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We describe MGARD, a software providing MultiGrid Adaptive Reduction for floating-point scientific data on
structured and unstructured grids. With exceptional data compression capability and precise error control,
MGARD addresses a wide range of requirements, including storage reduction, high-performance 1/0, and in-
situ data analysis. It features a unified application programming interface (API) that seamlessly operates across
diverse computing architectures. MGARD has been optimized with highly-tuned GPU kernels and efficient

memory and device management mechanisms, ensuring scalable and rapid operations.
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1. Motivation and significance

In today’s scientific landscape, large-scale scientific applications
generate an overwhelming volume of data, surpassing the capabilities
of network and storage systems. For instance, the Square Kilometer
Array (SKA) telescope, designed to explore radio-waves from the early
universe, is projected to deliver around 600 Petabytes of data per
year to a network of SKA Regional Centers for ingestion and stor-
age [1]. Despite this data deluge, modern parallel file systems (PFS)
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exhibit limited aggregated bandwidth, typically measured in several
Terabytes per second. The throughput of Wide Area Network (WAN)
for long-distance data transmission is even sluggish, usually in the
range of several hundred Megabytes per second. A parallel trend has
also emerged in artificial intelligence community, marked by growing
demands for storage and memory resource to support the training
of increasingly deeper, wider, and non-linear deep neural networks
(DNN). Additionally, the efficiency of DNN operations is hindered by
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Fig. 1. The software pipeline overview illustrating the two primary functionalities of MGARD — compression and refactoring, both with precision error control.

rising communication costs associated with sharing model parameters
during distributed training.

Compression has emerged as a promising solution to address the
challenges posed by storage and I/0 bandwidth limitations. The ideal
compression approaches seek to reduce data size by several orders of
magnitude while preserving its fidelity for reliable scientific use. The
ability to refactor data into a multi-scale representation that aligns with
the hierarchical architecture of storage tiers is also highly desirable.
However, the presence of random mantissa with the floating-point
representation of scientific data limits the compression ratios [2,3]
with conventional entropy-based lossless compressors [4-7]. Alterna-
tive data reduction approaches, like sparse output rates, have their
limitations too, potentially overlooking valuable scientific insights in
unsaved timesteps.

Recently, lossy compression has garnered increased attention due
to its effectiveness in reducing data stored in floating-point precision.
A typical lossy compressor involves decorrelation, precision truncation,
and lossless encoding steps, along with mathematical theories to control
data distortion. An ideal lossy compressor for scientific data reduction
should possess the following features: (1) strict error control with re-
spect to different norms, (2) high throughput to avoid I/0 bottlenecks,
(3) portability on mainstream computing processors, (4) the ability to
handle data defined on various grid structures, and (5) the capability
to refactor data into multi-scales.

In this regard, several state-of-the-art lossy compressors have been
developed. SZ [8], ZFP [9], TTHERSH [10], and FPZIP [11] offer APIs
accepting L? or/and L*® error bound settings. SZ offers additional
error controls for several types of quantities of interest (Qols), in-
cluding polynomials, logarithmic mapping, weighted sum, and critical
point/isosurface [12,13]. In terms of the throughput, although SZ and
ZFP provide high-performance libraries — cuSZ [14] and cuZFP [15]
— on NVIDIA GPUs, they only support single precision and fixed-rate
compression mode separately, resulting in limited usability and lower
compression ratios. Moreover, these GPU-based compressors lack out-
of-core support, requiring users to manually tile and fit data into
GPU memory, impacting throughput performance. Additionally, exist-
ing error-bounded lossy compressors (e.g., SZ, ZFP, FPZIP, TTHERSH)
are limited to data defined on uniformly spaced grids up to four
dimensions.

Addressing these challenges, our present paper describes MGARD:
the MultiGrid Adaptive Reduction for Data [16-18] a high-performance
framework designed for compressing and refactoring scientific data
defined on various grid structures while ensuring precise error control.
By decomposing floating-point data into a hierarchical representation
on multigrid and applying quantization, MGARD achieves exceptional
compression capabilities for scientific data. Importantly, the induced

