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Abstract

Existing causal models for link prediction assume an underlying set of inherent node factors Ůan innate
characteristic deĄned at the nodeŠs birthŮ that governs the causal evolution of links in the graph. In
some causal tasks, however, link formation is path-dependent: The outcome of link interventions depends
on existing links. Unfortunately, these existing causal methods are not designed for path-dependent link
formation, as the cascading functional dependencies between links (arising from path dependence) are either
unidentiĄable or require an impractical number of control variables. To overcome this, we develop the Ąrst
causal model capable of dealing with path dependencies in link prediction.

In this work we introduce the concept of causal lifting, an invariance in causal models of independent
interest that, on graphs, allows the identiĄcation of causal link prediction queries using limited interventional
data. Further, we show how structural pairwise embeddings exhibit lower bias and correctly represent
the taskŠs causal structure, as opposed to existing node embeddings, e.g., graph neural network node
embeddings and matrix factorization. Finally, we validate our theoretical Ąndings on three scenarios for
causal link prediction tasks: knowledge base completion, covariance matrix estimation and consumer-
product recommendations.

1 Introduction

Predicting links between entities via latent factors has captivated the scientiĄc community ever since
Charles Spearman published The Abilities of Man [67] in 1927, where he described the mathematical tools
to uncover latent common factors of intelligence just by observing a subject i perform a task j successfully
(Aij = 1) or unsuccessfully (Aij = 0) over n subjects and m tasks. SpearmanŠs work started a revolution
that gave us, among other things, matrix and tensor factorizations, Principal Component Analysis (PCA),
and Independent Component Analysis (ICA). Simultaneously, The Abilities of Man also warned us about
interpreting the factors of subject i as innate rather than acquired abilities. For instance, regarding Woolley
and FischerŠs observation that Şboys are enormously superior [to girls] at [. . . ] spatial relationsŤ (i.e., in how
objects relate in space) [76], Spearman warns that Şevidence of this difference being really innate [rather than
acquired] is still dubiousŤ.

Today, we can describe SpearmanŠs warning as being about two competing causal hypotheses that
describe link formation between young children and their abilities. A path-dependent hypothesiswhere past
links inĆuence future links [46] and an innate factors hypothesis where link formation is just a manifestation
of latent innate factors [75]. In Woolley and FischerŠs experiments, both hypotheses are able to describe the
data: Either boys are innately better than girls at spatial reasoning (innate factors hypothesis), or boys in
1914 just happened to have had more playtime with spatial tasks than girls, with each task further improving
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Task setup. We consider Ąrst observing at time t0 a (possibly static and attributed) graph G(t0). Next,
at a later time t1 we are able to intervene in a pair of nodes E(t1) and observe whether the link appears in
G(t1). Finally, we are interested in answering counterfactual queries of the form: What would have happened had
we intervened in this other pair of nodes? We outline the needed assumptions on the causal generating process C
of G(t0) such that we can intervene on more pairs and train a graph embedding model to answer the counter-
factual queries. The causal model considered is (possibly) path-dependent, i.e., the link formation in G(t1)

can depend on how G(t0) was created, including previous interventions (before t0) that we do not observe.
Moreover, the graph embedding is trained in a supervised learning fashion using the observational data
G(t0) to predict the interventional dataG(t1), i.e., the targets are the links and non-links inwhichwe intervened.

Contributions. Our contributions are centered around using invariances to both i) deĄne a set of suf-
Ącient causal modeling assumptions for causal identiĄcation and to ii) deĄne the needed graph embedding
for unbiased estimation of causal links. Regarding identiĄcation, we develop the concept of causal lifting,
an invariance property of causal models that is able to serve link prediction under interventions in both
path-dependent and innate factor models. Causal lifting serves more than a causal link prediction tool, it is
also an experimental design tool and identiĄcation strategy for invariant data. The key insight of causal lifting
is to identify causal quantities by assuming invariances in the causal mechanisms of the task, rather than
relying on variable controls or covariate-based adjustments common in do-calculus and potential outcomes
analyses. Further, on the estimation side, we show how structural pairwise embeddings, a type of graph
embedding that incorporates the known causal invariances of the task, achieves lower bias and variance than
node embedding methods. Finally, we validate our theoretical Ąndings on four datasets under three different
scenarios of causal link prediction tasks.

