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A B S T R A C T   

This paper uses physics-informed neural networks (PINNs) to simultaneously determine nearshore water depths 
and wave height fields based on remote sensing of the ocean surface with limited or sparse measurements. Two 
methods that integrate the knowledge of water wave mechanics and fully connected neural networks are 
introduced. The first method utilizes observed wave celerity fields and scarce measurements of wave height as 
training data. The model performance was examined with linear waves over an alongshore varying barred beach 
and nonlinear waves over an alongshore uniform barred beach. The second method uses scarce wave height and 
water depth measurements as training points, and the model performance was investigated with water waves 
over a circular shoal and the alongshore varying barred beach. One advantage of applying PINNs to solve ba
thymetry inversion problems is that wave height and bathymetry can be simultaneously estimated by PINN 
models. Thus, the impact of wave amplitude dispersion on depth inversion in nonlinear wave systems can be 
considered without measuring the entire wave height field. Overall, this study demonstrates the potential of the 
inverse PINN model as a promising tool for estimating nearshore bathymetry and reconstructing wave fields 
using observations from different remote sensing platforms.   

1. Introduction 

Due to increasing coastal utilization and sea level rise, accurate in
formation about nearshore bathymetry is essential for designing and 
operating many coastal projects, such as flood protection and coastal 
zone management. To better forecast nearshore wave characteristics, it 
is critical to use precise nearshore bathymetric data as an input to hy
drodynamic models, because the accuracy of bathymetry is considered 
one of the most severe limitations in predicting nearshore waves and 
currents (e.g., Van Dongeren et al., 2008; Salim and Wilson, 2021). In 
general, it is costly to collect nearshore bathymetric data using in-situ 
methods, such as vessel-based (Dugan et al., 2001; Ruggiero et al., 
2005) and bottom contact (Birkemeier and Mason, 1984) surveying 
techniques. Also, conventional surveying methods become impractical 
due to the hazardous surf zone conditions during storms. Even when 
in-situ measurements are available, the spatial undersampling may not 
resolve complex bathymetric features, and temporal undersampling may 

also poorly capture beach changes in a highly dynamic environment. 
Therefore, it would be desirable to monitor the nearshore regions (e.g., 
wave celerity and wave height) with the help of remote sensing tech
niques, which have a broader spatial and temporal coverage than the 
traditional in-situ surveying methods (e.g., Gallego et al., 2011; Wilson 
et al., 2014). 

Previous technologies for estimating nearshore bathymetry using 
remote sensing methods include LiDAR (e.g., Wilson and Berezhnoy, 
2018; Blenkinsopp et al., 2012), radar (Haller et al., 2014), infrared 
(Dugan et al., 1996) etc. In the past several decades, many studies have 
focused on solving bathymetric inversion problems using observed 
surface wave properties (e.g., water surface elevation and wave celerity) 
and simple physical models. For example, cBathy is a popular bathy
metric inversion algorithm that uses the linear wave dispersion rela
tionship to estimate nearshore bathymetry with wave celerity obtained 
from remote sensing techniques and a Kalman-filtered update frame
work (Holman et al., 2013). The algorithm was found to deteriorate 
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during storms when waves transition from non-breaking to breaking in 
the surf zone (Honegger et al., 2019). To improve the simulation accu
racy nearshore, a number of studies used nonlinear wave dispersion 
relationships (Grilli, 1998; Catálan and Haller, 2008; Ge et al., 2020; 
Martins et al., 2023) and wave breaking dissipation proxies (Aarninkhof 
et al., 2005) to infer bathymetric changes. For example, Yoo et al. (2011) 
inverted water depth in the surf zone with the inclusion of wave 
nonlinearity using wave celerity obtained from remotely captured 
videos. They found good agreement between the predicted and 
measured water depths for depths ranging from 0.1 m to 3 m. Moreover, 
Kennedy et al. (2000) reconstructed bathymetry using two snapshots of 
water surface elevations and velocities based on the Boussinesq wave 
model (Chen et al., 1999). They employed the phase speed difference in 
the computed and measured data as the basis for updating bathymetry at 
each iteration. 

Another popular bathymetry inversion technique is data assimila
tion, which combines observational data and dynamical systems to 
generate a state estimation while accounting for uncertainty in the ob
servations and model dynamics (Lewis et al., 2006; Birrien et al., 2013; 
Wilson and Berezhnoy, 2018). Data assimilation tries to minimize a cost 
function based on the difference between observations and simulations 
with an initial estimate of the unknown parameters and uncertainties to 
regularize the solution (Salim and Wilson, 2021). During the past several 
decades, significant progress has been made in utilizing data assimila
tion to estimate bathymetry in shallow water areas. For example, Van 
Dongeren et al. (2008) estimated bathymetry variations with good ac
curacy using the Kalman filtering method based on remote sensing data 
(i.e., wave roller dissipation, intertidal shoreline, and wave celerity). 
Furthermore, Wilson et al. (2014) estimated bathymetry as an uncertain 
parameter in a data assimilation system with the ensemble Kalman filter 
based on time-dependent remote sensing observations (i.e., wave 
celerity, alongshore current, and shoreline observations). The results 
show that nearshore bathymetry can be estimated with good accuracy, 
and nearshore hydrodynamic forecasts can be improved by assimilating 
remotely sensed data. Salim and Wilson (2021) tested the accuracy of 
the depth inversion model by assimilating in-situ wave height and 
alongshore current observations at a barred beach in Duck, NC, USA. 
They found that the results had an average root-mean-square error of 
0.46 m when assimilating both the observed parameters simultaneously, 
which increased to 0.69 m when assimilating only alongshore current 
observations but decreased to 0.44 m when assimilating only wave 
height observations. 

