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ABSTRACT
Although direct GPU-to-GPU communication has been possible
in MPI libraries for over a decade, the limited availability of com-
patible hardware at academic HPC centers has discouraged the
development of algorithms in scienti�c applications that take ad-
vantage of this capability. In this paper, we take Amber, a molecular
dynamics code used to simulate proteins and nucleic acids, as a test
case. We demonstrate the modi�cations necessary to implement
GPU-to-GPU communication. Compared to the previous implemen-
tation, these modi�cations show an average of approximately 36%
improvement in performance overall and 84% for the important
explicit solvent subset of the benchmarks.

CCS CONCEPTS
• Computing methodologies! Parallel computing method-
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1 INTRODUCTION
AMBER is a widely-used software suite for molecular dynamics
(MD) simulations of proteins and nucleic acids. It has been in active
development since 1975 [2]. As recently as 2019 AMBER had more
modeling papers citing it than any of the other popular biomolecular
software packages [12, Figure 2e]. Several solvation models are
supported including explicit solvent implemented with particle-
mesh Ewald (PME) and various Generalized Born (GB) implicit
solvent approaches. AMBER added GPU support in version 11 [4]
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and has continued to improve its performance and capabilities
[7, 11] in later releases. The initial GPU implementation targeted
NVIDIA GPUs and computed most of theMD algorithm on the GPU.
Later updates added additional features, such as implementation
of sophisticated free energy methods on the GPU in Amber18 and
support for AMD GPUs in Amber22. When we refer to Amber
in this paper we mean the main CUDA MD program of AMBER
version 20.

Traditionally, multi-GPU support has been achieved with MPI
by passing data from the GPU bu�er to host bu�er, performing
MPI communication, and then passing data back to GPU bu�ers.
The capability to specify device bu�ers in MPI calls was added to
MVAPICH2 in 2011 and to HPC-X OpenMPI in v1.7.0 in 2013 [14].
If appropriate hardware and device software is available on the
system, then communication is performed directly between GPUs
without transfer back to hosts. If not available, then the library
will perform inter-process communication via host-to-device and
device-to-host communication internally, although the additional
data copying will have some impact on performance. Although this
technology was �rst presented in 2011 [5], the hardware capabilities
have only started to become available at most academic HPC centers
in the last few years. As a result, many scienti�c applications have
been slow to take advantage of these capabilities. For instance,
GROMACS, another MD application, only added support for direct
GPU-to-GPU communication in its 2022 release [6].

In this paper, we discuss the modi�cations required to enable
device-to-device GPU communication in Amber20 and demonstrate
performance bene�ts on a set of benchmark runs.

2 EXPERIMENTAL SETUP
All results in this paper were performed on the following bench-
marks in the Amber20 Benchmark Suite to better understand the
performance bottlenecks of typical use cases:

• Particle-mesh Ewald (PME):
– Cellulose production (NPT and NVE)
– FactorIX production (NPT and NVE)
– JAC production (NPT and NVE)
– STMV production (NPT and NVE)

• Generalized Born (GB):
– myoglobin
– nucleosome

where the statistical ensembles NPT and NVE specify the �xed
quantities: Namely, the total number of particles (N) is constant in
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both, and in NPT pressure (P) and temperature (T) are conserved
quantities, whereas total energy (E) and volume (V) are conserved in
NVE. The computational cost of pressure and temperature control in
NPTMD is nonzero butmodest in comparison to the algorithmically
more straightforward NVE MD [1]. Both ensembles are important
for biomolecular simulations [10].

Experiments were performed on the Pitzer system at OSC [3].
Tests were performed on 48-core Cascade Lake nodes each with 2
NVIDIA V100 GPUs.

Tests were performed with three MPI implementations:
(1) MVAPICH2 2.3.6 [9]
(2) MVAPICH2-GDR 2.3.7
(3) HPC-X OpenMPI 3.1.6
Note that MVAPICH2-GDR and HPC-X are both CUDA-aware

MPI implementations, meaning that GPU bu�ers can be passed
directly to MPI functions, while MVAPICH2 is not CUDA-aware.