A Family of Causal Link Prediction Tasks

In our task, we observe graph data at some (pre-trial) time t0 from an unknown (causal) graph generation
process Cwith potential path dependencies. As such, future links and probes might depend on previous
states of the graph. We denote the observed graph at pre-trial time t0 by G(t0), with corresponding adjacency
matrix a(t0), node set V (t0) of size n(t0) :=|V (t0) | and edge set E(t0). Without loss of generality, we refer to
graphs at any other time points of interest t ∈ N using the same notation (G(t), a(t), V (t), n(t), E(t)). Moreover,
we use capital letters to denote the corresponding random variable of an observation, e.g., A(t0) is the random
variable of the observed adjacency a(t0). Finally, unless otherwise stated, our results consider an adjacency
a(t0) ∈ An(t0)×n(t0)

with arbitrary Ąnite domain A. Thus, a(t0) possibly contains information about time, node
and edge features Ůwhich implies that a(t0) is not necessarily a matrix (it can be a tensor representing this
heterogeneous node adjacency).

After observing the graph G(t0), we are often interested in probing into a certain relation. More speciĄcally,
we probe into the relation of (I, J) ∼ µ(G(t0)), where p

(
(I, J);G(t0)

)
is a distribution over the node pairs in

G(t0). We refer to µ(G(t0)) as the probe policy, i.e., it (stochastically) deĄnes which relation from G(t0) we
wish to probe into. For instance, in online social networks we can probe into a friendship between two users
by making a friendship recommendation. Note that the act of probing induces an intervention in the graph
formation process, i.e., despite of being friends two users might not add each other at that point of time
without an explicit recommendation from the system. We will refer to interventions of this type, i.e., probing
into a relation, simply by probes. Finally, note that a probe can be seen as an experimental trial as well, e.g.,
in the recommendations as treatments framework [39] products are seen as treatments that the recommender
system chooses or not to administer to each of its users.

We consider the act of probing and its outcome happening simultaneously at a posterior time t1 > t0. That
is, the difference in time between an intervention and its outcome is small enough that variables associated
with other pairs are not impacted by the intervention. As mentioned, the probe is an intervention in the graph
formation process. Hence, we deĄne as E(t1) the random variable of the graph process we make interventions
in. We can then deĄne the random variable of the outcome of a probe in (I, J) ∼ µ(G(t0)) as
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Y
(t1)
IJ

︸ ︷︷ ︸

Outcome of
probe in (I, J).

:= A
(t1)

E(t1)

(

E(t1) = (I, J)
)

︸ ︷︷ ︸

Probe in (I, J).

| G(t0), (1)

where t1 is both the time of the probe and when we see its effect (post-trial time), A(t1) is the adjacency of the
graph G(t1) (after the probe), and E(t1) is the probe random variable. In our work we will use the potential
outcomes notation [63] and PearlŠs Causal Hierarchy [5] framework to describe causal tasks.

In real-world systems, we can actively probe and observe an outcome for Equation (1), e.g., make a
recommendation and observe whether two users add each other in an online social network. However, we
also would like to keep probes to a minimum. Either because they are expensive to perform or because they
interfere with usersŠ experience [21] or the systemŠs normal operation. Rather, we describe our task as the
following idealized learning task: Perform one probe in (I, J) ∼ µ(G(t0)), then predict what would have
happened had we probed into the relation of a different pair (U, V ) ∼ µ(G(t0)), (U, V ) ̸= (I, J). We refer to
this task as causal link prediction, and more formally deĄne it as estimating the counterfactual quantity

P
(

A
(t1)

E(t1)

(
E(t1) = (U, V )

)

︸ ︷︷ ︸

What would have
happened had we probed

in (U, V ) instead?

| A(t1)

E(t1)(E
(t1) = (I, J)), G(t0)

)

≡ P
(

Y
(t1)
UV | Y (t1)

IJ

)

.

(2)

Note that E(t1) is an individual quantity, i.e., for an observation G(t0) it can only take one value, thus
Equation (2) is, without further assumptions, a strict counterfactual query (see [5] for a precise deĄnition).