Recently, the development of machine learning (ML) methods, 
computer hardware, and remote sensing technologies has created new 
opportunities for using soft computing-based models to estimate near
shore bathymetry (e.g., Eldesokey et al., 2019; Dhamo et al., 2019). 
Unlike the data assimilation method, soft-computing models do not 
require simulations from deterministic forward numerical models or 
knowledge about the uncertainty of observations and the uncertainty of 
the numerical model. Using the data assimilation method to solve the 
inverse problem can be computationally expensive, since it may require 
thousands or millions of forward model simulations for evaluating es
timators and characterizing posterior distributions of parameters 
(Willard et al., 2020). Thus, applying ML to obtain the solution to in
verse problems would be desirable, because it can execute faster than 
numerical models and simulate high-dimensional scenarios with a large 
amount of data. For instance, Collins et al. (2020) used deep convolu
tional neural networks (DCNNs) to estimate nearshore bathymetry 
based on time-averaged and snapshot synthetic imagery. They found 
that DCNNs show robustness in depth estimation with wave heights up 
to 2.5 m, unlike the above-mentioned physics-based depth inversion 
methods that show larger errors when wave heights become higher. 
Additionally, they stated that ML techniques bring opportunities for 
more accurate predictions of nearshore bathymetry without linear 
simplification of input data or physical models. Other examples of 
applying data-driven models to solve inverse problems include 

photonics (Pilozzi et al., 2018), seismic processing (Vamaraju and Sen, 
2019), medical imaging (Lunz et al., 2018), and remote sensing of sur
face properties (Dawson et al., 1992), among others. 

Another ML-based approach for solving inverse problems is physics- 
informed neural networks (PINNs), which embed physics with the soft- 
computing learning algorithm. Unlike traditional ML methods, PINNs 
can be generalized to predict scenarios that are unseen in the training 
datasets. Furthermore, PINNs require a smaller amount of training 
datasets than traditional ML methods, which is very useful in coastal 
engineering applications because field measurements are often limited 
in reality. Using PINNs to solve inverse problems has been the focus of 
many recent studies. For example, Raissi et al. (2019) predicted the lift 
and drag forces of a system based on sparse data of the velocity field with 
a physics-guided loss function. Furthermore, Kahana et al. (2020) 
applied a neural network with a physically informed loss component to 
identify the location of an underwater obstacle. The results show that 
the model can generalize well and produce promising results. 

In this study, inverse models were developed to estimate nearshore 
bathymetry based on remote sensing data (i.e., wave number and sig
nificant wave height) with PINNs. Meanwhile, the feasibility of recon
structing both the concurrent bathymetry and wave height field in 
shallow water with scarce wave and depth measurements was investi
gated. Nearshore wave processes, including wave shoaling, refraction, 
and depth-induced breaking, were considered in the model. To the best 
of our knowledge, this is the first time that PINNs are applied to solve the 
inverse problem of predicting bathymetry in shallow waters. The rest of 
the paper is organized as follows. Section 2 provides essential infor
mation on the governing equations. Details of the model setup for PINNs 
are also introduced in this section. Section 3 examines the performance 
of PINNs in simultaneously mapping bathymetry and reconstructing 
nearshore wave fields. Section 4 discusses the advantage of using PINNs 
for solving depth inversion problems and the influences of the location 
of training data on the performance of PINNs as well as using transfer 
learning to improve the model efficiency for changing conditions. 
Finally, Section 5 concludes the paper with remarks on this study. 

2. Methodology 

Because remote sensing is capable of observing a broad spatiotem
poral range of geophysical parameters, it can be applied as a valuable 
tool for monitoring the nearshore, such as video cameras, radar, 
infrared, and LiDAR (Wilson et al., 2014). In this study, we take a 
simplified approach by only using synthetic model data as opposed to 
actual remotely-sensed data to determine the model performance of 
PINNs. Therefore, the digital image processing of remote sensing data is 
not covered in this study. Moreover, it is assumed that the free surface 
parameters derived from remote sensing data are sufficiently accurate in 
this work. 

This study determines the water depth and wave fields with two 
methods.  

• Method A: We assumed that the surface wave celerity (or wave 
number) and limited wave height measurements are available from 
various remote sensing platforms. Then, the concurrent bathymetry 
and wave height fields were inferred by the inverse PINNs developed 
with wave number and scarce wave height measurements as the 
training data. The performance of this method was investigated by 
solving the depth inversion problem over an alongshore varying 
barred beach with the simulation data from XBeach (Roelvink et al., 
2009). Also, we examined the effects of amplitude dispersion (i.e., 
nonlinear dispersion relation) on depth inversion and wave predic
tion using monochromatic waves over an alongshore uniform barred 
beach as an example.  

