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Until recently, our understanding of the genetics of speciation was limited to a narrow group
of model species with a specific set of characteristics that made genetic analysis feasible.
Rapidly advancing genomic technologies are eliminating many of the distinctions between
laboratory and natural systems. In light of these genomic developments, we review the history
of speciation genetics, advances that have been gleaned from model and non-model organ-
isms, the current state of the field, and prospects for broadening the diversity of taxa included
in future studies. Responses to a survey of speciation scientists across the world reveal the
ongoing division between the types of questions that are addressed in model and non-model
organisms. To bridge this gap, we suggest integrating genetic studies frommodel systems that
can be reared in the laboratory or greenhouse with genomic studies in related non-models
where extensive ecological knowledge exists.

Biological speciation results from the accu-
mulation of genetic differences that reduce

gene ow between populations. This reproduc-
tive isolation evolves between lineages via mech-
anisms that promote assortative mating and/or
cause inviability or sterility in hybrids. A long-
standing goal of speciation research is to identify
the genetic basis of reproductive isolation across
the tree of life. Until recently, achieving this goal

has been limited to a narrow set of taxa that had
genetic and genomic resources available. Even
then, our understanding of the genetics of spe-
ciation often remained limited to describing
broad patterns of the genetic architecture of re-
productive isolation, that is, the number of loci
involved, their linkage relationships, and their
effect sizes. However, the ultimate goal of speci-
ation genetics is to identify specic loci and al-
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leles that initially create barriers to gene ow
(e.g., chromosomal rearrangements, or genes in-
volved in reproduction, mate choice, or hybrid
tness) along with conditions responsible for
their evolution.

Early studies that focused on identifying the
genetic architecture of reproductive isolation
used what we here refer to as “classical” genetic
techniques, such as making crosses and pheno-
typing or karyotyping hybrid offspring. These
constraints created a historical bias in the diver-
sity of taxa used to study speciation genetics,
limiting our ability to identify general patterns.
Modern genomic approaches are rapidly ex-
panding the study of speciation genetics to a
much broader set of organisms.

Here, we review the contributions to speci-
ation genetic research made using classical ge-
netic approaches in model systems, and we de-
scribe how genomic approaches are expanding
our understanding of molecular mechanisms of
speciation in more diverse species and systems.
We then discuss future opportunities in specia-
tion research that can leverage genome-scale
data to further redress the historical contingen-
cies limiting our exploration of reproductive iso-
lation in diverse taxa.

A BRIEF HISTORY OF CLASSICAL
SPECIATION GENETICS RESEARCH

Early speciation biologists recognized that
characterizing barriers to genetic exchange be-
tween diverging lineages can bring us closer to
understanding the origins of biodiversity (Mayr
1942; Coyne and Orr 2004). Initial studies in
speciation genetics focused on systems with a
few key characteristics. For example, classical
genetics requires the ability to make crosses,
rear large numbers of progeny in a controlled
environment, track visible mutants, and em-
ploy cytogenetic techniques like chromosome
squashes. In the pre-genomic era, Drosophila
research dominated studies of speciation genet-
ics in animals, where numerous traits under the
control of complex genetic architectures were
found to contribute to reproductive isolation
(reviewed in Coyne and Orr 1998). For exam-
ple, Sturtevant’s initial (Sturtevant 1920) report

of F1 hybrid sterility and inviability between
Drosophila melanogaster and Drosophila simu-
lans was later paired with cytogenetics and de-
ciency mapping to associate hybrid male ste-
rility with a recessive deletion on the fourth
chromosome (Muller and Pontecorvo 1940,
1942; Pontecorvo 1943). These early genetic
approaches were later adopted for use in speci-
ation research in other taxa. For example, be-
fore genome sequences were available, some of
the rst hybrid inviability and sterility genes
identied in vertebrates were found in Xipho-
phorus shes, using restriction fragment length
polymorphism mapping, cloning, and Sanger
sequencing (Wittbrodt et al. 1989). In mice, hy-
brid male sterility was mapped to the X chro-
mosome using Southern analysis of DNA probes
on the nuclear genomes of F1 hybrids (Guénet
et al. 1990).