information loss during compression is mathematically guaranteed by
finite element theories, ensuring the trustworthiness of the compressed
data for a wide range of scientific applications. MGARD offers refactor-
ing functionality as an alternative to lossy compression for applications
requiring near-lossless storage and the flexibility to access data in
various scales. It supports refactoring data into a set of components
representing hierarchical resolutions and precision, enabling users to
incrementally retrieve and recompose them to any accuracy on de-
mand. Moreover, MGARD’s state-of-the-art implementation supports
compressing and refactoring data defined on various mesh topolo-
gies and offers multi-resolution and multi-precision parametrization
options. It delivers high performance and scalability on leadership high-
performance computing (HPC) facilities, such as Summit and Frontier.
Previous works have shown that the high-throughput compression on
GPU helps accelerate the training of large-scale DNNs by reducing the
communication latency [19]. Furthermore, DNNs trained using data
reduced by error-bounded compressors exhibit little or no accuracy
loss [20,21].

MGARD consists of GPU and CPU kernels. Implemented in C++11
[22], OpenMP [23], CUDA [24], HIP [25], and SYCL [26], MGARD
leverages platform portability and embraces modern software engineer-
ing practices, including unit testing and continuous integration. The
framework provides a unified application programming interface (API)
with a level of abstraction focused on data reduction and reconstruction
in scientific workflows. With built-in compile-time auto-tuning and
runtime adaptive scheduling techniques, users can expect the best
performance across different computing architectures. MGARD is part
of the United States Department of Energy (DOE) Exascale Computing
Project (ECP) software technology stack for data reduction [27,28],
which solidifies its position as a crucial component in the advancement
of data reduction technologies.

2. Software design

As illustrated in Fig. 1, the inputs to MGARD API consist of a data
array u, user-prescribed error bound(s) 7, and a smoothness parameter
s, which defines the norm of error bounds. MGARD comprises two
primary modules: data compression and refactoring. Both modules start
with a common practice, recursively decomposing u into a sequence of
approximations at various levels of the multi-resolution hierarchy. This
decomposition generates a multilevel representation, u_mc, which is
better suited for compression and refactoring purposes.

The compression module involves a quantization stage where each
component of u_mc is approximated by a multiple of a quantization bin
width [29,30]. This linear quantization effectively transforms floating-
point data into integers, facilitating efficient coding and ensuring that
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the specified error bound for u_mc is met. On the other hand, the refac-
toring module encodes u_mc into precision segments at different levels
of the multi-resolution hierarchy, utilizing bitplane encoding [31]. Both
compression and refactoring modules employ the same set of error esti-
mators for accuracy control, which are analogous to the posterior error
estimators used in numerical analysis. These error estimators consider
quantization errors or precision segments of multilevel coefficients as
inputs, allowing error control in various metrics, norms, and linear
Quantities of Interest (Qols) [16-18].

In the final stage, the quantization and precision segments ob-
tained from the compression and refactoring modules are compressed
through lossless encoding and written to disk as a self-describing buffer
containing all the necessary parameters for decompression and recom-
position. The compressed/refactored representation may also undergo
post-processing, when the preservation of non-linear Qols is required.
The refactoring module includes an additional step that collects errors
in the precision segments of the multilevel coefficients. The recomposi-
tion module, operating in an inverse procedure to refactoring, employs
a greedy algorithm to determine the retrieval order of precision seg-
ments. This strategy aims to fetch the most significant segment across
all levels based on the previously accrued error estimators.

2.1. APIs

MGARD is designed with two levels of APIs to support the integra-
tion with different user applications and IO libraries.

2.1.1. High-level APIs

The high-level APIs offer an all-in-one compression and refactoring
solution, providing users with a seamless integration experience with
MGARD. Key features of the high-level APIs include:

+ Unified APIs: MGARD offers a single set of APIs for compressing
and refactoring. MGARD automatically optimizes the reduction
and refactoring kernels for the targeted GPU or CPU architectures
during the software installation stage, and utilizes the same APIs
across various systems, enhancing code portability and ease of
use.

Self-describing format: The output of compression and refactor-
ing APIs includes all the necessary information required by a
decompressor/re-compositor to read and reconstruct data cor-
rectly. This encompasses vital details such as the code’s version,
error bounds employed, data topologies, and the type of lossless
encoders utilized.

Unified memory buffers on CPU/GPUs: MGARD automatically
detects the locations of input/output buffers and handles the
host-to-device data transfer internally, eliminating manual setup.
Multi-device out-of-core processing: The high-level APIs can au-
tomatically detect and leverage multiple accelerator devices on a
system. MGARD also boasts with an out-of-core optimization to
manages memory overflow and inter-device data transfer. These
functionalities are crucial for large-scale data processing, where
GPUs often have smaller memory capacities compared to host
CPUs.