Equation (2)Šs query is of interest to awide range of applications, for instance (wewill present experiments
in Section 6): (i) determiningwhatwould have been the outcome of recommending productV to userU , given
user I was recommended product J and bought (A(t1)

E(t1)(E
(t1) = (I, J)) = 1) or didnŠt buy (A(t1)

E(t1)(E
(t1) =

(I, J)) = 0) it; (ii) knowledge base completion, where we manually check the relation between a pair of
entities (I, J) in a knowledge base and then use this experiment to predict what would have happened had
we manually checked the relation between entities (U, V ); (iii) in reĄning estimations of the covariance
matrix between random variables from experiments, i.e., if A(t1)

E(t1)(E
(t1) = (I, J)) ≈ cov(I, J) is the empirical

covariance between two random variables I and J , and our policy µ(G(t0)) decides to collect more Ąeld
data to improve the covariance estimates between I and J , Equation (2) allows us to predict what would
have been the improved covariance estimate of cov(U, V ) had the policy chosen (U, V ) as the pair of random
variables.

We highlight that our counterfactual query is with respect to the probing policy µ(G(t0)), i.e., we require
interventional data collected under µ(G(t0)) and can only answer counterfactual queries about pairs sampled
from µ(G(t0)). A possible interesting extension of this work is showing how to merge data from different
policies to answer queries about one of them. Finally, we note that counterfactual questions such as Şwhat
would have happened had we not intervened?Ť are also out of the scope of this work. These questions involve
a different causal quantity (A(t1)

E(t1) | A(t1)

E(t1)(E
(t1) = (I, J))) than the one in Equation (2) and would need

either further causal assumptions or different data. Moreover, we can see this query as one about a different
probing policy, i.e., where edgeswould have been generated according to the graphŠs natural evolution process.

Learning from multiple probes. For ease of exposition, we have so far referred to an idealized task where
we learn from a single probe Y (t1)

IJ at time t1 Ůlearning predictions from a single intervention would result
in high variance estimates. To consider a more practical solution, we Ąrst deĄne the random variable of the
outcome of a probe at time tM ≥ t1 in (I(tM ), J (tM )) ∼ µ(G(t0)) as

Y
(tM )

I(tM )J(tM ) := A
(tM )

E(tM )

(

E(tM ) = (I(tM ), J (tM ))
)

| Y (t1)

I(t1)J(t1) , . . . , Y
(tM−1)

I
(tM−1)

J
(tM−1) , G

(t0), (3)

where each probe outcome Y
(tm)

I(tm)J(tm) , 1 ≤ m ≤ M is deĄned recursively in the same way. Now, we are
ready to deĄne the random variable of a sequence of M probes in G(t0) at times t1, . . . , tM as

Y(M) :=
(

Y
(tm)

I(tm)J(tm)

)M

m=1
. (4)
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Then, we are Ąnally left with the generalized task of estimating the counterfactual quantity

P
(

A
(t1)

E(t1)

(
E(t1) = (U, V )

)

︸ ︷︷ ︸

What would have
happened had we probed
in (U, V ) at time t1 instead?

|
M∧

m=1

A
(tm)

E(tm)

(

E(tm) = (I(tm), J (tm))
)

, G(t0)
)

≡ P
(

Y
(t1)
UV | Y(M)

)

. (5)

Challenges. Estimating Equation (5) brings the following challenges:

1. The (causal) data generating process C of G(t0) is often unknown. Thus, there might have been unknown
probes prior to t0 and the (causal) evolution of the graph may be path-dependent (e.g., new links may
depend on existing ones [2, 19, 55, 58]).

2. Due to spillover [3, 13, 17, 34, 35, 48, 62, 72, 79] and carryover effects [42], subsequent probes might be
affected by previous ones. As such, multiple probes (Y(M)) cannot be treated as i.i.d. data.

3. Observing the outcome of a probe in (I(tm), J (tm)) might change our belief of what would have been the
outcome of a probe in (U, V ), i.e., probes (Y(M)) and our prediction (U, V ) cannot be treated as i.i.d. data.

Outline of contributions. In what follows we outline this workŠs contributions to tackle the above challenges.

