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1. Introduction

Accurate cradle-to-gate life cycle assessment (LCA) is
needed to inform part design, manufacturing process selection 
[1,2], and process research and development that reduces 
environmental impacts [3]. Unit manufacturing process (UMP) 
inventory data available from the literature and established life 
cycle inventory (LCI) databases (e.g., ecoinvent, [4]) typically 
attribute impacts for a given process class as a point value (or 
a distribution) per unit of mass processed. Modeled 

environmental impacts might vary by geography but typically 
only by accounting for the emissions intensity of the local 
electricity grid. Such models might be appropriate when 
estimating the scale of industry-wide impacts but could be 
misleading when used to make manufacturing decisions. For 
many processes, impacts scale poorly with the mass processed, 
e.g., sheet metal stamping [5], and facility-level economies of
scale and tipping points introduce non-linearities to the
relationship between impacts and production volume [6]. Also,
process impacts can vary greatly with the settings, brand/
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Abstract

Informed decision-making for sustainable manufacturing requires accurate manufacturing process environmental impact models with uncertainty 
quantification (UQ). For emerging manufacturing technologies, there is often insufficient process data available to derive accurate data-driven 
models. This paper explores an alternative mechanistic modeling approach using easy-to-access data from a given machine to perform Bayesian 
inference and reduce the uncertainty of model parameters. First, we derive mechanistic models of the cumulative energy demand (CED) for 
making aluminum (AlSi10) and nylon (PA12) parts using laser powder bed fusion (L-PBF). Initial parametric uncertainty is assigned to the model 
inputs informed by literature reviews and interviews with industry experts. Second, we identify the most critical sources of uncertainty using 
variance-based global sensitivity analyses; therefore, reducing the dimension of the problem. For metal and polymer L-PBF, critical uncertainty 
is related to the adiabatic efficiency of the process (a measure of the efficiency with which the laser energy is used to fuse the powder) and the 
recoating time per layer between laser scans. Data pertinent to both of these parameters include the part geometry (height and volume) and total 
build time. Between three and eight data points on part geometry and build time were collected on two different L-PBF machines and Bayesian 
inference was performed to reduce the uncertainty of the adiabatic efficiency and recoating time per layer on each machine. This approach was 
validated by subsequently taking direct parameter measurements on these machines during operation. The delivered electricity uncertainty is 
reduced by 40-70% after performing inference, highlighting the potential to construct accurate energy and environmental impact models of 
manufacturing processes using small easy-to-access datasets without interfering with the operations of the manufacturing facility.
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model, and generation of the machine. These issues have led to 
criticism that LCIs have excessive generality and inaccurate 
linearities [6,7]. To mitigate these issues, we can generate high-
fidelity impact models for specific UMP equipment. 

To model specific equipment, machine learning (ML) 
approaches can be used to construct data-driven models [8]. 
Among many examples, Susto and co-workers applied multiple 
classifier ML for predictive maintenance [9], and Kim and co-
workers applied dimensional reduction techniques with ML-
based detection methods for identifying faulty products (silicon 
wafers) [10]. For additive manufacturing (AM), di Angelo and 
di Stefano proposed a neural network with two hidden layers to 
estimate build time for fused deposition modeling [11]. Qin and 
co-workers proposed a merged neural network structure to 
predict the energy consumption of a polymer laser powder bed 
fusion (L-PBF) system [12]. Elsewhere, Kellens and co-
workers proposed a linear regression model with the features 
engineered based on knowledge of the process physics to 
estimate build time for polymer L-PBF based on real build 
trials [13]. Data-driven models can handle high dimensional 
problems; however, large training datasets are often required 
for making accurate predictions. For many processes, 
particularly emerging technologies such as AM, large datasets 
on a specific machine are not available and data collection is 
difficult without disturbing work patterns; e.g., many 
manufacturers have yet to implement cloud-based device level 
data storage [14].  

