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This paper uses physics-informed neural networks (PINNs) to simultaneously determine nearshore water depths
and wave height fields based on remote sensing of the ocean surface with limited or sparse measurements. Two
methods that integrate the knowledge of water wave mechanics and fully connected neural networks are
introduced. The first method utilizes observed wave celerity fields and scarce measurements of wave height as
training data. The model performance was examined with linear waves over an alongshore varying barred beach
and nonlinear waves over an alongshore uniform barred beach. The second method uses scarce wave height and
water depth measurements as training points, and the model performance was investigated with water waves
over a circular shoal and the alongshore varying barred beach. One advantage of applying PINNs to solve ba-
thymetry inversion problems is that wave height and bathymetry can be simultaneously estimated by PINN
models. Thus, the impact of wave amplitude dispersion on depth inversion in nonlinear wave systems can be
considered without measuring the entire wave height field. Overall, this study demonstrates the potential of the
inverse PINN model as a promising tool for estimating nearshore bathymetry and reconstructing wave fields
using observations from different remote sensing platforms.

1. Introduction

Due to increasing coastal utilization and sea level rise, accurate in-
formation about nearshore bathymetry is essential for designing and
operating many coastal projects, such as flood protection and coastal
zone management. To better forecast nearshore wave characteristics, it
is critical to use precise nearshore bathymetric data as an input to hy-
drodynamic models, because the accuracy of bathymetry is considered
one of the most severe limitations in predicting nearshore waves and
currents (e.g., Van Dongeren et al., 2008; Salim and Wilson, 2021). In
general, it is costly to collect nearshore bathymetric data using in-situ
methods, such as vessel-based (Dugan et al., 2001; Ruggiero et al.,
2005) and bottom contact (Birkemeier and Mason, 1984) surveying
techniques. Also, conventional surveying methods become impractical
due to the hazardous surf zone conditions during storms. Even when
in-situ measurements are available, the spatial undersampling may not
resolve complex bathymetric features, and temporal undersampling may
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also poorly capture beach changes in a highly dynamic environment.
Therefore, it would be desirable to monitor the nearshore regions (e.g.,
wave celerity and wave height) with the help of remote sensing tech-
niques, which have a broader spatial and temporal coverage than the
traditional in-situ surveying methods (e.g., Gallego et al., 2011; Wilson
et al., 2014).

Previous technologies for estimating nearshore bathymetry using
remote sensing methods include LiDAR (e.g., Wilson and Berezhnoy,
2018; Blenkinsopp et al., 2012), radar (Haller et al., 2014), infrared
(Dugan et al., 1996) etc. In the past several decades, many studies have
focused on solving bathymetric inversion problems using observed
surface wave properties (e.g., water surface elevation and wave celerity)
and simple physical models. For example, cBathy is a popular bathy-
metric inversion algorithm that uses the linear wave dispersion rela-
tionship to estimate nearshore bathymetry with wave celerity obtained
from remote sensing techniques and a Kalman-filtered update frame-
work (Holman et al., 2013). The algorithm was found to deteriorate

E-mail addresses: q.chen@northeastern.edu (Q. Chen), wang.nan@northeastern.edu (N. Wang), zhaochenseu@outlook.com, chen.zhaol@northeastern.edu

(Z. Chen).

https://doi.org/10.1016/j.coastaleng.2023.104337

Received 22 November 2022; Received in revised form 9 April 2023; Accepted 13 May 2023

Available online 14 May 2023

0378-3839/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).


mailto:q.chen@northeastern.edu
mailto:wang.nan@northeastern.edu
mailto:zhaochenseu@outlook.com
mailto:chen.zhao1@northeastern.edu
www.sciencedirect.com/science/journal/03783839
https://www.elsevier.com/locate/coastaleng
https://doi.org/10.1016/j.coastaleng.2023.104337
https://doi.org/10.1016/j.coastaleng.2023.104337
https://doi.org/10.1016/j.coastaleng.2023.104337
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Q. Chen et al.

during storms when waves transition from non-breaking to breaking in
the surf zone (Honegger et al., 2019). To improve the simulation accu-
racy nearshore, a number of studies used nonlinear wave dispersion
relationships (Grilli, 1998; Catalan and Haller, 2008; Ge et al., 2020;
Martins et al., 2023) and wave breaking dissipation proxies (Aarninkhof
et al., 2005) to infer bathymetric changes. For example, Yoo et al. (2011)
inverted water depth in the surf zone with the inclusion of wave
nonlinearity using wave celerity obtained from remotely captured
videos. They found good agreement between the predicted and
measured water depths for depths ranging from 0.1 m to 3 m. Moreover,
Kennedy et al. (2000) reconstructed bathymetry using two snapshots of
water surface elevations and velocities based on the Boussinesq wave
model (Chen et al., 1999). They employed the phase speed difference in
the computed and measured data as the basis for updating bathymetry at
each iteration.