A. We deĄne the general concept of causal lifting: A generalization of probabilistic lifting [57] to different
layers of PearlŠs Causal Hierarchy. These deĄnitions are of independent interest, not tied to link prediction.

B. We deĄne the causal link prediction learning task. We show that lifting in causal link prediction is essentially the
structural task of Ąnding symmetries in G(t0), which is more akin to Ąnding logical rules than the positional goal of
Ąnding nearby similar relations in G(t0). We then show why node embeddings are generally undesirable for these
tasks and argue that structural (permutation invariant or equivariant) pairwise embeddings Ůa special type of
joint node pair representationŮ present low learning bias and capture the correct causal structure from the task, as
opposed to existing node embedding methods (e.g., matrix factorization and GNNs).

C. Finally, we introduce three situations where our theoretical results can be leveraged: (i) to extrapolate
knowledge in knowledge bases, (ii) to learn to improve covariance matrix estimations with partially
collected data, and (iii) to make recommendations in recommender systems. Overall, results conĄrm
that invariant pairwise embedding methods consistently outperform node embedding ones in causal
link prediction tasks.

D. Contribution in the supplement: We present Ůto the best of our knowledgeŮ the Ąrst universal family of
Structural Causal Models (SCMs) for Ąnite graphs (Ąnite exchangeable two-dimensional arrays).

2 Existing Link Prediction Literature

Link prediction started with SpearmanŠs 1927 work but has more recently gained traction in different
applications, e.g., matrix denoising [10], social networks [1], recommender systems [50] and many oth-
ers [26]. In each problem domain, link prediction has been either treated as an associational (layer 1 of
PearlŠs Causal Hierarchy) or as a causal task (layer 2 and 3 of PearlŠs Causal Hierarchy). In what follows,
we review each of these perspectives, highlighting relevant relatedworkswhile contrastingwith our approach.

Associational link prediction methods. Since the Ąrst half of the last century, link prediction as an as-
sociational task has been studied through what can be formally described as a self-supervised learning task,
where a masking process (a.k.a., noise process) hides edges as nonedges (and in some applications also
vice-versa). The goal is to predict the true edges and nonedges in the adjacency matrix. By deĄning the task
as self-supervised learning, Appendix B shows how existing methods either implicitly or explicitly assume
the masking process is known in training.

To illustrate our self-supervised learning perspective, let us consider matrix factorization on the observed
graph G(t0). More speciĄcally, we let our loss function be given by the mean squared error ∥a(t0) −UV T ∥22 =
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∑

(i,j)∈V 2(a
(t0)
ij − Ui·V

T
j· )

2 with U ∈ Rn×d and V ∈ Rn×d as our learned low-rank matrices. In this scenario,
as further detailed in Appendix B, we assume a uniform mask over G(t0)Šs node pairs, while our link
reconstruction model is given by a normal distribution around its latent factorsŠ dot product, i.e., A(t0)

(I,J) |
a
(t0)
−(I,J) ∼ N (UI·V

T
J· , 1). Note that in this case, apart from the usual causal restrictions imposed by latent

factor models, we also have an observational limitation: At test time we have to sample node pairs uniformly
at randomŮan unlikely setting in some applications.

State-of-the-art tensor factorization methods used in knowledge base completion [61, 69, 70] force the
embeddings to encode properties of logical rules, such as symmetry/antisymmetry and composition. More
recently, Graph Neural Networks (GNNs) [64] have emerged as an alternative way to perform link prediction.
Unlike matrix factorization, a GNN embedding is not sensitive to permutations of the node identiĄers (e.g.,
user id in the system). Matrix factorization and GNN node embeddings are the modern workhorses of link
prediction. These node embeddings encode associations between graph topology (edges of the graph) as well
as node and edge attributes, but they are designed to handle observational instead of interventional data. The
framing of link prediction as a self-supervised learning task helps us understand why even state-of-the-art
link prediction approaches are associational and unable to predict the query in Equation (5).

There are alternative associational approaches, often referred to as model-based methods, that Ąt a random
graph model to G(t0) in different ways, e.g., considering hierarchical structures [14] or stochastic block
models [33, 34]. These models can output the probability of any link in the observed graph. Note, however,
that these methods are by deĄnition associational, i.e., they directly compute a (associational) probability
distribution from which G(t0) was generated. As such, they do not provide much Ćexibility for causal
extensions outside from the process deĄned by the model.