• Method B: Notice that when the wave number data are unavailable, 
PINN models could still be utilized to simultaneously map the ba
thymetry and reconstruct wave fields if wave heights and water 
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depths at limited locations are partially known. Our second method 
uses the scarce measurements of wave height and water depth to 
train the PINNs for solving the depth inversion problems without any 
observations of wave celerity or wave number. The model perfor
mance was examined by estimating the bathymetry and recon
structing wave fields over a circular shoal with the laboratory 
experiment data from Chawla et al. (1996). Moreover, this method 
was investigated by solving the depth inversion problem over the 
alongshore varying barred beach under field conditions in Duck, NC, 
USA. Although this test case is the same as the one used for exam
ining Method A, it is worth mentioning that the training data and 
network structures are different from those in Method A. 

2.1. Energy balance equation for wave propagation in the nearshore 

In this study, we developed PINN models to solve depth inversion 
problems and reconstruct wave fields in the nearshore area. This study 
focused on stationary wave fields without wind forcing and ambient 
currents. Wave shoaling, refraction, and depth-limited breaking were 
considered in this model. The governing equations encoded into the 
fully connected neural networks include the wave energy balance 
equation and dispersion relation. The effect of amplitude dispersion (i. 
e., nonlinear dispersion relation) on depth inversion and wave field 
reconstruction was also investigated. For water waves, the energy bal
ance equation is given by 

∂ecgx

∂x
+

∂ecgy

∂y
+

∂ecgθ

∂θ
+ dw = 0 (1)  

where e is the wave energy density in each directional bin, cg is the group 
velocity, θ represents the angle of incidence with respect to the x-axis, 
and dw is the dissipation of energy density caused by wave breaking. cgx, 
cgy, and cgθ are formulated as 

cgx(x, y, θ) = cg cos θ (2)  

cgy(x, y, θ) = cg sin θ (3)  

cgθ(x, y, θ)=
ω

sinh 2kh

(
∂h
∂x

sin θ −
∂h
∂y

cos θ
)

(4)  

representing the wave propagation speeds in x, y, and directional space, 
respectively. h is the local water depth, k represents the wave number, 
and ω is the angular frequency. The Janssen and Battjes (2007) formu
lation for wave breaking was applied in this study. The total wave 
dissipation was distributed proportionally over the wave directions 
using the following formulation 

dw(x, y, θ)=
e(x, y, θ)
E(x, y)

Dw(x, y) (5)  

where Dw denotes the expected value of the power dissipated per unit 
area. The total wave energy E and the mean wave direction θm were 
given by 

E =

∫ 2π

0
e(θ)dθ (6)  

and 

θm =
1
E

∫ 2π

0
θe(θ)dθ (7) 

The resolution of directional spreading of waves was set to 10◦ in this 
study, and the lower and upper directional limits were defined as − 90◦

and 90◦, respectively. The root-mean-square wave height was calculated 
based on 

Hrms =

̅̅̅̅̅̅
8E
ρg

√

(8) 

For monochromatic waves over an alongshore uniform beach, the 
wave energy balance equation becomes 

∂Ecgx

∂x
+Dw = 0 (9) 

The wave direction variation over the beach was determined by the 
Snell’s law. The wave height was calculated as Eqn (8). The linear 
dispersion relation relates the wave number of a wave to its frequency as 

ω2 − gk tanh(kh)= 0 (10) 

The nonlinear dispersion relation proposed by Kirby and Dalrymple 
(1986) was employed to examine the effects of amplitude dispersion on 
depth inversion and wave predictions as 

ω2 = gk
ʀ
1+F 1(kh)ε2D

)
tanh (kh+F 2(kh)ε) (11)  

D=
cosh(4kh) + 8 − 2 tanh2(kh)

8 sinh4(kh)
(12)  

F 1(kh)= tanh5(kh) (13)  

F 2(kh)=
[

kh
sinh(kh)

]4

(14)  

where ε = k|A| and |A| = 1/2H (Catálan and Haller, 2008). The group 
velocity cg was computed by 

cg =
∂ω
∂k

(15)  

2.2. Physics-informed neural networks 

To solve the depth inversion problems over an alongshore varying 
barred beach and circular shoal with linear dispersion relation, the 
corresponding residuals were defined as 

f1(x, y, θ) : =
∂ecgx

∂x
+

∂ecgy

∂y
+

∂ecgθ

∂θ
+ dw (16)  

f2(x, y) : =ω2 − gk tanh(kh) (17) 

To consider the effects of amplitude dispersion on depth inversion 
and wave field reconstruction for nonlinear waves over the alongshore 
uniform beach, the residuals were determined as 

f1(x) : =
∂Ecgx

∂x
+ Dw (18)  

f2(x) : =ω2 − gk
ʀ
1+F 1(kh)ε2D

)
tanh (kh+F 2(kh)ε) (19) 

These residuals were used as restraints during the training of PINNs 
to generate physically consistent predictions. Additionally, the wave 
measurements scattered in the computational domain were also used to 
constrain the model, such as wave height and wave number. 