2.1.2. Low-level APIs

The low-level APIs offer users complete control over the compres-
sion and refactoring processes, empowering them to customize the
functionality based on their specific application needs. Key features of
the low-level APIs include:

 Highly customizable code pipeline: The low-level APIs expose
individual functions for each step within compression and refac-
toring, such as memory management and sub-operations. This
level of granularity allows users to construct their own highly
optimized compression/refactoring pipelines tailored to their ap-
plication’s requirements.
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* Device asynchrony: The low-level APIs allow users to pipeline
computation and cross-device data transfer so they will execute
asynchronously. For example, MGARD operations on GPUs can
be overlapped with the application’s workload on CPUs. This
opens up significant opportunities for users to optimize MGARD
in tandem with their application’s execution logic, leading to
enhanced performance.

The dual-tiered API approach of MGARD ensures that users seeking
a quick and easy integration with minimal effort and those requiring
granular control over the compression and refactoring processes are
both catered.

2.2. Software architecture

MGARD is meticulously designed to be highly functional, perfor-
mant, portable, and extendable. This is achieved through a modularized
software architecture with carefully designed abstraction layers for
maximum portability. It has been successfully integrated into ADIOS
— a high-performance parallel I/0 framework with an extensive user
community — as an inline compressor. This integration allows ADIOS
users to write and compress data using MGARD in a single step.
Fig. 2 provides an illustration of MGARD’s software architecture. At the
foundation of the architecture are device abstractions (green), which
ensure the sustained functionality irrespective of underlying hardware
features. One layer above (blue), MGARD incorporates a built-in auto-
tuning module. This model automatically adjusts performance config-
urations, such as GPU thread block sizes, shared memory usage, and
processor occupancy in the software installation stage, ensuring that
MGARD operates efficiently on targeted hardware micro-architectures.
The design of MGARD’s auto-tuning module draws inspiration from
techniques discussed in [32-36], primarily focusing on optimization at
the kernel functions level. The subsequent layer (dark yellow) houses
the central computation kernels used by the compression and refac-
toring processes. They serve as the foundational building blocks for
MGARD’s compression and refactoring pipelines (gray) to assemble
with. These functionalities are exposed to users through low-level APIs.
They provide users the flexibility to fine-tune compression/decom-
pression pipelines according to their specific application needs. The
separation between the low-level and high-level APIs is marked by the
inclusion of out-of-core processing and metadata management (dark
red). The out-of-core processing dynamically partitions data arrays into
chunks that fit within the device memory, serializes the compression
of large input arrays, and handles chunk data movement internally. On
the other hand, the metadata management layer saves all information
required for data reconstruction and recomposition in a self-describing
format. The high-level APIs encapsulates underlying complexity into
a single line of code for compression, decompression, refactoring, and
recomposition separately (as illustrated in examples later presented in
Section 3).Users can integrate high-level APIs into their applications
without delving into the intricacies of MGARD’s data reduction and
refactoring processes.

2.3. Software functionalities

MGARD primarily focuses on two functionalities: compression and
refactoring, and mathematically guarantees that the information loss
induced by compression and refactoring adheres to user-prescribed
error tolerance. The compression functions can promote scientific dis-
coveries by releasing storage burden so simulation/devices can output
data at enhanced resolutions/frequencies [37]. They could also accel-
erate I/0 due to MGARD’s high-throughput on GPUs. As data volumes
and velocities continue to increase, scientists require tools to incre-
mentally retrieve, move, and process reduced data based on scientific
priorities and resource constraints. MGARD’s refactoring functionality
empowers users to make trade-offs among uncertainty, speed, and
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Fig. 2. Software architecture of MGARD. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

resource utilization. Furthermore, scientific data often undergoes a
process where it is compressed at one place/device and then transferred
to different sites/devices for various analyses. MGARD’s unified API
facilitates cross-platform data sharing through its design, encompassing
functions, and format portability.

3. Illustrative examples

The following examples illustrate MGARD’s compression and refac-
toring APIs. MGARD employs the same set of APIs for backend func-
tions running on various GPU and CPU architectures and will automat-
ically switch to the most optimal processors available.