Biologists also capitalized on the powerful
potential of plants for studies of reproductive
isolation in the pre-genomic era. The Biosys-
tematists, an organization formed in California
in 1936 and dominated by botanists from the
Carnegie Institution of Washington (CIW) at
Stanford, UC Berkeley, UC Davis, and the
California Academy of Sciences, facilitated an
interdisciplinary approach to study the genetics,
ecology, physiology, and paleontology of many
species radiations (Smocovitis 1994, 1997). Be-
cause of the ease with which plants could be
cultivated, crossed, and cytogenetically charac-
terized, barriers to gene ow were studied in
many plant groups. For example, crossing bar-
riers were summarized for over 200 interspecic
combinations of Clarkia in California (Lewis
and Lewis 1955). Additional plant studies inves-
tigated the genetics of ecological differentiation
critical to speciation. The CIW researchers used
eld transplants of parentals and recombinant
hybrids to dissect the genetic architecture of
ecogeographic and oral divergence and tomea-
sure the strength of selection on particular traits
and hybrid combinations (e.g., Clausen et al.
1940, 1945; Clausen and Hiesey 1958; Hiesey
et al. 1971). These classic studies demonstrated
that adaptations to the local environment, both
abiotic and biotic, could serve as strong isolating
barriers. While much of this adaptation was
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polygenic and not easily characterized, later
studies with molecular markers capitalized on
these early ndings. For example, chromosomal
rearrangements preventing gene ow were ge-
netically mapped in sunowers using random
amplied polymorphic DNA (RAPD) markers
and backcross hybrids (Rieseberg et al. 1995).
Also, monkey owers (Mimulus) were easily
grown, widely interfertile, and exhibited striking
phenotypes (McMinn 1951; Hiesey et al. 1971;
Vickery 1978). Once molecular markers were
developed, monkeyowers were used in one of
the earliest applications of quantitative trait lo-
cus (QTL) analysis to study reproductive isola-
tion. Specically, oral differences involved in
prezygotic isolation were genetically mapped
and tested under eld conditions (Bradshaw
et al. 1995, 1998; Schemske and Bradshaw
1999), rendering them one of the major model
systems for speciation research (for review, see
Twyford et al. 2015).

An emergent theme frompre-genomic stud-
ies is that historical contingencies have pro-
pelled certain taxa to the forefront of speciation
genetics research. In particular, species with
convenient traits that dene genetic model or-
ganisms, and with long-standing research com-
munities where genetic resources are developed
and shared, have dominated the analysis of
the genetic and molecular details of speciation
(Box 1). Even after molecular markers became
available for many species, genetic mapping still
required segregating lines with hundreds of off-
spring. This limitation restricted investigation to
systems amenable to cultivation and crossing
and those having high fecundity, short genera-
tion times, and easily characterized phenotypes.
Thus, prior to the genomic era, the catalog of
known speciation genes was populated by stud-
ies in yeast, Arabidopsis, Drosophila, mouse,
rice, and platysh (Coyne and Orr 1998; Pres-
graves 2010; Maheshwari and Barbash 2011).
Although these studies facilitated a more com-
plete understanding of the genetic basis of
species differences, they were limited by the
resources available at the time. The recent devel-
opment of genomic technologies has afforded
new opportunities to advance our understand-
ing of speciation genetics in eukaryotes, both in

these “classic” systems as well as in additional
taxa.

CONTEMPORARY SPECIATION RESEARCH
IN THE GENOMIC ERA

Compared to classical speciation genetics, geno-
mic technologies have enabled unprecedented
access to new data and approaches in the
last two decades, including in traditionally
non-model systems (Box 1). Next-generation
sequencing (NGS) includes reduced-represen-
tation sequencing, where sequencing occurs
adjacent to restriction enzyme cut sites, and
whole-genome resequencing. These techniques
allow the simultaneous discovery and scoring of
genetic variation, making them accessible to a
diverse set of organisms (Davey et al. 2011; An-
drews et al. 2016). In some cases, NGS uses the
same study designs from past work on specia-
tion genetics. For example, QTL analyses are still
widely used to study the genetic architecture of
phenotypic traits involved in speciation. The
main difference is that NGS allows genetic var-
iation to be quantied at far more markers with-
out a priori design. This provides vastly greater
genomic resolution in a larger diversity of or-
ganisms. While researchers continue to apply
these tools for QTL mapping in traditional
model organisms, the tools have also enabled
QTL mapping in systems like salmon, stickle-
back sh, spruce trees, and tropical rainforest
herbs (Gonen et al. 2014; Glazer et al. 2015;
Fuentes-Utrilla et al. 2017; Kay and Surget-
Groba 2022). Despite these advances, many of
the same limitations of earlier QTL analyses still
apply. For example, crosses must still be gener-
ated in taxa that can easily produce large num-
bers of offspring. Nonetheless, as detailed below,
genomic tools have also facilitated new “top-
down” and “bottom-up” approaches for explor-
ing speciation.

