SoftwareX 24 (2023) 101590

journal homepage: www.elsevier.com/locate/softx

Contents lists available at ScienceDirect

SoftwareX

Original software publication

MGARD: A multigrid framework for high-performance, error-controlled data

compression and refactoring

Check for
updates

Qian Gong *", Jieyang Chen ", Ben Whitney /, Xin Liang ¢, Viktor Reshniak ?, Tania Banerjee 9,
Jaemoon Lee ¢, Anand Rangarajan ¢, Lipeng Wan ¢, Nicolas Vidal ?, Qing Liu ¢, Ana Gainaru ?,
Norbert Podhorszki ?, Richard Archibald ?, Sanjay Ranka ¢, Scott Klasky *

2 Oak Ridge National Laboratory, USA

b University of Alabama at Birmingham, USA
¢ University of Kentucky, USA

d University of Florida, USA

¢ Georgia State University, USA

f University of Wisconsin Eau Claire, USA

8 New Jersey Institute of Technology, USA

ARTICLE INFO ABSTRACT

Keywords:

Error-controlled data compression
Data refactoring

1/0 acceleration

Derived quantities preservation

We describe MGARD, a software providing MultiGrid Adaptive Reduction for floating-point scientific data on
structured and unstructured grids. With exceptional data compression capability and precise error control,
MGARD addresses a wide range of requirements, including storage reduction, high-performance 1/0, and in-
situ data analysis. It features a unified application programming interface (API) that seamlessly operates across
diverse computing architectures. MGARD has been optimized with highly-tuned GPU kernels and efficient

memory and device management mechanisms, ensuring scalable and rapid operations.

Code metadata

Current code version

Permanent link to code/repository used for this code version
Permanent link to Reproducible Capsule

Legal Code License

Code versioning system used

Software code languages, tools, and services used
Compilation requirements, operating environments

If available Link to developer documentation/manual
Support email for questions

1.5.1

https://github.com/ElsevierSoftwareX/SOFTX-D-23-00502
codeocean.com/capsule/4683587

Apache-2.0 license

git

C++, CUDA, HIP, SYCL, OPENMP

Software: NVCOMP, ZSTD. Hardware: NVIDIA GPU, AMD GPU, x86 CPU, ARM CPU,
Power CPU

github.com/CODARcode/MGARD/blob/master/README.md

jchen3@uab.edu or gongq@ornl.gov

1. Motivation and significance

In today’s scientific landscape, large-scale scientific applications
generate an overwhelming volume of data, surpassing the capabilities
of network and storage systems. For instance, the Square Kilometer
Array (SKA) telescope, designed to explore radio-waves from the early
universe, is projected to deliver around 600 Petabytes of data per
year to a network of SKA Regional Centers for ingestion and stor-
age [1]. Despite this data deluge, modern parallel file systems (PFS)

* Corresponding author.
E-mail address: gongq@ornl.gov (Qian Gong).

https://doi.org/10.1016/j.s0ftx.2023.101590

exhibit limited aggregated bandwidth, typically measured in several
Terabytes per second. The throughput of Wide Area Network (WAN)
for long-distance data transmission is even sluggish, usually in the
range of several hundred Megabytes per second. A parallel trend has
also emerged in artificial intelligence community, marked by growing
demands for storage and memory resource to support the training
of increasingly deeper, wider, and non-linear deep neural networks
(DNN). Additionally, the efficiency of DNN operations is hindered by

Received 31 July 2023; Received in revised form 6 October 2023; Accepted 14 November 2023

Available online 22 November 2023

2352-7110/Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00502
https://codeocean.com/capsule/4683587
https://github.com/CODARcode/MGARD/blob/master/README.md
mailto:jchen3@uab.edu
mailto:gongq@ornl.gov
mailto:gongq@ornl.gov
https://doi.org/10.1016/j.softx.2023.101590
https://doi.org/10.1016/j.softx.2023.101590
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101590&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Qian Gong et al.

SoftwareX 24 (2023) 101590

Compression

i Decomposition 7 Linear U.mc Huffman 0 i Post-

! Quantizati 0 Coding | processing
i Muttievel umo 1 SUEANNEANON oy = [Ty

| interpolation A 1 i

T L T Quantized Compression Reduced | U/
H 2 E— coeff data i o |
i i Data prO]eCtlon Multilevel i i :,:::::::::::::::;::r,;;_éf::::::::::::::::::::::::::Lj;_:::::::: E QOI i
| S coefl _ii| Bitplane u Eror Metadata || Metadata |
: !l Encoding gl Accruement D) :

| Error bound < o — 1 j

| Smoothness D . Lossless :

i S i Bitplane C ; Refactored |

| parameter &;> encoded coeff ~ 0 oo gata !

Refactoring

Fig. 1. The software pipeline overview illustrating the two primary functionalities of MGARD — compression and refactoring, both with precision error control.

rising communication costs associated with sharing model parameters
during distributed training.

