.6 GB snapshot.

2.2. Log Tampering
Adedayo et al. [19] reconstructed records using inverse

relational algebra. Their algorithms assume not only a
trusted audit logs but also require other trusted logs to be
configured with special settings. While this algorithm is

useful to reconstruct user behavior to identify suspicious
actions, it requires particular log settings to be enabled
and does not consider compromised log files. In contrast,
the goal of this paper is verify the accuracy of log files
based on the forensic artifacts in memory.

Query activity logs can be generated using triggers.
While DBMSes do not support triggers for SELECT state-
ments, a SELECT trigger was explored for the purpose of
logging [20]. While this work can log all query activity, a
privileged user can disable triggers or even bypass a SELECT
trigger by creating a temporary view to access the data.

ManageEngine’s EventLog Analyzer [21] provides au-
dit log reports and alerts for Oracle and SQL Server for
all user activity. However, the Eventlog Analyzer creates
these reports based on the DBMS logs, and thus, is vulner-
able to a privileged user who can alter or disable logging.

The work in [17] presented an approach to detect ac-
tivity missing from DBMS logs if a privileged user disabled
logging. However, their work only accounted for query op-
erations that modify data (e.g., INSERT, DELETE, UPDATE)
and thus, changes were observed in persistent storage that
could be compared to log files. In this paper, we address a
similar adversary, but consider detecting missing retrieval
queries (i.e., SELECT). Such queries would only leave ar-
tifacts in memory as opposed to persistent storage. The
work in [22] detected DBMS file tampering via the file
system without accessing the DBMS API. However, we
do not consider an adversary with system administrator
privileges to be within the scope of this paper.

Network-based monitoring tools and methods provide
a separation of privileges by operating independent of the
DBMS, and thus, can be kept outside of the database ad-
ministrator’s control. IBM Security Guardium Express
Activity Monitor for Databases [23] monitors incoming
packets for abnormal query activity. If abnormal activ-
ity is suspected, this tool restricts access for a specific
user. Liu et al. [24] monitored logs network packets con-
taining SQL statements, which prevented their tool from
being disabled by database administrators. At the same
time, monitoring only network activity does not account
for local DBMS connections and does not address obfus-
cated queries designed to fool the system. By monitoring
memory activity in this paper, our approach accounts for
both local and network activity. Furthermore, if a query
is obfuscated, it must ultimately be processed in memory
producing artifacts from the accessed data. However, this
paper does not attribute activity to a specific user.

3. Threat Model

We assume a secure environment with separate ac-
counts for a system administrator (SA) and a database
administrator (DBA) as two different roles within an orga-
nization. We further assume the principle of least privilege
for the two roles, which protects the system from misuse
of privileges, accidents, or a compromised account.

2

DBMS Command
Oracle NOAUDIT session

NOAUDIT SELECT ON [table]
Postgres set pgaudit.log=’none’
MySQL set global

audit_log_connection_policy=NONE
SQL Server ALTER SERVER AUDIT [file name]

WITH (STATE = OFF)
DB2 db2audit stop

Table 1: Commands to disable the audit log.

This assumption is consistent with the motivation be-
hind the two-tiered key protocol for transparent data en-
cryption (TDE) to assign separate duties to SA’s and DBA’s.
TDE is supported by DBMSes such as SQL Server and
Oracle (e.g., [25]). The DBMS encrypts files so they can-
not be accessed by anyone with just server access. TDE
stores a master key in a module that is external from the
DBMS; the DBA cannot access them, but the SA can ac-
cess them. The master key encrypts/decrypts the TDE
table keys. The table keys are stored in the DBMS where
the DBA does have access to these, but the SA does not.

The DBA can issue privileged SQL commands against
the DBMS, including disabling logs but cannot suspend
any OS processes. The DBA can misuse elevated privi-
leges to bypass most of internal DBMS security mecha-
nisms, including the audit log. Specifically, the DBA can
either modify the DBMS audit logs or temporarily dis-
able logging altogether. Tamper-proof audit logs (e.g.,
[1, 2, 3, 4, 5, 6]) could be conceptually implemented to
prevent modifications of DBMS audit logs. We also dis-
cussed related work, [17], that addressed attack scenario
when the audit logs were disabled, detecting modifications
(e.g., INSERT, DELETE, or UPDATE) to data. The novel threat
(not previously addressed in related work) that we con-
sider in this paper, is a DBA that disables the audit logs
and performs read-only operations (i.e., SELECT) against
the database. Table 1 summarizes how the audit logs can
be disabled for several DBMSes. If the attacker gained
both SA and DBA privileges, it could be problematic if the
attacker also has the ability to suspend other processes and
OS logging. If the DBMS were running in a VM, trusted
snapshots can be collected from the host even if the at-
tacker gained SA and DBA privileges to the VM.

We also bring attention to DBA-level commands that
flush the DBMS I/O buffer. However, these commands
do not prevent us from collecting forensic artifacts. These
commands only free list the DBMS buffers, and they do
not explicitly overwrite or zero out the buffers.

4. Database Memory Patterns

This section demonstrates that query operations pro-
duce repeatable patterns in memory that we identify by
analyzing forensic artifacts. We represent all queries as one
or more operations, which are what we match to artifacts.
For example, consider a query: SELECT Name FROM Employee
ORDER BY Salary. This query consists of two operations.

Operation Summary
Full Table
Scan

Read entire table to retrieve a record(s).

Index
Access

Retrieve a record(s) by traversing a B-Tree
index to find a pointer(s) that directly ref-
erences the record(s).

