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Abstract

Informed decision-making for sustainable manufacturing requires accurate manufacturing process environmental impact models with uncertainty
quantification (UQ). For emerging manufacturing technologies, there is often insufficient process data available to derive accurate data-driven
models. This paper explores an alternative mechanistic modeling approach using easy-to-access data from a given machine to perform Bayesian
inference and reduce the uncertainty of model parameters. First, we derive mechanistic models of the cumulative energy demand (CED) for
making aluminum (AlSi10) and nylon (PA12) parts using laser powder bed fusion (L-PBF). Initial parametric uncertainty is assigned to the model
inputs informed by literature reviews and interviews with industry experts. Second, we identify the most critical sources of uncertainty using
variance-based global sensitivity analyses; therefore, reducing the dimension of the problem. For metal and polymer L-PBF, critical uncertainty
is related to the adiabatic efficiency of the process (a measure of the efficiency with which the laser energy is used to fuse the powder) and the
recoating time per layer between laser scans. Data pertinent to both of these parameters include the part geometry (height and volume) and total
build time. Between three and eight data points on part geometry and build time were collected on two different L-PBF machines and Bayesian
inference was performed to reduce the uncertainty of the adiabatic efficiency and recoating time per layer on each machine. This approach was
validated by subsequently taking direct parameter measurements on these machines during operation. The delivered electricity uncertainty is
reduced by 40-70% after performing inference, highlighting the potential to construct accurate energy and environmental impact models of
manufacturing processes using small easy-to-access datasets without interfering with the operations of the manufacturing facility.

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 30th CIRP Life Cycle Engineering Conference

Keywords: Additive Manufacturing; Sobol indices; Bayesian inference; Power measurements; Cumulative energy demand

1. Introduction

Accurate cradle-to-gate life cycle assessment (LCA) is
needed to inform part design, manufacturing process selection
[1,2], and process research and development that reduces
environmental impacts [3]. Unit manufacturing process (UMP)
inventory data available from the literature and established life
cycle inventory (LCI) databases (e.g., ecoinvent, [4]) typically
attribute impacts for a given process class as a point value (or
a distribution) per unit of mass processed. Modeled

2212-8271 © 2023 The Authors. Published by Elsevier B.V.

environmental impacts might vary by geography but typically
only by accounting for the emissions intensity of the local
electricity grid. Such models might be appropriate when
estimating the scale of industry-wide impacts but could be
misleading when used to make manufacturing decisions. For
many processes, impacts scale poorly with the mass processed,
e.g., sheet metal stamping [5], and facility-level economies of
scale and tipping points introduce non-linearities to the
relationship between impacts and production volume [6]. Also,
process impacts can vary greatly with the settings, brand/
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model, and generation of the machine. These issues have led to

criticism that LCIs have excessive generality and inaccurate

linearities [6,7]. To mitigate these issues, we can generate high-
fidelity impact models for specific UMP equipment.

To model specific equipment, machine learning (ML)
approaches can be used to construct data-driven models [§].
Among many examples, Susto and co-workers applied multiple
classifier ML for predictive maintenance [9], and Kim and co-
workers applied dimensional reduction techniques with ML-
based detection methods for identifying faulty products (silicon
wafers) [10]. For additive manufacturing (AM), di Angelo and
di Stefano proposed a neural network with two hidden layers to
estimate build time for fused deposition modeling [11]. Qin and
co-workers proposed a merged neural network structure to
predict the energy consumption of a polymer laser powder bed
fusion (L-PBF) system [12]. Elsewhere, Kellens and co-
workers proposed a linear regression model with the features
engineered based on knowledge of the process physics to
estimate build time for polymer L-PBF based on real build
trials [13]. Data-driven models can handle high dimensional
problems; however, large training datasets are often required
for making accurate predictions. For many processes,
particularly emerging technologies such as AM, large datasets
on a specific machine are not available and data collection is
difficult without disturbing work patterns; e.g., many
manufacturers have yet to implement cloud-based device level
data storage [14].

Mechanistic models provide an alternative approach but
typically make an idealized and inflexible model form
assumption that requires tuning of many input parameters to
the specific machine. For example, Yi and co-workers
proposed a detailed build time and energy consumption model
for metal L-PBF based on the working state of individual
components; e.g., the platform motor and laser device [14].
While the model is accurate, it was tailored to the machine
under study and would require recalibration if applied to other
machines. Calibration requires an extensive understanding of
the machine components, which limits usability. Elsewhere,
Baumers and co-workers constructed a mechanistic model of
build time, process energy use, and cost for metal L-PBF.
Several key parameters in their model (e.g., printing time per
voxel) were estimated using linear regression [15].

