N)
e Optimizing Amber for Device-to-Device GPU Communication

Scott R. Brozell
srb@osc.edu
Ohio Supercomputer Center
Columbus, Ohio, USA

Karen Tomko
ktomko@osc.edu
Ohio Supercomputer Center
Columbus, Ohio, USA

Samuel Khuvis
skhuvis@osc.edu
Ohio Supercomputer Center
Columbus, Ohio, USA

Chen-Chun Chen
chen.10252@buckeyemail.osu.edu
Ohio State University
Columbus, Ohio, USA

Dhabaleswar K. Panda
panda@cse.ohio-state.edu
Ohio State University
Columbus, Ohio, USA

Hari Subramoni
subramon@cse.ohio-state.edu
Ohio State University
Columbus, Ohio, USA

ABSTRACT

Although direct GPU-to-GPU communication has been possible
in MPI libraries for over a decade, the limited availability of com-
patible hardware at academic HPC centers has discouraged the
development of algorithms in scientific applications that take ad-
vantage of this capability. In this paper, we take Amber, a molecular
dynamics code used to simulate proteins and nucleic acids, as a test
case. We demonstrate the modifications necessary to implement
GPU-to-GPU communication. Compared to the previous implemen-
tation, these modifications show an average of approximately 36%
improvement in performance overall and 84% for the important
explicit solvent subset of the benchmarks.

CCS CONCEPTS

+ Computing methodologies — Parallel computing method-
ologies.

KEYWORDS
MPI, GPUs, Amber

ACM Reference Format:

Samuel Khuvis, Karen Tomko, Scott R. Brozell, Chen-Chun Chen, Hari
Subramoni, and Dhabaleswar K. Panda. 2023. Optimizing Amber for Device-
to-Device GPU Communication. In Practice and Experience in Advanced
Research Computing (PEARC °23), July 23-27, 2023, Portland, OR, USA. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3569951.3597553

1 INTRODUCTION

AMBER is a widely-used software suite for molecular dynamics
(MD) simulations of proteins and nucleic acids. It has been in active
development since 1975 [2]. As recently as 2019 AMBER had more
modeling papers citing it than any of the other popular biomolecular
software packages [12, Figure 2e]. Several solvation models are
supported including explicit solvent implemented with particle-
mesh Ewald (PME) and various Generalized Born (GB) implicit
solvent approaches. AMBER added GPU support in version 11 [4]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PEARC °23, July 23-27, 2023, Portland, OR, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9985-2/23/07...$15.00
https://doi.org/10.1145/3569951.3597553

200

and has continued to improve its performance and capabilities
[7, 11] in later releases. The initial GPU implementation targeted
NVIDIA GPUs and computed most of the MD algorithm on the GPU.
Later updates added additional features, such as implementation
of sophisticated free energy methods on the GPU in Amber18 and
support for AMD GPUs in Amber22. When we refer to Amber
in this paper we mean the main CUDA MD program of AMBER
version 20.

Traditionally, multi-GPU support has been achieved with MPI
by passing data from the GPU buffer to host buffer, performing
MPI communication, and then passing data back to GPU buffers.
The capability to specify device buffers in MPI calls was added to
MVAPICH? in 2011 and to HPC-X OpenMPI in v1.7.0 in 2013 [14].
If appropriate hardware and device software is available on the
system, then communication is performed directly between GPUs
without transfer back to hosts. If not available, then the library
will perform inter-process communication via host-to-device and
device-to-host communication internally, although the additional
data copying will have some impact on performance. Although this
technology was first presented in 2011 [5], the hardware capabilities
have only started to become available at most academic HPC centers
in the last few years. As a result, many scientific applications have
been slow to take advantage of these capabilities. For instance,
GROMACS, another MD application, only added support for direct
GPU-to-GPU communication in its 2022 release [6].

In this paper, we discuss the modifications required to enable
device-to-device GPU communication in Amber20 and demonstrate
performance benefits on a set of benchmark runs.