Nested
Loop Join

Join two tables using two nested for-loops.

Hash Join Join two tables w/ a hash table built
on the (smaller) table. Iterate over the
(larger) table. Locate the (smaller) table
records using the built hash table.

Table 2: Summary of query operations described in Section 4.

The first operation reads the entire table (i.e., a full table
scan) into the DBMS I/O buffer. The second operation
takes the data (now stored in memory) and sorts it in the
sort area, which is separate from the I/O buffer. From
a memory perspective, all query operations are either a
data access or a data manipulation.

Data access operations read data into the DBMS I/O
buffer from disk (or read cached data from the I/O buffer).
Furthermore, all data access operations are ultimately ei-
ther a full table scan (i.e., read the entire table) or an
index access (e.g., a B-Tree index performs direct access
on specific pages). A query can consist of a series of data
access operations. For example, a join query accesses the
two tables using either a full table scan or an index ac-
cess depending on the type of join (i.e., nested loop join,
hash join, or merge join). Other operations process data
loaded from disk. For example, processing data based on
the join condition requires a data manipulation operation
(e.g., building a hash table or sorting a table).

Data manipulation operations process data in the dedi-
cated memory-intensive sort area other than the I/O buffer.
Examples include building additional data structures for
sorting (e.g., ORDER BY or a merge join) or a hash table for
hash joins. While identifying the patterns for data manip-
ulation operations is useful for many other applications
(e.g., Section ??), we show that this information is not
necessary to detect query activity not captured by logs.
However, if one wanted to completely reverse-engineer a
query from a memory snapshot alone, identifying data ma-
nipulation operations in the sort area would provide more
precise results. Experiments in this section include a dis-
cussion of data found in the sort area for Oracle, but not
MySQL. This is because we observed that Oracle reads
large, memory intensive I/O operations directly into the
sort area.

Table 2 lists the unit operations evaluated in this sec-
tion. We describe these operations using an Oracle DBMS
and a MySQL DBMS. We will demonstrate these opera-
tions produce repeatable patterns and discuss how they
generalize to other DBMSes.

3

Table # Size Oracle MySQL
Records (MB) 8KB Page 16KB Page

DWDate 2556 0.4 32 24
Supplier 20K 2 242 134
Customer 300K 34 4067 2188
Part 800K 84 7342 5375
Lineorder 60M 5600 732K 361K

Table 3: SSBM Scale 10 Table Sizes

4.1. Experimental Setup
Dataset. Experiments used Scale 10 of the Star Schema

Benchmark (SSBM) [26]; Table 3 summarizes the data ta-
bles. SSBM represents a data warehouse environment. It
combines a realistic distribution of data with a synthetic
data generator that of creates datasets of different scales.

Configuration. We performed experiments on two rep-
resentative DBMSes. A MySQL 8.0.28 instance was de-
ployed on a Linux Debian 10 server, and an Oracle 19c
instance was deployed on a Windows 10 server. We used
the default page size for each DBMS: 16 KB for MySQL
and 8 KB for Oracle. We configured the I/O buffer to
400 MB (25,600 16-KB pages or 53,200 8-KB pages) for
each DBMS instance. We consider these two DBMSes to
be representative of a variety of relational DBMSes for
several reasons. First, MySQL is one of the most popu-
lar open source DBMSes and Oracle is the most widely
used commercial DBMSes. Second, Oracle use heap ta-
bles by default, and MySQL builds index organized ta-
bles (IOT) on the primary key by default. Other major
DBMSes choose one of these two options. For example,
Microsoft SQL Server and SQLite use IOTs by default.
PostgreSQL and IBM DB2 use heap tables by default. As
we will show, each of these approaches results in distinct
caching pattern behavior. Finally, we used both Windows
and Linux servers to demonstrate that our approach is not
dependent on the OS, but rather the DBMS.

4.2. Workload to Isolate Operations
We designed a SQL workload to evaluate the individual

operations summarized in Table 2. We verified all queries
used the desired operation by inspecting the query plan
(a query plan describes the post-optimization query oper-
ations structure in a DBMS, e.g., Algorithm 2).

Full Table Scan. We designed four queries for each of
the five SSBM tables in Table 3 (i.e., 20 queries in total).
Each query used different attributes in the SELECT clause

Algorithm 1 MySQL Query Plan for Nested Loop Join
1: Ñ Aggregate: sum(part.size)
2: Ñ Nested loop inner join
3: Ñ Table scan on Lineorder
4: Ñ Single-row index lookup on Part using PRIMARY

(partkey=lineorder.partkey)

Algorithm 2 MySQL Query Plan for Hash Join
1: Ñ Aggregate: count(supplier.city)
2: Ñ Inner hash join (customer.region = supplier.region)
3: Ñ Table scan on Customer
4: Ñ Hash
5: Ñ Table scan on Supplier

and variations to the WHERE to demonstrate that these dif-
ferent types of queries ultimately perform a full table scan.
The queries below show our queries for the Supplier table.
The DWDate, Customer, Part, and Lineorder tables each
had four equivalent queries of their own.

SELECT * FROM Supplier;
SELECT Name FROM Supplier;
SELECT Phone FROM Supplier WHERE Nation =’CANADA’;
SELECT Name FROM Supplier WHERE Region=’No␣Match’;
Index Access. We designed two queries for each of the

five SSBM tables (i.e., 10 queries in total). One query
used the B-Tree index (constructed by default) on the pri-
mary key, and the other query used a secondary B-Tree
index we built on a column that we selected based on the
number of distinct values in a column. A DBMS query
optimizer will not use a B-Tree index if the expected num-
ber of records selected by a query is high. In a column
with few distinct values, selected number of records will
be high (e.g., with 10 distinct values, an equality predicate
may select about 10% of the table). The queries below il-
lustrate our workload choices for the Supplier table. The
first query performs an index access on the primary key
index. The second query perform an index access on the
secondary index we created on the Phone column. The
DWDate, Customer, Part, and Lineorder tables each had
two equivalent queries of their own in the workload.