Existing causal link prediction methods. Mechanistic (network creation) methods: Link prediction meth-
ods have also been derived from models of network formation [46]. For instance, the common neighbors
mechanism [51] assumes links are more likely created by nodes that have many common neighbors. The vast
majority of other mechanisms such as the Jaccard, the Adamic-Adar [1], the Katz [40], and the preferential
attachment [51] indices are all variations of the common neighbors method. All of such methods assume a
Ąxed network formation process and predict links based on it. In the context of this work such methods can
be interpreted as deĄning the interventional policy µ(G(t0)). The effect of interventions is only captured by
these methods if the network formation process follows their assumptions. Otherwise, one needs to estimate
a methodŠs effects by extensively performing experiments or, as we propose here, learning to estimate the
effects from a few experiments (probes) using the method as our policy µ(G(t0)).

Inner factors literature. Recent works have proposed to merge matrix factorization and interventional data
in recommender systems [6, 75, 77]. In all of such works, both the interventional policy and the outcomes
of interventions are given by inner (latent) factor models. What is missing in these methods is a causal
structure where the link creation reacts to the current state of the graph (path-dependent models). It is
understandable that these existing works choose not to model such co-dependence since it is unclear how to
encode it in a causal model and still have a practical method. Later in this work we show how, under mild
assumptions, one can develop a practical causal predictor that is robust to this co-evolution. More recently,
the authors of [83] proposed to learn the essential factors determining the existence of links by asking the
question Şwould the link still exist had the graph structure been different?Ť. Note how this is essentially a
different causal question than the one we approach in this work (see Equation (2)).

Recommendations as treatments literature. Estimating the effect of recommendations, an application of Equa-
tion (1), has recently gained traction in the literature denoted as recommendations as treatments [39]. Under
this framework, we can see µ(G(t0)) as a (probabilistic) recommendation algorithm and the expected value
of Equation (1) as its effectiveness, i.e., a higher expected value corresponds to links with higher probability
of recommendation being formed. Solutions to estimate such effectiveness often comes in two Ćavors: Online
and off-line A/B testing. Online A/B testing, or simply A/B testing, is the most widely usedmethod to evaluate
recommender systems in industry. In this context, A/B testing can be seen as Randomized Controlled Trials
(RCTs), where one part of the population (graph) is probed according to µ(G(t0)) while the another is not,
i.e., it is the control group. Unfortunately, this method is often expensive and time consuming, while possibly
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exposing the population to unwanted risks. To avoid running into these problems, methods under the
umbrella of off-line A/B testing propose to evaluate µ(G(t0)) based on past user experience data, i.e., without
running new experiments. The essence of these methods lies in the use of inverse propensity scores [39],
which re-weights the importance of previous interventions according to the policy used at the time and a
new evaluated policy. Although such methods do not explicitly encode causal modeling assumptions, they
implicitly make strong causal assumptions: Both the graph evolution process and the effect of probing into
it are time-homogeneous, i.e., the probability of a link being created, under a probe or not, is the same at
any point in time. Furthermore, all previous probes are observed, i.e., we have all past interventional and
observational data. In this work, we consider a more general scenario where we only have past observational
data and no assumptions about time homogeneity in the past.

Causal effect estimation on networks. Another relevant set of works aims at estimating the difference in potential
outcomes of two treatments given in a network Ůalso known as causal effect estimation. In this scenario, a
given treatment might not just affect the treated individual, but also their neighbors. Recent work in [38]
formulates the problem as a multi-task one, which is then solved by a GNN-based framework. The authors
of [28] propose to use the networkŠs structure to control confounding bias and learn individual treatment
effects. More recently, the work of [47] focuses on hypergraphs, in order to represent group interactions, and
learns how to control for confounders and model higher-order interactions to estimate treatmentsŠ effects.
All of such works fundamentally differ from ours for a main reason: They do not intervene in the graph
structure, but rather on the nodes of a given graph. To the best of our knowledge, [65] is the only method
that investigates interventions on the graph structure, but, differently to our approach, it aims to study the
effect of changes resulting from creating or damaging network ties, rather than probing into relations.

