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ABSTRACT

A zero-knowledge proof (ZKP) is a powerful cryptographic prim-
itive used in many decentralized or privacy-focused applications.
However, the high overhead of ZKPs can restrict their practical
applicability. We design a programming language, Ou, aimed at
easing the programmer’s burden when writing efficient ZKPs, and a
compiler framework, Lian, that automates the analysis and distribu-
tion of statements to a computing cluster. Lian uses programming
language semantics, formal methods, and combinatorial optimiza-
tion to automatically partition an Ou program into efficiently sized
chunks for parallel ZK-proving and/or verification. We contribute:

(1) A front-end language where users can write proof statements
as imperative programs in a familiar syntax;

(2) A compiler architecture and implementation that automatically
analyzes the program and compiles it into an optimized IR that
can be lifted to a variety of ZKP constructions; and

(3) A cutting algorithm, based on Pseudo-Boolean optimization
and Integer Linear Programming, that reorders instructions and
then partitions the program into efficiently sized chunks for
parallel evaluation and efficient state reconciliation.
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1 INTRODUCTION

Zero-knowledge proofs (ZKPs) [24] enable a prover to convince a
verifier about the truth of some statement without revealing why.
Recent advances by the cryptographic research community have
brought a tremendous improvement in the efficiency of general-
purpose zero-knowledge (ZK) proving (see [1] for a comprehen-
sive survey), as well as numerous creative applications of ZKPs
(e.g., [3, 6, 10, 12, 21]). However, various practical challenges make
the adoption of ZK unfeasible for tasks of realistic sizes. A particular
problem is the lack of a comprehensive toolkit of programming
languages and compilers providing a full suite of effective, intuitive,
parallel-aware, and general methods for writing complex statements
intended for efficient ZKPs.

Challenge 1: Simple and scalable development. One signifi-
cant challenge for applying ZKPs to new problems is describing the
statement to be proven in a way that is at the same time natural to
the programmer and conducive to compilation.

Most existing languages and compilers for ZK only support the
‘circuit model’ based on data-oblivious computation, where con-
trol flow must be independent of all private variables (e.g., Snarky,
Cairo). They encode the statement as a monolithic program and
emit an appropriate circuit representation for their target proto-
col. Although this model is theoretically complete [25, 32], it does
not capture the full flexibility and power of modern ZKP construc-
tions. For example, many statements can be accelerated by non-
determinism (e.g., [7, 8], and recent language support [9]), where
the prover provides extra hints to the computation. Other state-
ments (e.g., 3-coloring and Hamiltonian cycles in graphs [23]) can
be verified with high concrete efficiency under a probabilistic guar-
antee: the verifier provides random challenges, to which the prover
replies with challenge-dependent hints.

We contribute a more general-purpose ZK programming frame-
work able to support proofs over multiple computational models.
Our aim is to ease development for new domains - especially so for
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ZK statements that are more naturally expressed in those alternative
models, or for which those models provide superior performance.
Challenge 2: Scalability in hardware resources. All sufficiently
advanced technology may be indistinguishable from magic [18],
but the ‘magic’ of ZK often depends as much in practice on massive
hardware resources as on mathematical ingenuity. These demands
lead to practical bottlenecks in computation and/or communication
resources when scaling ZKPs to large statements. For example,
most zkSNARK protocols [11, 14, 26, 35, 38] require temporary
storage linear in the running time of the computation being proved.
Although VOLE-based ZKPs [4, 20, 40] use less memory, they only
do so at the expense of a significant increase in required bandwidth.
To aid practicality, a line of recent work has started to “scale
out” ZK protocols: instead of assuming the prover and/or verifier
have access to one giant machine, they assume access to a cluster
of machines and the capability to distribute the task amongst these
resources. For example DIZK [41] distributes the prover compu-
tation of Groth’s ZK protocol [27] by manually partitioning the
R1CS constraints into equal-sized chunks. zkBridge [42] can dis-
tribute the prover computation of Virgo [44] efficiently to multiple
servers when the statement already has a high degree of paral-
lelism. Meanwhile, EZEE [43] distributes among multiple machines
the prover-verifier computation and communication of an inter-
active, garbled-circuit-based zero-knowledge proof protocol [30].
Giraffe [37] addresses the challenge of automatically distributing
computations in the verifiable outsourcing context by breaking
down overly large computations that cannot be outsourced directly.
Though efficient in deployment, in order to distribute their cho-
sen ZK protocol over a cluster of servers each of these works re-
quire the developer to first both i) modify the ZKP protocols to
be amenable to distributed computation; and ii) to manually parti-
tion the computation into smaller chunks to be proven in parallel.
Such manual processes may be error-prone and lead to suboptimal
solutions, especially for statements of real-world complexity.

1.1 Summary of Contributions

In this paper, we design a programming framework — a language
Ou and a supporting compiler architecture Lian — enabling pro-
grammers to write zero-knowledge statements without thinking
about distributed computation. Our compiler automatically and
efficiently chunks this program for efficient parallel proving.

(1) Our framework provides a C-like programming language with
annotations so that developers, including those without deep
knowledge of cryptography, can easily write ZK applications
even when using protocols with advanced features.
We develop a compiler and static analysis pipeline, written in
OCaml, that calculates the local and communication costs of
each program instruction, then automatically finds an efficient
way to chunk the corresponding ZK statement. The optimal-
ity measure minimizes the sum of the maximum per-machine
cost and cumulative communication costs. This analysis can
distribute ZK statements incorporating randomized verification.
(3) We prove our system sound, i.e., we show the semantics of
the distributed verification of substatements is equivalent to
verifying the whole statement centrally.

—
S
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#define S 100

#define secparam 128

plocall plcl int[SILS] mmult_plemx(...) {...}
pvt2 int[S] mmult_pvtvec(...) {...}

pvt2 int[S] mmult_pubvec(...) {...2}

void frvlds(pvtl int [SI[S] M,
pvtl int [SI[S] M1, pvtl int [SI[S] M2) {
9 /* array of verifier controlled randomness */

0NN R W N =

10 pub2 int [S] s = {0};

11

12 int t = 0;

13 /* repeat for secparam number of times x/

14 while (t < secparam) {

15 int i = 0;

16 while (i < S) {s[i] = v_rand(@, 1); i = i+1;}
17

18 /* compute z = (M1 * (M2 x s)) =*/

19 pvt2 int[S] w = mmult_pubvec(M2, s);

20 pvt2 int[S] z = mmult_pvtvec(M1, w);

21

22 /* compute g = (M * s) */

23 pvt2 int[S] g = mmult_pubvec(M, s);

24

25 /* check that q and z are the same */

26 i = 0;

27 while (i < S) {

28 assert (q[i] == z[il); i = i+1;

29 3}

30 t = t+1;

31 3}

32 )

33

34 unit mmult(plcl int [SJLS] M1, plcl int [SJ[S] M2) {
35 /* prover locally computes M1 x* M2 = M %/

36 plcl int[SI[S] M = mmult_plcmx (M1, M2);

37 return frvlds(commit(M), commit(M1), commit(M2));
38 3}

Figure 1: Running example. We consider this Ou implementa-
tion of Freivalds’ algorithm for randomized verification of 100x100
matrix multiplication.

(4) Empirically, we show that for many statements, including gradi-
ent descent and Merkle Tree, our framework can automatically
find efficient partitioning of the statements, thus achieving
speedup proportional to the number of machines available.

What this paper is not about. Lian does not establish a program’s
functional correctness or data-obliviousness, nor the hardness of
witness finding for the ZK statement. We assume a program written
in our language is sound and secure for its intended ZK application,
and is suitably constructed for the target protocol: e.g., we assume
the program is data-oblivious if the target is circuit-based.

1.2 Technical Challenges and Solutions

Ou and Lian address a series of challenges arising from each of
language design, cryptography, and combinatorial optimization.

Cryptographic insight. To enable arbitrary partitioning of a state-
ment, the underlying ZK protocol needs to be ‘flexible’: it must
allow proving multiple statements of the same witness while en-
suring consistency. To this end, our framework focuses on the
commit-and-prove paradigm. The prover first commits to their pri-
vate inputs, and then constructs a proof establishing some (public)
relationship among the committed values without revealing them
to the verifier. Because the inputs are committed, the prover can
establish multiple statements on them, all while the verifier is cer-
tain their values remain consistent. Any ZKP system can support
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this capability by proving the consistency of commitments in ZK,
but certain protocols have direct support which incurs less cost
(e.g. [2, 4, 15, 16, 19, 29, 30, 40]). Given such a ZK backend secure
under parallel composition, regardless of its internals, e.g., the use
of Fiat-Shamir or random oracle, we can then distribute the proof
of any ZK statement in parallel.