SELECT * FROM Supplier WHERE Suppkey = 10000;
SELECT * FROM Supplier

WHERE Phone = ’14-290-375-5897’;
Nested Loop Join. We designed a single query to demon-

strate the cache pattern for a nested loop join. Only
one query was used because a nested loop join ultimately
uses a combination of full table scans and index accesses,
which were previously presented. Algorithm 1 displays
the MySQL query plan for our designed query below. The
query plan demonstrates that a nested loop join was used,
and that table Lineorder is accessed using a full table scan
and table Part is accessed using an index access. The Or-
acle query plan was similar to Algorithm 1 except that
table Part was accessed using a full table scan. In Ora-
cle, we also had to explicitly request a nested loop join by
adding the following optimizer hint to the SELECT clause:
/*+ ORDERED USE_NL(Part) */.

SELECT SUM(size) FROM Lineorder JOIN Part;
Hash Join. We designed a single query to demonstrate

the cache pattern for a hash join. Similar to nested loop
joins, a hash join ultimately uses a combination of full
table scans and index accesses. Algorithm 2 displays the
MySQL query plan for our designed query below. The
query plan demonstrates that a hash join used a full table
scan to access both the Customer and Supplier tables. The
Oracle query plan was equivalent to Algorithm 2.

SELECT Count(S.City) FROM Supplier S, Customer C
WHERE C.Region = S.Region;

4

4.3. Procedure
Experiments ran each of the four workloads on both

DBMS instances. Before each workload, we restarted each
instance and cleared the cache files. For each workload, we
collected a series of memory snapshots: a before and after
the execution of a query to verify the data cached. Proc-
dump v9.0 [27] was used to collect DBMS process snap-
shots on Windows, and the process snapshot data under
/proc/$pid/mem was read on Linux.

To analyze memory contents, we passed each snapshot
to DBCarver (Section 2.1). The most relevant information
that DBCarver returned that we reference were the Object
ID, an internal object identifier maintained by the DBMS,
and the Page ID, an identifier stored in each page that is
unique for each object ID. For example, the Supplier table
may have the Object ID 100 and a series of Page IDs 1, 2,
..., N. Similarly, the Customer table may have the Object
ID 101 and a series of Page IDs 1, 2, ..., M. Thus, carving
the Object ID and Page ID from a page header allowed us
to uniquely identify each page in memory.

Table I/O Buffer Sort Area
DWDate 32 0
Supplier 242 0

Customer 4067 63
Part 0 125

Lineorder 0 188
Table 4: Oracle full table scan results in # of Pages.

4.4. Results & Discussion: Full Table Scans
Oracle. Table 4 summarizes the full table scan results

in Oracle. For table DWDate, all 32 table pages were
cached in the I/O buffer for all four queries. Based on each
page’s Page ID, we observed that the pages occurred in the
same order. The 32 pages were spread across a space of
approximately 3MB, and we observed four groups of eight
pages. This is explained by extents, a logical storage unit
used by Oracle. An extent for our instance was 64KB (or
eight pages). Therefore, data was read in a unit of extents
for the DWDate full table scans. We also note that Oracle
uses a another, larger logical storage unit called a segment.
For our instance, a segment was 1MB (or 128 pages). An
extent is not completely filled with data pages; some pages
are used to store metadata describing the extent.

For table Supplier, each query cached all 242 pages
were cached in the I/O buffer. The 242 pages were spread
across 3MB, and we observed four groups of 61, 60, 60,
and 61 pages. Each such group corresponds to a chunk of
8 extents (8 extents ˆ 8 pages = 64 pages), with additional
metadata in storage.

For table Customer, the first query cached 63 of the
4067 pages in the sort area. Based on the PageIDs, these
pages were the last 63 pages stored on disk for table Cus-
tomer. This page count also corresponds to 8 extents in
Oracle. Since this table is a medium size (34 MB) rel-
ative to the I/O buffer size (400 MB), we conclude that
the DBMS used the sort area to efficiently read the query

0

10

20

30

40

50

60

70

80

90

100

20 25 30 35 40 45 50

%
 S

to
ra

ge
 F

ill
ed

% Offset of Process Memory

Part

Supplier

Customer

Figure 1: MySQL full table scans in RAM spectroscopy.

rather than letting it occupy a significant portion of the
I/O buffer. For the remaining three queries in the same
workload, all 4067 Customer table pages were read into the
I/O buffer. The second query cached these pages, and the
remaining two queries re-used the cached pages. These re-
sults indicate two possible outcomes from a full table scan:
a) the entire table is read into the I/O buffer or b) the ta-
ble is read in chunks (8 extents) into the sort area. In the
latter case, the pages remaining in the sort area are those
that correspond to pages with the highest Page ID (or the
pages with the highest file address on disk) because the
scan proceeds in chunks from beginning to end.

For table Part, all four queries cached 125 of 7342 pages
in the sort area. Based on the Page IDs, these pages were
the last 125 pages stored on disk for the Part table. Pages
were spread across approximately 4MB in two groups of
63 and 62 pages. This result is consistent with the obser-
vations for the first Customer table query; since this table
was large (84 MB) relative to the I/O buffer, the DBMS
processed this large I/O request directly in the sort area.