Using both ML and mechanistic models, uncertainty
quantification (UQ) has been studied as part of AM process
improvement efforts [16]; however, UQ has been neglected in
environmental impact modeling of AM. Thus, in this article,
our contributions are:

o Tailoring mechanistic models of cumulative energy demand
(CED) to specific L-PBF machines.

e Conducting forward and inverse UQ using variance-based
global sensitivity analysis and Bayesian inference, reducing
uncertainty with small machine-specific datasets.

We note that Monte Carlo analysis alone has been used
routinely in LCA studies (e.g., [17, 18]) to quantify the
uncertainty of environmental impacts based on the uncertainty
of input parameters. Bayesian inference allows the uncertainty
of the environmental impacts to be quantified and updated in a
mathematically rigorous manner as more data is collected [19].

2. Methods

We present a mechanistic model for predicting cradle-to-
gate environmental impacts of L-PBF (Section 2.1), the initial
uncertainty assigned to model inputs and parameters (Section
2.2), the application of variance-based sensitivity analysis to
identify the key process uncertainty (Section 2.3), and setup of
the Bayesian framework for reducing uncertainty with limited
machine-specific data (Section 2.4).

2.1. A mechanistic model of impacts in L-PBF

We use a mechanistic model of the environmental impacts
associated with L-PBF reported by Liao et al. [20], Eq. 1, where
manufacturing environmental impacts (/) are normalized per
part (p.p.). For simplicity, we exclude post-processing here.

Ly p. = Lworkpiece pp. + lenergy pp. T lconsumantes p.p. + 1)

Leapitai equipment pp.

Previous analyses have shown environmental impacts of L-
PBF are driven by electrical energy requirements [3, 20].
Therefore, we focus on Leyergy pp. in Eq. 1. Derivations of other
terms can be found in Appendix A. Equations 2-3 define the
direct energy term.

Ienergy pp. = lelectricity Welectricity p.p. (2)
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Here, iciecrriciry 18 the weighted average intrinsic impact of
electricity (8.52 MJ/kWh for the U.S.) [21, 22], Weiectricity pp. 1S
the delivered electricity normalized over the batch size, N, and
Ny is the maximum number of parts nested in the machine.
Electrical power is modeled in Eq. 3 as a stable baseload (Py)
across the warm-up time (7 vam-up, 0.25 h for metals and 2 h for
polymers), laser-powder exposure time (7eyposure), and total
recoating time (7}ecoar). Baseload power is supplied for running
equipment to support the process (e.g., control unit, gas pumps,
heaters, and chiller, which is often physically separate from the
machine). Additional variable power is due to process physics:
Plaser across Toxposure at 40% efficiency in metal L-PBF (for fiber
lasers) and 10% efficiency in polymer L-PBF (for CO, lasers),
and Pheqr across Trecoar for polymer L-PBF to recoat and heat the
newly laid down powder. Negligible power is required during
the set-up (Zser-up) and cool-down (7coor-down) time. This baseload
plus variable power structure is common for many processes
and validated for L-PBF as described by Liao et al. [20].

Equations 4-5 estimate the remaining elements in Eq. 3.

L2y Hparc o, \ayer )

T, ==
recoatpp. — Iy, Liayer

Texpasure,p.p. = part/fonadiabaticmadiabatir (5)

Here, Hpu s part height, Lige, is layer thickness, Tger i the
recoating time per layer, M, is part mass, H; is the insulation
layer height to prevent warping (13 mm for polymers and 0 mm
for metals), and fj is a correction factor for support material
(1 for polymers and Y for metals, where Y is the process yield).

To calculate Texposure, We adopt the adiabatic efficiency
(Nadiabaiic) concept [23], defined as the ratio between the actual
and adiabatic build rates (Eq. 6), where M g4iqpatic 1S calculated
assuming no heat losses to the surrounding powder and no
remelting/resintering. Gutowski and co-workers found the
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adiabatic efficiency for the same material is similar across
different L-PBF machines. Therefore, Teposue depends on
Nadiabatic, total laser power (Piuser), the laser-powder absorption
coefficient (o), material specific heat (¢,), melting (metals)
or sintering (polymer) temperature (7emp,), and chamber
heating temperature (Temp,, ~50°C for AlSi10 and ~170°C for
PA120), and (for metals) the latent heat of melting (E,,).

