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Ecologically mediated selection against hybrids, caused by hybrid phenotypes fitting poor-
ly into available niches, is typically viewed as distinct from selection caused by epistatic
Dobzhansky—Muller hybrid incompatibilities. Here, we show how selection against trans-
gressive phenotypes in hybrids manifests as incompatibility. After outlining our logic, we
summarize current approaches for studying ecology-based selection on hybrids. We then
quantitatively review QTL-mapping studies and find traits differing between parent taxa are
typically polygenic. Next, we describe how verbal models of selection on hybrids translate to
phenotypic and genetic fitness landscapes, highlighting emerging approaches for detecting
polygenic incompatibilities. Finally, in a synthesis of published data, we report that trait
transgression—and thus possibly extrinsic hybrid incompatibility in hybrids—escalates
with the phenotypic divergence between parents. We discuss conceptual implications and
conclude that studying the ecological basis of hybrid incompatibility will facilitate new
discoveries about mechanisms of speciation.

Speciation occurs in an explicitly ecological  they form, find themselves amid a tangled bank
context (Mayr 1942; Schluter 2000; Sobel  ofbiotic and abiotic stresses; in addition to com-
et al. 2010; Germain et al. 2021). Hybrids, when  pleting development and gametogenesis, they
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must obtain food, avoid predators, mitigate
stressors, and find mates, among other chal-
lenges. Although hybrid fitness is a key determi-
nant of gene flow between lineages (Coyne and
Orr 2004; Roux et al. 2016; Irwin 2020; Westram
et al. 2022), research into the genetic basis of
selection against hybrids—termed “postzygotic
isolation”—has primarily focused on barriers af-
fecting viability and gametogenesis that manifest
in the laboratory (Reifova et al. 2023). As a result,
less is known about the genetic basis of post-
zygotic isolating barriers caused by ecology
(Schluter and Rieseberg 2022).

The primary genic model of postzygotic iso-
lation is the (Bateson-)Dobzhansky-Muller
Incompatibility (DMI) model (Bateson 1909;
Dobzhansky 1937; Muller 1942). Until the mid-
twentieth century, hybrid sterility and inviability
were puzzling—how could evolutionary diver-
gence between lineages proceed in a manner
that leads to unfit hybrids? The DMI model posits
that postzygotic isolation will typically involve
substitutions at more than one locus. Low-fitness
allele combinations (“DMIs”) come together for
the first time in a hybrid, where they interact epis-
tatically to reduce fitness (Fig. 1A; Orr 1995). To
date, several studies have identified genes or loci
underlying negative epistasis for fitness—where
the fitness effects of an allele depend on the geno-

A Dobzhansky—Muller B
incompatibility model

type at one or more other loci (Guerrero et al.
2017)—in hybrids (Presgraves et al. 2003; Bomb-
lies et al. 2007; Phadnis and Orr 2009; Chae et al.
2014; Zuelligand Sweigart 2018; Powell et al. 2020;
Moran et al. 2021). This empirical support has
generated a strong consensus that DMIs are crit-
ical for postzygotic isolation.

In the field of speciation genetics, DMIs are
typically discussed in the context of isolating bar-
riers categorized as “intrinsic” and not those that
are “extrinsic” (Price 2008). These categories re-
late to expectations about the role of the ecolog-
ical niche and/or the degree of environment
dependence in causing postzygotic isolation. In-
trinsic barriers are often defined as being caused
by “inherent fitness problems” (Coyne and
Orr2004) and typically interpreted to mean “un-
conditional ... with respect to the environment”
(Anderson etal. 2023). By contrast, extrinsic bar-
riers are defined as hybrids having a poor phe-
notypic fit in available niches, and are (by defi-
nition) environment dependent (Schluter and
Conte 2009; Nosil 2012). Exemplifying the con-
vention treating DMIs as nonecological, Coyne
and Orr (2004) introduce the DMI model within
the section, “Genetic Modes of Intrinsic Postzy-
gotic Isolation.” In some cases, the distinction
between intrinsic and extrinsic barriers can be
blurry because exogenous factors are sometimes

Pollinator-mediated selection against opposite-
ancestry allele combinations in monkeyflowers
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Figure 1. Conceptual overview of the Dobzhansky-Muller incompatibility (DMI) model and an example of a trait-
based pollinator-mediated hybrid incompatibility. (A) A two-locus, recessive DMI. One of the two opposite-
ancestry homozygous genotypes (aaBB) has low fitness. (B) Asymmetric selection against opposite-ancestry allele
combinations in monkeyflowers, Mimulus lewisii, and Mimulus cardinalis. The two species have divergent floral
colors and shapes (“wild-type”). The YUP locus encodes the flower color difference. Visitation by bumblebees
decreases when the cardinalis allele is introgressed into the lewisii background, while flower color variation has
little effect on hummingbird pollination in the cardinalis background. Patterns are a simplified presentation of
those reported by Bradshaw and Schemske (2003).
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required to reveal an apparently “intrinsic” in-
compatibility (Coyne and Orr 2004). In this ar-
ticle, we aim to clarify how negative epistasis for
fitness between opposite-ancestry alleles can re-
sult from selection against quantitative hybrid
phenotypes mediated by the ecological niche. It
is well established that divergent ecological selec-
tion can generate DMIs that are not mediated by
the niche (Moyle et al. 2012; Wright et al. 2013;
Wilkinson et al. 2021). Here, we are not con-
cerned with the question of whether or not neg-
ative epistasis for fitness is environment depen-
dent (Fuller 2008), but rather with whyalleles are
incompatible in contemporary environments. In
other words, what is the context linking hybrid
genotypes to fitness?

In alargely separate line of inquiry from work
on DMIs, the study of speciation by natural selec-
tion investigates how adaptive phenotypic evolu-
tion drives the evolution of reproductive isolation
(Schluter 1996, 2000, 2001, 2009; Moyle 2004;
Nosil 2012; Langerhans and Riesch 2013). Many
studies have demonstrated that ecology mediates
hybrid fitness (Hatfield and Schluter 1999; Rundle
2002; El Nagar and MacColl 2016; Best et al. 2017;
Zhang et al. 2021; Thompson and Schluter 2022),
and when parents are adapted to different habi-
tats, convention holds that hybrids are selected
against because their intermediate phenotypes
“fall between” parental niches. While many stud-
ies have discovered potential ecological barrier
loci using genome scans (Kulmuni et al. 2020),
such approaches can say little about how selection
acts on phenotypes. Because most work linking
adaptive phenotypic divergence with hybrid
incompatibility has focused on nonecological
DMIs, we presently lack a conceptual foundation
upon which to integrate phenotypic fitness land-
scapes with epistatic hybrid incompatibilities
(Funk et al. 2006; Kulmuni and Westram 2017;
Satokangas et al. 2020).