“Top-Down” Mapping Approaches

Genetic mapping (including QTL and admix-
ture mapping) is considered a “top-down” ap-
proach, whereby researchers begin with knowl-
edge of the phenotypic traits involved in
speciation and look for genetic variants under-
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BOX 1. SURVEYING THE CHARACTERISTICS OF TAXA USED FOR SPECIATION GENETICS/
GENOMICS RESEARCH

To illustrate taxonomic representation in speciation genetics studies, and where potential gaps
remain, we broadly distributed a survey (see Supplemental File S1) to active speciation genetics/
genomics scientists around the world (see Supplemental Figs. S1–S3 for summary demographics of
the respondents). In part, we solicited information about the species or systems that each scientist uses
(summarized in Supplemental Fig. S4).We then asked the participants to numerically rate the species
or system they study on 10-point scales according to “Where does your species/system exist on the
continuum from being lab-adapted/domesticated” (which we further defined as “studied exclusively
in a laboratory, greenhouse, or artificial setting”) to being a “natural/wild population that is studied
exclusively in nature?” (Supplemental Fig. S5) and “Compared to all of the various genetic/genomic
resources and tools that exist for any species/system, howmany are currently available for use in your
species/system?” (Supplemental Fig. S6). Figure 1 shows the distribution of the responses involving
biological systems (i.e., excluding computational modeling) by taxonomic category on these axes:
resource availability and the extent to which experimental work must be performed in a laboratory or
greenhouse environment. Eighty-nine different systems (species, genera, or higher-order groups) were
represented (Fig. 1). Scientists generally responded that many “wild” species (requiring study in a
natural environment) have fewer genetic or genomic resources and tools (lower-left quadrant, includ-
ing many of the vertebrate and plant species) than the animal and fungal species in the upper-right
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Figure 1. Taxonomic distribution of a sample of speciation genetics species and systems. Survey
respondents identified the location on this Cartesian plane of 112 species or systems they study.
Data points have been characterized into four taxonomic groups (plant, vertebrate, invertebrate,
and fungus) and jittered on both axes to facilitate visualization of otherwise overlapping symbols.
All responses for four genetic model systems (Mus,Drosophila, Caenorhabditis, and Saccharomyces)
are indicated, as well as three taxa that occupy extremes of the plane: copepods in the Tigriopus genus
(wild populations studied and have many resources and tools) and true bugs of the genus Lygaeidae
andHibiscus trionum (laboratory-rearable but resource- and tool-poor). In general, vertebrates tend to
be studied in natural environments and are resource-rich,while plant researchers often report that their
natural study systems have fewer available resources. Invertebrates span much of the dimensional
space, and fungi are reported to be either laboratory models with many resources or wild systemswith
few resources. An opportunity for future work is to better develop the upper-left quadrant to generate
more resources and tools for working with natural populations. Details of the genetic and genomic
resources and tools that the respondents use are provided in Supplemental Figures S6 and S7.
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lying them: they are “phenotype-aware” (Barrett
and Hoekstra 2011). Admixture mapping uses
recombination in natural hybrid zones to map
the genetic basis of phenotypic traits that con-
tribute to reproductive isolation. By leveraging
multiple generations of natural hybridization,
admixture mapping avoids the need to generate
crosses, and the elevated recombination in hy-
brid zones can achieve ner resolution than
QTL analyses. Admixture mapping is also con-
ducted in the ecological setting where speciation
is occurring (i.e., where the full breadth of selec-
tion pressures exists) and can focus on traits that
cannot be expressed in the laboratory or green-
house (Hewitt 1988; Rieseberg and Buerkle
2002; Buerkle and Lexer 2008). For example,
this approach was used to map seasonal migra-
tion in a hybrid zone between two subspecies
of songbirds (Delmore et al. 2016). These sub-
species take different routes during migration;
their hybrids take intermediate and ecologically
inferior routes (Delmore and Irwin 2014;
Justen et al. 2021). Hybrids were tted with ar-
chival tags and tracked over the entire annual
cycle. Variation in their migratory routes was
mapped to a single region on one chromosome.
Single-nucleotide polymorphisms (SNPs) in
this region were additively inherited and oc-

curred in genes with functions relevant for mi-
gration (e.g., CLOCK, one of the main com-
ponents of the circadian clock that allows
organisms to respond to changes in photoperi-
od that initiate migration). Estimates of geno-
mic differentiation between pure forms were
also elevated in this region, connecting this be-
havioral trait with divergent selection (Delmore
et al. 2016).