For table Lineorder, all four queries cached 188 of the
732K table pages in the sort area. Based on the Page
IDs, these were the last 188 pages stored in the table file
on disk. Pages were spread across approximately 7MB in
three groups of 63, 63, and 62 pages. Similar to table Part,
the large table (" I/O buffer size) was processed as chunks
in the sort area with units of 8 extents.

MySQL. All queries in the MySQL instance cached
the entire table for tables Date (24 pages), Supplier (134
pages), Customer (2183 pages), and Part (5375 pages).
This also included the IOT root and intermediate nodes.
Since table Lineorder was larger than the 400MB I/O
buffer, each query cached approximately 27K - 28K pages
(out of 361k). This number varied slightly within this
range across all query runs. All pages were cached in the
I/O buffer, and no pages were in the sort area as for Ora-
cle. There was also no evidence of caching in larger logical
units as with extents for Oracle. This is best explained by
the IOTs behaving more similar to an index access (index
access patterns are presented next in this section).

5

Figure 1 uses RAM Spectroscopy graphs to visualize
an example snapshot containing a full table scan for tables
Part (Ĳ), Supplier (■), and Customer (ˆ). Tables Sup-
plier and Customer each had localized data forming one
peak. Two separate peaks were observed for table Part in
separate areas on the I/O buffer for a single query.

Summary. Oracle, our representative for heap tables,
had two flavors of forensic artifacts for full table scans:
cache the smaller tables (ă „10% of I/O buffer size) in the
I/O buffer or read larger tables (ą „10% of I/O buffer size)
in chunks directly into the memory intensive sort area.
The chunks in the sort area were a unit of a larger stor-
age (in the case of Oracle, multiple extents). The pages
remaining in the sort area corresponded to the pages with
the highest address in the file on disk, which we confirmed
with the Page IDs (verifying the sequential scan).

MySQL, our representative for IOTs, had one flavor of
forensic artifacts for full table scans: cache the entire table
(if smaller than the I/O buffer). We reason for this differ-
ence from the heap tables in Oracle is due to the behavior
of IOTs. The leaf nodes containing the table records are
accessed by traversing the IOT B-Tree structure. There-
fore, each leaf node access is virtually an index access.

Given the results from these two DBMSes, we expect
similar results for DBMSes that either use heap tables or
IOTs. Of course, DBMS architecture specifics need to be
accounted for. For example, PostgreSQL uses heap ta-
bles but not the same logical storage structures, extents
and segments, as Oracle. We also mention the locality of
the pages in memory. When entire tables were cached in
the I/O buffer for Oracle and MySQL, pages were mostly
clustered together. This may not hold for more extensive
workloads since most DBMSes employ some variation of
the LRU page replacement algorithm.

4.5. Results & Discussion: Index Access
Both databases produced similar results in the I/O

buffer. In general, each time an index access was per-
formed, the index pages (including root nodes and inter-
mediate nodes) and the corresponding table page(s) were
cached. However, we delve into some technical differences
between the heap tables in Oracle and IOTs in MySQL.

Oracle. Oracle used a straight-forward B-Tree index
structure with value-pointer pairs for both the primary
key indexes and the secondary indexes. The Oracle index
pointers consist of a File ID, Page ID, and Row Position.
While we did not use the File IDs for memory analysis,
they are available for applications that require interpreting
both a RAM snapshot and disk image. The Page ID is
stored in a table page’s header. The Row Position refers
to the row position within the table page. Therefore, a
Page ID and a Row ID were used to to match an index
value to a table page. We note that the table pages cached
for an index access were individual pages and not larger
units, such as extents observed in full table scans.

MySQL. The MySQL IOT was organized on the pri-
mary key index. Therefore, a primary key index in MySQL

simply read the root node, any intermediate nodes, and
the leaf node(s) containing the table records into the I/O
buffer. The MySQL secondary index was a typical B-
Tree structure with value-pointer pairs. The pointers were
primary key values themselves, which allowed records to
be accessed using the IOT structure. Therefore, for a
secondary index access, not only were the secondary in-
dex pages and the IOT leaf pages containing the records
cached, but also the IOT root and intermediate nodes.

Summary. While a table page can be associated with
a particular index pointer using Page IDs, there is still the
challenge of accurately matching data in presence of multi-
ple overlapping index range scans. However, such accurate
matching is primarily needed for future tasks such as query
reconstruction from RAM snapshots. In order to validate
the audit logs based on the memory artifacts, memory ar-
tifacts need to be explained by any of the logged queries.
For example, Query 1 scans the cities in the range be-
tween ‘Austin’ and ‘Detroit’, and Query 2 scans the cities
in the range between ‘Chicago’ and ‘Eugene’. The range
‘Chicago’ and ‘Detroit’ is explained by either query, but it
does not matter which query they are matched to, as long
as a value is explained by a logged operation.

Nested Loop Join
Table IO Buffer Sort Area
Part 7342 -

Lineorder - 125

Hash Join
Table IO Buffer Sort Area

Supplier 242 -
Customer - 63

Table 5: Pages cached for joins in Oracle.

4.6. Results & Discussion: Nested Loop Join
Oracle. Table 5 summarizes the nested loop join results

for Oracle. 125 Lineorder pages were cached in two groups
of 62 and 63 in the sort area. The Lineorder artifacts were
consistent with our previous full table scan results except
that only two 8-extent chunks were observed (rather than
three). The entire Part table (7342 pages) was cached in
the I/O buffer. Since table Part was in the inner for-loop of
the join, the DBMS chose to cache the entire table rather
than repeatedly read it from disk. If table Lineorder is read
in 125-page chunks and compared to table Part (the inner
for-loop), that would require ą5800 scans of table Part.
Thus, the DBMS wisely chose to cache it even though it
was „20% (i.e., a significant fraction) of the I/O buffer.