Mechanistic models provide an alternative approach but 
typically make an idealized and inflexible model form 
assumption that requires tuning of many input parameters to 
the specific machine. For example, Yi and co-workers 
proposed a detailed build time and energy consumption model 
for metal L-PBF based on the working state of individual 
components; e.g., the platform motor and laser device [14]. 
While the model is accurate, it was tailored to the machine 
under study and would require recalibration if applied to other 
machines. Calibration requires an extensive understanding of 
the machine components, which limits usability. Elsewhere, 
Baumers and co-workers constructed a mechanistic model of 
build time, process energy use, and cost for metal L-PBF. 
Several key parameters in their model (e.g., printing time per 
voxel) were estimated using linear regression [15].  

Using both ML and mechanistic models, uncertainty 
quantification (UQ) has been studied as part of AM process 
improvement efforts [16]; however, UQ has been neglected in 
environmental impact modeling of AM. Thus, in this article, 
our contributions are: 
 Tailoring mechanistic models of cumulative energy demand 

(CED) to specific L-PBF machines. 
 Conducting forward and inverse UQ using variance-based 

global sensitivity analysis and Bayesian inference, reducing 
uncertainty with small machine-specific datasets. 
We note that Monte Carlo analysis alone has been used 

routinely in LCA studies (e.g., [17, 18]) to quantify the 
uncertainty of environmental impacts based on the uncertainty 
of input parameters. Bayesian inference allows the uncertainty 
of the environmental impacts to be quantified and updated in a 
mathematically rigorous manner as more data is collected [19]. 

2. Methods 

We present a mechanistic model for predicting cradle-to-
gate environmental impacts of L-PBF (Section 2.1), the initial 
uncertainty assigned to model inputs and parameters (Section 
2.2), the application of variance-based sensitivity analysis to 
identify the key process uncertainty (Section 2.3), and setup of 
the Bayesian framework for reducing uncertainty with limited 
machine-specific data (Section 2.4). 

2.1. A mechanistic model of impacts in L-PBF 

We use a mechanistic model of the environmental impacts 
associated with L-PBF reported by Liao et al. [20], Eq. 1, where 
manufacturing environmental impacts (I) are normalized per 
part (p.p.). For simplicity, we exclude post-processing here. 

𝐼𝐼𝑝𝑝.𝑝𝑝. = 𝐼𝐼𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝.𝑝𝑝. + 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝.𝑝𝑝. + 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝.𝑝𝑝. +
𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝑝𝑝.𝑝𝑝.  

(1) 

Previous analyses have shown environmental impacts of L-
PBF are driven by electrical energy requirements [3, 20]. 
Therefore, we focus on Ienergy p.p. in Eq. 1. Derivations of other 
terms can be found in Appendix A. Equations 2-3 define the 
direct energy term. 

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝.𝑝𝑝. = 𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝.𝑝𝑝.  (2) 

𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝.𝑝𝑝. = 𝑃𝑃0 (1
𝑁𝑁 ⌈ 𝑁𝑁

𝑁𝑁0
⌉𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑢𝑢𝑢𝑢 + 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝.𝑝𝑝. + 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝.𝑝𝑝.) +

𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝.𝑝𝑝. + 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝.𝑝𝑝
𝜂𝜂𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

  

(3) 

Here, ielectricity is the weighted average intrinsic impact of 
electricity (8.52 MJ/kWh for the U.S.) [21, 22], Welectricity p.p. is 
the delivered electricity normalized over the batch size, N, and 
N0 is the maximum number of parts nested in the machine. 
Electrical power is modeled in Eq. 3 as a stable baseload (P0) 
across the warm-up time (Twarm-up, 0.25 h for metals and 2 h for 
polymers), laser-powder exposure time (Texposure), and total 
recoating time (Trecoat). Baseload power is supplied for running 
equipment to support the process (e.g., control unit, gas pumps, 
heaters, and chiller, which is often physically separate from the 
machine). Additional variable power is due to process physics: 
Plaser across Texposure at 40% efficiency in metal L-PBF (for fiber 
lasers) and 10% efficiency in polymer L-PBF (for CO2 lasers), 
and Pheat across Trecoat for polymer L-PBF to recoat and heat the 
newly laid down powder. Negligible power is required during 
the set-up (Tset-up) and cool-down (Tcool-down) time. This baseload 
plus variable power structure is common for many processes 
and validated for L-PBF as described by Liao et al. [20]. 