Another popular bathymetry inversion technique is data assimila-
tion, which combines observational data and dynamical systems to
generate a state estimation while accounting for uncertainty in the ob-
servations and model dynamics (Lewis et al., 2006; Birrien et al., 2013;
Wilson and Berezhnoy, 2018). Data assimilation tries to minimize a cost
function based on the difference between observations and simulations
with an initial estimate of the unknown parameters and uncertainties to
regularize the solution (Salim and Wilson, 2021). During the past several
decades, significant progress has been made in utilizing data assimila-
tion to estimate bathymetry in shallow water areas. For example, Van
Dongeren et al. (2008) estimated bathymetry variations with good ac-
curacy using the Kalman filtering method based on remote sensing data
(i.e., wave roller dissipation, intertidal shoreline, and wave celerity).
Furthermore, Wilson et al. (2014) estimated bathymetry as an uncertain
parameter in a data assimilation system with the ensemble Kalman filter
based on time-dependent remote sensing observations (i.e., wave
celerity, alongshore current, and shoreline observations). The results
show that nearshore bathymetry can be estimated with good accuracy,
and nearshore hydrodynamic forecasts can be improved by assimilating
remotely sensed data. Salim and Wilson (2021) tested the accuracy of
the depth inversion model by assimilating in-situ wave height and
alongshore current observations at a barred beach in Duck, NC, USA.
They found that the results had an average root-mean-square error of
0.46 m when assimilating both the observed parameters simultaneously,
which increased to 0.69 m when assimilating only alongshore current
observations but decreased to 0.44 m when assimilating only wave
height observations.

Recently, the development of machine learning (ML) methods,
computer hardware, and remote sensing technologies has created new
opportunities for using soft computing-based models to estimate near-
shore bathymetry (e.g., Eldesokey et al., 2019; Dhamo et al., 2019).
Unlike the data assimilation method, soft-computing models do not
require simulations from deterministic forward numerical models or
knowledge about the uncertainty of observations and the uncertainty of
the numerical model. Using the data assimilation method to solve the
inverse problem can be computationally expensive, since it may require
thousands or millions of forward model simulations for evaluating es-
timators and characterizing posterior distributions of parameters
(Willard et al., 2020). Thus, applying ML to obtain the solution to in-
verse problems would be desirable, because it can execute faster than
numerical models and simulate high-dimensional scenarios with a large
amount of data. For instance, Collins et al. (2020) used deep convolu-
tional neural networks (DCNNs) to estimate nearshore bathymetry
based on time-averaged and snapshot synthetic imagery. They found
that DCNNs show robustness in depth estimation with wave heights up
to 2.5 m, unlike the above-mentioned physics-based depth inversion
methods that show larger errors when wave heights become higher.
Additionally, they stated that ML techniques bring opportunities for
more accurate predictions of nearshore bathymetry without linear
simplification of input data or physical models. Other examples of
applying data-driven models to solve inverse problems include
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photonics (Pilozzi et al., 2018), seismic processing (Vamaraju and Sen,
2019), medical imaging (Lunz et al., 2018), and remote sensing of sur-
face properties (Dawson et al., 1992), among others.

Another ML-based approach for solving inverse problems is physics-
informed neural networks (PINNs), which embed physics with the soft-
computing learning algorithm. Unlike traditional ML methods, PINNs
can be generalized to predict scenarios that are unseen in the training
datasets. Furthermore, PINNs require a smaller amount of training
datasets than traditional ML methods, which is very useful in coastal
engineering applications because field measurements are often limited
in reality. Using PINNs to solve inverse problems has been the focus of
many recent studies. For example, Raissi et al. (2019) predicted the lift
and drag forces of a system based on sparse data of the velocity field with
a physics-guided loss function. Furthermore, Kahana et al. (2020)
applied a neural network with a physically informed loss component to
identify the location of an underwater obstacle. The results show that
the model can generalize well and produce promising results.

In this study, inverse models were developed to estimate nearshore
bathymetry based on remote sensing data (i.e., wave number and sig-
nificant wave height) with PINNs. Meanwhile, the feasibility of recon-
structing both the concurrent bathymetry and wave height field in
shallow water with scarce wave and depth measurements was investi-
gated. Nearshore wave processes, including wave shoaling, refraction,
and depth-induced breaking, were considered in the model. To the best
of our knowledge, this is the first time that PINNs are applied to solve the
inverse problem of predicting bathymetry in shallow waters. The rest of
the paper is organized as follows. Section 2 provides essential infor-
mation on the governing equations. Details of the model setup for PINNs
are also introduced in this section. Section 3 examines the performance
of PINNs in simultaneously mapping bathymetry and reconstructing
nearshore wave fields. Section 4 discusses the advantage of using PINNs
for solving depth inversion problems and the influences of the location
of training data on the performance of PINNs as well as using transfer
learning to improve the model efficiency for changing conditions.
Finally, Section 5 concludes the paper with remarks on this study.