Here, we propose that conceptual barriers be-
tween the study of ecological speciation and DMIs
can be overcome by considering how opposite-
ancestry alleles combine to generate transgressive
phenotypes in hybrids (Rieseberg et al. 1999). Just
as the historic view of DMIs considers previously
untested genotype combinations at multiple loci
(Gavrilets 2004), the ecological view of DMIs con-

Ecology of Incompatibilities

siders phenotypes that occupy a non-parent-like
and non-intermediate region of multivariate trait
space—which we refer to as “transgressive” phe-
notypes. We first make the case that the DMI
model should be interpreted more broadly than
is convention. Next, we quantitatively review the
genetic mapping literature (see Box 1 for an over-
view of quantitative components of this article),
which supports the view that transgression-based
incompatibilities will often be polygenic. After re-
viewing existing approaches for studying ecologi-
cally mediated DMIs, we develop intuition about
how phenotypic transgression manifests as in-
compatibility on phenotypic fitness landscapes
and via selection on genetic ancestry. Last, we con-
duct a quantitative review showing that the mag-
nitude of transgression in hybrids increases with
the magnitude of phenotypic divergence between
their parents. We conclude that embracing the
ecological basis of hybrid incompatibility will fa-
cilitate research into the importance of DMIs for
speciation-by-selection and clarify new hypothe-
ses about mechanisms of speciation.

THE DOBZHANSKY-MULLER MODEL AS A
GENERAL MECHANISM OF POSTZYGOTIC
ISOLATION

Speciation researchers often make two assump-
tions about DMIs, which in order of their per-
vasiveness are that (1) DMIs are context-inde-
pendent, and (2) DMIs typically involve few loci
(i.e., “oligogenic” [Orr and Turelli 2001; Matute
etal. 2010; Bank et al. 2012; Lindtke and Buerkle
2015; Li et al. 2022; Xiong and Mallet 2022; but
see Orr 1995; Palmer and Feldman 2009; Living-
stone etal. 2012]). Incompatibilities mediated by
maladaptive transgressive phenotypes will likely
be context dependent and underpinned by more
than two loci—we address this latter claim quan-
titatively below. It is therefore worth briefly dis-
cussing why DMIs can have context-dependent
effects on fitness and be underpinned by an ar-
bitrarily large number of loci.

At its core, the DMI model has two essential
components. First, assuming diploidy and bi-al-
lelic loci, two or more loci must be involved in a
DMI; second, alleles must interact epistatically
wherein at least one hybrid allele combination
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BOX 1. OVERVIEW OF QUANTITATIVE VIGNETTES

Summary

The article contains three quantitative vignettes that use various types of data and analysis methods.
This box briefly summarizes the nature of the three vignettes and describes how their results can be
reproduced. Full methods and results can be seen in the more substantive “Supplemental Material”
document, located in the associated Dryad repository (doi:10.5061/dryad.qfttdzOmr).

Data and code accessibility

All data, metadata, simulation input files, and analysis code can be found on Dryad (doi:10.5061/
dryad.qfttdzOmr). Data are all in the “data_dryad” folder, and scripts are in the “scripts” folder.
Additional details are provided in readme files.

Minimally sufficient data sets underlying figures—containing just the plotted data with no metadata
—can be found in data_dryad/figure data/main/ for main text figures and data_dryad/
figure data/supp/ for supplementary figures. Each column in the data set has a prefix, “x_” or
“y_” indicating its axis in the corresponding figure—some plots (e.g., histograms) only have a single
variable. If grouping or coloring variables are used, these are indicated with intuitive prefixes, such as
“grp “or“clr ”

Key details of quantitative vignettes

Vignette 1: Analysis of quantitative trait loci.

« Data source: Systematic review of studies performing QTL-mapping in hybrid crosses.
« Analysis: Qualitative reporting of patterns across studies.

« Key results are shown in Figure 2 of the main text.

« Additional methods and results can be found in Supplemental Material S1.

Vignette 2: Genetically explicit simulations of selection on hybrid incompatibilities

« Data source: individual-based simulations performed in Admix’em (Cui et al. 2016).
« Analysis: Qualitative reporting of patterns evident in the simulations.

« Key results are shown in Figure 4 of the main text.

« Additional methods and results can be found in Supplemental Material S2.

Vignette 3: Analysis of phenotypic variation in hybrids.

« Data source: Systematic review of hybrid phenotypes, as well as parental (nonhybrid) individuals,
from controlled crosses.

o Analysis:

« Processing of data to quantify transgression in hybrids and phenotypic divergence between
parents, and regression analysis of their correlation.

« Formal meta-analysis of transgression and phenotypic variation in hybrids.
« Key results are shown in Figure 5 of the main text.

« Additional methods and results can be found in Supplemental Material S3.

Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a041440



Downloaded from http://cshperspectives.cshlp.org/ at Texas A&M University - Medical Sciences Library on February 24, 2024 -
Published by Cold Spring Harbor Laboratory Press

fggﬁ% Cold Spring Harbor Perspectives in Biology

PERSPECTIVES

Voocd”

www.cshperspectives.org

confers lower fitness than the parental configu-
rations (Fig. 1A). So long as selection against
hybrid phenotypes results from epistatic selec-
tion against opposite-ancestry allele combina-
tions, such interactions possess the two key com-
ponents of a DMI (Muller 1942). We therefore
view context-dependent and genetically com-
plex DMIs to fit well under the definition of hy-
brid incompatibility. Importantly, while the fit-
ness effects of DMIs are generally thought of as
being static through space and time, the fitness
landscapes underlying ecological DMIs are like-
ly dynamic (Bordenstein and Drapeau 2001).
Henceforth, we consider only the contemporary
relative fitness landscape when discussing eco-
logically mediated DMIs.

The presently held assumptions about DMIs
—that they are “intrinsic” and simple in architec-
ture—likely established for myriad reasons. Truly
unconditional hybrid inviability and/or sterility
are sufficiently explained via DMIs, whereas
DMIs are not necessary to explain conditional
inviability and/or sterility. Moreover, DMIs are
most amenable to study if they appear in the lab-
oratory and are more genetically tractable if they
involve few loci (Sweigart et al. 2006); similarly,
two-locus DMIs are the simplest case for theorists
to model (Orr 1995), and for outlining the basic
principles of the DM model. Ecologically mediat-
ed and genetically complex DMIs do not lend
themselves to precise inference: ecological mech-
anisms of selection on DMISs are typically specu-
lative and derived from natural history knowledge
(discussed below), and evidence for complex “in-
trinsic” DMIs, even in genetic model systems, is
usually indirect (Cabot et al. 1994; Maside et al.
1998; Tao et al. 2003; Kao et al. 2010; Lollar et al.
2023). (Some empirical approaches commonly
used to study incompatibilities, such as the analy-
sis of introgression lines [Masly and Presgraves
2007; Moyle and Nakazato 2010], make no as-
sumptions about the number of loci involved in
DMIs and only ask whether the focal region is
involved in a DMI.) However, although they
might be difficult to observe and characterize,
DMIs that manifest only in the field and involve
many genes are still DMIs.