MySQL. There were 4035 table Part pages and 27606
table Lineorder pages in the I/O buffer. The entire Part
table was not cached because an index access was used,
rather than a full table scan, which was consistent with
the primary key index accesses previously discussed. The
entire Lineorder table was not cached even though a full
table scan was used because the Lineorder table is larger
than the I/O buffer size. These results are consistent with

6

the full table scan results and index access we reported
earlier in this section.

Summary. The nested loop joins for both DBMSes
were consistent with the behavior we previously reported
for full table scans and index accesses. We conclude that
other DBMSes besides Oracle and MySQL will also have
nested loop join behavior that is consistent with their full
table scan and index access patterns.

4.7. Results & Discussion: Hash Join
Oracle. Table 5 summarizes the hash join results for

Oracle. The entire Supplier table was cached in the I/O
buffer, and 63 Customer pages were found in the sort area,
which is consistent with the full table scan results pre-
viously reported. Since a hash table was built for table
Supplier, table Customer only required one scan, which
explains why Oracle decided to read it into the sort area
rather than caching the entire table in the I/O buffer.

MySQL. There were 134 Supplier and 2183 Customer
pages in the I/O buffer. These results are consistent with
the full table scan results reported earlier in this section.

Summary. The hash joins for both DBMSes were con-
sistent with the behavior previously reported. Similar to
nested loop joins, we conclude that other DBMSes besides
Oracle and MySQL will maintain hash join patterns that
are consistent with full table scans and index accesses.

5. Example Application: Log Verification

Purpose. This experiment demonstrates how the cache
patterns described in Section 4 can be used to detect miss-
ing activity from audit log files. This experiment uses a
workload that overwrites the hidden activity; this will be
used to support our discussion in what a formal log verifi-
cation system would need to incorporate.

Setup & Workload. The dataset and DBMS configu-
rations described in Section 4 were used. We designed
a workload to simulate a scenario that makes obfuscated
query activity difficult to detect due to overlapping data
accesses and a large memory usage, reducing the lifetime
of memory artifacts. The following provides the individ-
ual steps in our workload. A DBMS process snapshot was
collected after each step.

T1 SSBM query #2.1 simulates typical user behavior:
SELECT sum(revenue), year, brand1
FROM lineorder ’ dwdate ’ part ’ supplier
WHERE category = ’MFGR#12’AND region = ’AMERICA’
GROUP BY year, brand1 ORDER BY year, brand1;

T2 Simulate obfuscated data access with the following:
a. Disable audit log (Table 1 commands).
b. SELECT * FROM Part;
c. Re-enable audit log.

T3 SSBM query #4.2 simulates typical user behavior:
SELECT year, snation, category, sum(revenue)
FROM lineorder ’ dwdate ’ part ’ supp ’ cust

WHERE cregion = ’AMERICA’AND sregion = ’AMERICA’
AND year IN (1997,1998)
AND mfgr IN (’MFGR#1’,’MFGR#2’)
GROUP BY year, snation, category
ORDER BY year, snation, category;

5.1. Oracle Results
Table 6 summarizes the memory artifacts found after

running the workload against Oracle. The goal is to map
the artifacts to a pattern from Section 4 and determine if
they are explained by any query operations in the log.

Table T1 T2 T3
DWDate 32/0 32/0 32/0
Supplier 242/0 242/0 242/0

Customer 0/0 0/0 0/0
Part 0/0 0/125 0/0

Lineorder 0/125 0/0 0/125
Total 274/125 274/125 274/125

Table 6: IO buffer/sort area memory artifacts (pages).

T1. The full table scan patterns for DWDate (32
pages) and Supplier (242 pages) in the I/O buffer and the
full table scan pattern for Lineorder (125 pages) in the sort
area are explained by the query in the log at T1 (SSBM
#2.1). This query performed full table scans on DWDate,
Supplier, Part, and Lineorder. No evidence of the Part full
table scan at T1 is not a problem because we are searching
for activity that cannot be explained by the audit log.

T2. The full table scan patterns for DWDate and Sup-
plier are still explained by the audit log entry at T1. How-
ever, there is a full table scan pattern for Part (125 pages),
but do not a full table scan on Lineorder. While the Part
full table scan pattern could be explained by the audit log
entry at T1, this result is inconsistent with query engine
operations. For a hash join, the larger table (Lineorder)
should be in the outer table in the hash join, and thus, the
last table that is scanned. Therefore, these artifacts are
flagged as potentially missing log activity.

T3. There are full table scan patterns for DWDate (32
pages) and Supplier (242 pages) in the I/O buffer and the
full table scan pattern for Lineorder (125 pages) in the sort
area. These patterns are explained by the audit log entry
at T3 (SSBM #4.2). We note that these operations are
also explained by the entry at T1. We do not consider this
to be problematic since the goal is find activity that cannot
be explained by any recent log activity. Additionally, we
notice at T3 that evidence of the malicious query at T2
was overwritten, and the traces of the full table scan on
Part are erased. The discussion section for this experiment
uses this result to present future challenges.