The schematic representation of the algorithm for simultaneous 
mapping of nearshore bathymetry (depth inversion) and wave field 
using Method A is shown in Fig. 1. Because e is related to (x,y,θ) while k 
and d only depend on (x, y), composite neural networks (i.e., N 1 and 
N 2) were utilized to estimate water depth and simulate nearshore wave 
fields in this study. The loss function consists of two main parts. The first 
part corresponds to the collocation points (i.e., residual loss), where the 
physical constraints were imposed to encourage Eqns (16) and (17) (or 
Eqns (18) and (19)) to equal zero. In general, the collocation points 
could be grid points or random points inside the computational domain 
(Lu et al., 2021), and the former one was applied in this study. 
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Automatic differentiation was used to calculate the partial derivatives in 
the residual expression (Kissas et al., 2020). The second part encouraged 
the outputs of PINNs to match wave parameters obtained from field 
observations (i.e., measurement loss). Therefore, the total loss function 
for solving the depth inversion problem of linear waves is given as 

L total =L residual + L measurements = L f1 + λf2×L f2 + λHrms × L Hrms

+ λθm × L θm + λk × L k (20)  

where λf2 , λHrms , λθm , and λk are the weighting coefficients determined by 
the learning rate annealing algorithm for balancing the interplay be
tween different terms in the loss function (Jin et al., 2021). The learning 
rate annealing algorithm can improve the simulation accuracy by using 
gradient statistics to determine proper weights adaptively to each term 
in loss functions (e.g., Wang et al., 2022a). In this study, the mean 
squared error (MSE) was employed to represent the loss functions and is 
given for each term by 

L f1 =
1
Nf

∑Nf

i=1

(
f i
1

(
xi

f , yi
f , θ

i
f

))2
(21)  

L f2 =
1
Nf

∑Nf

i=1

(
f i
2

(
xi

f , yi
f

))2
(22)  

L Hrms =
1

NHrms

∑NH rms

i=1

(
Hrms

i
(

xi
Hrms

, yi
Hrms

)
− H∗

rms
i
)2

(23)  

L θm =
1

Nθm

∑Nθm

i=1

ʀ
θm

iʀ xi
θm
, yi

θm

)
− θ∗

m
i)2 (24)  

L k =
1

Nk

∑Nh

i=1

ʀ
kiʀ xi

k, y
i
k

)
− k∗ i)2 (25)  

where {Hrms
i(xi

Hrms
, yi

Hrms
)}

NHrms

i=1 , {θm
i(xi

θm
, yi

θm
)}

Nθm

i=1 , and {ki(xi
k, y

i
k)}

Nk
i=1 

denote the PINN outputs of Hrms, θm, and k, respectively. H∗
rms, θ

∗
m, and k∗

are the targets (labels) of Hrms, θm, and k, respectively. {(xi
f , y

i
f , θi

f )}
NHrms

i=1 
represents collocation points that are uniformly placed inside the 
computational domain to minimize the loss of residuals. 

Regarding Method B for estimating bathymetry and wave fields, we 
used the same algorithm and loss functions as the ones in Wang et al. 
(2022a). Notice that we assumed wave numbers and wave angles were 
unknown in Method B, so they were not applied as the training data for 
the model, which is a slight difference compared to the algorithm in 
Wang et al. (2022a). In this study, we used hyperbolic tangent as the 

activation function, and the deep neural nets were initialized with 
Xavier initialization (Glorot and Bengio, 2010). The network structure 
was kept identical to four hidden layers of 30 nodes for each test case. 
More details on the selected optimizer, learning rates, and settings of the 
measurements and collocation points shall be given in Sections 2.2.1 to 
2.2.3. The training was implemented on an NVIDIA v100-sxm2 GPU 
with the TensorFlow platform. The training of the PINN models took 
about 3–6 h for different test cases. 

2.2.1. Alongshore varying barred beach 
The wave condition offshore of the alongshore varying barred beach 

was set as Hrms = 1 m and peak wave period (Tp) = 8 s. The peak wave 
period remains constant over the entire computational domain. The 
incident wave angle follows the directional distribution of cosm(θ − θm)

with θm = − 30̊ and m = 20. Fig. 2 shows the bathymetry of the along
shore varying barred beach and the XBeach-simulated Hrms. The 
computational domain extended from x = 0 to 980 m in the cross-shore 
direction and from y = 20 to 480 m in the alongshore direction with a 
resolution of 10 m. The resolution of directional spreading of waves (dθ) 
was set to 10◦ in both XBeach and PINN models, and the lower and upper 
directional limits were defined as − 90◦–90◦, respectively. A total of 4 
653 collocation points were uniformly distributed from x = 0-980 m 
and y = 20-480 m to constrain learning for generating physically 
consistent predictions. 

The test case of this alongshore varying barred beach was applied to 
examine the performance of Method A and Method B for simultaneous 
mapping of the bathymetry and wave fields. For Method A, it was 
assumed that the wave number and wave angle were known at every 
location, meaning that the wave number and wave angle over the entire 
study area were used as training data for the model. We randomly 
selected a total of 100 training points of Hrms over the entire domain. 
Fifteen of them are in the offshore area. Thirty-five are in the shoaling 
zone. The rest of the 50 points are in the surf zone. Twenty validation 
points were selected randomly from the rest of the dataset, and the 
remaining data were utilized as testing points. The total number of 
training points is about 2% of the entire computational data. To get 
better accuracy, more training points were placed in the shoaling and 
breaking zones since strong wave height variations happen in these two 
areas. In reality, we may not know where the shoaling and breaking 
zones are because the bathymetry and offshore wave conditions are 
unknown. It was assumed that the surf zone is from 800 m to 980 m, and 
more training points were placed in this region. The sensitivity of the 
performance of PINNs to the training points of Hrms is further discussed 
in Section 4.1. 