Ecology-mediated DMIs represent a case of
environment-specific fitness epistasis. That is,

Ecology of Incompatibilities

the fitness effects of a particular allele depend on
both the genotype at other loci and the environ-
ment where fitness is measured (Costanzo et al.
2021; Bakerlee etal. 2022), constituting a gene-by-
gene-by-environment interaction (ie, GxGx
E). For example, Ono et al. (2017) evolved inde-
pendent lines of yeast in a medium containing
dilute fungicide and found that lines acquired dif-
ferent single-step mutations conferring tolerance.
When these alleles—each beneficial as “single-
mutants”—were brought together as “double-
mutants” in dilute fungicide, they reduced fitness.
However, in concentrated fungicide, many previ-
ously incompatible alleles became high-fitness
double-mutants (Ono et al. 2017). Note that fit-
ness epistasis implies something different than
trait epistasis, which occurs when the phenotypic
effect of one locus is affected by the genotype at
other loci (Fierst and Hansen 2010). Fitness epis-
tasis emerges naturally as a consequence of stabi-
lizing or disruptive selection on one or more traits,
or correlational selection between traits (see Whit-
lock et al. 1995 for discussion). Existing research
suggests that fitness epistasis can be environment
dependent (Nosil et al. 2020; Costanzo et al. 2021;
Bank 2022), although this topic remains underex-
plored empirically (Domingo et al. 2019). Since
trait variation is typically higher in recombinant
hybrids (East 1916; also see below), and trait com-
binations are often disrupted in hybrids (Riese-
berg 1995; Rosenthal et al. 2003), we expect that
environment-specific fitness epistasis will com-
monly occur between opposite-ancestry alleles
in hybrids.

A simple example of an ecologically mediated
hybrid incompatibility between opposite-ancestry
alleles—only apparent under field conditions—is
evident in data from Bradshaw and Schemske
(2003) (Fig. 1B). Bradshaw and Schemske (2003)
quantified how an allele swap influenced pollinator
visitation in Mimulus monkeyflowers. In this sys-
tem, flowers attract and interact with a specific pol-
linator—bumblebees for pink-flowered Mimulus
lewisii and hummingbirds for red-flowered Mim-
ulus cardinalis. Bradshaw and Schemske (2003)
reciprocally introgressed the YUP locus, which
contains a large-effect flower color allele (Bradshaw
et al. 1998; Schemske and Bradshaw 1999; Liang
et al. 2023). The authors found that bumblebees
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largely ignored red lewisii-like flowers, whereas
hummingbirds were little-deterred by pink cardi-
nalis-like flowers (Bradshaw and Schemske 2003).
The (recessive) M. cardinalis YUPallele is therefore
incompatible within the lewisii genetic back-
ground, whereas the M. lewisii YUP allele is mostly
compatible within the M. cardinalis genome, and
this incompatibility is mediated by an ecological
mechanism of selection: pollinator visitation. We
use this simple example of a large-effect allele swap
because it is intuitive, but below we primarily focus
on more polygenic incompatibilities.

CURRENT APPROACHES FOR STUDYING
ECOLOGICALLY MEDIATED HYBRID
INCOMPATIBILITIES

Most work investigating how ecology mediates
the fitness consequences of DMIs has ap-
proached the topic without a view to the ecolog-
ical niche and phenotypic fitness landscapes.
These studies generally either (1) compare the
relative fitness of crosses between environments,
or (2) observe a specific hybrid incompatibility
phenotype affected by a selective mechanism ab-
sent from standard laboratory conditions; exam-
ples of both are described below. This work com-
plements our goals because it supports the view
that hybrid incompatibilities can have a critical
ecological context—that is, it provides evidence
for G x G x E interactions between opposite-an-
cestry alleles. However, because they do not con-
sider phenotypic fitness landscapes, such ap-
proaches for studying ecologically mediated
fitness epistasis are conceptually distinct from
mechanisms of speciation-by-natural-selection.
Therefore, we subsequently focus on how “ordi-
nary” (Orr 2001) quantitative traits, which are
expected to be under species- or population-spe-
cific stabilizing selection (e.g., bill shape in birds)
rather than universal directional selection (e.g.,
pollen viability in plants), can underlie fitness
epistasis in hybrids. Phenotype values for ordi-
nary traits do not inherently transmit informa-
tion about how they affect fitness—a particular
bill shape can be adaptive or maladaptive de-
pending on how it is used. By contrast, pheno-
type values for fitness traits, such as the fraction

of gametes that are viable, do transmit informa-
tion about fitness.

Environmental Effects on Relative Hybrid
Fitness

If incompatibility between opposite-ancestry al-
leles is only exposed under particular ecological/
environmental conditions, the relative fitness of
incompatibility-afflicted hybrids should be re-
duced in the presence of the mediating ecological
mechanism(s). In an interspecific cross in the
plant genus, Silene, hybrid breakdown—a reduc-
tion in fitness in the F, compared to the average of
parents and the F, (Edmands 2002)—is observed
in the field (Favre et al. 2017; Karrenberg et al.
2019; Gramlich et al. 2022) but not in a relatively
benign botanical garden (Liu and Karrenberg
2018). Critically, hybrid breakdown is direct evi-
dence of negative epistasis for fitness (Whitlock
etal. 1995; Fensteretal. 1997) and therefore DMIs.
Similar patterns of ecological mechanisms medi-
ating fitness epistasis in hybrids have been ob-
served in several systems (Fitzpatrick and Shaffer
2004; Campbell and Waser 2007; Sambatti et al.
2008; Schumer et al. 2014; Schumer and Brand-
vain 2016; Kulmuni et al. 2020; Thompson and
Schluter 2022). Studies manipulating the hypoth-
esized mechanism(s) of selection in the field are
needed to confirm the role of niche-based selec-
tion—such approaches will be highly informative
for understanding the causes of postzygotic isola-
tion (Schluter 1998).

Many studies have observed that the fitness
effects of apparently “intrinsic” DMIs are affect-
ed by the experimental environment (Borden-
stein and Drapeau 2001). For example, the mag-
nitude ofhybrid inviability often varies markedly
with temperature (Muller 1942; Willett and Bur-
ton 2003; Bomblies et al. 2007; Demuth and
Wade 2007; Willett 2011; Bundus et al. 2015;
Miller and Matute 2017), and even nutrient con-
ditions (Grant 1953). Most studies documenting
such phenomena have attributed their findings
to broad mechanisms such as “stress,” which is
typically interpreted to mean that “hybrids suffer
inherent fitness problems that are exacerbated
(in stressful environments)” (Coyne and Orr
2004, p. 250). As such, a stressful (or “harsh”)
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environment might be one where the rank-order
offitness of hybrid cross types (e.g., F, < Fy) isthe
same as in a benign environment, but where a
decline in overall survival probability (i.e., reduc-
tion in absolute fitness) renders the difference
detectable. For instance, if F,s have % the survival
probability of F;s due to DMIs, this difference
will be highly detectable if many individuals ex-
perience mortality and relatively undetectable if
few do. This field of research usefully highlights
that experimental conditions can greatly influ-
ence our conclusions about the presence and/or
strength of incompatibility.