Equations 4-5 estimate the remaining elements in Eq. 3. 
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝.𝑝𝑝. = 1

𝑁𝑁 ⌈ 𝑁𝑁
𝑁𝑁0

⌉ 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝐻𝐻0
𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

∙ 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  (4) 

𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝.𝑝𝑝. = 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝑓𝑓0𝜂𝜂𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚̇𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  (5) 

Here, Hpart is part height, Llayer is layer thickness, Tlayer is the 
recoating time per layer, Mpart is part mass, H0 is the insulation 
layer height to prevent warping (13 mm for polymers and 0 mm 
for metals), and f0 is a correction factor for support material 
(1 for polymers and Y for metals, where Y is the process yield).  

To calculate Texposure, we adopt the adiabatic efficiency 
(ηadiabatic) concept [23], defined as the ratio between the actual 
and adiabatic build rates (Eq. 6), where 𝑚̇𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is calculated 
assuming no heat losses to the surrounding powder and no 
remelting/resintering. Gutowski and co-workers found the 
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adiabatic efficiency for the same material is similar across 
different L-PBF machines. Therefore, Texposure depends on 
ηadiabatic, total laser power (Plaser), the laser-powder absorption 
coefficient (αmat), material specific heat (cp), melting (metals) 
or sintering (polymer) temperature (Tempm), and chamber 
heating temperature (Tempc, ~50°C for AlSi10 and ~170°C for 
PA120), and (for metals) the latent heat of melting (Em).  

𝑚̇𝑚𝑐𝑐𝑎𝑎𝑤𝑤𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑤𝑤𝑤𝑤 = 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝛼𝛼𝑚𝑚𝑚𝑚𝑝𝑝
𝑐𝑐𝑒𝑒(𝑇𝑇𝑤𝑤𝑐𝑐𝑝𝑝𝑚𝑚−𝑇𝑇𝑤𝑤𝑐𝑐𝑝𝑝𝑐𝑐)+𝐸𝐸𝑚𝑚

  (6) 

Table 1 presents the properties used to calculate the 
exposure time for the two materials studied in this article. 

Table 1: Material properties for selected materials. 

Parameter Al-Si10 PA12 
Material absorption rate, αmat 0.62 0.90 
Specific heat, cp 963 J/kg K 2500 J/kg K 
Melting or sintering temp., Tempm 613°C 180°C1 
Typical chamber temp., Tempc 50°C 170°C 
Enthalpy of melting, Em 389 kJ/kg N/A2 

Notes: 1Sintering temperature for PA12. 2For polymer L-PBF, the powder is 
only sintered, so the enthalpy of melt is modeled as 0 kJ/kg. 

2.2. Model parameters with uncertainty 

The model presented in Section 2.1 is applicable across a 
range of L-PBF machines; however, without prior knowledge 
of the part design and specific L-PBF machine settings, there is 
considerable uncertainty associated with the model parameters. 
Here, input parameters are modeled using uniform distributions 
reflecting knowledge only about the upper and lower bound 
parameter values. These bounds were derived as conservative 
ranges from the literature (e.g., ηadiabatic=3.6-8.0% for AlSi10 
[23]) and validated by metal and polymer L-PBF industry 
experts. Table 2 presents the resulting parameter distributions. 

Table 2: Initial model parameter uncertainty. 