In field experiments, nearshore bathymetric data can be collected 
across multiple cross-shore transects spaced about 50 m apart (e.g., US 

Fig. 1. A schematic representation of Method A for solving the depth inversion problems. N 1 and N 2 are the networks for simulating e as well as k and h, 
respectively. σ represents the node in each layer. ∂

∂x, 
∂

∂y, and ∂
∂θ are the partial derivative relative to x, y, and θ, respectively. 
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Army Engineering and Research Center Field Research Facility (FRF) in 
Duck, NC). Normally, these surveys are then interpolated linearly in the 
cross-shore and alongshore directions to obtain the bathymetry of the 
entire space of interest, which is then used as an input to physics-based 
numerical models (e.g., Chen et al., 2003) to simulate the nearshore 
wave processes. To estimate the bathymetry and reconstruct wave fields 
with Method B, we used some measured data of water depth along the 
cross-shore transects and wave heights scattered between adjacent 
transects as training points. The resolution of measured bathymetric 
data in the alongshore and cross-shore directions was set as 50 m (or 
110 m) and 10 m, respectively. The measured wave height locations 
were randomly selected inside the domain with more data placed 
nearshore as training data (i.e., x = 800–980 m). Twenty validation 
points of Hrms and d were selected randomly from the rest of the dataset, 
and the remaining data were utilized as testing points. The 
PINN-predicted wave height and water depth were then compared to the 
true data to examine the performance of Method B. In this case, the 
synthetic data from XBeach were used as the “observational data” for 
demonstration purposes. Testing of the inverse PINN models against real 
field observations will be carried out in future studies. 

For both mapping methods, Adam (adaptive moment estimation) 
and L-BFGS-B (limited memory Broyden–Fletcher–Goldfarb–Shanno with 
boundaries) were used as network training functions (e.g., Kingma and 
Ba, 2014; Liu and Nocedal, 1989). The Adam optimizer was employed to 
produce a better set of initial neural network variables, and L-BFGS-B 
was used to further fine-tune the PINN networks to minimize test errors 
(Jin et al., 2021). The initial learning rate of Adam was set to 10− 4 and 
then decreased to 80% of the previous rate every 5 000 iterations. 8 ×
104 Adam iterations were implemented before the L-BFGS-B training, 
which was then automatically terminated based on the increment 
tolerance. The error statistics were computed to quantify the prediction 
skills of PINNs, including root mean square error (RMSE) and correlation 
coefficient square (R2). 

2.2.2. Circular shoal 
The simulation accuracy of Method B for solving depth inversion 

problems was also examined using experimental laboratory data. A se
ries of physical experiments on wave propagation over a circular shoal 
were carried out by Chawla et al. (1996) in a directional wave basin. In 
this study, test case 4 of the laboratory experiment was utilized as the 
testbed to examine the performance of the inverse PINN model. A total 
of 126 locations in the wave basin were set to record the wave heights in 
the cross-shore and alongshore directions during the laboratory exper
iments. Here, we used 50% of the 126 Hrms measurements as training 
data together with the corresponding water depth to reconstruct the 
entire wave field and estimate the bathymetry. The water depths 
offshore and at two lateral boundaries were also applied as the training 
data. Ten validation points of Hrms and d were selected randomly from 
the rest of the dataset, and the remaining data were utilized as testing 
points of Hrms. It is worth mentioning that the same dataset of test case 4 

was also utilized as one of the testbeds in Wang et al. (2022a), which 
developed the NWnets to reconstruct entire wave fields assuming the 
water depth data were known everywhere. Notice that although the 
training data also included limited water depth measurements in 
Method B, this study aims to simultaneously estimate the bathymetry of 
the entire domain and reconstruct the wave field, which is a significant 
difference from the work by Wang et al. (2022a). The computational 
domain, collocation points, and network structures in Method B were 
kept the same as the ones used in Wang et al. (2022a). 

2.2.3. Alongshore uniform barred beach 
PINN models offer an opportunity to account for the impact of wave 

amplitude dispersion on depth inversion in nonlinear wave systems, 
because wave heights and bathymetry can be simultaneously estimated 
by PINNs. To test the PINNs’ ability to account for the effect of wave 
nonlinearity in the nearshore, we used the nonlinear dispersion relation 
instead of the linear dispersion relation to reconstruct the wave field and 
estimate the bathymetry over an alongshore uniform barred beach with 
known wave numbers. The nonlinear dispersion relation proposed by 
Kirby and Dalrymple (1986) was employed in this study, as shown by 
Eqn (11). The training data of wave height and wave number for 
developing PINNs were generated using iterative solutions in this case. 
Numerical solutions to Eqns (9) and (11) to (15) were used as a reference 
for comparison of PINN results with different dispersion relations. 