Hybrid Incompatibility Phenotypes under
Ecological Selection

Some studies report DMI phenotypes with indi-
rect, ecologically mediated links to viability. For
example, Fitzpatrick (2008a) and Powell et al.
(2020) inferred that particular combinations of
opposite-ancestry alleles reduced burst-speed
performance—a predator-avoidance behavior—
in hybrid salamanders and fish, respectively.
These incompatibilities are explicitly mediated
by ecology because their fitness consequences
are fully evident only in the presence of predators.
Other studies have identified DMI phenotypes
affecting cognition. Many Drosophila hybrids
fail to locate a nearby food source (Turissini
etal. 2017), and hybrid chickadees have relatively
poor learning and memory compared to parents,
which could reduce their ability to relocate stored
food (McQuillan et al. 2018; Rice and McQuillan
2018); in both cases, negative fitness epistasis
could be ameliorated by providing food to hy-
brids—similar to how cytoplasmic incompatibil-
ity can be ameliorated with antibiotics (Turelli
and Hoffmann 1991; Bordenstein et al. 2001).
Other studies have found that hybrids are more
susceptible to parasites and herbivores, which are
only found in the field (Sage et al. 1986; Strauss
1994). Other studies have found evidence of dis-
rupted mating traits in hybrids (Buckley 1969),
which would only be evident if hybrids are subject
to realistic sexual selection. Clearly, some allele
combinations are only incompatible when ex-
posed to selection in complex natural environ-
ments.

Ecology of Incompatibilities

THE GENETIC ARCHITECTURE OF
PHENOTYPIC VARIATION IN HYBRIDS

DMIs are typically conceived of as interactions
between a small number of opposite-ancestry
alleles of individually large effects (Maheshwari
and Barbash 2011; Li et al. 2013). When oppo-
site-ancestry alleles are incompatible because
they produce low-fitness phenotypes in hybrids,
the genetic architecture of phenotypic diver-
gence between parental lineages determines the
genetic architecture of postzygotic isolation
(Yamaguchi and Otto 2020). While many studies
have documented large-effect alleles underlying
phenotypic divergence (Schemske and Bradshaw
1999; Colosimo et al. 2005; Protas et al. 2006;
Chan et al. 2010), others suggest that smaller-
effect alleles should predominate (Orr 1998;
Rockman 2012; Barton 2022). Reviews of the
quantitative trait locus (QTL) mapping literature
suggest most traits are underpinned by QTL of
small-to-moderate effects but these studies tend
to be restricted to a single taxon and/or include
domesticated or laboratory populations (Louthan
and Kay 2011; Hall et al. 2016; Peichel and Mar-
ques 2017). It is therefore unclear what general
patterns about the genetic architecture of pheno-
typic variation in hybrids might emerge when
considering a taxonomically broad set of lineages
that diverged under natural conditions.

To establish generalities about the genetic
architecture of phenotypic variation in hybrids,
we conducted a systematic review of studies that
mapped QTL in hybrid crosses (Supplemental
Material S1; 91 studies and 2676 QTL). Crosses
were either between different species (interspe-
cific), or between different populations of the
same species (intraspecific). Our effect size met-
ricis “proportion (or percent) of phenotypic var-
iance explained” by a QTL, and mean effect size
did not differ between intraspecificand interspe-
cific crosses (mixed model P = 0.64). The median
broad-sense heritability (estimated by few stud-
ies, typically using ratios of genetic and environ-
mental variation) was 0.57, indicating that most
phenotypic variation is heritable in these studies.

We found that individual QTL explained a me-
dian of 8.3% of the phenotypic variation (Fig. 2A),
and the median total explained phenotypic varia-
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Figure 2. A systematic review of 91 studies reveals a polygenic genetic architecture of phenotypic variation in
hybrids. (A) Distribution of effect sizes ( proportion variance explained [PVE]) for all QTL (n =2676; median =
0.083). (B) Total explained phenotypic variance per trait (summed PVE for each trait; n = 1141; median = 0.228).
Values that would sum > 1 are shown as 1 (see Supplemental Material S1 for additional details).

tion for each trait was 22.8% (Fig. 2B). Consid-
ering only the single largest-effect QTL within
each study, the median variance explained was
30.8%. This suggests that while detected QTL
have reasonably large effects and most pub-
lished studies detect at least one QTL of very
large effect, the majority of QTL went undetect-
ed. These results imply that phenotypic varia-
tion in hybrids is polygenic; note that detected
QTL effect sizes are often overestimates (Beavis
1998; Xu 2003). As a result, selection against
transgressive hybrid phenotypes will typically
involve many loci with modest phenotypic ef-
fects. We expect that the most productive ap-
proaches for studying ecologically mediated fit-
ness epistasis in hybrids will therefore recognize
that hybrids vary continuously in the expres-
sion of incompatible phenotypes—that is, by
degree and not kind. Given the challenges of
detecting additive phenotypic effects of most
QTL, it is reasonable to assume that individual
epistatic fitness effects of QT'L will be even more
difficult to resolve. Therefore, we expect that
genetic approaches for studying ecologically
mediated DMIs will generally not seek to re-
solve genetic interaction networks but rather
aim to identify broader patterns.

HYBRID INCOMPATIBILITIES ON
PHENOTYPIC AND GENOTYPIC FITNESS
LANDSCAPES

In this section, we bridge concepts from research
into DMIs with those from speciation-by-natural-

selection (Langerhans and Riesch 2013) by exam-
ining hybrids on phenotypic fitness landscapes
(Fragata et al. 2019) and considering their under-
lying genetics (Schneemann et al. 2020; De
Sanctis et al. 2023). We first build intuition by
focusing on a scenario where hybridizing popula-
tions have each adapted to the same phenotypic
optimum (Anderson and Weir 2022), referred to
as “mutation-order” speciation (Schluter 2009).
We then address the scenario where nonhybrid
parent lineages are adapted to different phenotyp-
ic optima because of divergent natural selection—
known as “ecological” speciation (Schluter 2001).
Inboth scenarios, selection against hybrids occurs
because hybrid phenotypes are poorly suited to
the available niche(s) (Nosil 2012), and DMIs
manifest as low-fitness transgressive phenotypes
in hybrids.

Our working model follows the assumptions
of Fisher’s (1930) geometric model. In the geo-
metric model, an individual’s fitness is deter-
mined by the Euclidean distance between its
phenotype—which can have any number of
traits—and a phenotypic fitness optimum (see
Schneemann et al. 2023 for further discussion
and quantitative exploration). We assume that
hybrid phenotypes are underpinned by additive
genetic variation and that all alleles are fixed in
parents. We also assume that the only niches
available are those of the cross parents, and do
not consider novel adaptive niches (Rieseberg
et al. 2007; Dittrich-Reed and Fitzpatrick 2013).
Although nonadditive phenotype expression,

8 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a041440



Downloaded from http://cshperspectives.cshlp.org/ at Texas A&M University - Medical Sciences Library on February 24, 2024 -
Published by Cold Spring Harbor Laboratory Press

fggﬁﬁ) Cold Spring Harbor Perspectives in Biology

PERSPECTIVES

Voocd”

www.cshperspectives.org

likely due to dominance, is common in F; hybrids
(Thompson et al. 2021), the additive model nev-
ertheless makes informative, testable, and increas-
ingly well-supported (discussed below) predic-
tions about hybrid phenotypes and genotypes;
how these predictions are affected by nonadditive
phenotype expression has been explored else-
where (Barton and Gale 1993; Turelli and Orr
2000; Simon et al. 2018; Schneemann et al.
2022). Under additivity, F; hybrids are phenotyp-
ically intermediate between parents and lack phe-
notypic variation. F, hybrids, formed by inter-
crossing Fis, exhibit segregation variance that is
proportional to the magnitude of genetic dif-
ferences accumulated between parents (Thomp-
sonetal. 2019; Thompson 2020). Investigations of
hybridization after “system drift” (True and Haag
2001) have explored similar concepts (Schiffman
and Ralph 2022).