5.2. MySQL Results
Figure 2 summarizes the memory artifacts found after

running the same workload against MySQL. At T1, the
index access pattern for Part (4035 pages), discussed in
Section 4.2, Algorithm 1, and the full table scan patterns

7

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
 S

to
ra

ge
 F

ill
ed

% Offset of Process Memory

T3: SSBM #4.2

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
 S

to
ra

ge
 F

ill
ed

% Offset of Process Memory

T2: Malicious Query

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
 S

to
ra

ge
 F

ill
ed

% Offset of Process Memory

T1: SSBM #2.1

Figure 2: RAM Spectroscopy Graph for the MySQL Experiments

8

on DWDate (20 pages), Lineorder („27K pages), and Sup-
plier (134 pages) are explained by the log at T1.

T2. The full table scans for DWDate (20 pages), Sup-
plier (134), and Lineorder („26k pages) are still attributed
to operations at T1 in the audit log. However, the full ta-
ble scan pattern for Part is inconsistent with the index
access pattern used by SSBM query #2.1. Therefore, this
is flagged as potentially missing log activity.

T3. The index access pattern for Part (4035 pages)
and the full table scan patterns for DWDate (20 pages),
Supplier (134 pages), Customer (2188 pages), and Line-
order („25k pages) are explained by the query operations
at the T3 SQL entry (SSBM query #4.2) in the audit log.
We note that most of these operations can also be matched
to the entry at T1. We do not consider this to be problem-
atic since the goal is find activity that cannot be explained
by any recent log activity. Additionally, the evidence of
the malicious query was overwritten, and all traces were
erased. Again, the discussion section for this experiment
uses this result to present future challenges.

5.3. Discussion
One obvious limitation of this application is memory

volatility; we explore this in Section 6. For both Oracle
and MySQL, all memory artifacts were explained at T3
and all traces of the hidden query at T2 were overwrit-
ten. When determining the frequency in which to collect
snapshots, the size of the DBMS memory areas and the
query workload should be considered. Intuitively, system
activity is more accurately described if snapshots are taken
more frequently than the time it takes to overwrite the en-
tire I/O buffer and (for a DBMS like Oracle) the sort area.

Another challenge is detecting a hidden query that pro-
duces a repeated pattern similar to a logged query. For
example, a logged query performs a full table scan on Sup-
plier and then an unlogged query also performs a full ta-
ble scan on Supplier. The second unlogged query would
re-use the cached pages and not create new memory ar-
tifacts in the I/O buffer. Distinguishing forensic artifacts
in such cases would require identifying additional artifacts
in memory. However, for log validation use cases that are
only concerned about detecting unusual activity, we argue
this would pose a lesser challenge. For example, if users
issue a standard set of queries through a web interface, the
log validation system would be focused on detecting un-
logged activity that deviates from the expected workload.

6. Log Verification with a Larger Workload

Purpose. This experiment explores the lifetime of query
artifacts, building on Section 5 by considering larger work-
loads. Specifically, we look for activity that deviates from
an expected workload (i.e., a hidden operation does not
overlap with expected workload query features).

Setup & Workload. The dataset and DBMS configu-
rations described in Section 4 were used. To represent

an expected query workload, we used the SSBM query
flight #4, where each query accesses all five tables. We
generated sets of 10, 100, and 1000 queries.

We also created a query, Query𝑀 , that deviates from
this workload to simulate malicious activity. Artifacts that
are explained by the current workload are not considered
evidence of malicious activity. Query𝑀 used an index ac-
cess on the primary key, whereas the expected workload
queries perform full table scans on the Part table. We
performed the following steps for each DBMS:

T1 Execute Query𝑀 :
SELECT * FROM Part WHERE PartKey = 10000;

T2 Run the expected workload of 10, 100, or 1000 queries
from SSBM query flight #4.

T3 Capture memory snapshot

Table 10 queries 100 queries 1000 queries
DWDate 32/0 32/0 32/0
Supplier 242/0 242/0 242/0

Customer 4067/0 4067/0 4067/0
Part 1/30 1/30 1/30

Lineorder 0/0 0/0 27214/0
Total 4342/30 4342/30 31556/30
Table 7: Oracle results. IO buffer/sort area artifacts (pages).

6.1. Oracle Results
This experiment began by running Query𝑀 to verify

the data it cached. We observed that a single data page
from the Part table and the corresponding index leaf and
root page were cached in the I/O buffer. Our experiments
will test how long these artifacts remain in memory.

The runtimes for our workloads of 10, 100, and 1000
queries were 2.3 minutes (or 14.0 sec/query), 22.7 minutes
(or 13.6 sec/query), and 3 hours and 43.3 minutes (or 13.4
sec/query), respectively. Table 7 summarizes the results
of artifacts found in the I/O buffer and the sort area. All
three workloads produced similar results with the excep-
tion of a portion of the Lineorder table in the I/O buffer
for the 1000 query workload. We found the DBMS used
the pages cached in I/O buffer for the DWDate, Supplier,
and Customer tables for all queries in each workload. The
result of the full table scan on the Part table was 30 pages
in the sort area for all workloads.

After running each workload, we also observed a sin-
gle page from table Part remained in the I/O buffer along
with a leaf index page and the root index page belonging
to the primary key index of table Part. All three pages
corresponded to the pages accessed by Query𝑀 . There-
fore, we conclude the lifetime of Query𝑀 is dependent on
when the I/O buffer is overwritten (based on the LRU
algorithm). The expected query workload performed sim-
ilar table access patterns for all queries, which resulted in
the I/O buffer not being overwritten, and thus, a longer
lifetime for the Query𝑀 . Given these results, we antici-
pate that artifacts from Query𝑀 could reside in memory
much longer than what our experiments explored. Again,
this is dependent on the type of data access operations the
workload performs and the size of the I/O buffer.