2. Methodology

Because remote sensing is capable of observing a broad spatiotem-
poral range of geophysical parameters, it can be applied as a valuable
tool for monitoring the nearshore, such as video cameras, radar,
infrared, and LiDAR (Wilson et al., 2014). In this study, we take a
simplified approach by only using synthetic model data as opposed to
actual remotely-sensed data to determine the model performance of
PINNSs. Therefore, the digital image processing of remote sensing data is
not covered in this study. Moreover, it is assumed that the free surface
parameters derived from remote sensing data are sufficiently accurate in
this work.

This study determines the water depth and wave fields with two
methods.

e Method A: We assumed that the surface wave celerity (or wave
number) and limited wave height measurements are available from
various remote sensing platforms. Then, the concurrent bathymetry
and wave height fields were inferred by the inverse PINNs developed
with wave number and scarce wave height measurements as the
training data. The performance of this method was investigated by
solving the depth inversion problem over an alongshore varying
barred beach with the simulation data from XBeach (Roelvink et al.,
2009). Also, we examined the effects of amplitude dispersion (i.e.,
nonlinear dispersion relation) on depth inversion and wave predic-
tion using monochromatic waves over an alongshore uniform barred
beach as an example.

Method B: Notice that when the wave number data are unavailable,
PINN models could still be utilized to simultaneously map the ba-
thymetry and reconstruct wave fields if wave heights and water
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depths at limited locations are partially known. Our second method
uses the scarce measurements of wave height and water depth to
train the PINNS for solving the depth inversion problems without any
observations of wave celerity or wave number. The model perfor-
mance was examined by estimating the bathymetry and recon-
structing wave fields over a circular shoal with the laboratory
experiment data from Chawla et al. (1996). Moreover, this method
was investigated by solving the depth inversion problem over the
alongshore varying barred beach under field conditions in Duck, NC,
USA. Although this test case is the same as the one used for exam-
ining Method A, it is worth mentioning that the training data and
network structures are different from those in Method A.

2.1. Energy balance equation for wave propagation in the nearshore

In this study, we developed PINN models to solve depth inversion
problems and reconstruct wave fields in the nearshore area. This study
focused on stationary wave fields without wind forcing and ambient
currents. Wave shoaling, refraction, and depth-limited breaking were
considered in this model. The governing equations encoded into the
fully connected neural networks include the wave energy balance
equation and dispersion relation. The effect of amplitude dispersion (i.
e., nonlinear dispersion relation) on depth inversion and wave field
reconstruction was also investigated. For water waves, the energy bal-
ance equation is given by

decy,  Oecy, n decgy

ox oy Tag TB=0 M

where e is the wave energy density in each directional bin, cg is the group
velocity, 0 represents the angle of incidence with respect to the x-axis,
and d,, is the dissipation of energy density caused by wave breaking. cgy,
Cgy» and cgy are formulated as

Coe(x,y,0) =c, cos 0 )

Coy(x,9,0) =c, sin 3)
[0} oh . oh

ceo(x,,0) = St (a sin 6 — @cos 9) )

representing the wave propagation speeds in x, y, and directional space,
respectively. h is the local water depth, k represents the wave number,
and o is the angular frequency. The Janssen and Battjes (2007) formu-
lation for wave breaking was applied in this study. The total wave
dissipation was distributed proportionally over the wave directions
using the following formulation

e(x,y,0)—=

dy(x,y,0)= E(xAy) D, (x,y) ()

where D,, denotes the expected value of the power dissipated per unit
area. The total wave energy E and the mean wave direction 6,, were
given by

21

E- / e(0)d6 ®)
0

and
1 21

On=1 A 0e(0)do %

The resolution of directional spreading of waves was set to 10° in this
study, and the lower and upper directional limits were defined as —90°
and 90°, respectively. The root-mean-square wave height was calculated
based on
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For monochromatic waves over an alongshore uniform beach, the
wave energy balance equation becomes
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Few 5. — 0 ©)
ox

The wave direction variation over the beach was determined by the
Snell’s law. The wave height was calculated as Eqn (8). The linear
dispersion relation relates the wave number of a wave to its frequency as

®* — gk tanh(kh) =0 (10)

The nonlinear dispersion relation proposed by Kirby and Dalrymple
(1986) was employed to examine the effects of amplitude dispersion on
depth inversion and wave predictions as

o’ =gk(1+ .7 (kh)e’D)tanh (kh + .7 (kh)e) an
_ cosh(4kh) + 8 — 2 tanh’ (kh)
b= 8 sinh* (kh) a2
F 1 (kh) = tanh® (kh) 13)
_ ko 7

where ¢ = k|A| and |A| = 1/2H (Catalan and Haller, 2008). The group
velocity ¢, was computed by

0w

G=50 (15)

2.2. Physics-informed neural networks

To solve the depth inversion problems over an alongshore varying
barred beach and circular shoal with linear dispersion relation, the
corresponding residuals were defined as

Oecy,  Oecy, N decyy

ax oy Tap T 16

filx,y,0) 1 =

f(x,y) : =w* — gk tanh(kh) an

To consider the effects of amplitude dispersion on depth inversion
and wave field reconstruction for nonlinear waves over the alongshore
uniform beach, the residuals were determined as

_ 0Ecy,

S s == +D, 18)

f(x): =@ — gk(1+ .7 (kh)e*D)tanh (kh+ .7 5 (kh)e) 19)

These residuals were used as restraints during the training of PINNs
to generate physically consistent predictions. Additionally, the wave
measurements scattered in the computational domain were also used to
constrain the model, such as wave height and wave number.