Critically, Fisher’s geometric model and
models of pairwise (as in Fig. 1A) incompatibil-
ities make identical predictions about cross mean
fitness and selection on ancestry under most bio-
logically plausible parameter values (Simon et al.
2018). Specifically, both models predict lower
fitness of the F, compared to the F; and nonhy-
brids—hybrid breakdown—and predict identi-
cal patterns of selection on genetic ancestry,
which we discuss below. Thus, although pheno-
types are additive, there can still be substantial
epistasis for fitness.

Ecological Hybrid Incompatibility under
Parallel Selection

Thelogic of ecological DMIs—hybrid incompat-
ibilities where the fitness consequences are me-
diated by ecological agents of selection on phe-
notypic fitness landscapes—is simplest when
considering a single phenotypic optimum and
trait (Fig. 3A). Under parallel natural selection,
DMIs can accumulate because of populations
fixing alternative alleles by chance (Schluter
2009; Unckless and Orr 2009). While originally
formulated in terms of intrinsic and oligogenic
DMIs, such “mutation-order” speciation is easily
interpreted via a polygenic trait on a phenotypic
fitness landscape (Barton 2001).

Ecology of Incompatibilities

Consider an ancestral population that splits
into two derived populations that each undergo
adaptation for increased body size. Under addi-
tivity, F; hybrids and parental populations have
similar phenotype means and variances and high
fitness. F, hybrids will resemble F;s if parents
used the same alleles for adaptation, but will
have more variable phenotypes if parents used
different alleles (Thompson et al. 2019). In the
latter case, some F,s will be too large (“overshoot-
ing”) and some will be too small (“undershoot-
ing”) relative to the optimum. Because selection
on body size is imposed by the niche, and mal-
adaptive phenotypes result from the inheritance
of opposite-ancestry alleles at different genetic
loci, this represents a case of ecologically medi-
ated negative fitness epistasis between opposite-
ancestry alleles. This genetic variation in F,s
would generate hybrid breakdown—a phenom-
enon caused by DMIs (Turelli and Orr 2000;
Fishman and Willis 2001).

Phenotypic models of selection can have clear
genetic underpinnings. When discussing genetic
fitness landscapes in hybrids, we favor a continu-
ous summary of ancestry along two axes (Fitz-
patrick 2012; Simon et al. 2018): (1) ancestry pro-
portion, and (2) ancestry heterozygosity. Ancestry
proportion is the fraction of a hybrid’s genome
that is inherited from either one of the parent
taxa. Ancestry heterozygosity is the fraction of a
hybrid’s genome that is heterozygous for ancestry
from both parent taxa. We prefer these terms and
recommend their adoption because alternatives
for ancestry proportion—simply “ancestry” (Fitz-
patrick 2012) or “hybrid index” (Buerkle 2005)—
are either insufficiently precise (“ancestry”) or of-
ten used for phenotypic classification of hybrids
(“hybrid index” [Wang et al. 2019]). Similarly,
alternatives for ancestry heterozygosity—simply
“heterozygosity” (Simon et al. 2018), or with pre-
ceding terms such as “interclass” or “interspecific”
heterozygosity (Fitzpatrick 2012; Larson et al.
2013)—Ilack precision or are overly restrictive for
a specific taxonomy. The terms “ancestry propor-
tion” and “ancestry heterozygosity” are precise,
generally applicable, and clearly related by their
invocation of “ancestry.”

Selection against F, hybrids with transgres-
sive phenotypes has predictable consequences
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Figure 3. Conceptual overview of mechanisms of extrinsic postzygotic isolation. Each panel contains the implied
phenotype distributions of genetic crosses, phenotypic mechanism of selection, expected cross fitness, and expected
pattern of selection on genomic ancestry (from left to right). Formal models underlying genetic fitness landscapes are
described in Supplemental Material S4; landscapes here are qualitative and meant to highlight the differences between
scenarios. (A) Under mutation-order speciation, parent populations and F; hybrids have the same mean and variance
forafocal trait (trait axis 1). If parent populations used the same alleles for adaptation, segregation variance will not be
observed in hybrids—the parent genomes are fully compatible. However, if parent populations used different loci for
adaptation to the same phenotypic optimum (mutation-order speciation), segregation variance in the F, will cause
hybrid breakdown—the parent genomes are, to some degree, incompatible. In F, hybrids, selection acts against
individuals with low ancestry heterozygosity relative to their ancestry proportion. (B) Under ecological speciation,
parents are adapted to different optima. A one-axis view, where hybrids “fall between niches,” does not predict hybrid
breakdown nor selection on ancestry heterozygosity, but rather selection on ancestry proportion. “Best” environment
implies that individual hybrids are measured in the environment to which their phenotype is better suited. (C) Fitness
epistasis, causing hybrid breakdown, emerges under ecological speciation when considering two or more axes. When
recombinant hybrids have transgressive phenotypes, hybrid breakdown results and selection acts both on ancestry
proportion and ancestry heterozygosity in the F,.
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with respect to ancestry proportion and ancestry
heterozygosity (Fig. 3A). Specifically, the most
transgressive individuals will generally have low
ancestry heterozygosity relative to their ancestry
proportion (at QTL and linked regions). As a
result, the model predicts directional selection
for increased ancestry heterozygosity at such
loci (Simon et al. 2018). This example, concep-
tually similar to the empirical results of Ono etal.
(2017), described above, has been described the-
oretically (Barton 1989; Slatkin and Lande 1994),
and its predictions hold for any number of (un-
correlated) traits (Chevin et al. 2014; Yamaguchi
and Otto 2020).

Ecological Hybrid Incompatibility under
Divergent Selection

When speciation is caused by divergent natural
selection, parent populations occupy different
phenotypic optima (Schluter 2001; Nosil et al.
2002). The mechanism often understood to un-
derlie selection against hybrid phenotypes when
parents are ecologically divergent is that their
intermediate phenotypes “fall between” the
niches of parents (Hatfield and Schluter 1999;
Schluter 2000, 2001; Rundle and Whitlock
2001; Nosil 2012), and robust tests documenting
this mechanism have been completed in diverse
systems (Rundle 2002; Campbell et al. 2008;
Egan and Funk 2009; Kuwajima et al. 2010;
Richards et al. 2016; Soudi et al. 2016; Bendall
etal. 2017).

Like the example of parallel selection dis-
cussed above, ecological speciation is generally
seen one-dimensionally: via a single “axis of di-
vergence” (Fig. 3B; Thibert-Plante and Hendry
2009). This axis might be a single trait, or a com-
bination of traits that “load” onto a single axis
(Nosil 2012). Such selection is epistatic because
the fitness consequences of any allele substitu-
tion depend on the genetic background (if hy-
brids can access the niche where their phenotype
is better suited). However, this epistasis does not
generate patterns expected of hybrid incompat-
ibilities. In particular, hybrid breakdown need
not occur because F, hybrids deviating in “bad”
directions are balanced by hybrids deviating in
“good” directions. If we grant that hybrids can

Ecology of Incompatibilities

optimize their fitness given their phenotype by
“choosing” the best habitat, F,s might even show
improved mean fitness compared to F;s. For
instance, consider a scenario where selection
favors large and small body sizes and acts against
intermediate values. F; hybrids will be interme-
diate and have poor fitness. F, hybrids will ex-
hibit phenotypic variation, but all deviations will
make the F, either smaller- or larger-bodied, and
the worst F, will be F;-like. Moreover, selection
acts only against intermediate values of ancestry
proportion and not against individuals with
more opposite-ancestry homozygous loci (Fig.
3B; Gow et al. 2007; Taylor et al. 2012).