“Bottom-Up” Phenotype-Naive Approaches

Top-down approaches remain restricted to or-
ganisms that can be crossed or for which a nat-
ural hybrid zone with extensive recombination
exists (Buerkle and Lexer 2008). Top-down ap-
proaches are also limited to easily observed traits
already believed to be involved in speciation.
This drawback could produce ascertainment
bias in themechanisms of reproductive isolation
that are reported to occur in various taxa. Ac-
cordingly, a complementary set of analyses,
termed “bottom-up” approaches, has devel-
oped. Bottom-up approaches do not require
knowledge of phenotypic traits and generally
involve using NGS to scan the genome for mo-
lecular signatures of reproductive isolation, of-
ten called “barrier” loci (Barrett and Hoekstra

quadrant, which are reared in an artificial environment. Generally, traditional genetic model systems
tend to be resource-rich and studied in artificial environments (Fig. 1). The research resources and
tools used by respondents are summarized in Supplemental Figure S7.

Researchers also rated various characteristics of their study system or species that facilitated inves-
tigation of speciation genetics. To identify characteristics of species or systems that have been useful for
the study of speciation genetics/genomics in natural and artificial settings, we correlated these char-
acteristics with respondents’ opinions on the extent to which that system or species is reared in an
artificial environment (Supplemental Table S1). Thirteen of 21 characteristics, such as low ploidy and
the geographical accessibility of natural populations, were not significantly correlated. The “ability to
observe in nature” is positively associated with the ratings of wild organisms (Bonferroni-corrected P=
0.038), while organisms reared in artificial laboratory or greenhouse environments are positively
associated with ratings of seven characteristics: “high fecundity” (P=5.44 × 10−4), “short generation
time” (P=0.002), the ability to “grow in the lab/greenhouse” (P=4.33 × 10−8) and to “cross in the lab/
greenhouse” (P=7.03 × 10−6), and the availability of “genetic tools” (P=1.05 × 10−4), “genomic
resources” (P=0.008), and a “stock center” (P=0.006). These factors, which combine intrinsic char-
acteristics like fecundity and extrinsic factors like whether a system has enough active researchers to
warrant the development of a stock center, canbe used to describe the extent towhich a study system is
broadly thought of as a model organism. These results reflect the historical trajectory of speciation
genetics work, which has been conducted mainly in model organisms using a laboratory or green-
house and in natural systems with few available experimental resources.
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2011; Ravinet et al. 2017; Westram et al. 2022).
Many forms of bottom-up approaches have ex-
panded the representation of non-model sys-
tems in speciation genetics. Indeed, whole-ge-
nome sequencing was the most frequently
reported genetic tool in our survey of study sys-
tems (Supplemental Fig. S7).

For example, genomic clines are used to
quantify patterns of introgression across the ge-
nome. Loci with restricted patterns of introgres-
sion are candidates for barrier loci (Gompert
and Buerkle 2011, 2013; e.g., in butteries
[Gompert et al. 2012], songbirds [Parchman
et al. 2013], and Populus trees [Chhatre et al.
2018]). Ancestry disequilibrium can identify
barrier loci, because loci exhibiting nonrandom
associations of ancestry in hybrid populations
likely underlie incompatibilities and generate
reproductive isolation (Schumer and Brandvain
2016; e.g., in swordtail shes [Schumer et al.
2014],Drosophila [Pool 2015], conifers [Menon
et al. 2021], stickleback [Thompson et al. 2022],
and baboons [Vilgalys et al. 2022]). Patterns of
genomic differentiation can also be used to iden-
tify barrier loci. This work often uses closely
related but divergent populations and assumes
that loci showing elevated differentiation are ex-
periencing divergent selection and are involved
in maintaining reproductive isolation (Nosil
and Feder 2012; Ravinet et al. 2017; e.g., in but-
teries [Nadeau et al. 2013], sunowers [Renaut
et al. 2013], Drosophila [Kang et al. 2016], and
songbirds [Han et al. 2017]). As highlighted
by the species cited here, the availability and
quality of genomic tools has diversied the
taxa in which speciation research is being
conducted.