2 EXPERIMENTAL SETUP

All results in this paper were performed on the following bench-
marks in the Amber20 Benchmark Suite to better understand the
performance bottlenecks of typical use cases:

o Particle-mesh Ewald (PME):
— Cellulose production (NPT and NVE)
— FactorIX production (NPT and NVE)
— JAC production (NPT and NVE)
— STMV production (NPT and NVE)

e Generalized Born (GB):
- myoglobin
— nucleosome

where the statistical ensembles NPT and NVE specify the fixed
quantities: Namely, the total number of particles (N) is constant in

https://orcid.org/0000-0002-6224-2860
https://orcid.org/0000-0002-6542-853X
https://orcid.org/0000-0002-6765-1604
https://orcid.org/0000-0002-1200-2754
https://doi.org/10.1145/3569951.3597553
https://doi.org/10.1145/3569951.3597553
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3569951.3597553&domain=pdf&date_stamp=2023-09-10

PEARC °23, July 23-27, 2023, Portland, OR, USA

both, and in NPT pressure (P) and temperature (T) are conserved
quantities, whereas total energy (E) and volume (V) are conserved in
NVE. The computational cost of pressure and temperature control in
NPT MD is nonzero but modest in comparison to the algorithmically
more straightforward NVE MD [1]. Both ensembles are important
for biomolecular simulations [10].

Experiments were performed on the Pitzer system at OSC [3].
Tests were performed on 48-core Cascade Lake nodes each with 2
NVIDIA V100 GPUs.

Tests were performed with three MPI implementations:

(1) MVAPICH2 2.3.6 [9]
(2) MVAPICH2-GDR 2.3.7
(3) HPC-X OpenMPI 3.1.6

Note that MVAPICH2-GDR and HPC-X are both CUDA-aware
MPI implementations, meaning that GPU buffers can be passed
directly to MPI functions, while MVAPICH2 is not CUDA-aware.

3 PERFORMANCE ANALYSIS

To better understand the performance characteristics of Amber, we
began by profiling a run of Amber with, JAC production (NPT), one
of the benchmarks in the Amber20 Benchmark Suite, on 2 nodes
with 1 process and 1 GPU per node.

Profiling with ARM MAP [8] shows that a large portion of time
was being spent in MPI communication and device-to-host com-
munication. Figure 1 shows that the most expensive functions for
this benchmark are MPI_Allreduce and cudaMemcpy. Figure 1 (b)
shows the call stack; we can see that these functions are being
called from the gpu_allreduce function.

Listing 1 shows pseudocode for the relevant part of the
gpu_allreduce function. The allreduce is performed in three steps.
The data is initially on the device, so it is copied to the host. Then,
an allreduce is performed among all of the host devices. Once it
has completed, the data is copied back to the device.

Listing 1: gpu_allreduce pseudocode

cudaMemcpy Device-to-Host
MPI_Allreduce Host-to-Host
cudaMemcpy Host-to-Device

4 MODIFICATIONS

As discussed in Section 3, the most expensive routines in our testing
were the Host <> Device communication and MPI_Allreduce called
from gpu_allreduce.

Since the data is stored on the device, we can reduce the time
spent in gpu_allreduce, by communicating directly between de-
vices on different hosts, rather than by copying from device to host,
then host to host, and back to device.

Listing 2 shows the modified algorithm for gpu_allreduce. First,
we ensure that all of the devices have reached the same point in the
code. Then, we perform an allreduce directly between buffers on
the devices. Finally, Amber requires that the buffer be up-to-date
on the host so we still perform the copy from the device to the host.
This modified algorithm reduces the amount of data that needs to
be transferred between the device and the host.

201

Khuvis, et al.