3 PERFORMANCE ANALYSIS
To better understand the performance characteristics of Amber, we
began by pro�ling a run of Amber with, JAC production (NPT), one
of the benchmarks in the Amber20 Benchmark Suite, on 2 nodes
with 1 process and 1 GPU per node.

Pro�ling with ARM MAP [8] shows that a large portion of time
was being spent in MPI communication and device-to-host com-
munication. Figure 1 shows that the most expensive functions for
this benchmark are MPI_Allreduce and cudaMemcpy. Figure 1 (b)
shows the call stack; we can see that these functions are being
called from the gpu_allreduce function.

Listing 1 shows pseudocode for the relevant part of the
gpu_allreduce function. The allreduce is performed in three steps.
The data is initially on the device, so it is copied to the host. Then,
an allreduce is performed among all of the host devices. Once it
has completed, the data is copied back to the device.

Listing 1: gpu_allreduce pseudocode
cudaMemcpy Device − to −Host
MPI_Al l reduce Host − to −Host
cudaMemcpy Host − to −Device

4 MODIFICATIONS
As discussed in Section 3, the most expensive routines in our testing
were the Host$Device communication and MPI_Allreduce called
from gpu_allreduce.

Since the data is stored on the device, we can reduce the time
spent in gpu_allreduce, by communicating directly between de-
vices on di�erent hosts, rather than by copying from device to host,
then host to host, and back to device.

Listing 2 shows themodi�ed algorithm for gpu_allreduce. First,
we ensure that all of the devices have reached the same point in the
code. Then, we perform an allreduce directly between bu�ers on
the devices. Finally, Amber requires that the bu�er be up-to-date
on the host so we still perform the copy from the device to the host.
This modi�ed algorithm reduces the amount of data that needs to
be transferred between the device and the host.

(a) Functions with largest exclusive times

(b) Call stack

Figure 1: MAP pro�le of JAC_production_NPT_4fs bench-
mark on 2 nodes, 1 process per node.

Listing 2: Modi�ed gpu_allreduce pseudocode
cudaDev i ceSynchron i ze
MPI_Al l reduce Device − to −Device
cudaMemcpy Device − to −Host

The algorithmic modi�cation is straightforward and, in fact, in-
volved only �ve lines of Amber C++ code. To put this in context, the
concomitant changes for the program output and the installation
recipe, although conceptually trivial in comparison, were three
times the size in Fortran90 and CMake code. We reiterate that the
initial Amber GPU program and the direct GPU-to-GPU communi-
cation technology were both circa 2011. However marrying these
capabilities was not achieved until this framework provided the
software middleware to facilitate the necessary algorithmic revi-
sion. Furthermore, it is thus available for MVAPICH2-GDR, HPC-X
OpenMPI, and future MPIs.

5 RESULTS
We expect that the use of a CUDA-aware MPI implementation can
reduce the time spent in Amber by reducing the amount of host$
device communication.

Figures 2–6 show the performance of each of the benchmarks
from Section 2. For each benchmark, throughput is given in nanosec-
onds of MD simulation time per day of wallclock time (ns/day) on
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2, 4, and 8 nodes. For each of these con�gurations, we show results
for MVAPICH2 with the original code, and then HPC-X OpenMPI,
MVAPICH2, and MVAPICH2-GDR with the modi�ed code.

We �nd that for most benchmarks MVAPICH2 gives the lowest
throughput, but optimal throughput is achieved with MVAPICH2-
GDR. For instance, Figure 2 (a) shows performance of the Cellulose
production (NPT) benchmark. Running on 8 Cascade Lake nodes,
MVAPICH2 gives a throughput of 28.51 ns/day with the original
code and 24.92 ns/day with the modi�ed code. Using the CUDA-
aware MPI implementations gives an increased throughput of 52.4
ns/day with HPC-X OpenMPI and 64.28 ns/day with MVAPICH2-
GDR. As expected, Figures 2–5 show slightly higher throughput
for NVE relative to NPT.