Compression has emerged as a promising solution to address the
challenges posed by storage and I/0 bandwidth limitations. The ideal
compression approaches seek to reduce data size by several orders of
magnitude while preserving its fidelity for reliable scientific use. The
ability to refactor data into a multi-scale representation that aligns with
the hierarchical architecture of storage tiers is also highly desirable.
However, the presence of random mantissa with the floating-point
representation of scientific data limits the compression ratios [2,3]
with conventional entropy-based lossless compressors [4-7]. Alterna-
tive data reduction approaches, like sparse output rates, have their
limitations too, potentially overlooking valuable scientific insights in
unsaved timesteps.

Recently, lossy compression has garnered increased attention due
to its effectiveness in reducing data stored in floating-point precision.
A typical lossy compressor involves decorrelation, precision truncation,
and lossless encoding steps, along with mathematical theories to control
data distortion. An ideal lossy compressor for scientific data reduction
should possess the following features: (1) strict error control with re-
spect to different norms, (2) high throughput to avoid I/0 bottlenecks,
(3) portability on mainstream computing processors, (4) the ability to
handle data defined on various grid structures, and (5) the capability
to refactor data into multi-scales.

In this regard, several state-of-the-art lossy compressors have been
developed. SZ [8], ZFP [9], TTHERSH [10], and FPZIP [11] offer APIs
accepting L? or/and L*® error bound settings. SZ offers additional
error controls for several types of quantities of interest (Qols), in-
cluding polynomials, logarithmic mapping, weighted sum, and critical
point/isosurface [12,13]. In terms of the throughput, although SZ and
ZFP provide high-performance libraries — cuSZ [14] and cuZFP [15]
— on NVIDIA GPUs, they only support single precision and fixed-rate
compression mode separately, resulting in limited usability and lower
compression ratios. Moreover, these GPU-based compressors lack out-
of-core support, requiring users to manually tile and fit data into
GPU memory, impacting throughput performance. Additionally, exist-
ing error-bounded lossy compressors (e.g., SZ, ZFP, FPZIP, TTHERSH)
are limited to data defined on uniformly spaced grids up to four
dimensions.

Addressing these challenges, our present paper describes MGARD:
the MultiGrid Adaptive Reduction for Data [16-18] a high-performance
framework designed for compressing and refactoring scientific data
defined on various grid structures while ensuring precise error control.
By decomposing floating-point data into a hierarchical representation
on multigrid and applying quantization, MGARD achieves exceptional
compression capabilities for scientific data. Importantly, the induced

information loss during compression is mathematically guaranteed by
finite element theories, ensuring the trustworthiness of the compressed
data for a wide range of scientific applications. MGARD offers refactor-
ing functionality as an alternative to lossy compression for applications
requiring near-lossless storage and the flexibility to access data in
various scales. It supports refactoring data into a set of components
representing hierarchical resolutions and precision, enabling users to
incrementally retrieve and recompose them to any accuracy on de-
mand. Moreover, MGARD’s state-of-the-art implementation supports
compressing and refactoring data defined on various mesh topolo-
gies and offers multi-resolution and multi-precision parametrization
options. It delivers high performance and scalability on leadership high-
performance computing (HPC) facilities, such as Summit and Frontier.
Previous works have shown that the high-throughput compression on
GPU helps accelerate the training of large-scale DNNs by reducing the
communication latency [19]. Furthermore, DNNs trained using data
reduced by error-bounded compressors exhibit little or no accuracy
loss [20,21].

MGARD consists of GPU and CPU kernels. Implemented in C++11
[22], OpenMP [23], CUDA [24], HIP [25], and SYCL [26], MGARD
leverages platform portability and embraces modern software engineer-
ing practices, including unit testing and continuous integration. The
framework provides a unified application programming interface (API)
with a level of abstraction focused on data reduction and reconstruction
in scientific workflows. With built-in compile-time auto-tuning and
runtime adaptive scheduling techniques, users can expect the best
performance across different computing architectures. MGARD is part
of the United States Department of Energy (DOE) Exascale Computing
Project (ECP) software technology stack for data reduction [27,28],
which solidifies its position as a crucial component in the advancement
of data reduction technologies.

2. Software design

As illustrated in Fig. 1, the inputs to MGARD API consist of a data
array u, user-prescribed error bound(s) 7, and a smoothness parameter
s, which defines the norm of error bounds. MGARD comprises two
primary modules: data compression and refactoring. Both modules start
with a common practice, recursively decomposing u into a sequence of
approximations at various levels of the multi-resolution hierarchy. This
decomposition generates a multilevel representation, u_mc, which is
better suited for compression and refactoring purposes.

The compression module involves a quantization stage where each
component of u_mc is approximated by a multiple of a quantization bin
width [29,30]. This linear quantization effectively transforms floating-
point data into integers, facilitating efficient coding and ensuring that

Qian Gong et al.

the specified error bound for u_mc is met. On the other hand, the refac-
toring module encodes u_mc into precision segments at different levels
of the multi-resolution hierarchy, utilizing bitplane encoding [31]. Both
compression and refactoring modules employ the same set of error esti-
mators for accuracy control, which are analogous to the posterior error
estimators used in numerical analysis. These error estimators consider
quantization errors or precision segments of multilevel coefficients as
inputs, allowing error control in various metrics, norms, and linear
Quantities of Interest (Qols) [16-18].