Plaser@mat (6)

e =
adiabatic cp(Tempm—Tempc)+Em

Table 1 presents the properties used to calculate the
exposure time for the two materials studied in this article.

Table 1: Material properties for selected materials.

Parameter Al-Sil0 PA12
Material absorption rate, o, 0.62 0.90
Specific heat, ¢, 963 J/kg K 2500 J/kg K
Melting or sintering temp., Temp,,  613°C 180°C!
Typical chamber temp., Temp. 50°C 170°C
Enthalpy of melting, E,, 389 kl/kg N/A?

Notes: 'Sintering temperature for PA12. *For polymer L-PBF, the powder is
only sintered, so the enthalpy of melt is modeled as 0 kJ/kg.

2.2. Model parameters with uncertainty

The model presented in Section 2.1 is applicable across a
range of L-PBF machines; however, without prior knowledge
of the part design and specific L-PBF machine settings, there is
considerable uncertainty associated with the model parameters.
Here, input parameters are modeled using uniform distributions
reflecting knowledge only about the upper and lower bound
parameter values. These bounds were derived as conservative
ranges from the literature (e.g., 7adiabatic=3.6-8.0% for AlSil0
[23]) and validated by metal and polymer L-PBF industry
experts. Table 2 presents the resulting parameter distributions.

Table 2: Initial model parameter uncertainty.

Parameter’ Uncertainty”
Metal L-PBF Polymer L-PBF

[10, 100] cm?

Average part cross-sectional
area per build®, V,u/Hpur
Recoating time per layer, Tjyy.,
Adiabatic efficiency, Hudiabaric
Process yield, Y
Layer thickness, Liayer [30, 90] um [60,180] pm
Laser power, Piaser [250,2000] W [50, 100] W
Notes: 'Machine baseload power (P;) not modeled as a distribution (estimated
from machine specifications). 2Uniform distribution applied to listed
parameters with interval indicating upper/lower bounds. *Average part cross-
sectional area characterizes utilization of bed area. Larger ratio indicates higher
utilization (and shorter parts for same part volume).

[0, 20] sec [10, 30] sec
[1%, 15%]

[50%, 100%]

To demonstrate the model, we apply it to the case presented
by Faludi et al. [3] in which they printed 12 small AISil0
turbine blades using a Renishaw AM250 machine. Using
Monte Carlo analysis with 10,000 samples, we generate model
results based only on the part specifications, including part
volume (20.62 cm?) and height (3 c¢m, estimated from the
image), baseload (1460 W) and laser (250 W, from machine
specifications) power, and layer thickness (30 um) from build
specifications. Figure 1a (left) shows the electrical energy to
print the turbine blades as measured by Faludi and co-workers,
and a histogram representing our model prediction. The plot
shows a left-skewed distribution with a wide 95% uncertainty
band that nonetheless contains the measured energy. Figure 1a
(right) shows reasonable agreement between their energy

measurements and our model-predicted CED (see Appendix A
for modeling of non-electricity impacts).

Similarly, we use our model to predict the electrical energy
requirements and CED for two more L-PBF prints: two 0.5:1
scale AlISil10 NIST test artifacts [24] and a 2x2x1 cm PA12
cuboid produced using an SLM280 and EOSP760 machine,
respectively. Material and electricity requirements were
measured, allowing a comparison to the model predictions, as
shown in Figs. 1b and 1c. In all cases, measurements are within
the 95% uncertainty band; however, modeled uncertainty is
high, compromising the effectiveness of the model as a
decision-making tool. Therefore, we next identify the key
sources of uncertainty in the mechanistic model to then target
machine-specific data collection to reduce the uncertainty.