Selftime
41.9% [T
289

| Total | MPI
2n.9%

| Function

getrusage
uname

pvt_mpi_allgathervec [iniined]
<unknown> from Jusr/lib64/libcuda.so.450.80.02

% for_set_fpe_
<unknown> from /apps/cudaf10.2.89)/targets/x86_64-linuxlibflibcufft.50.10.1.2.89

pbc_mod::pressure_scale_crds
gpu_download_frc_

__svml_sincos4_I9

runmd_mod:runmd
gpu_calculate_kinetic_energy_

gpu_upload_vel_

1.0%
0.4%

gti_finalize_force_virial_
ba0c:radix_sort::Probleminstance<bA0c::util:MultiBuffer<2,unsigned int,unsigned int:

Showing data from 2,000 samples taken over 2 processes (1000 per process)

(a) Functions with largest exclusive times
| MPI

Total core time | Function(s) on line
- % pmemd.cuda.MPI [program]
-/ pmemd
~ runmd_mod::runmd
~ pme_force_mod::pme_force

v gpu_alireduce gti_finalize_force_viri..
v GpuBuffer<long long>::Download(l...

> cudaMemcpy

| Position

pmemd.F90:75
pmemd.F90:866
runmd.F90:1536
pme_force F90:423
gpu.cpp7915
gpuBuffer.n:205
gpu.cpp:7916
gpu.cpp:7918
gti_{95.cpp:1633

32,9 ETETVITEY FET——TIY
28 4% [T T———
7.4% PRI T AT
1.0v TR
<01 I
8.15 [T TR T T
235 [TRTTMRTT T
1.8% TR TTTRTET
+.6% NNETETE RN
+.6% INTETETETIT
5.9% IPTE IR T [T
3.0 I MENTTTETERTT
1.4%|

> GpuBufferclong long>:Upload(lon...
> ik_RemoveTINetForce(gti_gpuCont...
> 1 other

pme_force F90:469
pme_force F80:419
pme_force.F90:418
pme_force Fg0:417

> pme_force_mod::dist_enes_virs_net...
> icc_CalculateElecRecipForceEnergy...
> kPMEGetGridWeights

> gti_build_nl_list_

> 9 others

runmd.F90:2445
runmd.F90:1659
runmd.F90:1986

> gpu_calculate_kinetic_energy_
> barostats_mod::mebar _trial
> gpu_update_

(b) Call stack

Figure 1: MAP profile of JAC_production_NPT_4fs bench-
mark on 2 nodes, 1 process per node.

Listing 2: Modified gpu_allreduce pseudocode

cudaDeviceSynchronize
MPI_Allreduce Device-to-Device
cudaMemcpy Device-to-Host

The algorithmic modification is straightforward and, in fact, in-
volved only five lines of Amber C++ code. To put this in context, the
concomitant changes for the program output and the installation
recipe, although conceptually trivial in comparison, were three
times the size in Fortran90 and CMake code. We reiterate that the
initial Amber GPU program and the direct GPU-to-GPU communi-
cation technology were both circa 2011. However marrying these
capabilities was not achieved until this framework provided the
software middleware to facilitate the necessary algorithmic revi-
sion. Furthermore, it is thus available for MVAPICH2-GDR, HPC-X
OpenMP], and future MPIs.

5 RESULTS

We expect that the use of a CUDA-aware MPI implementation can
reduce the time spent in Amber by reducing the amount of host <
device communication.

Figures 2—-6 show the performance of each of the benchmarks
from Section 2. For each benchmark, throughput is given in nanosec-
onds of MD simulation time per day of wallclock time (ns/day) on

Optimizing Amber for Device-to-Device GPU Communication

2, 4, and 8 nodes. For each of these configurations, we show results
for MVAPICH2 with the original code, and then HPC-X OpenMPI,
MVAPICH2, and MVAPICH2-GDR with the modified code.

We find that for most benchmarks MVAPICH2 gives the lowest
throughput, but optimal throughput is achieved with MVAPICH2-
GDR. For instance, Figure 2 (a) shows performance of the Cellulose
production (NPT) benchmark. Running on 8 Cascade Lake nodes,
MVAPICH?2 gives a throughput of 28.51 ns/day with the original
code and 24.92 ns/day with the modified code. Using the CUDA-
aware MPI implementations gives an increased throughput of 52.4
ns/day with HPC-X OpenMPI and 64.28 ns/day with MVAPICH2-
GDR. As expected, Figures 2-5 show slightly higher throughput
for NVE relative to NPT.