The cross-shore distance from the offshore location was set as x, and 
the entire computational domain extended from x = 0 to 1000 m. The 
wave boundary condition of the nonlinear waves was set as H = 1 m, 
T = 8 s, and the incident wave angle of 30◦. The Ursell number (Ur =
HL2/h3) ranged from 300 to 600 over the domain. The wave height 
training data was set at x = 100 m, and wave numbers were known every 
4 m from x = 0–1 000 m. Twenty validation points were selected 
randomly from the rest of the dataset, and the remaining data were 
utilized as testing points. Similar to the PINN model for estimating the 
water depth of an alongshore varying barred beach, Adam and L-BFGS-B 
were used as network training functions, with 4 × 104 Adam iterations 
conducted before L-BFGS-B started. To examine the prediction perfor
mance of the model for reconstructing the wave field, the outputs of H 
were compared to the numerical solutions to the wave energy balance 
equation with either the linear or nonlinear dispersion relation. 

3. Results 

3.1. Simultaneous mapping of bathymetry and wave field based on wave 
numbers and scarce measurements of wave height (Method A) 

3.1.1. Water waves over an alongshore varying barred beach 
In this section, the outputs from XBeach and PINNs were compared 

to determine the feasibility of using PINNs to estimate water depth and 
reconstruct wave fields over an alongshore varying barred beach with 
Method A. The comparison between the PINNs and XBeach outputs is 

Fig. 2. (a) The bathymetry of the alongshore varying barred beach and (b) the XBeach-simulated wave height.  
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shown in Fig. 3. The contour plot in Fig. 3 (a) depicts the simulation 
error of PINN-simulated water depth with the black dots showing the 
locations of Hrms training points. It can be observed that PINNs have 
good prediction skills for estimating water depths with small errors 
(maximum error = 1.6%). The 3D plot in Fig. 3 (b) presents the PINN- 
simulated Hrms, which is in good agreement with the numerical results 
from XBeach. Also, the simulation outputs from the PINNs and XBeach 
are compared in Fig. 3 (c), showing that the PINN-predicted Hrms and θm 

correlated well with those from XBeach. Overall, the developed PINN 
model has a promising ability to simultaneously estimate water depths 
and reconstruct wave fields over an alongshore varying barred beach 
with known wave numbers and scarce wave heights (synthetic data from 
XBeach) applied as the training data. 

3.1.2. Effects of amplitude dispersion on depth inversion and wave height 
prediction 

To test the PINNs’ ability to account for the effect of wave nonline
arity in the nearshore, we used the nonlinear dispersion relation instead 
of the linear dispersion relation to reconstruct the wave field and esti
mate the bathymetry over an alongshore uniform barred beach with 
known wave numbers (Method A). Fig. 4 (a) shows that the PINN out
puts correlate well with the numerical solutions to Eqns (9)-(14) with 
the nonlinear dispersion relation embedded in the model. Such synthetic 
data are called “reference data” as mentioned in Section 2.2.3. We also 
estimated the nonlinear wave fields using PINNs with linear dispersion 
relation. It can be observed that the simulation skills of the PINN model 
embedded with the linear dispersion relation deteriorate in the surf zone 
(Fig. 4 (b)), suggesting that the linear PINN model has a similar pattern 
as cBathy in the nearshore. In other words, the PINN model embedded 
with the linear dispersion relation is not capable of learning the effect of 
nonlinear waves on the dispersion relation. This finding indicates that 
selecting an appropriate physical constraint is crucial for solving the 
depth inverse problems and reconstructing wave fields with sufficient 
accuracy. For field applications where the observed wave number vec
tors are strongly influenced by wave nonlinearity, it is expected that the 

nonlinear PINN model will produce more accurate water depth in the 
surf zone than existing methods. 

3.2. Simultaneous mapping of bathymetry and wave field based on scarce 
measurements of wave height and water depth (Method B) 

3.2.1. Water waves over a circular shoal 
In this section, the simulation skill of Method B for estimating water 

depth and wave field was examined using the laboratory experimental 
data. Fig. 5 presents the outputs of wave heights and water depths from 
the inverse PINN model. Fig. 5 (c) shows good agreement between the 
experimental and PINN-simulated wave heights, as the PINN model 
captured the focusing of wave energy along the transects of E-E and F–F 
and the defocusing of wave energy along the transects of C–C and D-D 
(Fig. 5 (a)). Furthermore, water depths were well predicted at most of 
the locations by the PINN model. Fig. 5 (b) shows the spatial distribution 
of the depth inversion errors. It is seen that the majority of the PINN- 
inferred water depths have less than 4% error, while larger errors of 
depth estimation occur around the edge of the circular shoal. This can be 
explained by the fact that the water depths change dramatically near the 
edge of the shoal as the local gradients of the bathymetry are not 
continuous at the circular edge. We found that increasing the number of 
collocation points can improve the simulation accuracy (Table 1). 
However, the training time also increased dramatically when more 
collocation points were utilized. Thus, practical applications of PINNs 
need to balance the computational costs and the simulation accuracy 
when selecting the resolution of the collocation points. 