Negative epistasis for fitness between oppo-
site-ancestry alleles emerges when the ecological
speciation model is extended into two or more
dimensions (e.g., traits or PC axes) (Fig. 3C). For
Pythagorean reasons, selection acts against oppo-
site-ancestry trait combinations more than inter-
mediacy. Consider a simple two trait system, [z;,
2z,], with each trait governed by a single, additive,
bi-allelic locus, A/a (affecting z;) and B/b (affect-
ingz,). Non-hybrid parents—genotypes aabband
AABB—have trait values [0, 0] and [1, 1], respec-
tively. An F, hybrid with genotype AaBb has an
intermediate phenotype of [0.5, 0.5], and its dis-
tance (d) from either parental phenotype is
d=1/0.52+0.5>=+/0.5~0.71. By contrast, an
F, hybrid with genotype AAbb will have a trans-
gressive phenotype of [1, 0] and a distance of
d =12+ 02 = /1 = 1. We define the latter
phenotype as transgressive because it occupies
an area of phenotype space that is neither par-
ent-like or geometrically intermediate (Lamich-
haney et al. 2017). Therefore, although the two
hypothetical F, hybrids have identical ancestry
proportions (both 0.5), the hybrid with entirely
homozygous ancestry has lower fitness (greater
distance to optimum) than the relatively hetero-
zygous hybrid.

In addition to novel combinations of diver-
gent traits, and like the “mutation-order” sce-
nario, hybrids between divergent parents can ex-
hibit transgression in traits that do not differ
between parents (Thompson 2020; Schiffman
and Ralph 2022). Barton (2001) investigated
such selection in a model where divergent selec-
tion acted on one trait, while nine traits were
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under stabilizing selection favoring the ancestral
trait value. Because populations fixed alternative
alleles with deleterious pleiotropy and compen-
satory mutations, recombinant hybrids had sub-
stantial segregating phenotypic variation (Riese-
berg et al. 2003) in the traits where parents did
not differ. As with transgression resulting from
novel combinations of parent-like traits, trans-
gression in traits under stabilizing selection re-
sults from hybrids being homozygous for oppo-
site-ancestry alleles at different loci. Because
variation in F, hybrids will primarily occuralong
axes other than the primary axis of divergence,
some hybrid breakdown is expected. With (mo-
lecular) genotype data, one should expect to see
both selection against intermediate ancestry val-
ues and selection favoring high ancestry hetero-
zygosity (Fig. 3C).

A Holistic View of Selection on Hybrids

We have outlined how negative epistasis for fit-
ness between opposite-ancestry alleles emerges
on phenotypic fitness landscapes in cases of
speciation-by-selection. Under mutation-order
speciation, phenotypic transgression in hybrids
results from the inheritance of opposite-ances-
try homozygous loci, causing hybrid breakdown
and selection favoring F, hybrids that are more
heterozygous forancestry. Under ecological spe-
ciation, “falling between niches,” as typically in-
terpreted via a single axis of divergence, causes
neither hybrid breakdown nor selection on an-
cestry heterozygosity, and causes disruptive se-
lection on ancestry proportion. Selection against
transgressive phenotypes, by contrast, causes
hybrid breakdown and selection for increased
ancestry heterozygosity. Importantly, the num-
ber of directions (or “dimensions”) where re-
combinant hybrid phenotypes can “go wrong”
can be great (Orr 2000); the magnitude of hybrid
breakdown, and the strength of selection against
DMIs are expected to grow with the number of
traits under divergent or stabilizing selection
(Chevin et al. 2014).

Estimates of selection on phenotypes are bi-
ased by what we choose to measure and how we
interpret our measurements (Houle et al. 2011).
By contrast, estimates of fitness and selection on

genetic ancestry capture the effect of selection
across all traits, but have a coarse connection to
phenotypes. Future empirical work into specia-
tion-by-selection should quantify the relative
strength of selection caused by “falling between
the niches” (ancestry proportion) versus DMIs
(ancestry heterozygosity). Following Rundle and
Whitlock (2001), it would be prudent to explore
how genetic crosses can be compared experi-
mentally via estimates of fitness and patterns of
selection on genetic ancestry to clarify mecha-
nisms of selection on hybrids (Rhode and Cru-
zan 2005; Johansen-Morris and Latta 2006). By
conducting experimental manipulations of pro-
posed agents of selection (Rennison et al. 2019),
researchers can quantify how particular ecolog-
ical mechanisms affect selection on ancestry. Ex-
periments quantifying selection on ancestry in
hybrid crosses have great promise to illuminate
the genetic architecture of postzygotic isolation
and its underlying causes.

The geometric model assumes that selection
is predictable entirely by the phenotypic distance
ofahybrid’s phenotype to the parental optima—
that is, symmetrical around an optimum. Of
course, it is entirely possible for trait combina-
tions that are all equidistant from an optimum
(e.g.,[0,0.71] vs. [0.5, 0.5]) to have very different
fitness values depending on how traits function
together. Such patterns can result, for example,
when there are nonlinear relationships between
form and function (Wainwright et al. 2005). Un-
fortunately, little is known about how selection
acts on transgressive phenotypes in hybrids. Be-
low, we briefly review what is known about the
extent and fitness consequences of phenotypic
transgression in hybrids, and conduct an original
test of a hypothesis about how transgression
changes over the course of divergence.

INCIDENCE, CONSEQUENCES, AND
EVOLUTION OF PHENOTYPIC
TRANSGRESSION IN HYBRIDS

Evidence of Selection against Transgressive
Phenotypes in Hybrids

There is increasing evidence that phenotypic
transgression in hybrids is common and mal-

12 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a041440



Downloaded from http://cshperspectives.cshlp.org/ at Texas A&M University - Medical Sciences Library on February 24, 2024 -
Published by Cold Spring Harbor Laboratory Press

fggﬁﬁ) Cold Spring Harbor Perspectives in Biology

PERSPECTIVES

Voocd”

www.cshperspectives.org

adaptive. Reviews report that transgression
caused by nonadditive trait expression is often
substantial in F;s (Rieseberg and Ellstrand 1993;
Rieseberg 1995; Thompson et al. 2021), which
might reduce fitness. Indeed, several studies
have now shown that hybrids between insect lin-
eages adapted to divergent host-plants exhibit a
preference for the host-plant upon which they
have lower fitness (Matsubayashi et al. 2010;
McBride and Singer 2010; Bendall et al. 2017),
and studies have started to quantify the fitness
consequences of such patterns in natural hybrids
(Lingle 1993; Cooper et al. 2018; de Zwaan et al.
2022).