During compilation, we first partition the statement into multi-
ple substatements, before the prover precomputes the input/output
of each substatement locally. The prover can then in parallel prove
to the verifier the correctness of each substatement and then es-
tablish the consistency of the input/output between substatements.
Although this works in principle, designing a scalable system that
automatically distributes the computation with minimum runtime-
and developer-overhead is still challenging. For example, in ZK
data dependency rarely constrains statement partitioning, unlike
in normal computation or MPC where it does so always. So in ZK
even inherently sequential statements can often be parallelized.

Automatic statement partitioning. In ZK, the prover knows
both the public and private inputs and can thus ‘predict’ all in-
termediate values. As a result, data dependencies can be resolved
before proving: computation of y = f(g(x1), x2) can be partitioned
into two parallel verification tasks, t = g(x1) and y = f(¢,x2). The
prover, with inputs x; and x7, just appends ¢ to form an extended
witness. For ordinary computation, this parallelization would be
infeasible because f depends on g. The prover’s ability to ‘locally
precompute’ creates new opportunities to maximize parallelism.

To partition effectively, after parsing and typechecking, our archi-
tecture undertakes two distinct special compilation phases: shallow
simulation and deep simulation. The first automatically partitions
the ZK statement and then selects variables as witnesses (the ap-
pendices to the input, like t) for each of the x substatements. The
parameter k is user-chosen, and will equal the number of available
compute cores in the cluster. Deep simulation then uses the prover’s
private inputs to concretely compute the values of those extended
witnesses, as well as of any public variables.

Shallow simulation proceeds by using live variable analysis to
compute the costs of each instruction in the statement, and then
models them as a directed acyclic graph for partitioning by either
pseudo-Boolean optimization (PBO) or integer linear programming
(ILP). This requires loop unrolling and function inlining as flatten-
ing techniques. The resultant ZK substatements are then compiled
to the chosen backend protocol implementation for distribution as
programs to the participating servers: in our evaluation, we use the
VOLE-based EMP-toolkit [39]. Lian’s deep simulation then propa-
gates input-dependent values through the statement to concretely
compute both public values and the prover’s witnesses for each
substatement. To distinguish which values are available during our
different simulation phases, we use knowledge levels: Ky for (private
input-independent) values that are known at compile time, and
K; for (private input-dependent) values that are known at distri-
bution time. This way, reusing a proof with different inputs only
requires recomputing the deep simulation, and not the shallow
simulation or partitioning, where the latter is likely to be the most
computationally intensive compilation task.

Supporting randomized verification. As noted, randomized ver-
ification can be much more efficient than deterministic verification.
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However, supporting it during shallow simulation in particular is
a challenge. With deterministic verification, an oblivious program
trace is known at compile time, which allows Lian to analyze the
cost of each substatement easily. With randomized verification, the
program might branch on the at-the-time unknown randomness,
preventing the cost from being calculated precisely as whether an
expensive statement is entered may depend on a coin flip. Also,
privacy imparts an ordering requirement on randomized verifica-
tion: the verifier’s randomness used in checking a ZK statement
can only be revealed after the prover commits to its inputs. This
means that the partitioning needs to obey sequential ordering for
values that are dependent on dynamic choices of the verifier.

Ou uses a third knowledge level, K>, to indicate that the value of
a variable can only be known at runtime. The type system enforces
non-interference with respect to a security lattice, allowing Kp-
and Kj-leveled variables to flow into K,-leveled variables, but not
the other way around. The partitioning then treats the K»-leveled
variables as one contiguous block in order to estimate worst-case
cost and enforce sequential ordering.

Handling large statements. Naively implementing the aforemen-
tioned techniques does not scale to large ZK statements. If the cost
graph contains too many nodes, finding efficient chunks will be
computationally infeasible. Classical graph partitioning and many
related variants are NP-hard with efficient (approximate) optimiza-
tion algorithms known only in certain special cases, and even then
often only theoretically [13]. More subtly, a naive representation
of each substatement, e.g., as a circuit or R1CS, is necessarily linear
in its running time. For large statements, especially those contain-
ing unrolled loops or inlined function calls, it is therefore crucial
to work with ‘compact representations’ of substatements that are
sublinear in the running time.

Ou and Lian support sublinear representations through atomic,
a user-provided annotation to indicate that a function should be
condensed, rather than flattened, during shallow simulation. By do-
ing so, we contract the component of the cost graph corresponding
to the function into a single node of cost cumulative of its con-
stituent instructions. This reduces the size of the graph and makes
optimization more practical. Even if the atomic function is called
multiple times, only one copy of the declaration exists. This brings
the partitioning problem into the realm of practicality for both PBO
and ILP solving, despite its inherent hardness.

1.3 Roadmap

Sec. 2 is an overview of the Lian framework’s workflow. Sec. 3
presents the language’s syntax, typing rules, and dynamic semantics.
Sec. 4 shows how the shallow simulation unfolds the program
into a sequential program, and formally proves the two programs
have the same behavior. Sec. 5 then describes how the compiler
finds an efficient way to partition the sequential program into
multiple chunks and generate a distributed program. Sec. 6 shows
how the deep simulation evaluates all dependent data between
chunks. It also proves that with these data, the distributed program
has the same behavior as if it was run without distribution. Finally,
Sec. 7 studies the effectiveness of the framework for distributing
the computations of various benchmarks.
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Figure 2: The Lian framework, beginning with an Ou program and
ending in binaries for an implementation of a ZKP protocol. Square
blocks with light text identify the compiler components: the operations
(blue) and their underlying methods (green). Dark text indicates a program
or protocol: the Ou program ( semi-rounded rectangle), compiled
substatement binaries ( rounded rectangles), and the ZKP protocol itself
( diamond). Corresponding knowledge levels are displayed as well.

2 LIAN DESIGN OVERVIEW

Figure 2 shows the architecture and workflow of the Lian frame-
work. The user first writes a program in Ou. Upon invocation, the
compiler parses and typechecks the program. The Ou type system
enforces non-interference over the security lattice given in Figure 3.
This lattice specifies non-interference along two dimensions:

i the public or private nature of the information; and
ii the knowledge level of the information (i.e., if the information
is available at compile time, distribution time or run time)

Accordingly, the lattice defines seven security domains: public pubx
{Ko, K1, K2}, committed and authenticated pvt X {Ki, K2}, and
prover-local plc X {Kj, Kz2}. As syntactic sugar, we write pub@ for
(pub, Ko) and similarly for the rest of the lattice. The variables in
the public domain are known by both the prover and the verifier,
the variables in the prover-local domain are only known by the
prover, and the variables in the authenticated domain are only
known by the prover but the verifier holds a commitment to them.
Since values known at compile time can only be public, (pvt, Ky)
and (plc, Kp) do not exist.

The authenticated and prover-local variables contain informa-
tion computed from the prover’s secret inputs. Public variables
are usually used to guide the program’s execution, either deter-
ministically as iterators or fixed constants, or as verifier-provided
randomness. In a valid Ou program, every variable is annotated
by the security label of a position in the lattice.! For example, in
Figure 1 pub@ annotates the public matrix size constant S that
is known at compile time. In comparison, further up the lattice

I The parser accepts unannotated declarations, which are interpreted as pubo.
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announce

announce

pub@

Figure 3: Security Lattice

pvt2 = (pvt, Kz) annotates w, which depends on both the prover’s
committed private values (M2, necessitating pvt) and on the veri-
fier’s public randomness (s, necessitating Kz).

The security lattice enforces that the private and prover-local do-
mains’ information never flow into the public domain except by ex-
plicit lowering through a reveal operation. This non-interference
property [22, 33] allows the safe partial execution of the program
during compile time (the shallow simulation), as the control flow
can be pre-determined. The inclusion of the knowledge levels in
the security lattice is essential to guaranteeing that reveal opera-
tions and public verifier-randomness are safely handled under the
non-interference guarantee.

Once typechecking completes shallow simulation commences.
Shallow simulation yields a sequential program consisting of a flat-
tened sequence of operations through loop unrolling and function
inlining. With two exceptions, every instruction in the original
Ou program forms its own independent block in this sequential
program: the constituent instructions of functions decorated by
the atomic keyword are combined into a single block, as are all
Kj-annotated variables. In both cases, this mapping enforces them
to be treated as one cumulative ‘instruction’ for the purposes of
partitioning. In Figure 1 for example, the suffix of the program be-
ginning with the first nmult_pubvec call on L19 will be condensed,
thereby guaranteeing the security of the parallel composition in
the presence of public randomness.

If the user sets ¥ = 1, so that only a single partition is desired,
then this sequential program will be directly compiled into the ZK
statement as specified by the backend. However, usually x > 1
as the developer desires parallelization, and we generally assume
this to hold through the remainder of our discussion. Next, the
Lian compiler conducts live variable analysis to track dependencies
among the blocks and builds a corresponding directed acyclic graph
G = (V,E). An edge (i, j) € E captures that j-th instruction block
depends on some information computed in the i-th instruction
block. For example, in Figure 1 the commit (M) on L37 depends on
the mmult_plcmx block on L36.