3.2.2. Water waves over an alongshore varying barred beach 
In this section, we examined the performance of Method B by esti

mating the water depth based on measured bathymetry along cross- 
shore transects and wave heights scattered between adjacent transects, 
an analog to the long-term nearshore surveys at FRF in Duck, NC. Fig. 6 
shows the spatial distributions of the simulation errors in the PINN- 
predicted water depths and wave heights. The results indicate that 

Fig. 3. Comparison between the XBeach and PINN outputs over the alongshore varying barred beach. (a) The simulation errors of the PINN-predicted depth. The 
black dots represent the locations of wave height training points; (b) spatial variation of the PINN-predicted wave heights; (c) scatter plots of the predicted Hrms and d 
(the plots only contain testing data). 
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bathymetry and wave height can be well estimated by the developed 
PINN models with measured water depths along a limited number of 
cross-shore transects and scarce wave height measurements applied as 
training data (without wave number information). Compared to linear 
interpolation, the inverse PINN models provide a more accurate way to 
determine the water depths over the entire domain, because small-scale 
bathymetry changes between the cross-shore transects can be identified 
with the measured wave parameters. 

4. Discussion 

4.1. Strategies for improving simulation accuracy and efficiency in PINNs 

The sensitivity of the model accuracy of PINNs to the number and 
distribution of training points of Hrms over the alongshore varying barred 
beach (Method A) is investigated in this section as an example. Because 
strong variations of wave height happen in the shoaling zone and surf 
zone, we used different numbers of training points of Hrms at x =
500–980 m. Table 2 shows the error statistics of PINN outputs when the 
training data of Hrms were at different locations. Unsurprisingly, the 

results indicate that the simulation accuracy of Hrms tended to increase 
when the number of training points increased, especially when more 
training points were placed close to the shore from x = 800–980 m. Also, 
it was found that maximum errors for both PINN-simulated Hrms and d 
happen nearshore (x = 800–980 m). This is because the wave height 
variation is higher due to the depth-limited wave breaking inside the 
surf zone. Therefore, to obtain a higher accuracy of wave height pre
diction, more training points should be placed nearshore. Since the wave 
number was assumed to be known at every point inside the computa
tional domain, the accuracy of the estimated bathymetry is very good if 
amplitude dispersion is embedded in the PINN model. It is worth 
mentioning that the model does not require the wave number at every 
location as training points, and PINNs can still generate satisfactory 
results for solving the depth inverse problems (Section 3.1.2). In future 
studies, the model framework can be tested in the field where in-situ 
measurements and remote sensing data (e.g., LiDAR and stereo-video) 
are available (e.g., Wilson et al., 2014). 

Similar to numerical simulations using conventional physics-based 
models, we need to retrain the model when the offshore wave condi
tions or the depth profiles change. However, transfer learning can be 

Fig. 4. Comparisons between reference and PINN-simulated H and water depth with (a) nonlinear dispersion relation and (b) linear dispersion relation. The scatter 
plots only contain testing data. 
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used to accelerate the training of PINNs for simultaneous mapping 
waves and bathymetry when the following simulation has slightly 
different wave boundary conditions or depth profiles. Specifically, the 
pretrained PINNs can be applied to initialize the subsequent simulations 
other than training a new network from scratch (i.e., initialize the new 
network weights and bias using the parameters of the pretrained PINNs) 
(Jin et al., 2021). For instance, the PINNs for estimating bathymetry and 
wave fields over the alongshore varying barred beach with the boundary 
condition of Hrms = 1 m and Tp = 8 s have been well developed. Later, we 
would like to develop a second PINNs for estimating the water depths 
and wave fields over slightly different bathymetry and different offshore 
wave boundary conditions (e.g., Hrms = 1.1 m and Tp = 7.8 s). To 
accelerate the training of the new PINNs, we can initialize the second 
network weights and bias using the parameters of the pretrained PINNs 
with the boundary condition of Hrms = 1 m and Tp = 8 s, so that the 
computational efficiency can be improved. Future testing of transfer 
learning under realistic field conditions is needed. 

4.2. Comparison with conventional ANN 

The conventional ANN model is composed of densely interconnected 
information-processing nodes organized into layers (James et al., 2018; 
Wang et al., 2022b, 2022c). The main difference between ANN and 
PINNs is that the loss function of ANN only contains measurement loss, 

while PINNs contain measurement loss and residual loss (i.e., 
physics-informed). To examine the effect of physical regularization on 
the PINN results, we generated a simulation experiment using the con
ventional ANN model for estimating bathymetry and wave fields over 
the circular shoal with Method B as an example (Fig. 7). The ANN model 
setup and hyperparameter selection (e.g., activation function and 
learning rate) were kept the same as the ones used in the PINNs, except 
that the total loss function only contained the measurement loss without 
the residual loss (i.e., the ANN model was developed from scratch). The 
results show that the ANN-predicted wave height distribution has 
considerable errors, and the simulation errors of bathymetry increase 
significantly. The R2 values for the ANN-predicted Hrms and d decreased 
to 0.56 and 0.95, respectively, and the RMSE value of d increased to 
0.014 m. This pattern is more obvious in the domain where fewer 
training data were placed (e.g., domain to the left of transect of D-D), 
indicating that embedding the physics into the neural networks indeed 
improves the ML-model performance for solving depth inversion prob
lems and reconstructing wave fields. 