Bottom-up approaches have permitted nov-
el insight into the number and location of bar-
rier loci throughout the genome. Perhaps most
importantly, they underscore that speciation
can proceed through a few focal changes and
does not always require divergence across the
entire genome. As speciation proceeds, the
number of barrier loci increases, especially in
areas of reduced recombination (Wu 2001; Na-
deau et al. 2013; Marques et al. 2016; Burri 2017;
Delmore et al. 2018; Stankowski et al. 2019).
This pattern may have been evident in early ge-

netic models, but its predominance in natural,
non-model systems was only revealed with the
availability of NGS.

The value of using genome-scale approaches
is exemplied by work implicating a role for
structural chromosomal variation in speciation
(Kirkpatrick and Barton 2006; Wellenreuther
and Bernatchez 2018; Faria et al. 2019; and see
Berdan et al. 2023 and Lucek et al. 2023). Struc-
tural variants, which can create hybrid incom-
patibilities, are often hinted at by short-read data
but need validation with sequencing platforms
that generate longer reads, because structural
variants are often longer than short reads and
have repeat-rich regions making them difcult
to map (Bendixsen et al. 2021). Chromosomal
inversions have been shown to underlie ecolog-
ically important traits, which can facilitate adap-
tive divergence and potentially speciation by re-
ducing recombination and shielding genomic
regions from introgression (e.g., in monkey
owers [Lowry and Willis 2010; Coughlan and
Willis 2019], birds [Lamichhaney et al. 2016;
Weissensteiner et al. 2020], and ies [Fuller
et al. 2018]).

Bottom-up approaches do have drawbacks.
For example, genomic clines and scans of ances-
try disequilibrium require the existence of hy-
brid zones of a particular age and large numbers
of individuals (Schumer and Brandvain 2016).
Further, processes other than speciation can
generate genomic patterns indicative of barrier
loci. For example, reduced recombination rates
(e.g., in inversions or near centromeres) can ex-
tend the effects of both positive and negative (or
purifying) selection (Noor and Bennett 2009;
Turner and Hahn 2010; Cruickshank and
Hahn 2014; Delmore et al. 2015; Burri 2017).
Bottom-up approaches may also be limited to
identifying signatures of reproductive isolation
caused by simple genetic architectures and genes
of large effect. This approach remains a chal-
lenge for identifying polygenic signals of repro-
ductive isolation. Indeed, a recent meta-analysis
(Thompson et al. 2023) suggests that ecological
speciation often operates through selection on
many loci with small-effect alleles, leading to
gradual phenotypic divergence. Likewise, in-
compatibilities between species may often have
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a polygenic basis. Finally, there are bioinfor-
matic and nancial challenges to using bot-
tom-up approaches in organisms with large ge-
nomes (as measured in base pairs, chromosome
numbers, and/or ploidy). These challenges limit
our understanding of speciation in certain taxa,
such as some amphibians and plants. Continual
improvements in long-read sequencing and ge-
nome assembly methods should make large and
complex genomes more accessible (e.g., the 32
Gbp axolotl genome [Nowoshilow et al. 2018]
and the maize genome, which comprises ∼85%
transposable elements [Jiao et al. 2017]). Such
advances will enable a better understanding of
potential roles for structural rearrangements,
polyploidy, repetitive sequences, and transpos-
able elements in speciation.

OPPORTUNITIES FOR SPECIATION
GENETICS AT THE INTERSECTION OF
LABORATORY AND NATURE

As we describe above, an emerging genomics-
enabled transformation is evident in the transition
from classical to contemporary studies of specia-
tion genetics. Our practitioner survey conrmed
that, while work progresses in traditional model
organisms, it is now paired with an expansion in
the taxonomic representation of systems within
contemporary empirical studies of speciation ge-
netics (Box 1). These ndings, and our own expe-
riences as speciation geneticists, also clearly reect
ongoing differences in both the perception and
practical reality of “lab” or “greenhouse” versus
“wild” systems (Fig. 1; Box 1). Practically, the re-
ciprocal development of laboratory and wild sys-
tems for speciation genetics is still maturing and
continues to face signicant hurdles.Manyorgan-
isms reared in articial laboratory or greenhouse
environments are likely to perform poorly
under ecologically realistic conditions, and the
release of manipulated laboratory systems into
natural contexts presents logistical, legal, and eth-
ical challenges. Conversely, detailed functional
assessment, including newer technologies like
CRISPR-Cas9 transformation, remains challeng-
ing or impossible in some non-model “wild” sys-
tems. Few systems, it seems, are currently able to
“do it all.”