9

Table 10 queries 100 queries 1000 queries
DWDate 20 20 20
Supplier 134 134 134

Customer 2188 2188 2188
Part 4035 4035 4035

Lineorder 25K 25K 25K
Total 31230 31231 31230
Table 8: MySQL results. IO buffer memory artifacts (pages).

6.2. MySQL Results
Similar to the Oracle experiment, Query𝑀 was first ran

to verify the data it cached. We observed a single table
Part (IOT) data page and the corresponding IOT root and
intermediate node pages all at consecutive addresses.

The runtimes for our workloads of 10, 100, and 1000
queries were 13.1 minutes (or 1.3 min/query), 2.4 hours
(or 1.5 min/query), and 25 hours (or 1.5 min/query), re-
spectively. Table 8 summarizes the artifacts found in the
I/O buffer. All three workloads produced similar results.
As expected from the experiments in Section 5, the entire
tables for DWDate, Supplier, and Customer were found
in memory, along with a portion of the Part table (4035
pages) and the Lineorder table („25K pages).

The data page and two index pages that corresponded
to the Query𝑀 artifacts were cached. However, we cannot
attribute those artifacts to Query𝑀 for two reasons. First,
the index pages and the data page were no longer con-
secutive as we previously observed when running Query𝑀
alone. Second, we found a total of 4035 Part table pages,
which included the Query𝑀 artifacts. All of these pages
together indicate a different operation (a full table scan)
than the secondary index access performed by Query𝑀 . As
these pages can be explained by query operations in the
workload, we consider Query𝑀 to be overwritten.

6.3. Discussion
The query runtimes were about 5-6 times longer in

MySQL than in Oracle. This is explained by the different
usage of the I/O buffer for the query operations. MySQL
cycled through the I/O buffer to process each query, while
Oracle chose to only cache the small - medium sized tables
in the I/O buffer and process the large table scans in the
sort area. This observation is consistent with how the full
table scans are processed for the MySQL IOTs and the
Oracle heap tables in Section 4. Therefore, the runtimes
correspond with how the I/O buffer was used and thus,
provide an indication of the lifetime of the artifacts.

Regardless of the workload size, the results were the
same for both DBMSes; the artifacts from Query𝑀 were
identified in the Oracle experiments, but they could not
be identified in the MySQL experiments. Therefore, the
lifetime of the artifacts is dependent on both the query
operations in the workload and the DBMS storage man-
agement, rather than the number of queries or a global
time. In both DBMSes, the queries primarily used full
table scans to process the queries, but the difference in

storage management (heap table vs. IOTs) resulted in dif-
ferent outcomes. However, we would expect similar results
for both DBMSes if the workload primarily used index ac-
cesses because in Section 4, index accesses produced the
same artifacts: the data page itself along with the B-Tree
index pages. Therefore, each query will cache similar arti-
facts for each DBMS. The lifetime would then be depen-
dent on how these pages are re-used and new pages are
brought into the I/O buffer based on the LRU algorithm.

The malicious queries in our experiments were designed
to access tables that were also accessed by the expected
workload to further test the limitations of our methods.
We anticipate that a malicious query accessing a table not
included in the expected workload will produce artifacts
with a longer lifetime. For example, if the malicious query
in Section 5 had accessed a different table for the Oracle
experiments, its artifacts will have a longer lifetime con-
sistent with the results in this section.

7. Conclusion & Future Work

This paper demonstrated that query operations (in two
representative DBMSes, MySQL and Oracle) produce re-
peatable patterns in memory. When a query accesses data,
either a full table scan or an index access is performed. In
both MySQL and Oracle, an index access caches the rel-
evant index pages (along with any intermediate and root
nodes) and the corresponding data pages. Since MySQL
use IOTs, a full table scan forces an entire table into mem-
ory at once (if it is smaller than the buffer cache size).
Alternatively, in Oracle, a memory intensive sort area was
used to perform a full table scan on the large heap tables.

We then demonstrated how these patterns can verify
log integrity and explored artifact lifetime. Artifact life-
time is dependent on the query operations, not necessarily
the number of queries or a global time. While someone
with DBA privileges can bypass security or logging mech-
anisms, their malicious query operations must still be pro-
cessed in memory. Therefore, we propose the work in this
paper can be used to build more formal tools and methods
to verfiy the integrity of DBMS audit logs.

The log verification approach demonstrated in Sections
5 & 6, is a first step towards developing a formal log ver-
ification tool. Besides log verification, we envision several
other applications that are supported by the contributions
in this paper. One notable application that is of interest
to the digital forensics and cybersecurity communities is
the ability to describe data exfiltration.

Acknowledgments

This work was partially funded by the Louisiana Board
of Regents Grant LEQSF(2022-25)-RD-A-30 and by US
National Science Foundation Grant IIP-2016548.

10

References
[1] J. M. Peha, Electronic commerce with verifiable audit trails, in:

Proceedings of ISOC, 1999.
[2] R. T. Snodgrass, S. S. Yao, C. Collberg, Tamper detection in

audit logs, in: Proceedings of the Thirtieth international confer-
ence on Very large data bases-Volume 30, VLDB Endowment,
2004, pp. 504–515.

[3] K. E. Pavlou, R. T. Snodgrass, Forensic analysis of database
tampering, ACM Transactions on Database Systems (TODS)
33 (4) (2008) 30.

[4] A. Sinha, L. Jia, P. England, J. R. Lorch, Continuous tamper-
proof logging using tpm 2.0, in: International Conference on
Trust and Trustworthy Computing, Springer, 2014, pp. 19–36.