To summarize our results, below is the mean throughput across
all the benchmarks for each implementation:

MVAPICH2 (original code): 192.5 ns/day
MVAPICH? (modified code): 201.4 ns/day
HPC-X OpenMPI (modified code): 234.7 ns/day
MVAPICH2-GDR (modified code): 262.9 ns/day

On average across all benchmarks we see a ~36% improvement
in performance from the original code to the modified code with
device-to-device communication using MVAPICH2-GDR.

In particular, we see a large improvement in the eight PME bench-
marks where the average throughput for each implementation is:

MVAPICH2 (original code): 118.2 ns/day
MVAPICH?2 (modified code): 120.3 ns/day
HPC-X OpenMPI (modified code): 197.2 ns/day
MVAPICH2-GDR (modified code): 217.8 ns/day

The average performance improvement from the original code with
MVAPICH?2 to the modified code with MVAPICH2-GDR across all
the PME benchmarks was ~84%.

As is evident from the Figures, Amber does not scale well. All the
PME results show either no significant performance gain or some
loss. Only for the modestly sized, 25095 atoms, GB nucleosome
benchmark is the scaling greater than one; see Figure 6 (b). And
for the small, 2492 atoms, GB myoglobin benchmark, the scaling
is significantly less than one. Although Amber recommends using
multiple GPUs only for enhanced sampling (e.g., replica exchange
where each GPU in a multiple GPU job executes a single computa-
tionally independent simulation from a pool of methodologically
coupled simulations), many other MD techniques would benefit
from a scalable multi-GPU capability, such as long time-scale MD,
free energy calculations (a field with especially intense activity in
the Amber community [13]), conformational sampling, and drug
discovery in general. The poor scaling is partly a consequence of
the limited availability of both hardware and software that sup-
ports the development of multi-GPU algorithms as presented and
discussed in Section 4, in particular this framework.

6 CONCLUSIONS

By profiling Amber20 benchmarks, we found that the most expen-
sive functions in the main CUDA molecular dynamics program of
the AMBER software suite were MPI_Allreduce and cudaMemcpy
called from gpu_allreduce.

Modifying the gpu_allreduce function so that MPI_allreduce
communicates directly between GPU buffers reduces the amount

202

PEARC ’23, July 23-27, 2023, Portland, OR, USA

w (=)}
o o

N
o

Throughput (ns/day)
w
o

20
10
0
Node
(a) NPT
70
60
7
T 50
i)
S
w 40
3
Q
530
3
Q
€20
10
0
4
Node
(b) NVE

Figure 2: Performance comparison of Cellulose production
benchmarks.
B MV-GDR (modified code) @ MV2 (modified code)
B HPC-X (modified code) @ MV2 (original code)

of host < device communication with CUDA-aware MPI imple-
mentations.

As we observed in Section 5, modifying the gpu_allreduce and
using MVAPICH2-GDR, increases the throughput of Amber by an
average of approximately 36% over the whole set of ten benchmarks
and by 84% for the PME subset of eight benchmarks.

The algorithmic modification involved five lines of application
code. This underscores the power of frameworks and the collabora-
tive approach: a substantial performance improvement was enabled
via the layered paradigm and implemented with a surgical proce-
dure.

ACKNOWLEDGMENTS

The authors would like to thank Amber developer Thomas E.
Cheatham, III for his willingness to collaborate on the project.
This work is supported by the National Science Foundation grant
#1931537.

PEARC °23, July 23-27, 2023, Portland, OR, USA

Khuvis, et al.
250
= 200 =
s s
<150 =
=3 3
£ g
2100 g
e <
F S
50
0
2 4 8
Node Node
(a) NPT () NPT
250
) =
200)
= 150 et
£ £
(=} o
3 100 g
F S
50
0
2 4 8 4
Node Node
(b) NVE (b) NVE
Figure 3: Performance comparison of FactorIX production Figure 4: Performance comparison of JAC production
benchmarks. benchmarks.
B MV-GDR (modified code) @ MV2 (modified code) B MV-GDR (modified code) @ MV2 (modified code)
B HPC-X (modified code) @ MV2 (original code) B HPC-X (modified code) @ MV2 (original code)