The schematic representation of the algorithm for simultaneous
mapping of nearshore bathymetry (depth inversion) and wave field
using Method A is shown in Fig. 1. Because e is related to (x,y,6) while k
and d only depend on (x,Yy), composite neural networks (i.e., .#; and
3) were utilized to estimate water depth and simulate nearshore wave
fields in this study. The loss function consists of two main parts. The first
part corresponds to the collocation points (i.e., residual loss), where the
physical constraints were imposed to encourage Eqns (16) and (17) (or
Eqns (18) and (19)) to equal zero. In general, the collocation points
could be grid points or random points inside the computational domain
(Lu et al.,, 2021), and the former one was applied in this study.
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g Residual loss (f;, energy balance equation)

residual

Ltotal

Measurement loss (Hyms & 6p)

Lmeasuremenrs

Fig. 1. A schematic representation of Method A for solving the depth inversion problems. .#"; and ./"» are the networks for simulating e as well as k and h,

9 9

respectively. o represents the node in each layer. %, b and J; are the partial derivative relative to x, y, and 6, respectively.

Automatic differentiation was used to calculate the partial derivatives in
the residual expression (Kissas et al., 2020). The second part encouraged
the outputs of PINNs to match wave parameters obtained from field
observations (i.e., measurement loss). Therefore, the total loss function
for solving the depth inversion problem of linear waves is given as

Jmml = ]re:idual + «y”measummems = a(!/[l + lfz Xjfz + iHmh X :Z’/Hm,,
+ g, X Loy + M X Ly (20)

where A, , An,,, 49, , and 4 are the weighting coefficients determined by
the learning rate annealing algorithm for balancing the interplay be-
tween different terms in the loss function (Jin et al., 2021). The learning
rate annealing algorithm can improve the simulation accuracy by using
gradient statistics to determine proper weights adaptively to each term
in loss functions (e.g., Wang et al., 2022a). In this study, the mean
squared error (MSE) was employed to represent the loss functions and is
given for each term by
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where {Hrms (XH,W 7ylH,m~)}i:1 > {0”' (XO,,, 7y10m)}i:1 > and {k (xkhy;()}i:l
denote the PINN outputs of Hy,, 0, and k, respectively. H}, ., 0y, and k*
are the targets (labels) of Hyps, 6, and k, respectively. {(x}, y} 9})}2’1
represents collocation points that are uniformly placed inside the
computational domain to minimize the loss of residuals.

Regarding Method B for estimating bathymetry and wave fields, we
used the same algorithm and loss functions as the ones in Wang et al.
(2022a). Notice that we assumed wave numbers and wave angles were
unknown in Method B, so they were not applied as the training data for
the model, which is a slight difference compared to the algorithm in
Wang et al. (2022a). In this study, we used hyperbolic tangent as the

activation function, and the deep neural nets were initialized with
Xavier initialization (Glorot and Bengio, 2010). The network structure
was kept identical to four hidden layers of 30 nodes for each test case.
More details on the selected optimizer, learning rates, and settings of the
measurements and collocation points shall be given in Sections 2.2.1 to
2.2.3. The training was implemented on an NVIDIA v100-sxm2 GPU
with the TensorFlow platform. The training of the PINN models took
about 3-6 h for different test cases.

2.2.1. Alongshore varying barred beach

The wave condition offshore of the alongshore varying barred beach
was set as Hy,s = 1 m and peak wave period (T;,) = 8 s. The peak wave
period remains constant over the entire computational domain. The
incident wave angle follows the directional distribution of cos™(6 — 6,)
with 6, = —30 and m = 20. Fig. 2 shows the bathymetry of the along-
shore varying barred beach and the XBeach-simulated H,,. The
computational domain extended from x = 0 to 980 m in the cross-shore
direction and from y = 20 to 480 m in the alongshore direction with a
resolution of 10 m. The resolution of directional spreading of waves (d6)
was set to 10° in both XBeach and PINN models, and the lower and upper
directional limits were defined as —90°-90°, respectively. A total of 4
653 collocation points were uniformly distributed from x = 0-980 m
and y = 20-480 m to constrain learning for generating physically
consistent predictions.