In order to obtain efficient paritions, the results of the live vari-
able analysis are used to decorate G with both edge and node labels,
each indicating a form of cost to the optimality of any partition.
Nodes in G are labeled with their computation cost, which models
the time required by the prover and verifier to execute the block’s
proving or verification operations in the chosen ZKP protocol back-
end. Edges are labeled with the cutting cost, which models the
communication cost required to reconcile the state of the blocks
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across compute nodes in the cluster. The latter is linear to the op-
eration’s inbound dependent data. We assume that cutting and
computation costs are directly comparable through some scaling
factor («), but otherwise omit that detail as it is irrelevant to the
compiler’s function.

Lian next uses combinatorial optimization to find the efficient-
cuts to partition G. This optimization problem is most easily under-
stood as an ILP, though as the constituent variables are all Booleans,
it is also amenable to representation as a PBO problem.

We formally give the opt(-) function for this problem, as well
as all of its constraints, in Sec. 5.2. Informally, the objective can be
understood as the maximum of the cumulative computation costs of
each partition, plus the sum of all cutting costs on edges bisected by
the k — 1 cuts (needed to create the user-specified x chunks). Users
can adjust the parameters of the ILP/PBO instances or objective
functions to align with different ZK backends and relevant metrics.

The partitioned program is compiled into binaries for the chosen
ZKP protocol backend. As Lian is designed to use commit-and-
prove ZK protocols as a black box without any internal changes to
them, our highly adaptable framework can support a wide range
of backends, including the NIZK protocols obtained via the Fiat-
Shamir transform [5]. These binaries are then sent to all individual
provers and verifiers. All computation up to this point is based
only on public Kj information, and so the binaries may be freely
distributed and reused. However, for the programs to run in parallel,
the dependent values between partitions must be computed ahead
of time. This is the deep simulation. The prover uses their private
information to simulate execution of each substatement program,
and saves the output values of each one that then become the
inputs to others. These output values are the ‘extended witnesses’
of Figure 2. For example, in Figure 1 a cut at L12 would make each
entry in M an extended witness. After deep simulation completes,
the prover can, with any verifier, execute the ZKP protocol by
running their binaries in parallel and connecting each binary to the
other party’s running copy over the network (i.e., part0 to part0,
part1 to part1, and so on).

Finally, after all the chunks have been checked in parallel, their
inputs and outputs must be reconciled to check consistency of
variables passed across the cuts. This step is essential, otherwise the
prover could violate soundness by inconsistently computing their
extended witnesses, so that, e.g., some variable ¢ = 0 in one partition
but ¢t = 1 in another. Therefore the runtime of the proving is not
only a function of how large each of the partitioned substatements
are, but also of how much data must be communicated amongst the
compute cores during this consistency checking step - justifying its
inclusion in the optimization objective. Lian automatically compiles
this reconciliation step into the binaries themselves, so it requires
no additional expertise on behalf of the verifier.

3 OULANGUAGE
3.1 Language Syntax

Figure 4 demonstrates Ou’s syntax. Note that we use a* as short-
hand for one or more non-terminals separated by commas like
ai,---,an,and use a” to represent zero or more non-terminals like-
wise. A program consists of a collection of struct declaration (sd),
function declaration (fd), and external function declaration (fx)
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¢ ==pub0 | publ | pub2 | pvt1 | pvt2 | plcl | plc2
T u==fint| ¢bool | £ float | unit | 7 [£ num] | structs | T =

e u==fnum|ftrue|ffalse|null|tt| (e)
|f(e") [e{e"} | {(label=¢)"} | e | &e

e u=x|e€le]|elabel |xe
c s=rx=ele=e
|Tx=f(e") | ci;c2 | {c} | asserte
| if e then c; else ¢z | while edoc
| returne | return | break | continue
n u=normal | atomic | box1 | box2 | plocall | plocal2
sd :=structs = {(r label)"}
fd ==nrtf((rx)){c}
fx ==ntf((1)")

prog == (sd|fd|fx)"
Figure 4: Syntax of the Ou language

statements. There must exist a main function acting as the entry
point to the entire program. The syntax is very similar to many
imperative languages, except for the addition of security levels ¢ to
label primitive types and annotations 1 to label certain functions.

Each atomic type 7 is annotated with a security level ¢. Arrays
have both a 7 indicating their elements’ type, as well as an ¢ indicat-
ing their access level. The access level can be viewed as the security
level of indexes. A struct’s type only mentions its name, and not its
fields, so that we can support recursive struct definitions.

There are two different kinds of expressions: L-expressions (€)
and R-expressions (e). An L-expression refers to a memory loca-
tion like a variable x, an array index €|e], a struct field €.l, or a
dereferenced pointer * e. An R-expression represents a value like
an integer, float, or Boolean constant; the calling of a builtin func-
tion, array constructor, or struct constructor; or the loading of an
L-expression or a pointer to an L-expression. When constructing an
array ¢ {eo, ..., en—1}, the user has to specify its access level. The
user can also write normal binary and unary operators, including
typecasting following the arrows in Figure 3, and all typical arith-
metic operations on integers, floats, and Booleans, but Lian will
automatically convert them into builtin function calls. For exam-
ple, given a variable x of type pvt1 int and a variable y of type
pub@int, x + y will be automatically rewritten into the expression
pvtl_int_add(x, pvti_int_of_pub@(y)).

A command c can be a variable declaration, an assignment, the
calling of a user-defined function, conditional branching, a while
loop, a sequence of commands cy; ¢z, a block of commands, return-
ing from a function, or break-ing out of a loop.

Note the syntax treats builtin functions and user-defined func-
tions differently. A builtin function f can be called in expressions
freely, while a user-defined function f has to be received immedi-
ately by a variable. This distinction is needed because all builtin
functions are pure while user-defined functions can have side-
effects. As shallow simulation will reorder computations, having
side-effects in expressions can alter behavior. We do still allow call-
ing user-defined functions freely in any expression, but just like in
C the programmer cannot assume any execution order as Lian will
automatically rewrite the code to extract these calls.

Each function also has an annotation n which enforces restric-
tions on its body. Most common are normal functions (the parser
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interprets unannotated functions as normal) which only permit
branching on pub® Boolean expressions. An atomic function is
similar, except that shallow simulation will not unfold its body. To
branch on a pub1 value, the user must write the code inside a box1
function, while box2 is similar except for additionally allowing
branching on pub2 variables. Functions annotated by plocall or
plocal? are prover-local functions, which only manipulate plc1
or plc2 values respectively. We call functions annotated by box or
plocal sandboxed functions, as the type system enforces restric-
tions to isolate their effects. We further elaborate in Sec. 3.2.

Before typechecking, Lian first scans the program and collects
some top-level definitions: ® maps a struct name s to its defini-
tion {l : 71,12 : 72, ... }. A¥ maps a user-defined function name f
to its definition or declaration. When f is defined, A¥(f) is like
internal (7, (71 x1,...,71 Xp) — 7,c) consisting of its annota-
tion, parameter list, return type, and function body; When f is
external, A¥(f) records only external (7, (z1,...,71) — 7). Note
the language does not support global variables, so the prover can
only use external functions to communicate her secret with the
program. In addition, the language has builtin functions’ typing in-
formation AP, which map a builtin function name f to its signature
(t1,...,7n) — 7. Builtins do not have an explicit function body c,
but in Sec. 3.3 we will assign each a math interpretation (f).

In order to ensure the security of ZKP programs, it is crucial
for users to label witness variables as pvt accurately. Failing to
do so can lead to information leakage. Lian offers provably-sound
typing rules that enable users to implement secure Ou programs.
By implementing a typechecker for these rules, Lian can identify
and report any errors resulting from incorrect usage of security
levels or annotations that violate the typing rules.

3.2 Typing Rules

Figure 5 demonstrates the language’s typing rules. Each typing rule

relies on the defined struct definitions ® and function definitions

A¥ and AP. As these are all fixed we omit them from our written

rules for concision. We also rely on a typing environment I', which

is a list of scopes y; - - - yn. Each scope y; maps variable names to

their types. All newly defined variables reside in the first scope y;.

Note that though the compiler allows the same name to be defined

in different scopes, for clarity our discussion assumes that names

never conflict.

Typing orders. We say 1 < £ if there’s a path without a dotted

arrow from ¢; to £ in Figure 3. We say a type 7 is wellformed if:

e it is an atomic type like £ int or £ bool;

e itis struct s such that s is defined in ® and the types of all its
fields are wellformed; or

e it is an array of type 7 [£ n] such that 7 is wellformed and ¢ is no
greater than any security level in 7.