In the final stage, the quantization and precision segments ob-
tained from the compression and refactoring modules are compressed
through lossless encoding and written to disk as a self-describing buffer
containing all the necessary parameters for decompression and recom-
position. The compressed/refactored representation may also undergo
post-processing, when the preservation of non-linear Qols is required.
The refactoring module includes an additional step that collects errors
in the precision segments of the multilevel coefficients. The recomposi-
tion module, operating in an inverse procedure to refactoring, employs
a greedy algorithm to determine the retrieval order of precision seg-
ments. This strategy aims to fetch the most significant segment across
all levels based on the previously accrued error estimators.

2.1. APIs

MGARD is designed with two levels of APIs to support the integra-
tion with different user applications and IO libraries.

2.1.1. High-level APIs

The high-level APIs offer an all-in-one compression and refactoring
solution, providing users with a seamless integration experience with
MGARD. Key features of the high-level APIs include:

+ Unified APIs: MGARD offers a single set of APIs for compressing
and refactoring. MGARD automatically optimizes the reduction
and refactoring kernels for the targeted GPU or CPU architectures
during the software installation stage, and utilizes the same APIs
across various systems, enhancing code portability and ease of
use.

Self-describing format: The output of compression and refactor-
ing APIs includes all the necessary information required by a
decompressor/re-compositor to read and reconstruct data cor-
rectly. This encompasses vital details such as the code’s version,
error bounds employed, data topologies, and the type of lossless
encoders utilized.

Unified memory buffers on CPU/GPUs: MGARD automatically
detects the locations of input/output buffers and handles the
host-to-device data transfer internally, eliminating manual setup.
Multi-device out-of-core processing: The high-level APIs can au-
tomatically detect and leverage multiple accelerator devices on a
system. MGARD also boasts with an out-of-core optimization to
manages memory overflow and inter-device data transfer. These
functionalities are crucial for large-scale data processing, where
GPUs often have smaller memory capacities compared to host
CPUs.

2.1.2. Low-level APIs

The low-level APIs offer users complete control over the compres-
sion and refactoring processes, empowering them to customize the
functionality based on their specific application needs. Key features of
the low-level APIs include:

 Highly customizable code pipeline: The low-level APIs expose
individual functions for each step within compression and refac-
toring, such as memory management and sub-operations. This
level of granularity allows users to construct their own highly
optimized compression/refactoring pipelines tailored to their ap-
plication’s requirements.

SoftwareX 24 (2023) 101590

* Device asynchrony: The low-level APIs allow users to pipeline
computation and cross-device data transfer so they will execute
asynchronously. For example, MGARD operations on GPUs can
be overlapped with the application’s workload on CPUs. This
opens up significant opportunities for users to optimize MGARD
in tandem with their application’s execution logic, leading to
enhanced performance.

The dual-tiered API approach of MGARD ensures that users seeking
a quick and easy integration with minimal effort and those requiring
granular control over the compression and refactoring processes are
both catered.

2.2. Software architecture

MGARD is meticulously designed to be highly functional, perfor-
mant, portable, and extendable. This is achieved through a modularized
software architecture with carefully designed abstraction layers for
maximum portability. It has been successfully integrated into ADIOS
— a high-performance parallel I/0 framework with an extensive user
community — as an inline compressor. This integration allows ADIOS
users to write and compress data using MGARD in a single step.
Fig. 2 provides an illustration of MGARD’s software architecture. At the
foundation of the architecture are device abstractions (green), which
ensure the sustained functionality irrespective of underlying hardware
features. One layer above (blue), MGARD incorporates a built-in auto-
tuning module. This model automatically adjusts performance config-
urations, such as GPU thread block sizes, shared memory usage, and
processor occupancy in the software installation stage, ensuring that
MGARD operates efficiently on targeted hardware micro-architectures.
The design of MGARD’s auto-tuning module draws inspiration from
techniques discussed in [32-36], primarily focusing on optimization at
the kernel functions level. The subsequent layer (dark yellow) houses
the central computation kernels used by the compression and refac-
toring processes. They serve as the foundational building blocks for
MGARD’s compression and refactoring pipelines (gray) to assemble
with. These functionalities are exposed to users through low-level APIs.
They provide users the flexibility to fine-tune compression/decom-
pression pipelines according to their specific application needs. The
separation between the low-level and high-level APIs is marked by the
inclusion of out-of-core processing and metadata management (dark
red). The out-of-core processing dynamically partitions data arrays into
chunks that fit within the device memory, serializes the compression
of large input arrays, and handles chunk data movement internally. On
the other hand, the metadata management layer saves all information
required for data reconstruction and recomposition in a self-describing
format. The high-level APIs encapsulates underlying complexity into
a single line of code for compression, decompression, refactoring, and
recomposition separately (as illustrated in examples later presented in
Section 3).Users can integrate high-level APIs into their applications
without delving into the intricacies of MGARD’s data reduction and
refactoring processes.