Transgression in recombinant hybrids has
also been subject to increasing study. In F, hybrids
between benthic and limnetic ecotypes of three-
spine stickleback fish (Gasterosteus aculeatus), in-
dividuals with transgressive jaw morphology that
combined different features of the two parents had
lower fitness than individuals with parent-like or
intermediate phenotypes, presumably because
they could capture neither evasive nor attached
prey (Arnegard et al. 2014). Similarly, a study of
BC, hybrid sunflowers (Helianthus annuus x Hel-
ianthus debilis) found that more transgressive
plants had lower reproductive fitness than less
transgressive plants (Thompson et al. 2021). Al-
though research is progressing, general patterns
about the incidence and fitness consequences of
traittransgression in hybrids are unresolved. Stud-
ies quantifying phenotypic fitness landscapes un-
der natural conditions (Martin and Wainwright
2013; Arnegard et al. 2014; Keagy et al. 2016;
Martin and Gould 2020) represent a promising
way to make progress.

Only one study has tested for ecologically
mediated DMIs using molecular genotype data
(Thompson et al. 2022). Most approaches used
to study oligogenic incompatibilities with geno-
type data aim to locate specific outlier regions
(Fig. 4A; Sotola et al. 2023) or correlations in
ancestry between loci (Schumer et al. 2014).
However, when negative epistasis for fitness is
underpinned by complex interactions among
many small-effect loci, they might not appear
as significant outliers (Fig. 4B) or generate de-
tectable ancestry correlations; detecting such
interactions therefore requires alternative ap-

Ecology of Incompatibilities

proaches. Using F, hybrid crosses between
benthic and limnetic ecotypes of threespine
stickleback fish, Thompson et al. (2022) found
that mean genome-wide ancestry heterozygosity
was elevated in surviving individuals retrieved
from replicate seminatural experimental ponds,
but not in aquarium-raised fish. This is consistent
with the hypothesis that DMI loci are distributed
throughout the genome and are caused by eco-
logically mediated natural selection (Fig. 3C)—
such a pattern would not occur if selection acted
only on ancestry proportion (Fig. 3B).

Does Transgression Change as a Function of
Phenotypic Divergence?

Reproductive isolating barriers are more predict-
able causes of speciation when they increase with
divergence between populations (Coyne and Orr
1989, 1997; Matute et al. 2010; Moyle and Naka-
zato 2010). Thus, we asked: does phenotypic
transgression in hybrids—presumably resulting
from the expression of opposite-ancestry alleles
—grow with phenotypic divergence between
cross parents?

Theory predicts that the magnitude of phe-
notypic transgression in hybrids should increase
with the degree of phenotypic evolution that has
occurred since parents shared a common ances-
tor (Barton 1989, 2001; Slatkin and Lande 1994;
Chevin etal. 2014). This occurs because the phe-
notypic variation unlocked by recombination—
the segregation variance—is expected to increase
as populations diverge. If traits are additive,
transgression is expected to increase with pheno-
typic divergence in the F, cross generation but
not the F;. Such a relationship implies that ex-
trinsic selection against hybrids might increase
with phenotypic divergence. Using 12 crosses
between stickleback populations differing in
phenotypic divergence, Chhina et al. (2022)
found support for this prediction in both F,
and (unexpectedly) F; hybrids. However, stick-
leback are extremely young species that have
experienced strong divergent natural selection;
many allopatric lineages experience parallel or
stabilizing selection for hundreds of thousands
of years (Anderson and Weir 2022), which might
render it difficult to predict transgression from
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Figure 4. Simulations showing the key differences between the genetics of large-effect and simple versus small-
effect and complex incompatibilities. (A) With large-effect incompatibilities, observed ancestry heterozygosity at
incompatibility loci (“x” symbols) in surviving F, hybrids typically exceeds the standard deviation in neutral
simulations (gray bands). Selection is implemented as in Figure 1A, where the low-fitness allele combination is
lethal. (B) When selection acts against transgression caused by small-effect (pleiotropic) QTL, this generates
epistatic selection across many loci and individual loci are less likely to appear as significant outliers. The model
follows Barton (2001), with the strength of selection matching the mortality in A. Data are from 1000 replicate

simulations (Supplemental Material S2).

phenotypic divergence (Chevin et al. 2014). It is
therefore pressing to test whether the diver-
gence-transgression relationship is general be-
cause this would imply that the evolution of ex-
trinsic hybrid fitness follows patterns analogous
to those described elsewhere as a “speciation
clock” for hybrid viability and fertility (Coyne
and Orr 1989, 1997; Edmands 2002; Price and
Bouvier 2002; Dagilis et al. 2019; Coughlan and
Matute 2020; Matute and Cooper 2021).

We undertook an original quantitative re-
view that collated data from 62 studies (93
crosses and 30,925 individuals) with individu-

al-level phenotype datafor both parentlineages,
F; hybrids,and BC; and/or F, hybrids. The data
are a roughly even mix of insects, plants, and
vertebrates. We collapsed data onto principal
components, and for each cross we computed
phenotypic divergence between parents as the
ratio of between-population to within-popula-
tion phenotypic variation (Fig. 5A). We com-
puted the magnitude of transgression in multi-
variate space for each hybrid as the distance
between its phenotype and the axis connecting
parent mean phenotypes (Fig. 5B), standard-
ized according to the amount of apparent
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“transgression” caused by phenotypic variation
in parents. This metric captures both transgres-
sion caused by “mismatched” combinations of
traits and transgression in traits that do not dif-
fer between parents—indeed these two forms
generate identical patterns on principal compo-
nents (Fig. 5C). In addition to testing whether

Ecology of Incompatibilities

tween parents predicts the magnitude of phe-
notypic transgression in hybrids, we used for-
mal meta-analysis to test whether transgression
(principle component analysis [PCA] of all
traits) and phenotypic variation (trait-by-trait)
differ among hybrid cross types (methods
and detailed analysis in Supplemental Ma-

the magnitude of phenotypic divergence be-  terial S3).
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Figure 5. Systematic review of phenotypic transgression and variation in hybrids. (A) Phenotypic divergence was
calculated as the ratio of mean between-species to mean within-species phenotypic distances (length of black
lines). (B) Transgression was calculated as the phenotypic distance between hybrids and the line connecting parent
mean phenotypes—hybrid values are analyzed as the hybrid:parent transgression ratio. (C) Transgression caused
by “mismatched” traits is geometrically equivalent to transgression in a single nondivergent trait; the two phe-
nomena are indistinguishable on principal components. (D) Cross parents that are more phenotypically divergent
beget increasingly transgressive hybrids (all P <0.001; note that axes differ across plots due to differences in
parental phenotypic divergence between studies making BC, vs. F, crosses). (E, upper) F;, BC,, and F, hybrids
exhibit significant transgression (all P <0.0001; meta-analysis of log[ratio-of-means]), although cross types all
differat P <0.05. (E, lower) Trait variation (random effects meta-analysis of log[ratio-of-coefficients of variation])
doesnot differ between parentsand F; hybrids (P = 0.44), butis significantly elevated in the BC, (P =0.0002) and F,
(P<0.0001).Red points are means + 95% CI, gray points are study means (see Supplemental Material S3). Negative
values indicate that hybrids exhibit less transgression (upper) or less variation (lower) than expected from parent
values. (Data in A and B based on data in Bradshaw et al. 1998.)
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Our analysis provides new insight into the
phenomenon of phenotypic transgression in hy-
brids. The magnitude of transgression was pos-
itively associated with the magnitude of pheno-
typic divergence between cross parents in Fj,
BC,, and F, hybrids (all P<0.0001; Fig. 5D).
For every unit increase in the between-popula-
tion to within-population phenotypic variation,
transgression increases by ~25.7% (95% CI
[23.3%-28.1%]; linear model). For F,s and
BC;s, this pattern is consistent with theoretical
expectations of the segregation variance in re-
combinant hybrid crosses (Slatkin and Lande
1994; Barton 2001; Chevin et al. 2014). Formal
meta-analysis revealed that the average magni-
tude of transgression in F; hybrids was four-
fifths as great as in BC; and/or F, hybrids from
the same cross, although all hybrid cross types
differ significantly in mean transgression (all P <
0.05; Fig. 5E). Trait variation in BC; and F, hy-
brids was significantly greater—1.3x and 1.49x,
respectively—than what is observed in parents
(both P <0.001), while F; hybrids do not exhibit
more variation than parents (P = 0.44) (Fig. 5E).
This pattern is expected under most quantitative
genetic models, and indicates that nonadditive
trait expression (whether caused by genetic dom-
inance or uniparental effects) causes the trans-
gression observed in the F; (Fig. 5D).