For the last condition, the relevant security levels include those of
the atomic type as well as the array’s access levels. Wellformedness
guarantees the values loaded from arrays are never less secure
than the access needed to load them. This restriction is important
for both shallow simulation and deep simulation as they need to
fully evaluate all Ky expressions and Kj expressions, respectively.
For example, if a[e] loads a pub@ integer from array a with pvt1
access, then shallow simulation does not have enough knowledge to
evaluate e, thus it can not know which value is loaded. So although
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ale]’s type is pub@, the shallow simulation cannot evaluate it. To
make shallow and deep simulation behave as expected, we assume
all types in this paper are wellformed.

Typing expressions. For L-expressions, I' +f, € : 7, means in
the typing environment I' an L-expression € points to a value of
type 7, and the L-expression itself has access level £. The access
level can help us determine whether an L-expression can be fully
evaluated during shallow simulation (pub®) or deep simulation
(pub1, pvt1 and plc1) or neither (pub2, pvt2 and plc?2). Similarly,
for R-expressions, I' Fr e : 7 means an R-expression e is of type 7
in the typing environment I'.

Note that in practice the Lian compiler is more forgiving than the
language’s strict typing rules, as it performs implicit type conver-
sion along the security lattice’s arrows. For example, an expression
e of type pub@ int can be used as a pvt1 int, and Lian will auto-
matically wrap it inside a casting function pvt1_int_of_pub@(e).

We also require all pointers to have pub@ access level. This re-
striction is important to the live variable analysis needed for par-
titioning. Suppose we were to allow a pointer p to have a pvt1
access level: then shallow simulation could not evaluate the pointer
itself in order to determine which location is mutated after running
* p = e. This would mean all locations in the stack could potentially
be the address. Similarly, loading a value from * p would mean
any location could potentially be read. Therefore this restriction on
pointer access levels is needed to make the live variable analysis
yield meaningful results, rather than just concluding by labeling
all variables as live.

Typing commands. When typechecking a command ¢ which con-
stitutes a function’s body, we need its return type 7, to guarantee
that each return command in c yields a valid value. We also need
a set of branching security levels L, to guard all branching ex-
pressions inside c. In normal and atomic functions, all branching
expressions have to be pub®, but prover-local and boxed functions
enforce fewer restrictions.

Typing a program. The type checker first checks all struct def-
initions, and makes sure there are no name collisions between
struct names and field names, and then checks each function’s
body. For a function definition 7 f (71 x1, ..., Tn xn){c}, we apply
the command’s typing rule on its body: I', 7, L, + {c} : T, where

IF={x1:71,...,Xp : Tp} and Ly, is determined by #:
{pub0} if n is atomic or normal
{pub®, pub1} if y is box1
Ly = ¢ {pub0, pub1, pub2} if n is box2

{plc1}
{plc1,plc2}

if n is plocall
if n is plocal2.

There are additional restrictions placed on sandboxed functions. We
require that plocall and box1 functions only modify external data
that is Kj or K, and only return Kj or K3 results. Similarly, plocal2
and box2 functions can only modify external data that is K, and
only produce K results. The reason is similar to the restrictions on
arrays’ access levels: shallow simulation cannot execute plocall or
box1 functions, so it is infeasible to allow them to modify or return
any Ky data. If they could, simulation of any other computations
that rely on such data could not proceed after the function call.
We also restrict that plocal functions can only manipulate plc
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Figure 5: Typing Rules

data. Since all plocal functions only run on the prover’s side, they
cannot include any pub or pvt values, as their use would require
the verifier’s participation.

To enforce the first restriction, we only need to examine the
function’s signature: all pointers passed into plocall and box1
functions should only point to Kj or K3 data, while all pointers
passed into plocal2 and box2 functions should only point to K3
data. The return types have similar restrictions. Since the language
does not support global variables, sandboxed functions can only
update external data via the pointers in the arguments. To enforce
the second restriction, we need to examine the entire function body
to ensure all expressions’ types only have plc annotations and the
body only calls other plocal functions.

3.3 Dynamic Semantics

This section defines the dynamic semantics that apply if all secrets
are known. The semantics correspond to the program’s behavior in
the ideal world where it has enough knowledge to fully evaluate all
expressions into values and check if all assertions are satisfied. We
will use this semantics as a baseline to prove the simulation and
distribution are correct. The semantics rules are not surprising. See
Appendix B of [34] for detailed definitions.

R-values and L-values. We use v to denote R-values (or “values”
for short) and p to denote L-values. R-values can be atomic values
like Vunit and Vint ¢ n, an empty pointer Vnull, a pointer Vref y,
an array Varray ¢ a where ¢ is the array’s access level and a is a
mapping from indexes to R-values like {0 - vg,...,n — v}, or
a struct Vstruct m where m is a mapping from label to R-values
like {lp > vo,...,In ¥ vp}. An L-value is a reference to a memory
location: it can be Vvar « that points to an alias, or Vindex p ¢ i that
refers to an array y’s index i, or Vfield p [ that refers to a struct
1’s field I. An alias is used by the stack to disambiguate during
recursion, and can be viewed as a memory address.

v :=Vunit | Vnull | Vref p
| Vint £ num | Vfloat £ num | Vbool ¢ bool
| Varray ¢ array | Vstruct map

p==Vvar o | Vindex p £ num | Vfield p label
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The program runs on a stack Q, i.e., a list of frames w; - w3 - - - wp.
The last frame wj, stores main’s variables. The stack grows with
nested function calls, and the top frame w; stores the current func-
tion call’s local variables. Each frame o is a map from aliases to
values. We use Q[a — v] to denote adding a mapping a — o to
the top frame. Whenever a new variable x is defined, Lian allocates
a unique alias new(x) for it. This is useful when recursion occurs,
as the same variable x might have different instances in the stack,
so we cannot bind their values to the same name x. We also use
a function find(Q, x) to find the latest alias allocated for x in the
stack. Note that when x is defined for the first time, new(x) returns
x directly instead of allocating a new alias for it.

Given a stack Q, we use a function load(Q, p) to load the value
referred by p in Q, and use a function store(Q, 1, v) to compute
the updated stack after replacing the value at y with . They both
search the entire stack from top frame to bottom instead of working
only with the top frame.

Semantics. The semantics looks up the sets of user-defined func-
tions A“ and builtin functions A? to interpret function calls. As
they are immutable, we omit them from our rules for concision.
Expressions: [[e]]i2 computes L-expression € in stack Q and yields an
L-value, [e]]}% evaluates R-expression e and yields an R-value. Note
Lian assigns a mathematical interpretation (f]) for each builtin func-
tion f which maps a tuple of R-values to an R-value. For example,
(pvt1_int_add)(Vint pvt1 n,Vint pvt1 m) = Vint pvt1 (n+m)
is assigned by the compiler for integer addition.

Commands: (¢, Q1) —¢ (r, Qg, f) means that running a command
c from a stack Q; yields a sequence of assertion results f, a result r
which is either cont or ret v, and a changed stack Q. Since the
command constitutes a function’s body, we use ret v to mean the
function returns with v and cont to mean it has not yet returned.

4 SHALLOW SIMULATION

Shallow simulation executes and unfolds the program with Ko
knowledge to obtain a simplified sequential program. Lian will
attempt as much simplification as possible, and output all unknown
computations as a sequence of commands for later analysis and
partitioning. All normal and atomic functions will be executed,
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but only the former’s execution history will be output, while the
latter will be output as indivisible calls. As sandboxed functions
rely on Kj or Kj knowledge, they will not be executed in shallow
simulation and will be kept in the generated sequential program.

4.1 Shallow Semantics

This section formalizes the shallow simulation’s behavior as a shal-
low semantics. Figure 6 shows its details. The actual implementation
uses several optimizations to speed up the simulation.

Symbolic values. To define the semantics of both shallow simula-
tion and deep simulation, we define symbolic values to represent
R-values not known during the simulation. We do so by redefining
the R-value constructor from Sec. 3.3 to support SVsym variants,
and also use symbolic stacks, which store symbolic values.

Builtin functions. During shallow simulation, only a subset of
the builtin functions can be interpreted as the rest rely on either
K or Kz knowledge. We use (f))o to denote a shallow simulateable
interpretation of a builtin function. It takes in a list of expressions
and yields an expression as the result. For example, we have the
interpretation (pub@_int_add)o(pub@ 1, pub® 2) = pub@ 3, while
pvtl_int_add ¢ (—)o as it relies on K; knowledge.

Semantics. [[6]]? = ¢’ means simplifying an L-expression € in a
symbolic stack Q with Ky knowledge results in an L-expression
€’. The semantics simplifies an L-expression instead of evaluating
it directly, as the stack may not contain enough information to
fully evaluate it to an L-value. Similarly, [[e}]go = ¢’ simplifies an
R-expressions.