2.3. Software functionalities

MGARD primarily focuses on two functionalities: compression and
refactoring, and mathematically guarantees that the information loss
induced by compression and refactoring adheres to user-prescribed
error tolerance. The compression functions can promote scientific dis-
coveries by releasing storage burden so simulation/devices can output
data at enhanced resolutions/frequencies [37]. They could also accel-
erate I/0 due to MGARD’s high-throughput on GPUs. As data volumes
and velocities continue to increase, scientists require tools to incre-
mentally retrieve, move, and process reduced data based on scientific
priorities and resource constraints. MGARD’s refactoring functionality
empowers users to make trade-offs among uncertainty, speed, and

Qian Gong et al.

SoftwareX 24 (2023) 101590

High-Level Compression API High-Level Refactoring/Progressive Retrieval API

Metadata Manager

Multi-Device O rocessing Manager
Low-Level Compression API Low-Level Refactoring/Progressive Retrieval API

Compression Pipeline

Refactoring and Retrieval Pipeline

Key Compression and Refactoring Algorithms

Multilevel Decomposition

Quantization

Bit-plane Encoding Entropy Encoding

Performance Auto Tuner

Device Abstractions

Customized Parallelization Abstractions

Task Manager Memory Manager

Serial Adapter OpenMP Adapter

Device Queue Manager

CUDA Adapter

Multi-Device Manager

HIP Adapter SYCL Adapter

iMz w
x86/Power/ARM CPUs

H i -

NVIDIA/AMD/Intel GPUs

Fig. 2. Software architecture of MGARD. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

resource utilization. Furthermore, scientific data often undergoes a
process where it is compressed at one place/device and then transferred
to different sites/devices for various analyses. MGARD’s unified API
facilitates cross-platform data sharing through its design, encompassing
functions, and format portability.

3. Illustrative examples

The following examples illustrate MGARD’s compression and refac-
toring APIs. MGARD employs the same set of APIs for backend func-
tions running on various GPU and CPU architectures and will automat-
ically switch to the most optimal processors available.

Listing 1 showcases MGARD’s high-level APIs for compression and
reconstruction. For compression API, the inputs are data array, shape,
data type, configuration (e.g., error messages), error bound, error
bound type (e.g., REL or ABS for relative or absolute error), and the
smoothness parameter. The outputs are compressed data and bytes,
which will be stored in the compressed_array and out_byte. The
compression ratio is obtained by dividing in_byte and out_byte.
The decompression API takes the compressed_array and bytes as

the inputs and stores the decompressed results in decompressed_array.

One noteworthy aspect is that MGARD’s interface automatically de-
tects the available device memory and location of buffers holding

22
23
24

in_array, compressed_array, and decompressed_array. When

GPUs devices are used, the high-level APIs dynamically schedules
the out-of-core processing and manages host-to-device data transfer
internally.

#include "mgard/compress_x.hpp"
// prepare data buffers
mgard_x::DIM num_dims = 3;
mgard_x::SIZE nl, n2, n3;
std::vector<mgard_x::SIZE>
mgard_x::SIZE in_byte = nil
double) ;

mgard_x::SIZE out_byte;
//... load data into in_array
double *in_array = ...;
void *compressed_array =

shape{nl, n2, n3};
* n2 * n3 * sizeof (

NULL;

void *decompressed_array =
// tol: error tolerance

// s: smoothness parameter
double tol = 0.01, s = 0;

NULL;

// MGARD config parameters
mgard_x::Config config;

// Compressing with high level API
mgard_x::compress (num_dims, mgard_x::data_type::

Double, shape, tol, s, mgard_x::
error_bound_type::REL, in_array,
compressed_array, out_byte, config, false);

// Decompressing with high level API
mgard_x::decompress (compressed_array, out_byte,
decompressed_array, config, false);

Listing 1: MGARD data compression and decompression API example

Listing 2 demonstrates how to refactor and incrementally recompose
data using MGARD’s high-level APIs. The refactoring API returns a
metadata file and the compressed resolution/precision segments. Lines
23-42 illustrate the recomposition process. It commences with a coarse
representation of the data, then sequentially retrieves partial segments
that lead to the next level of precision/resolution.