203

Optimizing Amber for Device-to-Device GPU Communication PEARC °23, July 23-27, 2023, Portland, OR, USA

1000
20
B > 800
i3 4
215 %
< = 600
3 2
510 &
3 3 400
£ <
5 200
0 0
2 4 8 4
Node Node
(a) NPT (a) myoglobin
25
20 z
ES3 i3
T1s b
2 g
g 10 g
£ S
5
0
2 4 8 4
Node Node
(b) NVE (b) nucleosome
Figure 5: Performance comparison of STMV production Figure 6: Performance comparison of GB benchmarks.
benchmarks. B MV-GDR (modified code) @ MV2 (modified code)
B MV-GDR (modified code) @ MV2 (modified code) B HPC-X (modified code) @ MV2 (original code)

B HPC-X (modified code) @ MV2 (original code)

204

PEARC °23, July 23-27, 2023, Portland, OR, USA

REFERENCES

[1] M.P. Allen and D. J. Tildesley. 1987. Computer Simulation of Liquids. Clarendon

[2

]

Press, Oxford.

D.A. Case, H.M. Aktulga, K. Belfon, LY. Ben-Shalom, J.T. Berryman, S.R. Brozell,
D.S. Cerutti, T.E. Cheatham, III, G.A. Cisneros, VW.D. Cruzeiro, T.A. Darden,
R.E. Duke, G. Giambasu, M.K. Gilson, H. Gohlke, AW. Goetz, R. Harris, S. Izadi,
S.A. Izmailov, K. Kasavajhala, M.C. Kaymak, E. King, A. Kovalenko, T. Kurtzman,
TS. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, M. Machado, V. Man,
M. Manathunga, K.M. Merz, Y. Miao, O. Mikhailovskii, G. Monard, H. Nguyen,
K.A. O’'Hearn, A. Onufriev, F. Pan, S. Pantano, R. Qi, A. Rahnamoun, D.R. Roe, A.
Roitberg, C. Sagui, S. Schott-Verdugo, A. Shajan, J. Shen, C.L. Simmerling, N.R.
Skrynnikov, J. Smith, J. Swails, R.C. Walker, J. Wang, J]. Wang, H. Wei, R.M. Wolf,
X. Wu, Y. Xiong, Y. Xue, D.M. York, S. Zhao, and P.A. Kollman. 2020. Amber 2020.
https://ambermd.org. University of California, San Francisco.

Ohio Supercomputer Center. 1987. Ohio Supercomputer Center. http://osc.edu/
ark:/19495/f5s1ph73

Amber Project Contributors. 2023. GPU overview and brief history. Amber Project.
Retrieved February 27, 2023 from https://ambermd.org/GPUSupport.php

Paul Stewart Crozier, Gilad Shainer, Ali Ayoub, Pak Lui, Tong Liu, Chris-
tian Robert Trott, and Greg Scantlen. 2011. The Development of Mellanox -
NVIDIA GPUDirect over InfiniBand - a New Model for GPU to GPU Communi-
cations. (January 2011). https://www.osti.gov/biblio/1120826

GROMACS development team. 2022. Highlights. GROMACS Project. Retrieved
February 27, 2023 from https://manual.gromacs.org/documentation/2022/release-
notes/2022/major/highlights.html

Andreas W. Gotz, Mark J. Williamson, Dong Xu, Duncan Poole, Scott Le Grand,
and Ross C. Walker. 2012. Routine Microsecond Molecular Dynamics Simula-
tions with AMBER on GPUs. 1. Generalized Born. Journal of Chemical The-
ory and Computation 8, 5 (2012), 1542—-1555. https://doi.org/10.1021/ct200909j
arXiv:https://doi.org/10.1021/ct200909j PMID: 22582031.

205

—
)

—
o)

[10

[11

[12

[13

[14

]

Khuvis, et al.