500

= Model distribution
— 95% model interval
—— Measured case

study results

160 | ™= Model prediction
== Measured case

study results

140
120
100
&0
a0
40
20

Trequency
15

=
=4

umulative energy demand [MJ]

O 25 50 75 100 125 150 175 200

Delivered electricity [MJ]

C

Powder Machine Electricity Consumables

(a) Model vs. case study on a specific Renishaw AM250 machine [3]

s00 =
= Model disiribution E 175 | ™= Model prediction
— 95% model interval | = Measured case
400 asured cas Z 150
Measured case 5 study results
N study results ERES
&' 300 =
% éd 100
3 200 CRRE
=
2 50
100 =
?—' 25
0 5 o mimem i—

0 25

C

50075 100 125 150 175 200
Delivered electricity [MI]

Powder Machine Electricity Consumables

(b) Model vs. case study on a specific SLM280 machine

700 o

= Model distribution
600 T = 95% model interval
soo |~ Mecasured case
study results

100 == Nodel prediction
= Measured case

20 study results

=

umulative encrgy demand [MJ]
2

4] 20 40 60 &0 w0 120
Delivered clectricity [MJ]

C

Machine

Powder

Electricity

(c) Model vs. case study on a specific EOSP760 machine

Figure 1: Model results showing initial uncertainty propagation (from
Table 2) vs. measured case study results. SLM280 and EOSP760 case studies
conducted by the authors.

2.3. Variance-based sensitivity analysis (Sobol indices)

Figure 1 shows the model result as the propagation of the
parametric uncertainty (Table 2). It is infeasible to collect high-
quality data on all aspects of the processes to reduce all
parametric uncertainty. Thus, we collect limited additional data
guided by variance-based global sensitivity analysis [25,26] on
the mechanistic model of electricity requirements with the
initial parametric uncertainty shown in Table 2.

Equation 7 shows the calculation for the total effect Sobol
index (S7;, [27]) of manufacturing process parameter, X;. St; is
the fractional contribution to the total variance of the model
result (Weteciricity,p.p.) due to the variation of parameter X; and any
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parameters coupled with X; (e.g., the combination between
adiabatic efficiency and laser power).

ST_ —1_ VarXNi(EXL-(Welectricity,p.pv|x~i)) (7)

t Var(welectricity,p.p.)

Here, X_; denotes the set of parameters excluding X;. The
SALib library for Python is used to numerically estimate the
Sobol indices [28]. Compared with one-at-a-time (OAT)
sensitivity analysis, variance-based global sensitivity analysis
can explore variable interactions and dependencies [26] and
can capture the uncertainty distribution of manufacturing
model parameters. The model parameters with the highest
resulting Sobol sensitivity indices represent the key sources of
uncertainty in the model output [29] and, subsequently, become
the parameters of interest for the Bayesian framework with a
focus to reduce the uncertainty of those key parameters.

2.4. Bayesian inference

The model parameters of interest (6, identified via the
sensitivity analysis), together with any collected machine-
specific data, y, should satisfy Bayes rule (Egs. 8-9).

_ pUI9P©) ®)
pOly) ===

p(81y) « p(y|6)p(6) ®

Here, p(6) is the prior distribution for the corresponding 6s
from Table 2, p(8|y) is the posterior distribution, p(y|6) is the
likelihood distribution, and p(y) is the evidence term acting as
a normalizing constant. The unnormalized posterior (Eq. 9) can
be derived by dropping the normalization term, p(y).

The likelihood p(y|6) provides a probabilistic measure on
the mismatch between the collected data, y, and the prediction
from the build time model, T.i(6), equal to the sum of the total
recoating and exposure times. Relative error (g) between the
collected data and model prediction (i.e., y=Thuia(6)-(1+¢), see
Eq. 10), is modeled as a normal distribution centered at zero,
with a standard distribution equal to 20% of the measurement
value (g ~ N(0,0.2%)). This likelihood is based on a conservative
estimate of the least root mean square error by fitting the build
time model to the manufacturing data collected in Table 3.

Tbuild = N(Trecoat,p.p + Texpasure,p.p) (10)

For a low dimensional problem such as the problem
presented here, the sample space can be divided into equally
spaced grid points. The unnormalized posterior (Eq. 9) can then
be derived analytically at each grid point. The trapezoidal rule
is applied to numerically estimate the area (for the 1-D
problem) or the volume (for the 2-D problem) under the
posterior over the sample space. The unnormalized posterior
can then be normalized using the estimated area or volume.

3. Results

The Sobol indices results are presented in Section 3.1, the
data collected on specific machines and subsequent Bayesian
inference are presented in Sections 3.2 and 3.3, respectively,
and the uncertainty reduction in the model-predicted electricity
requirements is presented in Section 3.4.