Parameter1 Uncertainty2 
Metal L-PBF Polymer L-PBF 

Average part cross-sectional 
area per build3, Vpart/Hpart  

[10, 100] cm2 

Recoating time per layer, Tlayer [0, 20] sec [10, 30] sec 
Adiabatic efficiency, ηadiabatic [1%, 15%] 
Process yield, Y [50%, 100%] 
Layer thickness, Llayer [30, 90] μm [60,180] μm 
Laser power, Plaser [250, 2000] W [50, 100] W 

Notes: 1Machine baseload power (P0) not modeled as a distribution (estimated 
from machine specifications). 2Uniform distribution applied to listed 
parameters with interval indicating upper/lower bounds. 3Average part cross-
sectional area characterizes utilization of bed area. Larger ratio indicates higher 
utilization (and shorter parts for same part volume).  

To demonstrate the model, we apply it to the case presented 
by Faludi et al. [3] in which they printed 12 small AlSi10 
turbine blades using a Renishaw AM250 machine. Using 
Monte Carlo analysis with 10,000 samples, we generate model 
results based only on the part specifications, including part 
volume (20.62 cm3) and height (3 cm, estimated from the 
image), baseload (1460 W) and laser (250 W, from machine 
specifications) power, and layer thickness (30 μm) from build 
specifications. Figure 1a (left) shows the electrical energy to 
print the turbine blades as measured by Faludi and co-workers, 
and a histogram representing our model prediction. The plot 
shows a left-skewed distribution with a wide 95% uncertainty 
band that nonetheless contains the measured energy. Figure 1a 
(right) shows reasonable agreement between their energy 

measurements and our model-predicted CED (see Appendix A 
for modeling of non-electricity impacts).  

Similarly, we use our model to predict the electrical energy 
requirements and CED for two more L-PBF prints: two 0.5:1 
scale AlSi10 NIST test artifacts [24] and a 2×2×1 cm PA12 
cuboid produced using an SLM280 and EOSP760 machine, 
respectively. Material and electricity requirements were 
measured, allowing a comparison to the model predictions, as 
shown in Figs. 1b and 1c. In all cases, measurements are within 
the 95% uncertainty band; however, modeled uncertainty is 
high, compromising the effectiveness of the model as a 
decision-making tool. Therefore, we next identify the key 
sources of uncertainty in the mechanistic model to then target 
machine-specific data collection to reduce the uncertainty. 

 
(a) Model vs. case study on a specific Renishaw AM250 machine [3] 

  
(b) Model vs. case study on a specific SLM280 machine 

 
(c) Model vs. case study on a specific EOSP760 machine 

Figure 1: Model results showing initial uncertainty propagation (from 
Table 2) vs. measured case study results. SLM280 and EOSP760 case studies 
conducted by the authors. 

2.3. Variance-based sensitivity analysis (Sobol indices) 

Figure 1 shows the model result as the propagation of the 
parametric uncertainty (Table 2). It is infeasible to collect high-
quality data on all aspects of the processes to reduce all 
parametric uncertainty. Thus, we collect limited additional data 
guided by variance-based global sensitivity analysis [25,26] on 
the mechanistic model of electricity requirements with the 
initial parametric uncertainty shown in Table 2.  

Equation 7 shows the calculation for the total effect Sobol 
index (STi, [27]) of manufacturing process parameter, Xi. STi is 
the fractional contribution to the total variance of the model 
result (Welectricity,p.p.) due to the variation of parameter Xi and any 
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parameters coupled with Xi (e.g., the combination between 
adiabatic efficiency and laser power). 

𝑆𝑆𝑇𝑇𝑖𝑖 = 1 −
𝑣𝑣𝑐𝑐𝑤𝑤𝑋𝑋~𝑖𝑖(𝐸𝐸𝑋𝑋𝑖𝑖(𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑝𝑝𝑙𝑙𝑒𝑒𝑐𝑐𝑒𝑒𝑝𝑝𝑙𝑙,𝑒𝑒.𝑒𝑒.|𝑋𝑋~𝑖𝑖))

𝑣𝑣𝑐𝑐𝑤𝑤(𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑝𝑝𝑙𝑙𝑒𝑒𝑐𝑐𝑒𝑒𝑝𝑝𝑙𝑙,𝑒𝑒.𝑒𝑒.)
  (7) 