The test case of this alongshore varying barred beach was applied to
examine the performance of Method A and Method B for simultaneous
mapping of the bathymetry and wave fields. For Method A, it was
assumed that the wave number and wave angle were known at every
location, meaning that the wave number and wave angle over the entire
study area were used as training data for the model. We randomly
selected a total of 100 training points of H,,, over the entire domain.
Fifteen of them are in the offshore area. Thirty-five are in the shoaling
zone. The rest of the 50 points are in the surf zone. Twenty validation
points were selected randomly from the rest of the dataset, and the
remaining data were utilized as testing points. The total number of
training points is about 2% of the entire computational data. To get
better accuracy, more training points were placed in the shoaling and
breaking zones since strong wave height variations happen in these two
areas. In reality, we may not know where the shoaling and breaking
zones are because the bathymetry and offshore wave conditions are
unknown. It was assumed that the surf zone is from 800 m to 980 m, and
more training points were placed in this region. The sensitivity of the
performance of PINNS to the training points of Hy, is further discussed
in Section 4.1.

In field experiments, nearshore bathymetric data can be collected
across multiple cross-shore transects spaced about 50 m apart (e.g., US
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Fig. 2. (a) The bathymetry of the alongshore varying barred beach and (b) the XBeach-simulated wave height.

Army Engineering and Research Center Field Research Facility (FRF) in
Duck, NC). Normally, these surveys are then interpolated linearly in the
cross-shore and alongshore directions to obtain the bathymetry of the
entire space of interest, which is then used as an input to physics-based
numerical models (e.g., Chen et al., 2003) to simulate the nearshore
wave processes. To estimate the bathymetry and reconstruct wave fields
with Method B, we used some measured data of water depth along the
cross-shore transects and wave heights scattered between adjacent
transects as training points. The resolution of measured bathymetric
data in the alongshore and cross-shore directions was set as 50 m (or
110 m) and 10 m, respectively. The measured wave height locations
were randomly selected inside the domain with more data placed
nearshore as training data (i.e., x = 800-980 m). Twenty validation
points of H,;,s and d were selected randomly from the rest of the dataset,
and the remaining data were utilized as testing points. The
PINN-predicted wave height and water depth were then compared to the
true data to examine the performance of Method B. In this case, the
synthetic data from XBeach were used as the “observational data” for
demonstration purposes. Testing of the inverse PINN models against real
field observations will be carried out in future studies.

For both mapping methods, Adam (adaptive moment estimation)
and L-BFGS-B (limited memory Broyden—Fletcher—Goldfarb-Shanno with
boundaries) were used as network training functions (e.g., Kingma and
Ba, 2014; Liu and Nocedal, 1989). The Adam optimizer was employed to
produce a better set of initial neural network variables, and L-BFGS-B
was used to further fine-tune the PINN networks to minimize test errors
(Jin et al., 2021). The initial learning rate of Adam was set to 10~* and
then decreased to 80% of the previous rate every 5 000 iterations. 8 x
10* Adam iterations were implemented before the L-BFGS-B training,
which was then automatically terminated based on the increment
tolerance. The error statistics were computed to quantify the prediction
skills of PINNs, including root mean square error (RMSE) and correlation
coefficient square (Rz).

2.2.2. Circular shoal

The simulation accuracy of Method B for solving depth inversion
problems was also examined using experimental laboratory data. A se-
ries of physical experiments on wave propagation over a circular shoal
were carried out by Chawla et al. (1996) in a directional wave basin. In
this study, test case 4 of the laboratory experiment was utilized as the
testbed to examine the performance of the inverse PINN model. A total
of 126 locations in the wave basin were set to record the wave heights in
the cross-shore and alongshore directions during the laboratory exper-
iments. Here, we used 50% of the 126 H,,; measurements as training
data together with the corresponding water depth to reconstruct the
entire wave field and estimate the bathymetry. The water depths
offshore and at two lateral boundaries were also applied as the training
data. Ten validation points of H,,, and d were selected randomly from
the rest of the dataset, and the remaining data were utilized as testing
points of H,n. It is worth mentioning that the same dataset of test case 4

was also utilized as one of the testbeds in Wang et al. (2022a), which
developed the NWnets to reconstruct entire wave fields assuming the
water depth data were known everywhere. Notice that although the
training data also included limited water depth measurements in
Method B, this study aims to simultaneously estimate the bathymetry of
the entire domain and reconstruct the wave field, which is a significant
difference from the work by Wang et al. (2022a). The computational
domain, collocation points, and network structures in Method B were
kept the same as the ones used in Wang et al. (2022a).

2.2.3. Alongshore uniform barred beach

PINN models offer an opportunity to account for the impact of wave
amplitude dispersion on depth inversion in nonlinear wave systems,
because wave heights and bathymetry can be simultaneously estimated
by PINNs. To test the PINNs’ ability to account for the effect of wave
nonlinearity in the nearshore, we used the nonlinear dispersion relation
instead of the linear dispersion relation to reconstruct the wave field and
estimate the bathymetry over an alongshore uniform barred beach with
known wave numbers. The nonlinear dispersion relation proposed by
Kirby and Dalrymple (1986) was employed in this study, as shown by
Eqn (11). The training data of wave height and wave number for
developing PINNs were generated using iterative solutions in this case.
Numerical solutions to Eqns (9) and (11) to (15) were used as a reference
for comparison of PINN results with different dispersion relations.