#include "mgard/mdr_x.hpp"

// prepare data buffers
mgard_x::DIM num_dims = 3;
mgard_x::SIZE nl, n2, n3;
std::vector<mgard_x::SIZE>
mgard_x::S8IZE in_byte = nil
double) ;
mgard_x::SIZE out_byte;
//... load data into in_array
double *in_array = ...;

shape{nl, n2, n3};
* n2 * n3 * sizeof (

mgard_x::Config config;
mgard_x::MDR::RefactoredMetadata
refactored_metadata;

39

40

41

Qian Gong et al.

mgard_x::MDR::RefactoredData refactored_data;

// Refactor with high level API

mgard_x::MDR::MDRefactor (D, mgard_x::data_type::
Double, shape, in_array, refactored_metadata
, refactored_data, config, false);

// Save refactored_metadata and refactored_data
to files

mgard_x::MDR::ReconstructedData
reconstructed_data;
// Read in refactored_metadata from file

// Progressively reconstruct for each error

bound

(double tol : tolerances) {

// Specify error bound and smoothness

parameter for each subdomain

for (auto &metadata refactored_metadata.

metadata) {
metadata.requested_tol =
metadata.requested_s = s;

for

tol;

}

// Determine required data components for

reconstruction

mgard_x::MDR::MDRequest (refactored_metadata,
config);

// Read in required data components from

files

// Reconstruct with high level API
mgard_x::MDR: :MDReconstruct (
refactored_metadata, refactored_data,
reconstructed_data, config, false,
original_data) ;

// reconstructed_data now contains
progressively reconstructed data
double out_data = reconstructed_data.data;

Listing 2: MGARD data refactoring API example

4. Application impact

The MGARD team has worked with application scientists from a
variety of research communities to alleviate their storage and I/O
challenges.

4.1. Plasma physics

— XGC: The X-point included Gyrokinetic Code (XGC) is a fusion
physics code specialized in simulating plasma dynamics in the
edge region of a tokamak reactor [38,39]. We compressed the 5D
particle distribution function (pdf) generated by XGC simulating
an ITER-scale experiment [40], and evaluated the errors in five
derived Qols (density, parallel/vertical temperatures, and two
flux surface averaged momentums). Fig. 3 illustrates that the
MGARD with Qol post-processing can reduce the data storage
for up to 200x and 290x with the relative L? errors in all Qols
below 1 x 10~'* and 1 x 1078 separately, whereas the compression
without Qol optimization exhibits a relative L? error of approx-
imately 1x 102 given the same compression ratios. Noted that
A represents the set of Lagrange multipliers obtained through
a convex optimization program aiming to reduce Qol errors in
each sub data-domain. A can be further quantized or truncated
to increase compression ratios. Readers can find more MGARD
studies on XGC simulation data in [41-43].

SoftwareX 24 (2023) 101590

1072 /’/——’—’—’_._—‘
G 107*
Z
= 10-6
S 10-8
@
21070
© 10-12 —— MG + A (float)
& —e— MG + A (double)
0 — ey —— MG
0 100 200 300 400 500

Compresson ratio

Fig. 3. Illustration of errors in Qols derived from the XGC f-data lossy compressed by
MGARD with Qol post-processing.

4.2. Earth and cosmological science

— NYX: NYX is an AMR-based cosmological hydrodynamics sim-
ulation code developed at Lawrence Berkeley National Labo-
ratory [44]. Fig. 4 presents the compression and decompres-
sion throughput of MGARD and the GPU implementation of two
other state-of-the-art lossy compressors: cuSZ and ZFP-CUDA.
The throughput data was obtained from the Summit supercom-
puter [45], where each compute node hosts six NVIDIA V100
GPUs. For our evaluation, we fed each GPU with 15 GB of
NYX data, using a relative L2 error bound of 1x 1073 for data
compression. Throughout the evaluation, MGARD surpassed other
GPU-accelerated lossy compressors in terms of performance due
to its efficient compression kernels and multi-GPU pipeline opti-
mization. Fig. 5 illustrates how data compression accelerated I/0
throughput in NYX simulations. Using the same setting as the ex-
periments in Fig. 4, we compare the combined time spent on com-
pression/decompression and reading/writing the reduced data
against the time spent on reading and writing the uncompressed
data. The results suggest that data compression can effectively
reduce the I/O cost, and MGARD exhibits the most significant
improvement among the three lossy compressors.

— E3SM: The Energy Exascale Earth System Model is a state-of-the-
science Earth’s climate model used to investigate energy-relevant
science [46]. Due to storage constraints, E3SM currently outputs
model data at the 6-hourly interval instead of the physical tem-
poral resolution, which is 15 min. In Fig. 6(b) [37], the tropical
cyclone (TC) tracks detected from data outputted at an hourly
interval are compared with TC tracks obtained from the same
set of data, lossy compressed using MGARD with distinct error
bounds tailored to regions with varying degrees of turbulence.
Concurrently, Fig. 6(a) illustrates TC tracks detected from data
outputted at a 6-hourly rate. Despite the lossy compression of
hourly data requiring only 1/4 of the storage compared to the
uncompressed 6-hourly data, a notable enhanced accuracy is
achieved.

4.3. Radio astronomy

— SKA: The Square Kilometer Array (SKA) [47] hosts two of the
world’s largest radio telescope arrays, archiving approximately
300 petabytes of data per year. Early exploration work has in-
dicated that MGARD can compress radio astronomy data by ap-
proximately 20x without introducing structural artifacts. Ongoing
efforts aim to integrate data reduction into the Casacore Table
Data System’s I/O pipeline.