Given this reality, below we highlight some
areas where we envisage the future movement of
approaches and knowledge from wild to arti-
cial contexts and vice versa. These efforts could
redress historical contingencies in taxonomic
diversity and enrich previous analyses of the
genetics of speciation. To illustrate these oppor-
tunities, we use examples from a few systems
that have fruitfully begun to bridge this gap.
These examples do not exhaustively describe
the literature. Instead, they reect our own ex-
perience and expertise in expanding classical
articially reared systems to natural environ-
ments, bringing classical eld systems into lab-
oratory contexts, or exploring the merging of
these systems and approaches in both of these
directions.

From Nature to the Laboratory

The continued development and expansion of
wild systems into laboratory and greenhouse (or
laboratory- or greenhouse-adjacent) systems of-
fer several advances for our understanding of
speciation. One of the greatest benets of this
expansion is the opportunity to identify loci re-
sponsible for reproductive isolation under eco-
logically relevant natural contexts. Wild systems
are uniquely situated to address classical ques-
tions about how often, and via which mecha-
nisms, selection contributes to speciation. Ide-
ally, identifying genetic variants that cause re-
productive isolation should be coupled with
investigating the evolutionary forces acting on
those genes or mutations under natural condi-
tions. This integration of genetic and ecological
context will require moving knowledge from
natural populations into articial laboratory or
greenhouse environments. Two wildly success-
ful examples of this involve stickleback shes
and monkey owers.

Stickleback shes contain diverse sympatric
and parapatric species pairs that vary in diver-
gence times and the magnitudes of gene ow.
Ecological studies of postglacial species pairs of
the threespine stickleback (Gasterosteus aculea-
tus) have shown that divergent adaptation to
contrasting environments can drive the evolu-
tion of reproductive isolation (Schluter 2000;
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McKinnon and Rundle 2002). Because articial
crosses of these species pairs can be easily made,
genetic architectures of ecologically relevant
morphological traits have been investigated us-
ing QTL mapping (Peichel and Marques 2017).
In several cases, causative genes have been iden-
tied using ne mapping and transgenic exper-
iments (Colosimo et al. 2005; Peichel and Mar-
ques 2017). A combination of articial crossing
and semi-natural pond experiments revealed
complex genotype–phenotype tness relation-
ships of hybrids in semi-natural environments
(Arnegard et al. 2014). The closely related spe-
cies Gasterosteus nipponicus, which diverged
from the threespine stickleback about 680,000
yr ago (Ravinet et al. 2018), shows hybrid male
sterility and courtship behavior divergence
compared to the threespine stickleback (Kitano
et al. 2009). QTL mapping revealed that hybrid
sterility and courtship behavior divergence are
controlled by sex chromosomes (Kitano et al.
2009). Sticklebacks belonging to the genus Pun-
gitius include sympatric and parapatric species
pairs that diverged at more ancient times, such
as 1.7 million yr ago, but a low level of ongoing
gene ow exists in some species pairs (Yamasaki
et al. 2020). Because fertilized eggs can be ob-
tained, and laboratory rearing is possible for
most species, further detailed molecular studies
are possible using genome-editing technologies
(Ansai and Kitano 2022; Kitano et al. 2022).
These stickleback species pairs thus provide
valuable opportunities to link ecological studies
in nature and genetic studies in the laboratory.

The monkey owers have long been studied
in ecology and evolution (Wu et al. 2008), and
researchers continue to expand the species un-
der investigation and the approaches used. For
example, theMimulus aurantiacus species com-
plex comprises seven closely related subspecies
that radiated across California over the past mil-
lion years (Chase et al. 2017). The two best-stud-
ied taxa are very early in the speciation process
and display extensive phenotypic differences in
their owers, despite the presence of ongoing
gene ow and a highly admixed hybrid zone
(Sobel and Streisfeld 2015). Field experiments
revealed pollinator isolation caused by diver-
gence in oral traits, including a major shift in

ower color (Streisfeld and Kohn 2007). Genetic
mapping, combined with association studies in
the hybrid zone and virus-induced gene silenc-
ing, identied allelic variants in the MaMyb2
gene responsible for this difference in ower
color (Streisfeld et al. 2013). The recent devel-
opment of further genomic resources (Stankow-
ski et al. 2019) facilitated the discovery that
introgressive hybridization deep in the evolu-
tionary history of this radiation fueled the re-
peated origins of red ower color across the
complex (Short and Streisfeld 2023). Despite
the presence of a large effect locus controlling
ower color differences, a genome scan of geo-
graphic variation in ancestry revealed numerous
barriers to gene ow on all chromosomes. Cu-
riously, QTLs for oral divergence were not as-
sociated with these putative barrier loci, indi-
cating that additional forms of reproductive
isolation are also necessary to maintain these
distinct taxa (Stankowski et al. 2023). Ongoing
work in this system is primed to leverage the
extensive phenotypic diversity andmultiple nat-
ural hybridization zones to investigate the in-
trinsic and extrinsic forces that keep taxa isolat-
ed despite historical and ongoing gene ow.