3.1. Global variance-based sensitivity analysis

Figure 2 shows the Sobol indices for the six selected
parameters featured in the mechanistic model: average cross-
sectional area, recoating time per layer, adiabatic efficiency,
process yield, layer thickness, and laser power. The sensitivity
analysis is based on printing a single 300 cm? part. This part
volume is analogous to printing a 3-cm tall part with an average
cross-sectional area of 100 cm?, based on the height of the parts
printed in two of the case studies in Section 2.2 and the upper-
bound of the uncertainty of the cross-sectional area in Table 2.
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Figure 2: Global variance-based sensitivity analysis (measured as total effect
indices, S7;) of key process parameters on predicted electricity requirements

Figure 2 shows adiabatic efficiency (7adiasaric) has the highest
sensitivity for metal L-PBF; whereas, for polymer L-PBF,
average cross-sectional area, layer thickness, and recoating
time per layer have the greatest effect. The dominance of total
recoating time in determining polymer L-PBF impacts [18]
explains the related Sobol indices results: for a fixed volume,
varying the average cross-sectional area changes the part height
which, alongside the layer thickness, determines the number of
layers which in turn, alongside the recoating time per layer,
determines the total recoating time. Based on these results, we
select recoating time per layer and adiabatic efficiency as the
key parameters of interest. Next, we collect data pertinent to
these parameters from two L-PBF machines (one metal and one
polymer) to show how Bayesian inference can be used to
reduce the model uncertainty for specific machines.

3.2. Data collection for inference

Table 3 summarizes the collected data.

Table 3: Manufacturing data collected for two specific machines.

AlSi10 Build Part geometry Batch  Parts Build time,
Sheet Volume, Height, size, N nested, Ny Tbuira [min]
Vpart [cm3] Hpare [em]

SLM280 - 1 12.73 3.06 2 2 109
SLM280 -2 57.09 391 2 2 448
SLM280 - 3 6.46 3.06 4 4 283
PA12 Build Volume, Height, Batch  Parts Build time,
Sheet Vyart[em®]  Hpa [cm]  size, N nested, Ny Tyuie [min]

EOSP760 - 1 4293 48.2 1 1 1590
EOSP760 - 2 1473 17.8 1 1 630
EOSP760 - 3 5379 45.2 1 1 1200
EOSP760 - 4 10156 41.7 1 1 1980
EOSP760 - 5 7692 51.7 1 1 1920
EOSP760 - 6 3424 43.4 1 1 1380
EOSP760 - 7 3338 45.6 1 1 1800
EOSP760 - 8 49273 55.2 1 1 4680
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Machine-specific build data that were easy to collect were
acquired from two industrial collaborators. These datasets
comprised build sheets that describe single prints performed
on the two machines. Each build sheet describes the total
volume of the part, the maximum height of the part, the layer
thickness, the laser power setting, and the build time. Three
build sheets were acquired for a specific SLM280 machine
printing AlSi10 and eight build sheets for a specific EOSP760
machine printing PA12.

3.3. Bayesian inference to reduce uncertainty

Figure 3 shows the Bayesian inference prior and posterior
contour results for adiabatic efficiency and recoating time per
layer for the two machines for which data were collected.

Prior distribution Posterior distribution
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Figure 3: Prior (Table 2) and posterior probability density functions (PDFs)
for the manufacturing process parameter joint distribution.

The posteriors show: (1) For the SLM280 machine, a region
of highest probability around #agiasaic=8% and a recoating time
per layer of 11 s, and (2) For the EOSP760 machine, a region
of highest probability around #agissaic=7.5% and recoating time
per layer of 20 s. To validate these results, we conducted case
studies to calculate the CED associated with printing an AISi10
NIST artifact and a PA12 cuboid on the same specific machines
(Figs. 1b and lc). In these studies, we measured electrical
power during the build using a three-phase power meter (Fluke
435ii), allowing direct measurement of recoating time per layer
and indirect calculation of adiabatic efficiency (Eq. 6). Figure
4 presents measured power for the SLM machine, showing a
recoating time per layer of ~10 s and a calculated adiabatic
efficiency of ~7% (marked by a red cross in Fig. 3a). For the
EOS machine, a recoating time per layer of ~20 s and an
adiabatic efficiency of ~7% (marked by a red cross in Fig. 3b)
were found. Therefore, the hotspots within the posterior results
in Fig. 3 correctly identified the likely adiabatic efficiency and
recoating time per layer for these specific machines.
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Figure 4: Electrical power measurement on the SLM280 machine.
3.4. Uncertainty reduction