3 Causal Lifting

We commence our discussion by presenting one of our key contributions: Causal lifting, a general concept
of independent interest beyond link prediction. Causal lifting is a causal extension to the associational
deĄnition of lifting in probabilistic inference [57, 73]. Here, instead of deĄning symmetries in the associational
distribution, we deĄne them in different layers of PearlŠs Causal Hierarchy (associational, interventional and
counterfactual). Let us Ąrst recall the classical deĄnition of lifting in associational distributions.

DeĄnition 1 (Associational lifting [57, 73]). Let X be our random variable of interest and G a group where · is
the left action of G onto supp(X) (i.e., the function · : G× supp(X) → supp(X) satisĄes the following axioms: (i)
e · x = x, where e ∈ G is the identity element; (ii) g · (h · x) = (gh) · x, where g, h ∈ G). We say that G lifts the
associational distribution of X if, ∀x ∈ supp(X), ∀g ∈ G,

P
(

X = x
)

= P
(

X = g · x
)

. (6)

Now, since an intervention deĄnes an interventional distribution (see Appendix A), we can directly
extend DeĄnition 1 to interventional distributions in DeĄnition 2.

DeĄnition 2 (Interventional lifting). Consider X and G as in DeĄnition 1, while Y is a target random variable of
interest. We say that G lifts the interventional distribution of X and Y if, ∀x ∈ supp(X), ∀g ∈ G,

P
(

Y (X = x)
)

= P
(

Y (X = g · x)
)

. (7)

Finally, following DeĄnition 2 it is also straightforward to extend lifting to counterfactual distributions as
we do in DeĄnition 3 below.

DeĄnition 3 (Counterfactual lifting). ConsiderX,Y and G as in DeĄnition 2. We say that G lifts the counterfactual
distribution of X and Y if, ∀x, x′ ∈ supp(X), ∀g ∈ G,

P
(

Y (X = x) | X = x′
)

= P
(

Y (X = g · x) | X = x′
)

. (8)
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DeĄnition 1 is used in probabilistic inference algorithms [57, 73] to avoid unnecessary computations: One
can replace the need to estimate |G | quantities in the marginal probability

∑

g∈G
P
(
X = g · x

)
by estimating

a single quantity P
(
X = x

)
. While in probabilistic inference we are interested in efficiently computing

associational distributions, in causal inference our main challenge is to identify a causal quantity: Without
causal lifting, our data may not be enough to answer the causal query. Next, we show how interventional
lifting can play a key role in identifying causal link prediction tasks.

4 Interventional Lifting for Link Prediction

Our goal in this section is to show how interventional lifting can serve as an identiĄcation strategy and
experimental design tool for the causal link prediction task (Equation (5)). To provide the reader with the
basic tools used in our solution, in Section 4.1 we introduce a universal family of structural causal models
(SCMs), and in Section 4.2 we describe the needed invariance assumptions in the SCMmechanisms that allow
us to apply interventional lifting for link prediction. Then, Section 4.3 presents our main result (Theorem 2)
in the context of our idealized single probe task (Equation (2)) with (I, J) and (U, V ) as isomorphic node
pairs. Finally, in Sections 4.4 and 4.5 we show extra causal mechanism assumptions that are sufficient to learn
the general task of Equation (5) with multiple probes.

4.1 A universal family of causal models for graphs

Our work considers an underlying causal model that generates edges (together with edge and node
attributes) and nonedges sequentially, i.e. at time step t ∈ N it decides whether an speciĄc pair of nodes
(i, j) has an edge (and its value) or not (node attributes are recorded in the pairs (i, i), i ∈ V (t0)). The causal
mechanism deciding which pair of nodes will be assigned an edge or a nonedge at time t is denoted by f

(t)
E

while the mechanism deciding whether it is an edge vs. nonedge is given by f
(t)
X

. Note that such a model can
generate attributed graphs by outputting the edge attribute with f

(t)
X

. Generally speaking, both mechanisms
take as input the sequence of all previously generated edges and nonedges, i.e., a path-dependent causal
model execution. At observation time (t0) the (observed) node identiĄers are uniformly permuted from the
hidden true identiĄers and, if the graph is undirected, a(t0) is symmetrized. In Figure 2 we can see a running
example of such an SCM generating a graph of four nodes.