When storing a simplified expression into the stack, we use a
partial function | -], to evaluate an L-expression down to an L-
value, and a total function | - g, to evaluate an R-expression down
to a symbolic R-value. | — g, is able to be total because it replaces all
unknown subexpressions by SVsym. When loading a value from the
stack, we use a total function [—] to lift a symbolic L-value to an
L-expression, and a total function [—, —]R to lift a symbolic R-value
to an R-expression and concretize any SVsym variables using the
appropriate L-value. It’s formally defined in Appendix C of [34].
We reuse load and store to load and store symbolic values to and
from the symbolic stack.

load(Q, y), h =
sload(g,e):{r 0ad(Q, ), plx  when e]r, = p
€

otherwise

sstore(Che¢) = {store(Q, 1 lelg,) when |elr, =
Q otherwise

When e is not completely known, type wellformedness guarantees
that the symbolic value referred to by it must also be unknown, i.e.,
SVsym or an array or struct of unknown values. When so, the value
to be stored must also be unknown, thus sstore behaves correctly
even when € is not fully evaluated.
Commands: (¢, Q1) ~¢ (r, Qz, h) means simplifying a command ¢
in a symbolic stack Q results in: a return status r which is either
cont or ret e, a new stack Qy, and a sequence of history h. We use
- to denote an empty history.

Shallow simulation does not have enough knowledge to simulate
a sandboxed function, thus it returns a symbolic value default(r)
generated from the type 7. Also, the typing rule guarantees even
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if a pointer is passed into the function, the pointed data must be
filled with SVsym. So no matter whether the function has side effect
or not, the symbolic stack remains unchanged.

Note that we have added two pseudo-commands push and pop into
the generated program. They help mark the points where a function
is called and returned, and their dynamtic semantics are just push-
ing and popping stacks. Though helpful for the compiler, ignoring
them does not change the program’s behavior as the alias mecha-
nism guarantees there will never be name conflicts. We introduce
them mainly as machinery to help us prove refinement.

Atomic function calls. The size of a generated program can be
very large as it is linear in the execution time. To reduce the chal-
lenge of partitioning, we allow users to annotate some functions
as atomic to contract the function call into one command in the
generated program. Atomic annotations are optional for programs
and are intended solely for optimization purposes. The effectiveness
of an atomic annotation depends on the user’s understanding of
the program structure. If an atomic annotation is inappropriate, it
may increase the compilation time, but it will not compromise the
program’s security.

Their semantics are very similar to normal function calls, but
instead of generating a sequence of history, an atomic function
call 7 x = f(e1,...,en) only yields one command in the history:
Ta = f(ef,....e;) RSg WSy . Here, we add a new command to
encode atomic function calls, but its dynamic semantics are the
same as for normal function calls. The two extra sets Sg and Sy
are only used to help perform live variable analysis.

Sg records a set of L-values defined before calling f that may be
read during the function call, while Sy records a set of L-values
defined before calling f that may be updated during the function
call. They are collected during the simulation using functions from
Sec. 5.1: REF (c) computes all L-values that may be read in command
¢; DEF(c) computes all L-values that may be updated in c.

One convenient fact about shallow simulation is that no pointer
dereference will appear in a generated program. It is a corollary of
a more essential property: shallow simulation fully evaluates all
expressions that only need Ky knowledge, including all pointers. In
Appendix C of [34], we define normalized expressions to formally
describe this property to help prove the correctness of shallow
simulation.

4.2 Correctness of Shallow Simulation

We start by defining a refinement function R mapping R-values
to symbolic R-values. It replaces all non-pub@ atomic values with
SVsym. We overload R to also represent the function that performs
the transformations to convert a stack into a symbolic stack.

Svint £n  when ¢ = pub@
SVsym
R(Vref p) =SVref i
R(Varray ¢ a) = SVarray ¢ |J{i — R(a(i))}

R(Vstruct m) = SVstruct U{l; —» R(m(l;))}

R(Vint£n) = {

otherwise

See Figure 7. We also define a semantics [[r]]}g‘@2 in order to evaluate
return statuses. B

[[cont]]f?2 = cont [ret e}]% =ret [[e]]%
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v == SVunit | SVnull | SVref p
| SVint £ num | SVbool ¢ bool
| SVfloat £ num | SVsym
| SVarray ¢ array | SVstruct map

[[e.l]]%0 = [[e]]%o.l

[Var a|L = «a
[Vindex y £ nly, =[] [¢ n]
[Vfield p g = [u]r.1
[SVint ¢ n,ulg=¢n
[svref i/, g = & [p'1r
[SVsym, ulg = [K]L
[SvVarray ¢ a, u|gr = {[a(0),Vindex u £ O]R, ...}
[SVstruct m, ulg = {.I1 = [m(ly),Vfield u l]g,...}

[(c.Q) ~c Q" h)]

new(x) = a [e]]l% =¢

[x]{ = find(Q,x)
[elel]? = [e]7 [Tel R, ]

[+ e]]%0 =¢ where [[e]]g0 =&e
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[e "HI% =tn
[[e}]gﬂ = sload(Q, [[e}]ﬁ)
& f =& [I2
(]fDO(Hel]]}%’ e [[en]]l%)
[f(eq, .. "e")ﬂl% = when f € dom(—))o

f([[eﬂ]%o,...,[[en]]}?o) o/w

lalr, = Vvar «

le[£ n]]r, = Vindex y £ n when |e]r, = p and £ = pub@
le.llr, = Vfield ul
L+ (& €], = p

when |e]r, = p
when |e]r, = p
Svint £n  when ¢ = pub0

L£nlr, = SVsym o/w
|_& EJRO =SVref |_6JL0
L {eo. ... }|r, = SVarray ¢ U{i — leilr,}
[{.lh = e1,... }]r, =SVstruct U{l; = leilr,}
Lelr, = SVsym
Lf(e1...en)]r, = SVsym
[[I2 = []2 =’

(tx=¢Q)~c (cont,Q[a — e']|g, ], 7 =¢")

[[e]]%ﬂ = pub® true

(e = e, Q) ~c (cont,sstore(Q,¢’,e’),e’ =¢’)

(c1,Q) ~c (r, Q. h)

(returne, Q) ~c (ret [[e]]go, Q)

(c1, Q) ~»¢ (cont, Qy, hy)

(€2, Q1) ~c (1, Q2,h2)

(assert e, Q) ~»¢ (cont, Q, assert [[e}]%o)

new(x) =a n=normal
f > internal (n, (71 X1,...,Th Xn) = 7,¢) € A¥
Vi e [1,n], [[ei]]l%0 = e/ A new(x;) = a;
(e.Utar = Leflg} - @) ~oc (ret e, Q' B)
h' = (push;ty a1 = ef;...;Th an = ep; h;pop T @ = e)

(if e then c; else ¢z, Q) ~¢ (1, Q. h)

(c15¢2, Q) ~c (1, Qa, h1; h2)

new(x) =a n ¢ {normal,atomic}
f — internal (5, (11 x1,.
or f — external (1, (zy,..

. Tn Xp) = T,c) €AY

. Tp) > T) EAY
Vi € [1,n], [[e,-]]lg0 = e

Q' = Qfa — default(r)]

(tx=f(er,...,en), Q) ~c (cont, Q'[a — |elg,],h")

(tx=f(ey,..

~>en))

en), Q) ~c (cont, Q.7 a = f(e,..

Figure 6: Shallow Semantics

R(Q1) W’E\;Lv» R(Q2)
| r s |

c
Q ———Q
1 r,ﬁ 2

h r
cont,

Figure 7: Shallow Semantics Refinement
THEOREM 1. If (¢, Q1) —¢ (1, Qa, B), then there exist r’ and h s.t.

(e, R(Q1)) ~c (', R(Q2). h)

and (h, Q1) —¢ (cont, Qp, f) and [r']%

R =T

Figure 7 demonstrates this theorem. Although shallow simulation
reorders some computations by simplifying Ky expressions and
unfolding the program, this theorem guarantees such reordering
does not change the behavior. We prove the theorem in Appendix
C.2 of our online full version [34].
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5 STATEMENT PARTITIONING

The shallow simulation unfolds the original program into a sequen-

tial program h = c1;...;cy. The compiler then tries to find a way
to partition these commands into x chunks so that the distributed
running time and the communication time are minimized. Sec. 5.1
describes the live variable analysis algorithm that finds data de-
pendencies in the sequential program. Sec. 5.2 then describes how
Lian encodes the cut search problem and uses a solver to find the
efficient partition. Sec. 5.3 then explains how we generate the dis-
tributed program from the sequential program, the partition, and
the dependencies.

5.1 Live Variable Analysis

Lian performs live variable analysis on a sequential program h =
c1;...;cn, eventually generates a dependency graph DG = (DV, DE).
DV ={1...n} and each edge (i, j) € DE is decorated with a set of
L-values DEP(i, j) that may be read in ¢; and may be manipulated
in ¢;. We use ‘may’ rather than ‘will’ because shallow simulation
cannot determine all L-expressions’ values. Nonetheless, we can
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still conduct an over-approximate analysis using some approxima-
tion functions. Note DEP(i, j) is only meaningful when i < j, so
DEP(i,j) = 0 wheni > j.