As these two examples suggest, studying
speciation genetics in a laboratory or green-
house context works most successfully in sys-
tems with ecologically diverse wild species
where one or more genotypes or species with
“laboratory-like” features can be developed as
functional laboratory models (Kitano et al.
2022). In wild systems that have greater logistical
challenges to expanding into laboratory con-
texts, some of the best opportunities to identify
the genetics of speciation in ecologically in-
formed contexts will be through investigation
of natural hybrid zones. For example, admixture
mapping has been applied successfully in several
taxa to identify loci associated with reproductive
barriers (e.g., in mice and rabbits; Ďureje et al.
2012; Turner and Harr 2014; Rafati et al. 2018).
Researchers could further adopt this approach
by leveraging hybrid zones already described in
the classical natural history literature (e.g., Steb-
bins 1950; Mayr 1963; Remington 1968; Grant
1971). Admixture mapping can also be com-
bined with other data sets to rene lists of can-
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didate loci, such as focusing on SNPs identied
in admixture mapping and comparative analy-
ses of gene expression, chromatin accessibility,
and/or methylation status (Bengston et al. 2018;
Laine et al. 2022). In systems without current
access to functional tools, related species could
be used for functional work on such loci. For
example, loci identied in natural avian systems
could be validated using zebra nches, where
methods for genome editing are under active
development (Ahmadiantehrani and London
2017; London 2020; Spool et al. 2021). Such
approaches could be implemented in any system
where developing genomic resources and data
are possible, even if direct functional analysis
might not be feasible in the foreseeable future.

From the Laboratory to Nature

Complementary to the transition of wild sys-
tems into laboratory contexts, a critical goal
of speciation genetics is to identify ecological
forces relevant to speciation by transferring the
knowledge gained in laboratory- and green-
house-reared genetic model systems into nature.
Many model systems are experimentally and
functionally exible but ecologically unin-
formed. Pairing them with complementary wild
systems offers new opportunities to use natural
variation to enhance the ecological and evolu-
tionary annotation of genes and mutations that
have been mechanistically described in model
systems.

An example that shows how genome-se-
quencing technology has helped blur the dis-
tinction between model and wild organisms is
the discovery of a natural hybrid lineage of the
yeast Saccharomyces paradoxus (the sister spe-
cies of the laboratory model Saccharomyces cer-
evisiae). Collection of wild samples, short- and
long-read genome sequencing, extensive pheno-
typing, and laboratory crosses have all helped to
reconstruct the evolutionary history of these
yeasts. This work also identied chromosomal
rearrangements at least partially responsible for
the reproductive isolation of the hybrid species
from both parental lineages (Leducq et al. 2016;
Eberlein et al. 2019; for review, see Stelkens and
Bendixsen 2022). Likewise, investigations in

Drosophila have elegantly blended classical ge-
netic approaches like crosses with population
genomics of natural populations to investigate
gene ow patterns and barrier loci (Meiklejohn
et al. 2018).

Promising opportunities to apply ecological
context to speciation genetics work also exist in
theCaenorhabditis genus. Theseworms, includ-
ing Caenorhabditis elegans, have been studied
extensively as genetic model organisms, but lit-
tle has been known about their ecology until
relatively recently (e.g., Kiontke and Sudhaus
2006; Schulenburg and Félix 2017). Alleles con-
tributing to reproductive isolation have been
identied in articial (laboratory-based) crosses
between genetically diverse populations, such as
alleles involved in parental-effect toxin–anti-
dote-style elements in C. elegans (Seidel et al.
2011; Ben-David et al. 2017), Caenorhabditis
tropicalis, and Caenorhabditis briggsae (Ben-
David et al. 2021). The phylogeographic popu-
lation structure ofC. briggsae (Cutter et al. 2006)
raised the possibility that adaptation to temper-
ature could drive genetic incompatibilities be-
tween populations. Inter-chromosomal linkage
disequilibrium is modulated by temperature in
within-species C. briggsae hybrids (i.e., geno-
type-by-genotype-by-environment, or G×G×E
effects), and investigating the genomic regions
that are co-inherited depending on the environ-
ment might identify loci that cause reduced t-
ness (Cazares-Navarro and Ross 2019). These
current efforts, which integrate genetic investi-
gation and ecological factors, are identifying al-
leles that are potentially incompatible in within-
species hybrids.