Qian Gong et al.

SoftwareX 24 (2023) 101590

—— MGARD —— cusz ZFP-CUDA
Parallel compression Parallel decompression
5 4
—— MGARD 51
—— CcuSZ
—~ 41 —
4 ZFP-CUDA 0 41
m [2a]
£l E
e 5 31
Q Qo
H =} -
o 21 ()] 2
3 3
2 =
e £
1+ 14
01 0=

1 2 4 8 16 32 64 128
Number of Nodes (6 NVIDIA V100 GPUs/node)

1 2 4 8 16 32 64 128
Number of Nodes (6 NVIDIA V100 GPUs/node)

Fig. 4. Comparing the throughput performance of compression and decompression provided by MGARD, cuSZ, and ZFP-CUDA on OLCF Summit nodes, using NYX data and a

relative error bound of 1x 1073,

Il write/read original N MGARD ZFP-CUDA
write/read compressed E cuSZ
Parallel write 1/0 Parallel read 1/O
70 20
60
50 4 151
o = I il
(] v 10 A n I
£ 301 E | | | | |
= =
20 5
ol vt I | | I
||I II ||I |I |I ||I |I |l| 0 I I I I I I I I
4 1 8

8 16 32 64 128

Number of Nodes

2 4 16 32 64 128

Number of Nodes

Fig. 5. Comparing the end-to-end I/0 time for reading and writing both compressed and uncompressed NYX data using MGARD, cuSZ, and ZFP-CUDA. Each node accommodates

six NVIDIA V100 GPUs.

By showecasing the impact of MGARD in diverse applications, it is
evident that MGARD significantly tackles data storage and I/O chal-
lenges in the workflow of large-scale scientific experiments while en-
suring the preservation of vital scientific insights.

5. Conclusion

MGARD has been designed to tackle storage, /0, and data analysis
challenges for scientific applications. With novel multilevel decom-
position, advanced encoding, and rigorous error control techniques,
MGARD can compress data into a greatly reduced representation or
refactor the data into a format supporting incremental retrieval. A
well-developed mathematical foundation allows MGARD to provide
error bounds not just on the raw data but also on Qols derived from
the lossy reduced data. With the mathematically proved theories and
solid empirical evaluations, MGARD provides compression that will
not compromise the scientific validity and utility of data. The refac-
toring capability of MGARD serves as an alternative to the single-
error-bounded compression for users who require near-lossless data
storage but may retrieve data at varied precisions/resolutions. Beyond
trustworthiness, MGARD can accelerate data movement and in-situ data

analytics with its extensively optimized CPU and GPU implementations,
and is portable so that data compression and refactoring can operate on
mainstream computing processors.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
Data availability

Data will be made available on request.
Acknowledgments

This research was supported in part by the Exascale Computing
Project CODAR (17-SC-20-SC) of the US Department of Energy (DOE),
the DOE’s Advanced Scientific Research Office (ASCR) research project

SIRIUS-2, United States, and the DOE’s RAPIDS-2 SciDAC project under
contract number DE-AC05-000R22725. In addition, this research used

Qian Gong et al.

hourly ()

6-hourly ()

(a) Visualize the TC tracks found in hourly and 6-hourly data (temporal deci-
mation rate = 6).

hourly ()

hourly spatiotemporally adaptive (CR=23) O

(b) Visualize the TC tracks found in hourly and hourly spatiotemporally com-
pressed data (compression ratio = 23).

Fig. 6. Global

distributing of TC tracks detected in hourly, 6-hourly, and

spatiotemporally adaptive reduced hourly data over one year time span.

resources of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office of Science
of DOE under Contract Numbers DE-AC05-000R22725.

References

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Séanchez-Expésito S, Luna S, Garrido J, Moldén J, Verdes-Montenegro L, Dar-
riba L. SKA regional centre prototype at IAA-CSIC: building an open science
platform based on cloud services. 2021.

Son SW, Chen Z, Hendrix W, Agrawal A, Liao W-k, Choudhary A. Data
compression for the exascale computing era-survey. Supercomput Front Innov
2014;1(2):76-88.

Lindstrom P, Isenburg M. Fast and efficient compression of floating-point data.
IEEE Trans Vis Comput Graph 2006;12(5):1245-50.

Burtscher M, Ratanaworabhan P. FPC: A high-speed compressor for double-
precision floating-point data. IEEE Trans Comput 2008;58(1):18-31.

Collet Y. RFC 8878: Zstandard compression and the’application/zstd’media type.
RFC Editor; 2021.

Deutsch P, et al. GZIP file format specification version 4.3. 1996.

The nvCOMP library provides fast lossless data compression and decompression
using a GPU, URL https://github.com/NVIDIA/nvcomp.

Zhao K, Di S, Dmitriev M, Tonellot T-LD, Chen Z, Cappello F. Optimizing error-
bounded lossy compression for scientific data by dynamic spline interpolation.
In: 2021 IEEE 37th international conference on data engineering. IEEE; 2021, p.
1643-54.