Path-dependency. Note that since the mechanisms f
(t)
E

, f
(t)
X

generating (non)edges at any time t take
as input all previously generated variables, a causal model C in this class can be path-dependent. We say that
C can be path-dependent since we are not specifying its mechanisms, thus it might be that f (t)

E
, f

(t)
X

ignore
the input and use, e.g., a Ąxed set of inner factors. This set of inner factors might also be dependent on t,
which implies that C contains both path-dependent and (temporal) inner factor models. As we will see in
Section 4.2, our mechanism assumptions are not implying independence of previously generated variables,
thus the class of causal models we Ąnally consider remains able to represent both path-dependent and
(temporal) inner factor models.

The set of SCMs C denotes the class of all SCMs taking this form, with any mechanisms (f (t)
X

, f
(t)
E

) and
exogenous variable distributions. DeĄnitions 13 and 14 in Appendix C introduce a formal and complete
description of the above family of SCMs. We now show that C is a universal family of exchangeable graph
models, that is, any exchangeable distribution over (countable) graphs can be obtained by some SCM C ∈ C.

Theorem 1 (Universality of our graph SCM). Let C be the family of SCMs as deĄned in DeĄnitions 13 and 14 in
Appendix C and A be the domain of the entries of the adjacency matrices of the graphs generated by it. Then,

i. For every SCM C ∈ C at an arbitrary observation time t0 ≥ 0, C always generates observed graphs G(t0) where
P (A(t0) = a) = P (A(t0) = a′) for any two isomorphic graphs with adjacencies a, a′ ∈ A;

ii. For all Ąnite (jointly) exchangeable graph distributions P (A(t0)), if A is a countable set there exists an SCM C ∈ C
and an observation time t0 ≥ 0 that induces it.

8



a(6)

E
(1) =

(1, 1)

E
(2) =

(1, 2)

E
(3) =

(3, 1)

E
(4) =

(1, 4)

E
(5) =

(3, 2)

E
(6) =

(2, 4)

X
(1) = 0 X

(2) = 0 X
(3) = 1 X

(4) = 1 X
(5) = 1 X

(6) = 1

1 2

3 4

G(6)

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

a(6)

Possible hidden
causal dependencies !△

Observation time t0 = 6
Permutation π = (3, 2, 4, 1)
Undirected = True

Figure 2: We show the execution of an SCM as described in Appendix C where, together with the observation parameters
t0 = 6 and π = (3, 2, 4, 1), generate the observed graph G(6) with adjacency matrix a(6). We color the entries in a(6)

according to the corresponding variables in the unobserved SCM that generated them. Gray nodes represent observed
random variables, while white nodes represent unobserved ones. Note that for simplicity of exposition we omit the
exogenous variables in the causal model.

4.2 Sufficient mechanism invariances for interventional lifting in link prediction

After introducing a universal family of causal graph models C in Section 4.1, we now restrict this family
with four causal modeling assumptions that will allow us to apply interventional lifting in our causal link pre-
diction task. We highlight how these are not causal independence (structural) assumptions as it is commonly
assumed in causal identiĄcation procedures. Instead, we deĄne four mechanism invariances present in the
underlying SCM of the task. The mechanism invariance assumptions are a key feature of our work since,
by avoiding causal independence assumptions, our models consider possible path dependencies. These
invariances are presented informally in the main text; we refer readers to Appendix D for a corresponding
formal mathematical description.

Assumption 1 (Time gap ignorability (informal)). We say that our SCM satisĄes time gap ignorability if the

mechanism f
(t1)
X

is invariant to the SCM intermediate states between the time the intervention probe is performed t0
and the instant before we see its effect in t1.

Assumption 2 (Time exchangeability (informal)). We say that our SCM satisĄes time exchangeability if the

mechanism f
(t1)
X

is invariant to the order in which edges and nonedges have been generated.

Assumption 3 (Non-link ignorability (informal)). We say that our SCM satisĄes non-link ignorability if the

mechanism f
(t1)
X

is invariant to which pairs of nodes were generated as non-links or were not generated at all at time t0.