ARM Ltd. 2022. ARM MAP. https://www.linaroforge.com

Dhabaleswar Kumar Panda, Hari Subramoni, Ching-Hsiang Chu, and Moham-
madreza Bayatpour. 2021. The MVAPICH project: Transforming research into
high-performance MPI library for HPC community. Journal of Computational
Science 52 (2021), 101208. https://doi.org/10.1016/j.jocs.2020.101208 Case Studies
in Translational Computer Science.

Daniel R. Roe and Bernard R. Brooks. 2020. A Protocol for Preparing Explicitly
Solvated Systems for Stable Molecular Dynamics Simulations. The Journal of
Chemical Physics 153 (2020), 054123. https://doi.org/10.1063/5.0013849
Romelia Salomon-Ferrer, Andreas W. Gotz, Duncan Poole, Scott Le Grand, and
Ross C. Walker. 2013. Routine Microsecond Molecular Dynamics Simulations with
AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. Journal of Chemical
Theory and Computation 9, 9 (2013), 3878-3888. https://doi.org/10.1021/ct400314y
arXiv:https://doi.org/10.1021/ct400314y PMID: 26592383.

Tamar Schlick, Stephanie Portillo-Ledesma, Christopher G. Myers, Lauren Beljak,
Justin Chen, Sami Dakhel, Daniel Darling, Sayak Ghosh, Joseph Hall, Mikaeel
Jan, Emily Liang, Sera Saju, Mackenzie Vohr, Chris Wu, Yifan Xu, and Eva Xue.
2021. Biomolecular Modeling and Simulation: A Prospering Multidisciplinary
Field. Annual Review of Biophysics 50, 1 (2021), 267-301. https://doi.org/10.1146/
annurev-biophys-091720-102019 arXiv:https://doi.org/10.1146/annurev-biophys-
091720-102019 PMID: 33606945.

Hsu-Chun Tsai, Tai-Sung Lee, Abir Ganguly, Timothy J. Giese, Maximil-
ian CCJC Ebert, Paul Labute, Kenneth M. Jr. Merz, and Darrin M. York.
2023. AMBER Free Energy Tools: A New Framework for the Design of Op-
timized Alchemical Transformation Pathways. Journal of Chemical Theory
and Computation 19, 2 (2023), 640-658. https://doi.org/10.1021/acs.jctc.2c00725
arXiv:https://doi.org/10.1021/acs.jctc.2c00725 PMID: 36622640.

Hao Wang, Sreeram Potluri, Miao Luo, Ashish Kumar Singh, Sayantan Sur, and
Dhabaleswar K. Panda. 2011. MVAPICH2-GPU: optimized GPU to GPU com-
munication for InfiniBand clusters. Comput Sci Res Dev 26 (2011), 257-266.
https://doi.org/10.1007/s00450-011-0171-3

http://osc.edu/ark:/19495/f5s1ph73
http://osc.edu/ark:/19495/f5s1ph73
https://ambermd.org/GPUSupport.php
https://www.osti.gov/biblio/1120826
https://manual.gromacs.org/documentation/2022/release-notes/2022/major/highlights.html
https://manual.gromacs.org/documentation/2022/release-notes/2022/major/highlights.html
https://doi.org/10.1021/ct200909j
https://arxiv.org/abs/https://doi.org/10.1021/ct200909j
https://www.linaroforge.com
https://doi.org/10.1016/j.jocs.2020.101208
https://doi.org/10.1063/5.0013849
https://doi.org/10.1021/ct400314y
https://arxiv.org/abs/https://doi.org/10.1021/ct400314y
https://doi.org/10.1146/annurev-biophys-091720-102019
https://doi.org/10.1146/annurev-biophys-091720-102019
https://arxiv.org/abs/https://doi.org/10.1146/annurev-biophys-091720-102019
https://arxiv.org/abs/https://doi.org/10.1146/annurev-biophys-091720-102019
https://doi.org/10.1021/acs.jctc.2c00725
https://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.2c00725
https://doi.org/10.1007/s00450-011-0171-3

	Abstract
	1 Introduction
	2 Experimental Setup
	3 Performance analysis
	4 Modifications
	5 Results
	6 Conclusions
	Acknowledgments
	References