[5] S. A. Crosby, D. S. Wallach, Efficient data structures for
tamper-evident logging., in: USENIX Security Symposium,
2009, pp. 317–334.

[6] A. Ahmad, M. Saad, M. Bassiouni, A. Mohaisen, Towards
blockchain-driven, secure and transparent audit logs, in: Pro-
ceedings of the 15th EAI International Conference on Mobile
and Ubiquitous Systems: Computing, Networking and Services,
2018, pp. 443–448.

[7] A. Ahmad, S. Lee, M. Peinado, Hardlog: Practical tamper-proof
system auditing using a novel audit device, in: 2022 IEEE Sym-
posium on Security and Privacy (SP), IEEE Computer Society,
2022, pp. 1554–1554.

[8] S. L. Garfinkel, Carving contiguous and fragmented files with
fast object validation, digital investigation 4 (2007) 2–12.

[9] G. G. Richard III, V. Roussev, Scalpel: A frugal, high perfor-
mance file carver., in: DFRWS, Citeseer, 2005.

[10] A. Case, G. G. Richard III, Memory forensics: The path for-
ward, Digital Investigation 20 (2017) 23–33.

[11] A. Case, G. G. Richard III, Detecting objective-c malware
through memory forensics, Digital Investigation 18 (2016) S3–
S10.

[12] P. Stahlberg, G. Miklau, B. N. Levine, Threats to privacy in
the forensic analysis of database systems, in: Proceedings of the
2007 ACM SIGMOD international conference on Management
of data, 2007, pp. 91–102.

[13] J. Wagner, et al., Database forensic analysis with dbcarver, in:
Conference on Innovative Data Systems Research, 2017.

[14] J. Wagner, A. Rasin, J. Grier, Database forensic analysis
through internal structure carving, Digital Investigation 14
(2015) S106–S115.

[15] J. Wagner, A. Rasin, J. Grier, Database image content explorer:
Carving data that does not officially exist, Digital Investigation
18 (2016) S97–S107.

[16] M. I. Nissan, J. Wagner, S. Aktar, Database memory forensics:
A machine learning approach to reverse-engineer query activity,
Forensic Science International: Digital Investigation 44 (2023)
301503.

[17] J. Wagner, et al., Carving database storage to detect and trace
security breaches, Digital Investigation 22 (2017) S127–S136.

[18] J. Wagner, A. Rasin, A framework to reverse engineer database
memory by abstracting memory areas, in: International Confer-
ence on Database and Expert Systems Applications, Springer,
2020, pp. 304–319.

[19] O. M. Adedayo, M. S. Olivier, On the completeness of recon-
structed data for database forensics, in: International Confer-
ence on Digital Forensics and Cyber Crime, Springer, 2012, pp.
220–238.

[20] D. Fabbri, R. Ramamurthy, R. Kaushik, Select triggers for data
auditing, in: 2013 IEEE 29th International Conference on Data
Engineering (ICDE), IEEE, 2013, pp. 1141–1152.

[21] Eventlog analyzer, https://www.manageengine.com/products/
eventlog/.

[22] J. Wagner, A. Rasin, K. Heart, T. Malik, J. Furst, J. Grier, De-
tecting database file tampering through page carving, in: 21st
International Conference on Extending Database Technology,
2018.

[23] Ibm security guardium express activity monitor for
databases, http://www-03.ibm.com/software/products/en/

ibm-security-guardium-express-activity-monitor-for-databases
(2017).

[24] L. Liu, Q. Huang, A framework for database auditing, in: Com-
puter Sciences and Convergence Information Technology, 2009.
ICCIT’09. Fourth International Conference on, IEEE, 2009, pp.
982–986.

[25] P. Huey, Introduction to transparent data encryp-
tion, https://docs.oracle.com/database/121/ASOAG/
introduction-to-transparent-data-encryption.htm#
ASOAG10117 (2017).

[26] P. O’Neil, E. O’Neil, X. Chen, S. Revilak, The star schema
benchmark and augmented fact table indexing, in: Technol-
ogy Conference on Performance Evaluation and Benchmarking,
Springer, 2009, pp. 237–252.

[27] M. Russinovich, A. Richards, Procdump v9.0, https://docs.
microsoft.com/en-us/sysinternals/downloads/procdump
(2017).

11

https://www.manageengine.com/products/eventlog/
https://www.manageengine.com/products/eventlog/
http://www-03.ibm.com/software/products/en/ibm-security-guardium-express-activity-monitor-for-databases
http://www-03.ibm.com/software/products/en/ibm-security-guardium-express-activity-monitor-for-databases
https://docs.oracle.com/database/121/ASOAG/introduction-to-transparent-data-encryption.htm#ASOAG10117
https://docs.oracle.com/database/121/ASOAG/introduction-to-transparent-data-encryption.htm#ASOAG10117
https://docs.oracle.com/database/121/ASOAG/introduction-to-transparent-data-encryption.htm#ASOAG10117
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump

	Introduction
	Related Work
	Database Forensics
	Log Tampering

	Threat Model
	Database Memory Patterns
	Experimental Setup
	Workload to Isolate Operations
	Procedure
	Results & Discussion: Full Table Scans
	Results & Discussion: Index Access
	Results & Discussion: Nested Loop Join
	Results & Discussion: Hash Join

	Example Application: Log Verification
	Oracle Results
	MySQL Results
	Discussion

	Log Verification with a Larger Workload
	Oracle Results
	MySQL Results
	Discussion

	Conclusion & Future Work