Appendix D of [34] defines two utility functions: REF(c) computes
the set of L-values that may be read in ¢, while DEF(c) computes
the set of L-values that are newly defined or may be updated in c.
Recall that we used these functions in Sec. 4.1.

Analysis Algorithm. The program is a sequence of commands
h =c1;...;cn. We start live variable analysis from its end and let
LIVE(n) := 0. We then scan from the end to the beginning and
compute unresolved dependent variables for each command c;.

LIVE(i — 1) = {g > j € LIVE(i) | p & DEF(c;) UREF(c;)}
U{pri|p€eREF(ci)}

LIVE(i) is a mapping from L-values to the commands that may
read them in the future. In the first line, if ¢; uses an L-value p
that is later dependent by ¢ j,z then we can safely delete it from
LIVE(i) and add that L-value as a dependency between c; and c;.
However, ¢; may read other L-values, so in the second line we mark
all L-values from REF(c;) as unresolved and dependent on c;. Such
dependencies will eventually be resolved because every L-value is
part of a variable defined in the program, and the command that
defines the variable cannot read it. Now we can construct the graph
DG by defining the dependency function:

DEP(i,j) = {u | g+ j € LIVE(i) A p € DEF(c;) UREF(c;)}

In order to capture all dependencies of and from a command, we
denote DEP(i, -) := U"_, DEP(;, j) and DEP(-, j) := UL, DEP(i, j).
It follows from our definition that DG is a directed acyclic graph,
ie,i>j = DEP(i,j) = 0. Any L-value dependent on ¢; must
either be read or written in c;, any L-value dependent by c; must
be added into the live set during the scan, which can only happen
when it is read in cj, so we have the following lemmas:

LEMMA 2. DEP(i,—) € DEF(c;) UREF(c;).
Lemma 3. DEP(—, j) = REF(c;).

We need to define a notion of similarity between stacks to rea-
son about the correctness of live variable analysis and program
distribution. Given two stacks Q; and Qs and a set of L-values
S, we say Q1 and Qj are similar up to S, denoted as Q1 ~g Qa,
if (1) Vu € S,1load(Q1, p) = load(Qg, i), and (2) the two stacks
have similar structures in terms of S, i.e., every alias appearing in S
resides in the same frame in both stacks.

Theorem 4 shows the live variable analysis is correct. It says the
dependent L-values of ¢; are enough to safely execute the command
and yield all values that are dependent later. It can be proven using
lemma 2 and 3, then prove the values in REF(c;) are enough for c;
to execute and produce the desired behavior.

THEOREM 4. Ifboth (cy;...;¢j-1,Q) —¢ (cont,Qj_1, Bj-1) and
(Cj, Qj_l) —¢ (cont, Qj,ﬁ), then
VQ_ 1. Q)1 Apep(— ) Qo =
HQ;, (Cj, Q;—l) —C (cont, Q;,ﬁ) A Q] zDEP(j,—) Q;

2In traditional live variable analysis, a live variable is only resolved when it is modified
or defined, but here we also resolve it when it is read. This is a compromise to simplify
the efficient-cut search and to reduce cutting cost in most cases. See Appendix D in
our online full version [34].
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5.2 Efficient-Cut Search

The final intermediary pass of the compilation partitions the pro-
gram into k chunks for parallel execution. Recall that after the
flattening during shallow simulation (Sec. 4) and the live variable
analysis (Sec. 5.1), Lian obtains a sequential program h = cy; ..
and a dependency graph DG = (DV, DE) where each edge (i, j)
in DE is decorated with a set of dependent L-values DEP(, j). The
compiler then extracts a directed acyclic graph G = (V,E) from
DG, capturing the dependency relation and the costs. Each node i
in V is decorated with ¢;’s computation cost PC;. An edge (i, j) € E
indicates c; reads at least one L-value used last by c;, and is dec-
orated with the communication cost C;; and a cuttable bit B;;. If
there is a K» L-value in DEP(i, j), then ¢; and ¢; must reside in the
same chunk, thus C;; = oo and B;; = 0; Otherwise, C;; equals to the
accumulated cutting cost of all Ky L-values in DEP(i, j) and B;; = 1.

We use combinatorial optimization constrained by G to find the
efficient cutting of h into x chunks (hi”b, h;”b, sl h,SCUb). We na-
tively write this optimization problem as an integer linear program
(ILP). However, the variables (though not the constants) it uses
are all Booleans, and therefore the objective can be interpreted as
a pseudo-Boolean function and optimized using pseudo-Boolean
optimization (PBO) as well.

We begin by defining ub = log(X1_; PC;), the length of the cost
of the sequential computation. We next define a pair of matrices.Y €
{0,1}™" indicates the location of cuts: Y;;j = 1 means that a cut
is made between the i-th and j-th instruction block. X € {0, 1}"*¥
indicates the inclusion of instruction blocks into partitions: X;; = 1
indicates the i-th instruction is in the ¢-th partition for ¢ € [k].

Finding the cheapest partitioning then reduces to solving the
optimization objective of

2

(i.j)€E

.iCn

n
0bj(G) = min Y;; - Cjj + max Xit - PC;
j(G) X,Y[ ij - Cij te[]{]; it l:|

subject to some consistency constraints on X and Y. To soundly
model this problem for constrained optimization without a min-
max objective requires, for PBO in particular, a bit of due care. To
convert the original objective into a PBO problem, here we add a

n
bit-vector COP to encode max;e[x] 2, Xit - PC;. Our approach is
i=1

closely related to prior work in the literature on PBO for graph
partitioning [17]:

ub .
min Y 2=V .COP; + 3 C. - Ye

i=1 ecE
K
s.t. Yie[n]: > Xip=1
t=1
V(i,j) € E: Yij < Bjj

V(i,j) € E, t € [k] :
V(i,j) € E,t € [K] :

Xit +th < Z—Yij
1Xir = Xje| < Y5

ub n
Y 2= . cop, > 3 X;; - PC;

vVt € [k] :
=1 i=1
Vie [n],t € [k]: X € {0,1}
V(i,j) € E: Yij € {0,1}
Ve € [ub] : COP; € {0,1}
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The first constraint enforces that every instruction appears in ex-
actly one partition, the second that only cuttable edges are cut, and
the third and fourth together that if the i-th and j-th instruction
blocks are in different partitions, then any edge (i, j) must be rep-
resented in the appropriate cut by Y;;. The final four constraints
simply enforce the Boolean character of the variables.
The fifth constraint is the most nuanced. It enforces that
n

int - PC;

i=1

COP; = the i-th bit of max
te(k]

so that the computation in the objective function is correct. This
relationship can be encoded much more simply in a general ILP,
but is necessary for PBO compatibility. Notice that no constraints
force the partitions to be contiguous: even though h is a sequential
program, the h?”b can have a much more complex structure at the
cost of additional extended witnesses and so more communication
during the consistency checking.

With this encoding, Lian hands this optimization problem to
either a PBO or ILP solver (we use the Gurobi PBO solver in our
benchmarks). The solver’s output may not always be optimal in
practice, as the available computational resources limit it. Conse-
quently, the corresponding cut scheme we employ may also be
suboptimal. The compiler then converts the result into a function
chunk(-) such that chunk(i) = t if Xj; = 1 in the solver’s result.

Fact 1. chunk(i) # chunk(j) = no K2 L-value in DEP(i, j).
This follows directly from the PBO constraints.

5.3 Distributed Program

Given a sequential program h = cy;.. . ; ¢, from the shallow simu-
lation, a dependency graph DEP(—, —) from live variable analysis,
and a partition chunk(—) from efficient-cut search, the compiler
generates k programs for distributed execution among « pairs of
prover and verifier computation cores.

The t-th chunk is a sequential program sync, ; ¢4, ; Syncy,; ¢ty - - -
such that t = chunk(#;) = chunk(tz) = ... and t; < ty < ....
We denote a communication between the prover and the verifier
by sync;;. These communication rounds are used to share Ky or
authenticate K; data that are needed by ¢, ie., data pointed by
L-values in Uchunk(i)2¢ DEP(i, tj), as necessary. Deep simulation
(Sec. 6) computes all this dependent data and distributes it to all of
the prover cores. So each pair of prover core and verifier core can
run their chunk without the others’ involvement. In the end, all
verifier cores will work together to do a consistency check. The goal
is to make sure all data provided by the prover cores in sync,; are
indeed the same as produced by their dependent commands in other
chunks. Note the deep simulation only computes Ky and K; values,
but Fact 1 guarantees all data needed for multipole chunks does
not contain K3 information, thus the deep simulation is enough.