To summarize our results, below is the mean throughput across
all the benchmarks for each implementation:

• MVAPICH2 (original code): 192.5 ns/day
• MVAPICH2 (modi�ed code): 201.4 ns/day
• HPC-X OpenMPI (modi�ed code): 234.7 ns/day
• MVAPICH2-GDR (modi�ed code): 262.9 ns/day

On average across all benchmarks we see a ⇠36% improvement
in performance from the original code to the modi�ed code with
device-to-device communication using MVAPICH2-GDR.

In particular, we see a large improvement in the eight PME bench-
marks where the average throughput for each implementation is:

• MVAPICH2 (original code): 118.2 ns/day
• MVAPICH2 (modi�ed code): 120.3 ns/day
• HPC-X OpenMPI (modi�ed code): 197.2 ns/day
• MVAPICH2-GDR (modi�ed code): 217.8 ns/day

The average performance improvement from the original code with
MVAPICH2 to the modi�ed code with MVAPICH2-GDR across all
the PME benchmarks was ⇠84%.

As is evident from the Figures, Amber does not scale well. All the
PME results show either no signi�cant performance gain or some
loss. Only for the modestly sized, 25095 atoms, GB nucleosome
benchmark is the scaling greater than one; see Figure 6 (b). And
for the small, 2492 atoms, GB myoglobin benchmark, the scaling
is signi�cantly less than one. Although Amber recommends using
multiple GPUs only for enhanced sampling (e.g., replica exchange
where each GPU in a multiple GPU job executes a single computa-
tionally independent simulation from a pool of methodologically
coupled simulations), many other MD techniques would bene�t
from a scalable multi-GPU capability, such as long time-scale MD,
free energy calculations (a �eld with especially intense activity in
the Amber community [13]), conformational sampling, and drug
discovery in general. The poor scaling is partly a consequence of
the limited availability of both hardware and software that sup-
ports the development of multi-GPU algorithms as presented and
discussed in Section 4, in particular this framework.

6 CONCLUSIONS
By pro�ling Amber20 benchmarks, we found that the most expen-
sive functions in the main CUDA molecular dynamics program of
the AMBER software suite were MPI_Allreduce and cudaMemcpy
called from gpu_allreduce.

Modifying the gpu_allreduce function so that MPI_allreduce
communicates directly between GPU bu�ers reduces the amount

(a) NPT

(b) NVE

Figure 2: Performance comparison of Cellulose production
benchmarks.

MV-GDR (modi�ed code) MV2 (modi�ed code)
HPC-X (modi�ed code) MV2 (original code)

of host $ device communication with CUDA-aware MPI imple-
mentations.

As we observed in Section 5, modifying the gpu_allreduce and
using MVAPICH2-GDR, increases the throughput of Amber by an
average of approximately 36% over the whole set of ten benchmarks
and by 84% for the PME subset of eight benchmarks.

The algorithmic modi�cation involved �ve lines of application
code. This underscores the power of frameworks and the collabora-
tive approach: a substantial performance improvement was enabled
via the layered paradigm and implemented with a surgical proce-
dure.
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(a) NPT

(b) NVE

Figure 3: Performance comparison of FactorIX production
benchmarks.

MV-GDR (modi�ed code) MV2 (modi�ed code)
HPC-X (modi�ed code) MV2 (original code)

(a) NPT

(b) NVE

Figure 4: Performance comparison of JAC production
benchmarks.

MV-GDR (modi�ed code) MV2 (modi�ed code)
HPC-X (modi�ed code) MV2 (original code)
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(a) NPT

(b) NVE

Figure 5: Performance comparison of STMV production
benchmarks.

MV-GDR (modi�ed code) MV2 (modi�ed code)
HPC-X (modi�ed code) MV2 (original code)

(a) myoglobin

(b) nucleosome

Figure 6: Performance comparison of GB benchmarks.
MV-GDR (modi�ed code) MV2 (modi�ed code)
HPC-X (modi�ed code) MV2 (original code)
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