Extensive genomic development of agricul-
tural model species has also generated infra-
structure and comparative genomic data that
can be repurposed for tests of evolutionary ques-
tions in natural contexts. For example, 32 whole
genomes of 11 Solanum species, which were
originally generated for research in the domes-
ticated tomato Solanum lycopersicum, were used
to evaluate clade-wide patterns of introgression
prevalence among wild tomato species (Hamlin
et al. 2020). These data showed that introgres-
sion was frequently detectable among wild spe-
cies but was modest in scope (∼0.5%–2% of
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the genome). Moreover, across multiple species
comparisons, introgression was more prevalent
between geographically proximate populations
and between species that share mating systems;
introgression also tended to decrease as genetic
divergence increased between species. These re-
sults suggested that several biological factors,
like reproductive proximity and time since com-
mon ancestry, broadly shape the frequency of
genetic exchange across the clade. Similar anal-
yses in “model-adjacent” wild systems could
capitalize on existing genomic data to clarify
these or other (e.g., Moyle and Nakazato 2010;
Pease et al. 2016) general patterns of reproduc-
tive isolation across diverse organisms and eco-
logical contexts.

These examples show that bringing genetic
data and knowledge from traditional model sys-
tems into wild contexts provides rich opportu-
nities to assess the ecological conditions or evo-
lutionary forces acting on individual genetic
variants and supports the identication of gen-
eral patterns of divergence and reproductive iso-
lation in closely related wild systems.

Integrating Laboratory and Nature

Given the complementary value of model and
wild systems, an ideal approach for the future
studyof speciation genetics and genomics would
be to integrate top-down and bottom-up ap-
proaches by applying laboratory-based tech-
niques to natural systems and ecological infor-
mation from wild taxa to laboratory- and
greenhouse-reared systems (Fig. 2). As we have
noted, studies that combine the merits of both
geneticmodels and genomic tools fromwild spe-
cies will likely be most impactful in the foresee-
able future (Stankowski et al. 2023). Some of
these systemswere clearly represented inour sur-
vey of speciation genetics researchers, including
some taxa that were represented by multiple re-
sponses, where the research community believed
their study system spanned the spectrum from
studyingwild populations to laboratory-adapted
ones (Fig. 1). Regardless ofwhere these (and oth-
er) species t along this continuum, they all pro-
vide excellent opportunities to integrate top-
down and bottom-up approaches: combining

laboratory- and greenhouse-based research, in-
cluding genetics and genomics, with eld exper-
iments and observations that provide an ecolog-
ical context to the study of speciation.

CONCLUDING REMARKS

Expanding the genomic analyses of reproduc-
tive isolation into natural populations, especially
in longer-lived and lower-fecundity species,
promises to inform us about how genetics and
ecology drive speciation. Conversely, the appli-
cation of functional tools and knowledge from
laboratorymodels towild systems has enormous
potential to provide mechanistic insights into
species formation under more ecologically real-
istic conditions. Although few systems can likely
span the full gamut from ecological studies in
the wild to molecular genetic studies in the lab-
oratory, insights obtained from natural pop-
ulations and laboratory organisms are clearly
complementary and ultimately necessary for a
complete understanding of the genetic basis of
speciation. This empirical diversity need not im-
ply that our eld is becoming less theoretically
driven. Instead, it suggests that we now face an
unprecedented opportunity to empirically eval-
uate longstanding speciation theory across more
biological systems and contexts. What remains
to be seen is whether new or different patterns
emerge from expanding the reach of speciation
genomics beyond traditional systems. Regard-
less of whether this expanded picture spurs
new theory and new expectations, it is bound
to generate a more inclusive assessment of
both the genetic changes and evolutionary
forces that characterize the formation and per-
sistence of new species.

METHODS

We surveyed the speciation genetics/genomics
research community using an instrument devel-
oped by the authors. The Committee for the
Protection of Human Subjects at California
State University, Fresno approved this research
(protocol #1387). One hundred and sixty-four
responses were collected. Following quality con-
trol, the nal data set comprised 131 responses.
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The instrument and additional methodological
details are presented in Supplemental File S1.
The de-identied response data (all demograph-
ic data removed) are available in Supplemental
File S2.
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