6 DEEP SIMULATION

The deep simulation executes the program with Ky and K; knowl-
edge and evaluates all Ky and Kj values. The goal is to compute all
data that are dependent between different chunks in the distributed
program. It is similar to shallow simulation, except that (i) the defi-
nitions of all external functions are known, (ii) the knowledge level
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is Kj instead of Ky, and (iii) the purpose is to evaluate all Ky and all
K; values instead of unfolding the program.

6.1 Deep Semantics

This section formalizes deep simulation as a deep semantics. We
use the same symbolic values and stacks as in Sec. 4.1. We still use
[, —1]r and [-]L to lift R-values and L-values to R-expressions and
L-expressions. But when converting in the reversed direction, we
use | —|g, and | -], instead of | —]g, and | —]g,. The only difference
is when converting atomic expressions. For example, | £ n]g, =
SVint £ n when £ < plc1. We also define dload and dstore based
on these operations just like sload and sstore.

The semantics for L-expressions [¢e] ?1 and R-expressions [e]]l%
are also similar except for using | -]z, and | -], to interact with
the symbolic stack, allowing dereference expression to be not fully
evaluated, and use (f); to interpret builtin functions. (-); is a su-
perset of (—|)o by adding more functions that can be computed with
K7 knowledge. For example, (pvt1_int_add);(pvt1 n,pvtl m) =
pvt1 (n+ m). Appendix E in our online full version [34] has their
detailed definitions.

Commands’ semantics are also similar. (¢, Q1) —¢ (r,Q2)
means running command ¢ from stack Q; results in a return status
r which is either cont or ret e and a new stack Q. Note it no
longer generates a history as the purpose of the deep simulation
is merely computing Ky and K values. Also, it executes normal,
atomic, plocall and box1 functions while ignores plocal2 and
box2. The detailed rules are in Appendix E of [34].

6.2 Correctness of Deep Simulation

Similar to shallow simulation, we define a refinement function Q
that converts R-values to symbolic R-values. This time we only
turn all values with pub2, pvt2 and plc2 security levels into SVsym.
This function is also overridden to apply on stacks.

THEOREM 5. If (¢, Q1) —¢ (r, Qg, B) then there exists r’ where
(¢, 2(Q1) —c (', Q(Q2)) and [F']32 = 1.

The proof is very similar to theorem 1 as their semantics are
similar except for the deep semantics is a bit simpler.

6.3 Correctness of Distribution

Sec. 5.3 shows the distributed program, and Sec. 6.1 evaluates all
dependent data that are needed in the sync steps. We now proves
these data are sufficient for the distributed program to terminate
with the same behavior as if running without distribution.

Given a sequential program cy;...;cp, generated by the shallow
simulation and an initial stack Q, suppose the program runs like
(ci, Qi—1) —¢ (cont, Q;, f;) without cutting. We focus on the ¢-th
chunk and align its execution like in Figure 8. Each command c;
corresponds to two stacks Q’]’.re and Q’]’.OSt, If chunk(j) = t, we first
run sync; to add external dependent values into Q’]’.iit, then run
cj; Otherwise, the stack remains unchanged.

We need to prove that the following theorem holds, then theorem
4 ensures that c; terminates with the same behavior.

THEOREM 6. Vj € chunk™1(¢), Q';.re ~g Qj-1 whereS = DEP(-, j).
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sync;

post Qgre ¢j post Qpre onst
-1 I cont,p J+ J+1
Cj Cj
J J+1
Qj-1 Qj Qj41
cont, 8

Figure 8: Execution in a Chunk

In Appendix F of our online full version [34], we prove this
theorem by first defining a set of L-values ¢’ that are internally
dependent in the t-th chunk after c;, then prove the stack in the
uncut execution is always similar to the ¢-th chunk’s local stack
up to this set. So the internal dependency is handled, we then use
theorem 5 to handle the external dependency happening in sync,
combining them together proves the theorem.

7 EVALUATION

7.1 Evaluation Setup and Metrics

We use three metrics to evaluate the effectiveness of our tool:

e Compilation Time is the time used for shallow simulation, data
dependency analysis, and efficient-cut search. PBO solving during
the compilation is done via the Gurobi [28] PBO solver. We do
not include the time cost of deep simulation in the compilation
time, but deep simulation takes less than 0.5% of the compilation
time for all examples.

o Effective Ratio of a distributed zero knowledge program is de-
fined as the quotient of the cost of the sequential execution (total
costs of all instructions) by the cost of the distributed execu-
tion (as the objective function in Sec. 5). When a program is
distributed to x chunks, the closer the effective ratio is to k, the
better the distribution scheme is. Note that depending on the
statement, the optimal effective ratio may be smaller than k.

o Execution Time refers to the end-to-end performance. We com-
pile Ou code to a VOLE-based ZK implementation (EMP [39]) and
measure the execution time of the resulting distributed programs.
We opt to use VOLE-based ZK backend as one of our motivations
is to work with large-scale applications. This choice allows us
to handle large statements without requiring costly machines
with large memory. In addition, our implementation can be easily
extended to support a rich set of ZK protocols since EMP can be
connected to SIEVE-IR [36].

To evaluate our tool, we focus on two programs with different
features. All implementations in our language Ou can be found
in the supplementary material. As the effectiveness of Lian also
depends on the structure of the input program, we further provide
visualization for the program structure of gradient descent and
merkle tree in Appendix G of our online full version [34].

(1) Gradient descent (GD) is an optimization algorithm for find-
ing the optimal model in machine learning. It works by itera-
tively updating the parameters of a model in the direction of
the negative gradient of the cost function concerning those pa-
rameters. We implement gradient decent for logistic regression
with 10 features.

(2) Merkle tree (MT) is a type of data structure used to verify
the integrity of large amounts of data. It breaks the data into
smaller blocks, then recursively hashes each pair of blocks to
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Figure 9: The effective ratio for the distribution scheme found by
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create a new set of parent nodes using a cryptographic hash
function. By proving the correct computation of the Merkle
tree, the prover can prove they have the original data without
revealing the actual data to the verifier [31].

7.2 Evaluation of the Partition Quality

First, we demonstrate the changes in the effective ratio of the dis-
tribution scheme found by Lian for GD and MT program changes
with the size of programs and the number of cuts. GD takes a set
{(x,y)} as input, where x is a vector of size M. Throughout this
section, we fix |[{(x, y)}| to be 20 and |x| to be 10.

The effective ratio of Lian is affected by the length of the pro-
gram being distributed. The length of GD and MT programs are
decided by the number of iterations and the number of input blocks,
respectively. As shown in Figure 9b and Figure 10b, Lian can find
the distribution scheme that achieves the almost optimal effective
ratio for large programs for both GD and MT cases.

Figure 9a and Figure 10a demonstrate that the effective ratio
will increase with the number of machines rising when the number
of partitions is relatively small. Moreover, the results present an
upper bound of the effective ratio of the distribution scheme for a
given program. For example, the effective ratio for the GD programs
involving 80 iterations reaches 40 and stays unchanged regardless
of the increasing number of machines. Nevertheless, the results
show that our tool can utilize a high degree of parallelization.

7.3 Effectiveness of Atomic Annotation

In this section, we study the impact of annotation on the compi-
lation time and effective ratio. For all examples, we set the time
limit of the PBO solver to 10 minutes. In the GD program, there is a
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On the other hand, atomic annotation rules out some feasible solutions, mak-
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Figure 12: Adding annotation improves both the effectiveness of both com-
pilation and the effective ratio of the MT program for 32-block input.

function called update_all(). This function updates the model’s
parameter using all data points and is called for each iteration. In
the MT program, There is a function called sha256_node() that
computes the hash of internal blocks. We compare the compila-
tion time and effective ratio of GD programs ( or MT programs)
with and without update_all() (or sha256_node()) being atomic
while changing x and the number of iterations.

The results of our evaluation show that the effects of adding
atomic annotations depend on the structure of the programs. Fig-
ure 11 and Figure 12 show a significant rise in the compilation
efficiency when adding annotation for both GD and MT programs.
The compilation time decreases by 1X to 60X with k and the num-
ber of iterations varying. The price of efficient compilation is a
reduction in the effective ratio. The effective ratio for the annotated
program is smaller than the unannotated one for GD programs:
adding atomic annotation rules out a part of feasible solutions that
may contain the optimum.