Here, X~i denotes the set of parameters excluding Xi. The 
SALib library for Python is used to numerically estimate the 
Sobol indices [28]. Compared with one-at-a-time (OAT) 
sensitivity analysis, variance-based global sensitivity analysis 
can explore variable interactions and dependencies [26] and 
can capture the uncertainty distribution of manufacturing 
model parameters. The model parameters with the highest 
resulting Sobol sensitivity indices represent the key sources of 
uncertainty in the model output [29] and, subsequently, become 
the parameters of interest for the Bayesian framework with a 
focus to reduce the uncertainty of those key parameters. 

2.4. Bayesian inference 

The model parameters of interest (θ, identified via the 
sensitivity analysis), together with any collected machine-
specific data, y, should satisfy Bayes rule (Eqs. 8-9). 

𝑝𝑝(𝜃𝜃|𝑦𝑦) = 𝑝𝑝(𝑒𝑒|𝜃𝜃)𝑝𝑝(𝜃𝜃)
𝑝𝑝(𝑒𝑒)   (8) 

𝑝𝑝(𝜃𝜃|𝑦𝑦) ∝ 𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑝𝑝(𝜃𝜃)  (9) 
Here, p(θ) is the prior distribution for the corresponding θs 

from Table 2, p(θ|y) is the posterior distribution, p(y|θ) is the 
likelihood distribution, and p(y) is the evidence term acting as 
a normalizing constant. The unnormalized posterior (Eq. 9) can 
be derived by dropping the normalization term, p(y). 

The likelihood p(y|θ) provides a probabilistic measure on 
the mismatch between the collected data, y, and the prediction 
from the build time model, Tbuild(θ), equal to the sum of the total 
recoating and exposure times. Relative error (ε) between the 
collected data and model prediction (i.e., y=Tbuild(θ)·(1+ε), see 
Eq. 10), is modeled as a normal distribution centered at zero, 
with a standard distribution equal to 20% of the measurement 
value (ε ~ N(0,0.22)). This likelihood is based on a conservative 
estimate of the least root mean square error by fitting the build 
time model to the manufacturing data collected in Table 3. 

𝑇𝑇𝑐𝑐𝑐𝑐𝑤𝑤𝑐𝑐𝑎𝑎 = 𝑁𝑁(𝑇𝑇𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤𝑟𝑟𝑐𝑐,𝑝𝑝.𝑝𝑝 + 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝.𝑝𝑝)  (10) 

For a low dimensional problem such as the problem 
presented here, the sample space can be divided into equally 
spaced grid points. The unnormalized posterior (Eq. 9) can then 
be derived analytically at each grid point. The trapezoidal rule 
is applied to numerically estimate the area (for the 1-D 
problem) or the volume (for the 2-D problem) under the 
posterior over the sample space. The unnormalized posterior 
can then be normalized using the estimated area or volume. 

3. Results 

The Sobol indices results are presented in Section 3.1, the 
data collected on specific machines and subsequent Bayesian 
inference are presented in Sections 3.2 and 3.3, respectively, 
and the uncertainty reduction in the model-predicted electricity 
requirements is presented in Section 3.4. 

3.1. Global variance-based sensitivity analysis 

Figure 2 shows the Sobol indices for the six selected 
parameters featured in the mechanistic model: average cross-
sectional area, recoating time per layer, adiabatic efficiency, 
process yield, layer thickness, and laser power. The sensitivity 
analysis is based on printing a single 300 cm3 part. This part 
volume is analogous to printing a 3-cm tall part with an average 
cross-sectional area of 100 cm2, based on the height of the parts 
printed in two of the case studies in Section 2.2 and the upper-
bound of the uncertainty of the cross-sectional area in Table 2. 