Listing 1 showcases MGARD’s high-level APIs for compression and
reconstruction. For compression API, the inputs are data array, shape,
data type, configuration (e.g., error messages), error bound, error
bound type (e.g., REL or ABS for relative or absolute error), and the
smoothness parameter. The outputs are compressed data and bytes,
which will be stored in the compressed_array and out_byte. The
compression ratio is obtained by dividing in_byte and out_byte.
The decompression API takes the compressed_array and bytes as

the inputs and stores the decompressed results in decompressed_array.

One noteworthy aspect is that MGARD’s interface automatically de-
tects the available device memory and location of buffers holding

22
23
24

in_array, compressed_array, and decompressed_array. When

GPUs devices are used, the high-level APIs dynamically schedules
the out-of-core processing and manages host-to-device data transfer
internally.

#include "mgard/compress_x.hpp"
// prepare data buffers
mgard_x::DIM num_dims = 3;
mgard_x::SIZE nl, n2, n3;
std::vector<mgard_x::SIZE>
mgard_x::SIZE in_byte = nil
double) ;

mgard_x::SIZE out_byte;
//... load data into in_array
double *in_array = ...;
void *compressed_array =

shape{nl, n2, n3};
* n2 * n3 * sizeof (

NULL;

void *decompressed_array =
// tol: error tolerance

// s: smoothness parameter
double tol = 0.01, s = 0;

NULL;

// MGARD config parameters
mgard_x::Config config;

// Compressing with high level API
mgard_x::compress (num_dims, mgard_x::data_type::

Double, shape, tol, s, mgard_x::
error_bound_type::REL, in_array,
compressed_array, out_byte, config, false);

// Decompressing with high level API
mgard_x::decompress (compressed_array, out_byte,
decompressed_array, config, false);

Listing 1: MGARD data compression and decompression API example

Listing 2 demonstrates how to refactor and incrementally recompose
data using MGARD’s high-level APIs. The refactoring API returns a
metadata file and the compressed resolution/precision segments. Lines
23-42 illustrate the recomposition process. It commences with a coarse
representation of the data, then sequentially retrieves partial segments
that lead to the next level of precision/resolution.

#include "mgard/mdr_x.hpp"

// prepare data buffers
mgard_x::DIM num_dims = 3;
mgard_x::SIZE nl, n2, n3;
std::vector<mgard_x::SIZE>
mgard_x::S8IZE in_byte = nil
double) ;
mgard_x::SIZE out_byte;
//... load data into in_array
double *in_array = ...;

shape{nl, n2, n3};
* n2 * n3 * sizeof (

mgard_x::Config config;
mgard_x::MDR::RefactoredMetadata
refactored_metadata;
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mgard_x::MDR::RefactoredData refactored_data;

// Refactor with high level API

mgard_x::MDR::MDRefactor (D, mgard_x::data_type::
Double, shape, in_array, refactored_metadata
, refactored_data, config, false);

// Save refactored_metadata and refactored_data
to files

mgard_x::MDR::ReconstructedData
reconstructed_data;
// Read in refactored_metadata from file

// Progressively reconstruct for each error

bound

(double tol : tolerances) {

// Specify error bound and smoothness

parameter for each subdomain

for (auto &metadata refactored_metadata.

metadata) {
metadata.requested_tol =
metadata.requested_s = s;

for

tol;

}

// Determine required data components for

reconstruction

mgard_x::MDR::MDRequest (refactored_metadata,
config);

// Read in required data components from

files

// Reconstruct with high level API
mgard_x::MDR: :MDReconstruct (
refactored_metadata, refactored_data,
reconstructed_data, config, false,
original_data) ;

// reconstructed_data now contains
progressively reconstructed data
double out_data = reconstructed_data.data;

Listing 2: MGARD data refactoring API example

4. Application impact

The MGARD team has worked with application scientists from a
variety of research communities to alleviate their storage and I/O
challenges.