The cross-shore distance from the offshore location was set as x, and
the entire computational domain extended from x = 0 to 1000 m. The
wave boundary condition of the nonlinear waves was set as H=1 m,
T = 8 s, and the incident wave angle of 30°. The Ursell number (Ur =
HL%/h®) ranged from 300 to 600 over the domain. The wave height
training data was set at x = 100 m, and wave numbers were known every
4 m from x = 0-1 000 m. Twenty validation points were selected
randomly from the rest of the dataset, and the remaining data were
utilized as testing points. Similar to the PINN model for estimating the
water depth of an alongshore varying barred beach, Adam and L-BFGS-B
were used as network training functions, with 4 x 10* Adam iterations
conducted before L-BFGS-B started. To examine the prediction perfor-
mance of the model for reconstructing the wave field, the outputs of H
were compared to the numerical solutions to the wave energy balance
equation with either the linear or nonlinear dispersion relation.

3. Results

3.1. Simultaneous mapping of bathymetry and wave field based on wave
numbers and scarce measurements of wave height (Method A)

3.1.1. Water waves over an alongshore varying barred beach

In this section, the outputs from XBeach and PINNs were compared
to determine the feasibility of using PINNSs to estimate water depth and
reconstruct wave fields over an alongshore varying barred beach with
Method A. The comparison between the PINNs and XBeach outputs is
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shown in Fig. 3. The contour plot in Fig. 3 (a) depicts the simulation
error of PINN-simulated water depth with the black dots showing the
locations of H,,s training points. It can be observed that PINNs have
good prediction skills for estimating water depths with small errors
(maximum error = 1.6%). The 3D plot in Fig. 3 (b) presents the PINN-
simulated H,s, which is in good agreement with the numerical results
from XBeach. Also, the simulation outputs from the PINNs and XBeach
are compared in Fig. 3 (c), showing that the PINN-predicted H,,s; and 6,,,
correlated well with those from XBeach. Overall, the developed PINN
model has a promising ability to simultaneously estimate water depths
and reconstruct wave fields over an alongshore varying barred beach
with known wave numbers and scarce wave heights (synthetic data from
XBeach) applied as the training data.

3.1.2. Effects of amplitude dispersion on depth inversion and wave height
prediction

To test the PINNs’ ability to account for the effect of wave nonline-
arity in the nearshore, we used the nonlinear dispersion relation instead
of the linear dispersion relation to reconstruct the wave field and esti-
mate the bathymetry over an alongshore uniform barred beach with
known wave numbers (Method A). Fig. 4 (a) shows that the PINN out-
puts correlate well with the numerical solutions to Eqns (9)-(14) with
the nonlinear dispersion relation embedded in the model. Such synthetic
data are called “reference data” as mentioned in Section 2.2.3. We also
estimated the nonlinear wave fields using PINNs with linear dispersion
relation. It can be observed that the simulation skills of the PINN model
embedded with the linear dispersion relation deteriorate in the surf zone
(Fig. 4 (b)), suggesting that the linear PINN model has a similar pattern
as cBathy in the nearshore. In other words, the PINN model embedded
with the linear dispersion relation is not capable of learning the effect of
nonlinear waves on the dispersion relation. This finding indicates that
selecting an appropriate physical constraint is crucial for solving the
depth inverse problems and reconstructing wave fields with sufficient
accuracy. For field applications where the observed wave number vec-
tors are strongly influenced by wave nonlinearity, it is expected that the
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nonlinear PINN model will produce more accurate water depth in the
surf zone than existing methods.

3.2. Simultaneous mapping of bathymetry and wave field based on scarce
measurements of wave height and water depth (Method B)

3.2.1. Water waves over a circular shoal

In this section, the simulation skill of Method B for estimating water
depth and wave field was examined using the laboratory experimental
data. Fig. 5 presents the outputs of wave heights and water depths from
the inverse PINN model. Fig. 5 (c) shows good agreement between the
experimental and PINN-simulated wave heights, as the PINN model
captured the focusing of wave energy along the transects of E-E and F-F
and the defocusing of wave energy along the transects of C-C and D-D
(Fig. 5 (a)). Furthermore, water depths were well predicted at most of
the locations by the PINN model. Fig. 5 (b) shows the spatial distribution
of the depth inversion errors. It is seen that the majority of the PINN-
inferred water depths have less than 4% error, while larger errors of
depth estimation occur around the edge of the circular shoal. This can be
explained by the fact that the water depths change dramatically near the
edge of the shoal as the local gradients of the bathymetry are not
continuous at the circular edge. We found that increasing the number of
collocation points can improve the simulation accuracy (Table 1).
However, the training time also increased dramatically when more
collocation points were utilized. Thus, practical applications of PINNs
need to balance the computational costs and the simulation accuracy
when selecting the resolution of the collocation points.