5. Conclusions 

An accurate estimation of the nearshore bathymetry is critical for 
designing and operating many coastal projects because of the increasing 
coastal utilization and sea level rise. Usually, in-situ bathymetric surveys 
require specialized equipment and can be expensive and time- 
consuming to obtain. Thus, it is highly desirable to estimate the near
shore bathymetry using remote sensing techniques, which can cover a 
broader spatial and temporal range than the traditional in-situ in
struments. In this study, we developed inverse PINN models to estimate 
nearshore bathymetry based on remote sensing data (i.e., wave number 
and significant wave height) by combining the prior knowledge of wave 
mechanics into the fully-connected neural networks. 

Although the digital image processing of remote sensing data is not 
covered in this study, we can still investigate the feasibility of using 
remote sensing data to solve the depth inversion problem by training 

Fig. 5. (a) Spatial distribution of PINN-simulated 
wave heights. The white dots represent the locations 
of the entire 126 wave height measurements; (b) 
spatial distribution of the relative errors of PINN- 
simulated water depth. The error was divided by 
the local depth. The green dots and black crosses 
show the locations of water depth and wave height 
measurements as training data, respectively; (c) 
scatter plots of PINN-simulated and measured data of 
Hrms and d (the plots only contain testing data).   

Table 1 
Test errors of the PINN-simulated Hrms and d on the circular shoal with different 
resolutions of collocation points.  

Resolution of 
collocation points 
(m) 

RMSE R2 Computational time 
(hours) 

Hrms 

(m) 
d (m) Hrms d 

0.2 0.001 0.007 0.906 0.986 5.9 
0.4 0.001 0.008 0.902 0.980 3.5 
0.8 0.001 0.014 0.887 0.947 2.8  
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PINN models with the post-processed geophysical parameters. This 
study developed two methods to solve the depth inversion problems and 
estimate wave fields. Assuming surface wave number and limited wave 
height measurements are available from various remote sensing plat
forms or synthetic data from a physics-based model, the first method 
employed wave numbers and scarce measurements of wave height as 
training data. The second method applied scarce wave height and 
limited water depth measurements as training points to reconstruct 
bathymetry and wave fields. The results show that both methods are 
capable of simultaneously mapping the bathymetry and wave fields 
when the locations of scarce training points are appropriately distrib

uted. Furthermore, the sensitivity of the PINN performance to the 
number and locations of training points of Hrms was investigated using 
water waves over an alongshore varying barred beach as an example. It 
was found that the RMSE of Hrms decreases when the number of training 
points increases. Moreover, if the total number of training points is fixed, 
higher accuracy can be obtained when more training points are placed in 
the surf zone. 

One advantage of applying PINNs to solve bathymetry inversion 
problems is that wave height and bathymetry can be simultaneously 
estimated by PINN models. Thus, the effect of wave amplitude disper
sion on depth inversion in nonlinear wave systems can be quantified 
directly without measuring the entire wave height field. In this study, we 
used the nonlinear dispersion relation instead of the linear dispersion 
relation together with the energy balance equation as the physical laws 
to reconstruct the wave field and estimate the bathymetry over an 
alongshore uniform barred beach with known wave numbers. The re
sults show that the PINN outputs correlate well with the numerical so
lutions to the energy balance equation with the embedded amplitude 
dispersion. Additionally, it was found that PINNs cannot learn nonlinear 
wave characteristics with linear dispersion relation used as the 
constraint during the training process, which indicates that selecting an 
appropriate physical constraint is crucial for solving the depth inverse 
problems and reconstructing wave fields with sufficient accuracy. 

This study is the first attempt to investigate the capability of PINNs 
for simultaneously mapping nearshore bathymetry and reconstructing 
wave fields with limited field data. Though the current results are 
encouraging, more studies are needed to further test the performance of 
PINNs under field conditions. In particular, it is important to quantify 
the potential errors of PINNs when remotely sensed data are inaccurate 

Fig. 6. Simulation errors of the PINN-predicted water depths and wave heights with (a) 10 cross-shore transects of 50m apart and (b) 5 cross-shore transects of 110 m 
apart. The black dots and crosses represent the locations of the training points for water depth and wave height, respectively. The scatter plots only contain 
testing data. 

Table 2 
Error statistics of the simulated Hrms and d over the alongshore varying barred 
beach using different training points of Hrms applied in Method A.   

RMSE R2 Max error 

Hrms (m) d (cm) Hrms d Hrms (m) d (cm) 

o15n35o50a 0.005 1.450 0.998 1.000 0.171 1.63 
o15n35o40 0.006 1.460 0.998 1.000 0.155 1.59 
o15n35o30 0.017 1.520 0.984 1.000 0.409 1.72 
o15n35o20 0.016 1.470 0.989 1.000 0.474 2.02 
o15n35o10 0.032 1.460 0.979 1.000 0.452 2.24 
o15n30o50 0.008 1.450 0.997 1.000 0.369 1.91 
o15n20o50 0.008 1.450 0.996 1.000 0.350 1.91 
o15n10o50 0.010 1.470 0.995 1.000 0.388 1.93  

a o15n35o50 means 15, 35, and 50 training points of Hrms were set at x =
0–500 m, 500–800 m, and 800–980 m, respectively.  
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and the embedded physics is incomplete. 
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