4.1. Plasma physics

— XGC: The X-point included Gyrokinetic Code (XGC) is a fusion
physics code specialized in simulating plasma dynamics in the
edge region of a tokamak reactor [38,39]. We compressed the 5D
particle distribution function (pdf) generated by XGC simulating
an ITER-scale experiment [40], and evaluated the errors in five
derived Qols (density, parallel/vertical temperatures, and two
flux surface averaged momentums). Fig. 3 illustrates that the
MGARD with Qol post-processing can reduce the data storage
for up to 200x and 290x with the relative L? errors in all Qols
below 1 x 10~'* and 1 x 1078 separately, whereas the compression
without Qol optimization exhibits a relative L? error of approx-
imately 1x 102 given the same compression ratios. Noted that
A represents the set of Lagrange multipliers obtained through
a convex optimization program aiming to reduce Qol errors in
each sub data-domain. A can be further quantized or truncated
to increase compression ratios. Readers can find more MGARD
studies on XGC simulation data in [41-43].
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Fig. 3. Illustration of errors in Qols derived from the XGC f-data lossy compressed by
MGARD with Qol post-processing.

4.2. Earth and cosmological science

— NYX: NYX is an AMR-based cosmological hydrodynamics sim-
ulation code developed at Lawrence Berkeley National Labo-
ratory [44]. Fig. 4 presents the compression and decompres-
sion throughput of MGARD and the GPU implementation of two
other state-of-the-art lossy compressors: cuSZ and ZFP-CUDA.
The throughput data was obtained from the Summit supercom-
puter [45], where each compute node hosts six NVIDIA V100
GPUs. For our evaluation, we fed each GPU with 15 GB of
NYX data, using a relative L2 error bound of 1x 1073 for data
compression. Throughout the evaluation, MGARD surpassed other
GPU-accelerated lossy compressors in terms of performance due
to its efficient compression kernels and multi-GPU pipeline opti-
mization. Fig. 5 illustrates how data compression accelerated I/0
throughput in NYX simulations. Using the same setting as the ex-
periments in Fig. 4, we compare the combined time spent on com-
pression/decompression and reading/writing the reduced data
against the time spent on reading and writing the uncompressed
data. The results suggest that data compression can effectively
reduce the I/O cost, and MGARD exhibits the most significant
improvement among the three lossy compressors.

— E3SM: The Energy Exascale Earth System Model is a state-of-the-
science Earth’s climate model used to investigate energy-relevant
science [46]. Due to storage constraints, E3SM currently outputs
model data at the 6-hourly interval instead of the physical tem-
poral resolution, which is 15 min. In Fig. 6(b) [37], the tropical
cyclone (TC) tracks detected from data outputted at an hourly
interval are compared with TC tracks obtained from the same
set of data, lossy compressed using MGARD with distinct error
bounds tailored to regions with varying degrees of turbulence.
Concurrently, Fig. 6(a) illustrates TC tracks detected from data
outputted at a 6-hourly rate. Despite the lossy compression of
hourly data requiring only 1/4 of the storage compared to the
uncompressed 6-hourly data, a notable enhanced accuracy is
achieved.

4.3. Radio astronomy

— SKA: The Square Kilometer Array (SKA) [47] hosts two of the
world’s largest radio telescope arrays, archiving approximately
300 petabytes of data per year. Early exploration work has in-
dicated that MGARD can compress radio astronomy data by ap-
proximately 20x without introducing structural artifacts. Ongoing
efforts aim to integrate data reduction into the Casacore Table
Data System’s I/O pipeline.
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By showecasing the impact of MGARD in diverse applications, it is
evident that MGARD significantly tackles data storage and I/O chal-
lenges in the workflow of large-scale scientific experiments while en-
suring the preservation of vital scientific insights.

5. Conclusion

MGARD has been designed to tackle storage, /0, and data analysis
challenges for scientific applications. With novel multilevel decom-
position, advanced encoding, and rigorous error control techniques,
MGARD can compress data into a greatly reduced representation or
refactor the data into a format supporting incremental retrieval. A
well-developed mathematical foundation allows MGARD to provide
error bounds not just on the raw data but also on Qols derived from
the lossy reduced data. With the mathematically proved theories and
solid empirical evaluations, MGARD provides compression that will
not compromise the scientific validity and utility of data. The refac-
toring capability of MGARD serves as an alternative to the single-
error-bounded compression for users who require near-lossless data
storage but may retrieve data at varied precisions/resolutions. Beyond
trustworthiness, MGARD can accelerate data movement and in-situ data

analytics with its extensively optimized CPU and GPU implementations,
and is portable so that data compression and refactoring can operate on
mainstream computing processors.
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spatiotemporally adaptive reduced hourly data over one year time span.

resources of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office of Science
of DOE under Contract Numbers DE-AC05-000R22725.
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