Sometimes, adding annotation could even improve the effective
ratio, especially when the constrained time is far less than what is
needed to search for an efficient partition. Figure 12 demonstrates
an example of this case. We measure the effective ratio while setting
the time limit of the PBO solver to 600 seconds. The effective ratio
of the MT program for 32-block input with annotation is even better
than the one without annotation when the number of cuts increases.
One reason behind this result is the MT program structure. The
solution found for the annotated program is also optimum for the
unannotated one. Furthermore, with a part of the functions being
atomic, the search space of the PBO solving essentially shrinks.
For readers who are interested in additional information, we have
included the results of MT programs for various input sizes in
Appendix G of our online full version [34].
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K 1 5 10 20 40
runtime GD 681.55s 147.91s 71.23 s 38.06 s 21.90 s
runtime speedup GD 1 4.6 9.57 179 31.12
effective ratio GD 1 4.99 9.95 199 398
runtime MT 40.23s 11.08s 7.63s 6.5s 5.25s
runtime speedup MT 1 3.63 527  6.19  7.66
effective ratio MT 1 4.95 9.75 1947 38.63

Table 1: End-to-end running time of our framework.

7.4 End-to-End Running Time

Our implementation is end-to-end: it can compile an Ou program
to k pieces of EMP circuits. Most of the compiler’s implementation
is not tied to EMP, so it is flexible to connect with other backends.

We test the running time of the distributed circuits generated
from GD and MT. The testing machine is an AWS m5.]arge instance
with 2vCPU and 8GB memory. For GD, we fix the number of dataset
to be 10, the size of each dataset to be 100, and iterate 200 rounds. For
MT, we fix the data length to be 256. Table 1 shows with different
numbers of machines, the slowest part’s running time, and the
overall speedup compared to uncut execution time. We also list the
effective ratio estimated by the solver. For GD, the effective ratio
approximates the real speedup very well; For MT, the effective ratio
becomes inaccurate as each chunk’s runtime reduces. We think the
reason is mainly because the underlying circuits need a constant
setup time (around 4 seconds). After subtracting it, the speedup
becomes close to the effective ratio.
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A EXAMPLE

Figure 13 shows a code snippet of the Merkle tree we used in the
benchmark. The prover uses a binary Merkle tree to compute the
hash of N private data blocks. The merkle function computes the
hash of a segment of data blocks. Then the verifier calls verify
to verify the hash. When the tree is a leaf node, merkle calls
sha256_leaf to fetch a data block and hash it; When the tree
is a non-leaf node, merkle recursively computes its two subtrees’
hashes, then use sha256_node to compute the merged hash. The
input has 4 data blocks, and we cut the code into 2 fragments.

Here we annotate sha256_node and sha256_leaf as atomic,
and load_block as plocall. So during the shallow simulation,
sha256_node and sha256_leaf will not be unfolded, and 1oad_block
will be ignored and executed during the deep simulation.

Shallow simulation executes the program with Ky knowledge,
yielding a sequence as Figure 14. The recursive function merkle
is unfolded. Each variable is annotated with a unique number to
distinguish it from others with the same name. Line 1-5 computes
the hash of data block 0 and 1, line 6-11 computes the hash of data
block 2 and 3, line 13-14 merges them, then line 15 verifies it.

Notice in Figure 13 merkle, the recursion condition is a pub@
expression. This is necessary for the unfolding to proceed during
the shallow simulation phase. If there is any non-pub@ expression
involved in deciding the control flow, then 1) the shallow simulation
does not have enough knowledge to evaluate that expression so
it can not decide which branch to take, and 2) even if it uses the
prover’s knowledge to evaluate that expression, the information
will be leaked to the verifier via the generated programs.

Then live variable analysis generates a dependency graph as in
Figure 15. The ILP/PBO solver decides to cut it between lines 5 and
6, so the only dependency is hash5.

Now the compiler can already generate two programs as in
Figure 16. We only show the produce and sync functions here. Note
produce_5 in chunk 1 records a digest of all variables that are
produced by Figure 14’s line 5 for consistency check in the end.
Here it is hash5. Similarly, sync_6 records a digest of all variables
dependent by Figure 14’s line 6 after assigning values to them. But
we do not know hash5’s value yet, so we mark it using a question
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#define N 4

/* compute merkle hash of block[left, ..., right-11 x/

pvtl int[8] merkle(int left, int right) {
if (left + 1 >= right) {
pvtl int[8] hash = sha256_leaf(left);
return hash;
} else {
int mid = (left + right) / 2;
pvtl int[8] hashL = merkle(left, mid);
pvtl int[8] hashR = merkle(mid, right);
pvtl int[8] hash = sha256_node (&hashL ,&hashR);
return hash;
3
}
plocall plcl int[64] load_block(int block_id) { ... }

/* compute the hash of a block x/
pvtl int[8] sha256_block(pvtl int[64] &data) { ... }
atomic void verify(pvtl int[8] #*hash) { ... }
/* compute the hash of a data block =*/
atomic pvtl int[8] sha256_leaf (int block_id) {
/* prover loads and commits a block =/
plcl int[64] plc_block = load_block(block_id);
pvtl int[64] block = {0};
for int 1 = @; i < 64; i =i + 1;
block[i] = commit(plc_block[i]);

pvtl int[8] hash =
return hash;

sha256_block (block);

}

/* compute the hash of two merged hashes x/
atomic pvtl int[8] sha256_node(
pvtl int[8] *hashL, pvtl int[8] xhashR) {
pvtl int[64] block = {03};
/* merge two hashes =x/
for int i = @; i < 8; i =
block[i] = hashL->[i];
block[i+8] = hashR->[i];

i+ 1; {

}
for int i =

block[i]

16; i < 64;
= 0;

i=1+1;

/* compute the hash of the merged results */
pvtl int[8] hash = sha256_block(block);
return hash;

}

unit main() {

pvtl int[8] hash = merkle(@, N);

verify (&hash);

return;
}

Figure 13: Merkle Tree Example

pvtl int[8] hashl = sha256_leaf (0);
pvtl int[8] hashL1 = hashl;
pvtl int[8] hash3 sha256_leaf (1);
pvtl int[8] hashR@ = hash3;
pvtl int[8] hash5 sha256_node (&hashL1, &hashR0);
pvtl int[8] hashL@ = hash5;
pvtl int[8] hash7 sha256_leaf (2);
pvtl int[8] hashL3 = hash7;
pvtl int[8] hash9 sha256_leaf (3);
pvtl int[8] hashR3 = hash9;
pvtl int[8] hash11 = sha256_node (&hashL3, &hashR3);
pvtl int[8] hashR2 = hashl11;
pvtl int[8] hash13 = sha256_node (&hashL@, &hashR2);
pvtl int[8] hashe hash13;
verify (&hasho);

Figure 14: Merkle Tree after Shallow Simulation
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Figure 15: Merkle Tree Dependency Graph

1 /* chunk 1 */

2 pvtl int[8] hashl = sha256_leaf (0);

3 pvtl int[8] hashL1 = hashi;

4 pvtl int[8] hash3 = sha256_leaf(1);

5 pvtl int[8] hashR@ = hash3;

6 pvtl int[8] hash5 = sha256_node (&hashL1, &hashR0);
7 produce_5();

8 consistency_check();

9

10 void produce_5() { add_out_digest(2, hash5); }

1 /* chunk 2 */

2 pvtl int[8] hash5;

3 sync_6Q);

4 pvtl int[8] hashL@ = hash5;

5 pvtl int[8] hash7 = sha256_leaf (2);

6 pvtl int[8] hashL3 = hash7;

7 pvtl int[8] hash9 = sha256_leaf (3);

8 pvtl int[8] hashR3 = hash9;

9 pvtl int[8] hash11 = sha256_node (&hashL3, &hashR3);
10 pvtl int[8] hashR2 = hashl1;

11 pvtl int[8] hash13 = sha256_node (&hashL@®, &hashR2);
12 pvtl int[8] hash@ = hash13;

13 verify(&hasho);

14 consistency_check();

15

16 void sync_6() {

17 hash5 = ?;

18 add_in_digest (1, hashb5);

19 3}

Figure 16: Merkle Tree Generated Programs

mark. The code can already be distributed to individual verifiers,
who will count on the provers to supply encrypted hash5 during
the runtime. But the provers need to know these values before
interacting with the verifiers. So they perform deep simulation on
Figure 14’s program based on the secret input and find out hash5’s
value when reaching line 5. Here the type system again guarantees
the deep simulation can proceed. For example, suppose there is any
K; value that is dependent between two chunks, and it relies on
the verifier’s randomness, then the prover at the compile time can
not guess this value, thus it can not proceed.

In the end, chunk 1 and chunk 2 can run in parallel without
any communication. When both chunks’ execution finish, they will
run a consistency check together to make sure the hash5 used in
chunk 2 is indeed produced by chunk 1’s execution. Here we can
see the live variable analysis and the cut searching should find
the minimal dependency between the two chunks that guarantees
the safe execution of both. Suppose the live variable analysis fails
to determine that hash5 is the dependency between chunk 1 and
chunk 2, then chunk 2’s line 4 will have undefined behavior. Suppose
the cut searching algorithm considers hash1, hash3 and hash5 are
all needed by chunk2, then we need to commit more data in sync_6,
which will slow down the runtime performance.
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