 

 

Figure 2: Global variance-based sensitivity analysis (measured as total effect 
indices, STi) of key process parameters on predicted electricity requirements 

Figure 2 shows adiabatic efficiency (ηadiabatic) has the highest 
sensitivity for metal L-PBF; whereas, for polymer L-PBF, 
average cross-sectional area, layer thickness, and recoating 
time per layer have the greatest effect. The dominance of total 
recoating time in determining polymer L-PBF impacts [18] 
explains the related Sobol indices results: for a fixed volume, 
varying the average cross-sectional area changes the part height 
which, alongside the layer thickness, determines the number of 
layers which in turn, alongside the recoating time per layer, 
determines the total recoating time. Based on these results, we 
select recoating time per layer and adiabatic efficiency as the 
key parameters of interest. Next, we collect data pertinent to 
these parameters from two L-PBF machines (one metal and one 
polymer) to show how Bayesian inference can be used to 
reduce the model uncertainty for specific machines. 

3.2. Data collection for inference 

Table 3 summarizes the collected data. 

Table 3: Manufacturing data collected for two specific machines. 

AlSi10 Build 
Sheet 

Part geometry Batch 
size, N 

Parts 
nested, N0 

Build time, 
Tbuild [min] Volume, 

Vpart [cm3] 
Height, 
Hpart [cm] 

SLM280 - 1 12.73 3.06 2 2 109 
SLM280 - 2 57.09 3.91 2 2 448 
SLM280 - 3 6.46 3.06 4 4 283 
      

PA12 Build 
Sheet 

Volume, 
Vpart [cm3] 

Height, 
Hpart [cm] 

Batch 
size, N 

Parts 
nested, N0 

Build time, 
Tbuild [min] 

EOSP760 - 1 4293 48.2 1 1 1590 
EOSP760 - 2 1473 17.8 1 1 630 
EOSP760 - 3 5379 45.2 1 1 1200 
EOSP760 - 4 10156 41.7 1 1 1980 
EOSP760 - 5 7692 51.7 1 1 1920 
EOSP760 - 6 3424 43.4 1 1 1380 
EOSP760 - 7 3338 45.6 1 1 1800 
EOSP760 - 8 49273 55.2 1 1 4680 
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Machine-specific build data that were easy to collect were 
acquired from two industrial collaborators. These datasets 
comprised build sheets that describe single prints performed 
on the two machines. Each build sheet describes the total 
volume of the part, the maximum height of the part, the layer 
thickness, the laser power setting, and the build time. Three 
build sheets were acquired for a specific SLM280 machine 
printing AlSi10 and eight build sheets for a specific EOSP760 
machine printing PA12. 

3.3. Bayesian inference to reduce uncertainty 

Figure 3 shows the Bayesian inference prior and posterior 
contour results for adiabatic efficiency and recoating time per 
layer for the two machines for which data were collected. 

 

 
(a) Printing AlSi10 on a specific SLM280 machine 

 
(b) Printing PA12 on a specific EOSP760 machine 

Figure 3: Prior (Table 2) and posterior probability density functions (PDFs) 
for the manufacturing process parameter joint distribution. 

The posteriors show: (1) For the SLM280 machine, a region 
of highest probability around ηadiabatic=8% and a recoating time 
per layer of 11 s, and (2) For the EOSP760 machine, a region 
of highest probability around ηadiabatic=7.5% and recoating time 
per layer of 20 s. To validate these results, we conducted case 
studies to calculate the CED associated with printing an AlSi10 
NIST artifact and a PA12 cuboid on the same specific machines 
(Figs. 1b and 1c). In these studies, we measured electrical 
power during the build using a three-phase power meter (Fluke 
435ii), allowing direct measurement of recoating time per layer 
and indirect calculation of adiabatic efficiency (Eq. 6). Figure 
4 presents measured power for the SLM machine, showing a 
recoating time per layer of ~10 s and a calculated adiabatic 
efficiency of ~7% (marked by a red cross in Fig. 3a). For the 
EOS machine, a recoating time per layer of ~20 s and an 
adiabatic efficiency of ~7% (marked by a red cross in Fig. 3b) 
were found. Therefore, the hotspots within the posterior results 
in Fig. 3 correctly identified the likely adiabatic efficiency and 
recoating time per layer for these specific machines.  