The pattern that we have documented—a pos-
itive relationship between phenotypic divergence
between nonhybrid parent populations and trans-
gression in hybrids—is evidence of a potentially
general mechanism that could link extrinsic post-
zygotic isolation with phenotypic divergence.
Such links between phenotypic divergence and
reproductive isolation are necessary, although
not sufficient, for demonstrating ecological speci-
ation (Funk et al. 2006; Nosil 2012). The diver-
gence-transgression relationship is similar to the
well-documented relationship between laborato-
ry-based estimates of postzygotic isolation and ge-
netic divergence (Coyne and Orr 1989; Coughlan
and Matute 2020). Studies quantifying phenotyp-
ic fitness landscapes in hybrids are needed to eval-
uate the fitness consequences of transgression and
to determine whether the divergence-transgres-
sion relationship underlies an “extrinsic specia-
tion clock.”

CONCLUDING REMARKS

In this article, we sought to clarify how selection
against maladaptive transgressive phenotypes in
hybrids generates epistasis for fitness between
opposite-ancestry alleles, that is: genic hybrid
incompatibility. In a similar theme to how pre-
vious work has aimed to reconcile DMI theory
with the statistical theory of quantitative genetics
(Demuth and Wade 2005; Fitzpatrick 2008b), we
aim to reconcile DMI theory with concepts in
speciation-by-natural-selection. Our perspective
is that divergent alleles that combine to generate
maladaptive transgressive phenotypes represent
hybrid incompatibility alleles. By integrating
speciation genetics with concepts from specia-
tion-by-selection (i.e., mutation-order and eco-
logical speciation), we suggest that studying
phenotypic transgression and selection on ge-
netic ancestry represent powerful and current-
ly underused phenotypic and genetic approach-
es for studying mechanisms of postzygotic
isolation.

Dobzhansky (1937) wrote that “the genotype
of aspecies is an integrated system adapted to the
ecological niche in which the species lives. Gene
recombination in the offspring of species hybrids
may lead to formation of discordant gene pat-
terns.” Although Dobzhansky appears to have
viewed DMIs quite broadly, the conventional
view of DMIs has narrowed over time to focus
mostly on laboratory-estimated viability and ste-
rility. This focus is not entirely unwarranted—
truly environment-independent genic inviabili-
ty or sterility can only evolve via the DMI model,
whereas environment-dependent inviability or
sterility does not necessarily require interactions
between multiple loci (Coyne and Orr 2004).
However, this focus might exclude a significant
fraction of DMI loci and we favor a more holistic
view in which DMIs have myriad possible phe-
notypic consequences with genetic architectures
ranging from mono- or oligogenic to highly
polygenic (Abbott et al. 2013). Modern genomic
studies indicate that loci underlying hybrid in-
compatibilities in the wild could be numerous
and spread throughout the genome (Langdon
et al. 2022; Xiong et al. 2023). We view it as a
major goal of twenty-first century speciation
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research to make progress toward understanding
generalities about the genetic architecture of
incompatibilities and their underlying causes.
To accomplish this, in addition to the refinement
of methods aimed at identifying barrier loci
(Laetsch et al. 2023), continued development
and validation of methods to detect epistatic se-
lection in hybrid populations (Schumer and
Brandvain 2016) and genetic crosses (Simon
et al. 2018) will be critical.

Clarifying that DMIs can have underlying
ecological causes will improve inferences about
mechanisms of speciation. At present, research-
ers who detect evidence of incompatibilities with
genotype data often conclude that the patterns
are caused by “intrinsic” selection acting on hy-
brids (Pulido-Santacruz et al. 2018; Cronem-
berger et al. 2020; Nikolakis et al. 2022). While
this could be correct, we argue that the label of
“intrinsic” is conjecture. In fact, whether an in-
compatibility is environment-independent is
unfalsifiable—there will always be an environ-
ment yet to be tested. Instead of being the end
of a line of inquiry, researchers should remain
agnostic about the mechanism(s) underlying
DMIs and instead aim to generate and test mech-
anistic hypotheses. Said differently, genetic evi-
dence of DMIs on its own reveals little about why
alleles are incompatible.

As currently used, the “intrinsic versus ex-
trinsic” dichotomy seems to encourage the con-
flation of environment dependence with partic-
ular components of fitness (e.g., germination or
hatching), even though Coyne and Orr (2004)
explicitly discourage this. Researchers must rec-
ognize that thelaboratoryisan environment, and
whether it is more or less benign than field con-
ditions should not be assumed a priori. Studies in
killifish (Kozak et al. 2012) and hemiparasitic
plants (Wesselingh et al. 2019) detected strong
hybrid inviability in the laboratory, concluded
that F; inviability was an intrinsic barrier to
gene flow, then later found that inviability was
alleviated in the field. Given that the word “in-
trinsic” seems to inspire such premature conclu-
sions, we suggest that refraining from using it in
the empirical literature would be a productive
change in the language of speciation (Harrison
2012). Simply referencing the genetic mecha-

Ecology of Incompatibilities

nism and the focal phenotype—for instance,
“an incompatibility reducing viability”—would
be more accurate.

Many exciting questions about the ecology
of hybrid incompatibilities await further study.
Are complex traits, such as suction feeding in
fishes (McGee et al. 2013, 2015; Arnegard et al.
2014; Highametal. 2016) orlocomotion (Lingle
1992a,b), particularly likely to underlie hybrid
breakdown? Do incompatibilities under eco-
logical selection experience negative frequen-
cy-dependent selection and might this main-
tain barriers to gene flow (Moran et al. 2021;
Xiong and Mallet 2022)? To what degree is eco-
logically mediated postzygotic isolation caused
by “falling between niches” versus transgres-
sion? What are general patterns about the ge-
netic architecture of ecologically mediated in-
compatibilities? In sum, by embracing the
ecology of hybrid incompatibilities, we stand
to make great progress toward clarifying ecol-
ogy’s role in speciation.
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