3.2.2. Water waves over an alongshore varying barred beach

In this section, we examined the performance of Method B by esti-
mating the water depth based on measured bathymetry along cross-
shore transects and wave heights scattered between adjacent transects,
an analog to the long-term nearshore surveys at FRF in Duck, NC. Fig. 6
shows the spatial distributions of the simulation errors in the PINN-
predicted water depths and wave heights. The results indicate that
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Fig. 3. Comparison between the XBeach and PINN outputs over the alongshore varying barred beach. (a) The simulation errors of the PINN-predicted depth. The
black dots represent the locations of wave height training points; (b) spatial variation of the PINN-predicted wave heights; (c) scatter plots of the predicted H,n,s and d

(the plots only contain testing data).
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Fig. 4. Comparisons between reference and PINN-simulated H and water depth with (a) nonlinear dispersion relation and (b) linear dispersion relation. The scatter

plots only contain testing data.

bathymetry and wave height can be well estimated by the developed
PINN models with measured water depths along a limited number of
cross-shore transects and scarce wave height measurements applied as
training data (without wave number information). Compared to linear
interpolation, the inverse PINN models provide a more accurate way to
determine the water depths over the entire domain, because small-scale
bathymetry changes between the cross-shore transects can be identified
with the measured wave parameters.

4. Discussion
4.1. Strategies for improving simulation accuracy and efficiency in PINNs

The sensitivity of the model accuracy of PINNs to the number and
distribution of training points of H,n,s over the alongshore varying barred
beach (Method A) is investigated in this section as an example. Because
strong variations of wave height happen in the shoaling zone and surf
zone, we used different numbers of training points of Hy, at x =
500-980 m. Table 2 shows the error statistics of PINN outputs when the
training data of H,,s were at different locations. Unsurprisingly, the

results indicate that the simulation accuracy of H,, tended to increase
when the number of training points increased, especially when more
training points were placed close to the shore from x = 800-980 m. Also,
it was found that maximum errors for both PINN-simulated H,,, and d
happen nearshore (x = 800-980 m). This is because the wave height
variation is higher due to the depth-limited wave breaking inside the
surf zone. Therefore, to obtain a higher accuracy of wave height pre-
diction, more training points should be placed nearshore. Since the wave
number was assumed to be known at every point inside the computa-
tional domain, the accuracy of the estimated bathymetry is very good if
amplitude dispersion is embedded in the PINN model. It is worth
mentioning that the model does not require the wave number at every
location as training points, and PINNs can still generate satisfactory
results for solving the depth inverse problems (Section 3.1.2). In future
studies, the model framework can be tested in the field where in-situ
measurements and remote sensing data (e.g., LIDAR and stereo-video)
are available (e.g., Wilson et al., 2014).

Similar to numerical simulations using conventional physics-based
models, we need to retrain the model when the offshore wave condi-
tions or the depth profiles change. However, transfer learning can be
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Table 1
Test errors of the PINN-simulated H,,,s and d on the circular shoal with different
resolutions of collocation points.

Resolution of RMSE R? Computational time
collocation points (hours)
i P Hyo  d@m) Hp d
(m)
0.2 0.001 0.007 0.906 0.986 5.9
0.4 0.001 0.008 0.902 0980 3.5
0.8 0.001 0.014 0.887 0.947 28

used to accelerate the training of PINNs for simultaneous mapping
waves and bathymetry when the following simulation has slightly
different wave boundary conditions or depth profiles. Specifically, the
pretrained PINNs can be applied to initialize the subsequent simulations
other than training a new network from scratch (i.e., initialize the new
network weights and bias using the parameters of the pretrained PINNSs)
(Jin et al., 2021). For instance, the PINNSs for estimating bathymetry and
wave fields over the alongshore varying barred beach with the boundary
condition of Hy,s = 1 m and T}, = 8 s have been well developed. Later, we
would like to develop a second PINNs for estimating the water depths
and wave fields over slightly different bathymetry and different offshore
wave boundary conditions (e.g., Hpyg = 1.1 m and T, = 7.8 5). To
accelerate the training of the new PINNs, we can initialize the second
network weights and bias using the parameters of the pretrained PINNs
with the boundary condition of H;,,, = 1 m and T, = 8 s, so that the
computational efficiency can be improved. Future testing of transfer
learning under realistic field conditions is needed.