 

 

Figure 4: Electrical power measurement on the SLM280 machine. 

3.4. Uncertainty reduction 

The posterior uncertainty on the adiabatic efficiency and 
recoating time per layer shown in Fig. 3 can be adopted to 
recalculate the model-predicted electricity requirements and 
CED shown in Figs. 1b and 1c. Figure 5 shows the uncertainty 
reduction before and after inference on the modeled electricity 
requirements for printing the AlSi10 NIST artifact and PA12 
cuboid. The 95% confidence interval has been reduced by 70% 
and 40% for the SLM280 and EOS machines, respectively. 

 

 
(a) AlSi10 NIST artifact using a specific SLM280 machine 

 
(b) PA12 cuboid using a specific EOSP760 machine 

Figure 5: Uncertainty quantification and reduction with Bayesian inference on 
the modeled electricity requirements. 

4. Discussion 

Informed decision-making for sustainable manufacturing 
requires accurate models of manufacturing process 
environmental impacts with UQ. Such accuracy likely requires 
tailoring of models to specific machines using device-level 
data. This work shows how using even a few easy-to-collect 
data points for a specific machine can reduce the uncertainty of 
calculated cradle-to-gate CED. Figure 6 shows how Bayesian 
inference reduces CED uncertainty for the NIST artifact and 
the PA12 cuboid. Inference shifts the CED mean from 194 to 
200 MJ (+3%) for the NIST artifact and from 81 to 85 MJ 
(+5%) for the PA12 cuboid. For the NIST artifact, the CED 
upper bound reduces from 90% greater than the mean before 
inference to ~30% greater afterwards. For the PA12 cuboid, the 
CED upper bound reduces from 45% greater than the mean 
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before inference to less than 30% greater afterwards. This 
reduced uncertainty can facilitate greater confidence in 
sustainable process selection. Our approach can be readily 
applied to assess other environmental impacts, such as global 
warming potential, which tends to correlate with CED [30].  

 

 

Figure 6: Breakdown of cradle-to-gate CED (with uncertainty) for the 
SLM280 (left) and EOSP760 (right) machine case studies. 

The Bayesian approach is particularly useful for sequential 
learning of the manufacturing parameters when limited data are 
available but a prior understanding of the model form and 
parameter values exists. Here, the Bayesian approach has been 
limited to reducing the parametric uncertainty of a mechanistic 
model of L-PBF as new part build data is acquired; however, 
Bayes factor could similarly be used to discriminate between 
different model structures with the probability of the different 
model structures being updated as more build data is collected. 
Similarly, with more data points there is the potential to model 
data noise on measurements as a random variable to be learned 
through Bayesian inference [31].   

The Bayesian approach is limited to using data collected on 
the same machine processing the same material using the same 
machine settings. However, this is often the case in industry 
where a single powder material is only used on a given L-PBF 
machine and consistent settings are established (by the machine 
manufacturer or user) to increase part quality. Furthermore, 
changes to the settings can be spotted using this Bayesian 
approach as that change will likely represent a radical shift in 
the high probability region of the posterior distribution.  

Global variance-based sensitivity analysis has been used to 
identify the key parametric uncertainty and reduce the 
dimension of the problem. This approach can also help guide 
research and development. For example, for metal L-PBF, 
adiabatic efficiency has by far the largest impact on process 
electricity requirements. This suggests that to reduce the 
impacts of metal L-PBF, the focus should be on optimizing the 
laser melting process to reduce remelting, improving the 
adiabatic efficiency. In contrast, for polymer L-PBF, the part 
cross-sectional area has the largest impact on the electricity 
requirement followed by layer thickness and recoating time per 
layer. Based on this finding, practitioners can in turn modify 
the design of the part so that more can be nested in one build, 
minimizing the number of layers required to finish all the parts. 
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Appendix A. Environmental impact model for L-PBF 

Please see https://remade.engin.umich.edu/UQ_UMP.pdf. 
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