Lindstrom P. Fixed-rate compressed floating-point arrays. IEEE Trans Vis Comput
Graph 2014;20(12):2674-83.

Ballester-Ripoll R, Lindstrom P, Pajarola R. TTHRESH: Tensor compres-
sion for multidimensional visual data. IEEE Trans Vis Comput Graph
2019;26(9):2891-903.

Lindstrom PG. Fpzip. Tech. rep., Lawrence Livermore National Lab.(LLNL),
Livermore, CA (United States); 2017.

Liang X, Di S, Cappello F, Raj M, Liu C, Ono K, et al. Toward feature-preserving
vector field compression. IEEE Trans Vis Comput Graphics 2022.

Jiao P, Di S, Guo H, Zhao K, Tian J, Tao D, et al. Toward quantity-of-
interest preserving lossy compression for scientific data. Proc VLDB Endow
2022;16(4):697-710.

Tian J, Di S, Zhao K, Rivera C, Fulp MH, Underwood R, et al. Cusz: An efficient
gpu-based error-bounded lossy compression framework for scientific data. 2020,
arXiv preprint arXiv:2007.09625.

Experimental CUDA port of zfp compression, URL https://github.com/mclarsen/
cuZFP.

Ainsworth M, Tugluk O, Whitney B, Klasky S. Multilevel techniques for com-
pression and reduction of scientific data-the univariate case. Comput Vis Sci
2018;19(5):65-76.

Ainsworth M, Tugluk O, Whitney B, Klasky S. Multilevel techniques for compres-
sion and reduction of scientific data—The multivariate case. SIAM J Sci Comput
2019;41(2):A1278-303.

[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]
[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]
[46]

[47]

SoftwareX 24 (2023) 101590

Ainsworth M, Tugluk O, Whitney B, Klasky S. Multilevel techniques for compres-
sion and reduction of scientific data—quantitative control of accuracy in derived
quantities. SIAM J Sci Comput 2019;41(4):A2146-71.

Zhou Q, Anthony Q, Xu L, Shafi A, Abduljabbar M, Subramoni H, et al. Accel-
erating distributed deep learning training with compression assisted allgather
and reduce-scatter communication. In: 2023 IEEE international parallel and
distributed processing symposium. IEEE; 2023, p. 134-44.

Grabek J, Cyganek B. An impact of tensor-based data compression methods on
deep neural network accuracy. Ann Comput Sci Inf Syst 2021;26:3-11.

Jin S, Zhang C, Jiang X, Feng Y, Guan H, Li G, et al. Comet: A novel
memory-efficient deep learning training framework by using error-bounded lossy
compression. 2021, arXiv preprint arXiv:2111.09562.

Stroustrup B. The C++ programming language. Pearson Education; 2013.

The OpenMP programming model, URL https://www.openmp.org.

The CUDA programming language, URL https://developer.nvidia.com/cuda-
toolkit.

The HIP programming language, URL https://docs.amd.com/projects/HIP/en/
docs-5.3.0/user_guide/programming_manual.html.

The SYCL programming language, URL https://www.khronos.org/sycl/.

Kothe D, Lee S, Qualters I. Exascale computing in the United States. Comput Sci
Eng 2018;21(1):17-29.

Messina P. The exascale computing project. Comput Sci Eng 2017;19(3):63-7.
Tao D, Di S, Chen Z, Cappello F. Significantly improving lossy compression for
scientific data sets based on multidimensional prediction and error-controlled
quantization. In: 2017 IEEE international parallel and distributed processing
symposium. IEEE; 2017, p. 1129-39.

Liang X, Whitney B, Chen J, Wan L, Liu Q, Tao D, et al. Mgard+: Optimizing
multilevel methods for error-bounded scientific data reduction. IEEE Trans
Comput 2021;71(7):1522-36.

Schwartz JW, Barker RC. Bit-plane encoding: A technique for source encoding.
IEEE Trans Aerosp Electron Syst 1966;(4):385-92.

Jiang C, Snir M. Automatic tuning matrix multiplication performance on graph-
ics hardware. In: 14th International conference on parallel architectures and
compilation techniques. IEEE; 2005, p. 185-94.

Tillet P, Cox D. Input-aware auto-tuning of compute-bound HPC kernels. In:
Proceedings of the international conference for high performance computing,
networking, storage and analysis. 2017, p. 1-12.

Li Y, Dongarra J, Tomov S. A note on auto-tuning GEMM for GPUs. In:
Computational science-ICCS 2009: 9th international conference Baton Rouge,
la, USA, May 25-27, 2009 Proceedings, Part I 9. Springer; 2009, p. 884-92.
Cuenca J, Giménez D, Gonzélez J. Architecture of an automatically tuned linear
algebra library. Parallel Comput 2004;30(2):187-210.

Whaley RC, Dongarra JJ. Automatically tuned linear algebra software. In: SC’98:
Proceedings of the 1998 ACM/IEEE conference on supercomputing. IEEE; 1998,
p. 38.