4.2. Comparison with conventional ANN

The conventional ANN model is composed of densely interconnected
information-processing nodes organized into layers (James et al., 2018;
Wang et al., 2022b, 2022c). The main difference between ANN and
PINNs is that the loss function of ANN only contains measurement loss,

measured d (m)

while PINNs contain measurement loss and residual loss (i.e.,
physics-informed). To examine the effect of physical regularization on
the PINN results, we generated a simulation experiment using the con-
ventional ANN model for estimating bathymetry and wave fields over
the circular shoal with Method B as an example (Fig. 7). The ANN model
setup and hyperparameter selection (e.g., activation function and
learning rate) were kept the same as the ones used in the PINNs, except
that the total loss function only contained the measurement loss without
the residual loss (i.e., the ANN model was developed from scratch). The
results show that the ANN-predicted wave height distribution has
considerable errors, and the simulation errors of bathymetry increase
significantly. The R? values for the ANN-predicted H,,s and d decreased
to 0.56 and 0.95, respectively, and the RMSE value of d increased to
0.014 m. This pattern is more obvious in the domain where fewer
training data were placed (e.g., domain to the left of transect of D-D),
indicating that embedding the physics into the neural networks indeed
improves the ML-model performance for solving depth inversion prob-
lems and reconstructing wave fields.

5. Conclusions

An accurate estimation of the nearshore bathymetry is critical for
designing and operating many coastal projects because of the increasing
coastal utilization and sea level rise. Usually, in-situ bathymetric surveys
require specialized equipment and can be expensive and time-
consuming to obtain. Thus, it is highly desirable to estimate the near-
shore bathymetry using remote sensing techniques, which can cover a
broader spatial and temporal range than the traditional in-situ in-
struments. In this study, we developed inverse PINN models to estimate
nearshore bathymetry based on remote sensing data (i.e., wave number
and significant wave height) by combining the prior knowledge of wave
mechanics into the fully-connected neural networks.

Although the digital image processing of remote sensing data is not
covered in this study, we can still investigate the feasibility of using
remote sensing data to solve the depth inversion problem by training
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Table 2

Error statistics of the simulated H,,s and d over the alongshore varying barred
beach using different training points of H,n,s applied in Method A.

RMSE R? Max error

Hypps (m) d (cm) Hypns d H;ps (m) d (cm)
015n35050" 0.005 1.450 0.998 1.000 0.171 1.63
015n35040 0.006 1.460 0.998 1.000 0.155 1.59
015n35030 0.017 1.520 0.984 1.000 0.409 1.72
015n35020 0.016 1.470 0.989 1.000 0.474 2.02
015n35010 0.032 1.460 0.979 1.000 0.452 2.24
015n30050 0.008 1.450 0.997 1.000 0.369 1.91
015n20050 0.008 1.450 0.996 1.000 0.350 1.91
015n10050 0.010 1.470 0.995 1.000 0.388 1.93

# 015n35050 means 15, 35, and 50 training points of H,n,s were set at x =
0-500 m, 500-800 m, and 800-980 m, respectively.

PINN models with the post-processed geophysical parameters. This
study developed two methods to solve the depth inversion problems and
estimate wave fields. Assuming surface wave number and limited wave
height measurements are available from various remote sensing plat-
forms or synthetic data from a physics-based model, the first method
employed wave numbers and scarce measurements of wave height as
training data. The second method applied scarce wave height and
limited water depth measurements as training points to reconstruct
bathymetry and wave fields. The results show that both methods are
capable of simultaneously mapping the bathymetry and wave fields
when the locations of scarce training points are appropriately distrib-

uted. Furthermore, the sensitivity of the PINN performance to the
number and locations of training points of H,,s was investigated using
water waves over an alongshore varying barred beach as an example. It
was found that the RMSE of H,,,; decreases when the number of training
points increases. Moreover, if the total number of training points is fixed,
higher accuracy can be obtained when more training points are placed in
the surf zone.

One advantage of applying PINNs to solve bathymetry inversion
problems is that wave height and bathymetry can be simultaneously
estimated by PINN models. Thus, the effect of wave amplitude disper-
sion on depth inversion in nonlinear wave systems can be quantified
directly without measuring the entire wave height field. In this study, we
used the nonlinear dispersion relation instead of the linear dispersion
relation together with the energy balance equation as the physical laws
to reconstruct the wave field and estimate the bathymetry over an
alongshore uniform barred beach with known wave numbers. The re-
sults show that the PINN outputs correlate well with the numerical so-
lutions to the energy balance equation with the embedded amplitude
dispersion. Additionally, it was found that PINNs cannot learn nonlinear
wave characteristics with linear dispersion relation used as the
constraint during the training process, which indicates that selecting an
appropriate physical constraint is crucial for solving the depth inverse
problems and reconstructing wave fields with sufficient accuracy.

This study is the first attempt to investigate the capability of PINNs
for simultaneously mapping nearshore bathymetry and reconstructing
wave fields with limited field data. Though the current results are
encouraging, more studies are needed to further test the performance of
PINNs under field conditions. In particular, it is important to quantify
the potential errors of PINNs when remotely sensed data are inaccurate
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and the embedded physics is incomplete.
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