The posterior uncertainty on the adiabatic efficiency and
recoating time per layer shown in Fig. 3 can be adopted to
recalculate the model-predicted electricity requirements and
CED shown in Figs. 1b and lc. Figure 5 shows the uncertainty
reduction before and after inference on the modeled electricity
requirements for printing the AlSi10 NIST artifact and PA12
cuboid. The 95% confidence interval has been reduced by 70%
and 40% for the SLM280 and EOS machines, respectively.

500 . 500
= Model prior

= hodel posterior
distribution
—93% model interval

distribution
— 95% model interval

400

=
=

Frequency
Frequency

0!
0 25 50 75 100 125 150 175 200 0 35 50 75 100 125 150 175 200
Delivered electricity [MJ] Delivered electricity [MJ]

(a) AlSi10 NIST artifact using a specific SLM280 machine

700 oy - 700 Tom -
odel prior Model posterior
600 | distribution _ 600 distribution
— 95% model interval — 93% model

L
=
>

interval

Frequency
[FERIORN
g 2 2
g8 8 &

=
>

0!
0 20 40 60 30 100 120 0 20 40 60 30 100 120
Delivered electricity [MJ] Delivered clectricity [MJ]

(b) PA12 cuboid using a specific EOSP760 machine

Figure 5: Uncertainty quantification and reduction with Bayesian inference on
the modeled electricity requirements.

4. Discussion

Informed decision-making for sustainable manufacturing
requires accurate models of manufacturing process
environmental impacts with UQ. Such accuracy likely requires
tailoring of models to specific machines using device-level
data. This work shows how using even a few easy-to-collect
data points for a specific machine can reduce the uncertainty of
calculated cradle-to-gate CED. Figure 6 shows how Bayesian
inference reduces CED uncertainty for the NIST artifact and
the PA12 cuboid. Inference shifts the CED mean from 194 to
200 MJ (+3%) for the NIST artifact and from 81 to 85 MJ
(+5%) for the PA12 cuboid. For the NIST artifact, the CED
upper bound reduces from 90% greater than the mean before
inference to ~30% greater afterwards. For the PA12 cuboid, the
CED upper bound reduces from 45% greater than the mean
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before inference to less than 30% greater afterwards. This
reduced uncertainty can facilitate greater confidence in
sustainable process selection. Our approach can be readily
applied to assess other environmental impacts, such as global
warming potential, which tends to correlate with CED [30].
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Figure 6: Breakdown of cradle-to-gate CED (with uncertainty) for the
SLM280 (left) and EOSP760 (right) machine case studies.

The Bayesian approach is particularly useful for sequential
learning of the manufacturing parameters when limited data are
available but a prior understanding of the model form and
parameter values exists. Here, the Bayesian approach has been
limited to reducing the parametric uncertainty of a mechanistic
model of L-PBF as new part build data is acquired; however,
Bayes factor could similarly be used to discriminate between
different model structures with the probability of the different
model structures being updated as more build data is collected.
Similarly, with more data points there is the potential to model
data noise on measurements as a random variable to be learned
through Bayesian inference [31].

The Bayesian approach is limited to using data collected on
the same machine processing the same material using the same
machine settings. However, this is often the case in industry
where a single powder material is only used on a given L-PBF
machine and consistent settings are established (by the machine
manufacturer or user) to increase part quality. Furthermore,
changes to the settings can be spotted using this Bayesian
approach as that change will likely represent a radical shift in
the high probability region of the posterior distribution.

Global variance-based sensitivity analysis has been used to
identify the key parametric uncertainty and reduce the
dimension of the problem. This approach can also help guide
research and development. For example, for metal L-PBF,
adiabatic efficiency has by far the largest impact on process
electricity requirements. This suggests that to reduce the
impacts of metal L-PBF, the focus should be on optimizing the
laser melting process to reduce remelting, improving the
adiabatic efficiency. In contrast, for polymer L-PBF, the part
cross-sectional area has the largest impact on the electricity
requirement followed by layer thickness and recoating time per
layer. Based on this finding, practitioners can in turn modify
the design of the part so that more can be nested in one build,
minimizing the number of layers required to finish all the parts.
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