Gong Q, Zhang C, Liang X, Reshniak V, Chen J, Rangarajan A, et al. Spatiotem-
porally adaptive compression for scientific dataset with feature preservation
— A case study on simulation data with extreme climate events analysis. In:
Proceedings of the 19th IEEE International Conference on E-Science. 2023.
Chang C-S, Ku S. Spontaneous rotation sources in a quiescent tokamak edge
plasma. Phys Plasmas 2008;15(6):062510.

Ku S, Chang C-S, Diamond PH. Full-f gyrokinetic particle simulation of centrally
heated global ITG turbulence from magnetic axis to edge pedestal top in a
realistic tokamak geometry. Nucl Fusion 2009;49(11):115021.

Claessens M. ITER: The giant fusion reactor. Springer; 2020.

Gong Q, Liang X, Whitney B, Choi JY, Chen J, Wan L, et al. Maintaining
trust in reduction: Preserving the accuracy of quantities of interest for lossy
compression. In: Smoky Mountains Computational Sciences and Engineering
Conference. Springer; 2021, p. 22-39.

Lee J, Gong Q, Choi J, Banerjee T, Klasky S, Ranka S, et al. Error-bounded
learned scientific data compression with preservation of derived quantities. Appl
Sci 2022;12(13):6718.

Banerjee T, Choi J, Lee J, Gong Q, Wang R, Klasky S, et al. An algorithmic
and software pipeline for very large scale scientific data compression with error
guarantees. In: 2022 IEEE 29th international conference on high performance
computing, data, and analytics. IEEE; 2022, p. 226-35.

Sexton J, Lukic Z, Almgren A, Daley C, Friesen B, Myers A, et al. Nyx: A
massively parallel amr code for computational cosmology. J Open Source Softw
2021;6(63):3068.

Summit Supercomputer, URL https://www.olcf.ornl.gov/summit.

Caldwell PM, Mametjanov A, Tang Q, Van Roekel LP, Golaz J-C, Lin W, et al. The
DOE E3SM coupled model version 1: Description and results at high resolution.
J Adv Modelling Earth Syst 2019;11(12):4095-146.

van Diepen GN. Casacore table data system and its use in the MeasurementSet.
Astron Comput 2015;12:174-80.

http://refhub.elsevier.com/S2352-7110(23)00286-8/sb1
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb1
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb1
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb1
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb1
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb2
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb2
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb2
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb2
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb2
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb3
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb3
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb3
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb4
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb4
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb4
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb5
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb5
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb5
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb6
https://github.com/NVIDIA/nvcomp
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb8
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb8
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb8
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb8
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb8
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb8
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb8
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb9
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb9
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb9
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb10
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb10
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb10
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb10
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb10
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb11
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb11
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb11
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb12
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb12
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb12
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb13
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb13
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb13
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb13
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb13
http://arxiv.org/abs/2007.09625
https://github.com/mclarsen/cuZFP
https://github.com/mclarsen/cuZFP
https://github.com/mclarsen/cuZFP
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb16
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb16
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb16
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb16
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb16
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb17
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb17
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb17
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb17
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb17
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb18
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb18
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb18
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb18
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb18
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb19
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb19
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb19
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb19
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb19
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb19
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb19
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb20
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb20
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb20
http://arxiv.org/abs/2111.09562
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb22
https://www.openmp.org
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://docs.amd.com/projects/HIP/en/docs-5.3.0/user_guide/programming_manual.html
https://docs.amd.com/projects/HIP/en/docs-5.3.0/user_guide/programming_manual.html
https://docs.amd.com/projects/HIP/en/docs-5.3.0/user_guide/programming_manual.html
https://www.khronos.org/sycl/
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb27
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb27
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb27
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb28
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb29
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb29
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb29
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb29
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb29
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb29
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb29
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb30
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb30
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb30
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb30
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb30
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb31
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb31
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb31
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb32
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb32
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb32
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb32
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb32
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb33
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb33
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb33
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb33
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb33
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb34
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb34
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb34
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb34
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb34
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb35
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb35
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb35
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb36
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb36
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb36
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb36
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb36
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb37
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb37
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb37
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb37
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb37
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb37
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb37
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb38
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb38
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb38
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb39
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb39
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb39
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb39
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb39
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb40
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb41
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb41
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb41
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb41
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb41
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb41
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb41
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb42
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb42
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb42
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb42
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb42
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb43
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb43
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb43
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb43
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb43
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb43
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb43
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb44
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb44
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb44
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb44
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb44
https://www.olcf.ornl.gov/summit
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb46
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb46
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb46
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb46
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb46
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb47
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb47
http://refhub.elsevier.com/S2352-7110(23)00286-8/sb47

	MGARD: A multigrid framework for high-performance, error-controlled data compression and refactoring
	Motivation and significance
	Software design
	APIs
	High-Level APIs
	Low-Level APIs

	Software architecture
	Software functionalities

	Illustrative examples
	Application impact
	Plasma physics
	Earth and cosmological science
	Radio astronomy

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