Assumption 4 (IdentiĄer exchangeability (informal)). We say that our SCM satisĄes identiĄer exchangeability if

the mechanism f
(t1)
X

is invariant to permutations of the node identiĄers.

We now discuss how the above mechanism invariance assumptions induce a simpliĄed causal DAG. First,
note that t1 ≥ t0 + 1, which means that the observation time (t0) and the time we see the effect of the probe
(t1) are not necessarily consecutive (in the model execution time). In theory, links and non-links generated
between the observation of the graph and the probe could inĆuence the outcome of the probe. Since, by
having only access to G(t0), we cannot account for the graph evolution in the interval (t0, t1), we need time
gap ignorability (Assumption 1) Ůwhich assumes that the outcome of the probe is invariant to whatever

9



happened between t0 and the moment before t1. This assumption is pervasive in causal inference since it is
not possible to identify causal queries without observing the true distribution of outcomes [9].

Time exchangeability (Assumption 2) is the assumption that the order in which links and non-links have
been created until time t0 does not affect the probe. This is necessary because we only observe a static graph
G(t0) at time t0. Note that if the order is an important aspect of the task, Assumption 2 would still hold if we
represent G(t0) as a temporal graph (with time stamps as edge attributes in the static graph G(t0), see [25]).

Assumption 3 is important since at t0 we are not aware of whether an observed non-link is indeed a
non-link generated by the causal model or a node pair not-yet-executed, hence we need the outcome of the
probe to be invariant to this difference. By assuming non-link ignorability (Assumption 3), we do not need
to distinguish not-yet-executed from non-links. For instance, in recommender systems Assumption 3 makes
the simplifying assumption that new purchases are causally inĆuenced by past purchases, not by what one
has been exposed but chose not to buy.

It is important to note how Assumption 4 is not equivalent to C being an exchangeable SCM (Theorem 1
i.). The mechanism f

(t1)
X

can use the node identiĄers as input and because they are shuffled by π the observed
graph is Ąnite exchangeable regardless of f (t1)

X
or any of its mechanisms. Thus, Assumption 4 guarantees

that not only the observational distribution is Ąnite exchangeable, but also that its graph generating process
also is exchangeable to node ids (at time t1). This assumption is a reasonable one, but if we believe identiĄers
are relevant to the causal model mechanisms we should use them as node features, and then Assumption 4 still holds.

Finally, we discuss the concept of i.i.d. exogenous variables between node pairs in an SCM C ∈ C.
Independent and identical exogenous variables are central to identify our counterfactual query. The exogenous
variables can be interpreted as the unknown context of a node pair. Then, the i.i.d. assumption between two
node pairs holds if we believe they belong to different, non-interfering, but identical contexts. For instance, in
a video streaming platform a pair containing a person and a movie and another isomorphic pair containing
both a person and a movie from a different geographic location are likely to have both independent and
identical contexts. Later, we will assume this for subsets of node pairs, i.e., we never require that this is true
for every node pair in G(t0).

4.3 Causal link prediction with single probe lifting

Now we are ready to describe how interventional lifting can allow us to answer our counterfactual
query of Equation (2). We say that two node pairs (i, j), (u, v) from G(t0) are isomorphic if there exists a
permutation π ∈ Aut(G(t0)) in the automorphism group of G(t0) such that (u, v) = π · (i, j), i.e., (i, j) and
(u, v) are structurally indistinguishable in G(t0). Having this notion in mind, under certain conditions we
will show we can obtain the interventional lifting (DeĄnition 2)

P
(

A
(t1)

E(t1)

(

E(t1) = (I, J)
)

| G(t0)
)

= P
(

A
(t1)

E(t1)

(

E(t1) = π · (I, J)
)

| G(t0)
)

, ∀π ∈ Aut(G(t0)). (9)

In words, the above equation states that node pairs isomorphic in G(t0) (i.e., pairs indistinguishable without
node ids) must have the same distribution of probe outcomes. Intuitively, this means that under certain
invariance conditions on the causal mechanisms, the observed graph G(t0) is sufficiently expressive of the
causal link formation process. In fact, as we state in Theorem 2, these conditions are precisely the ones
discussed in Section 4.2. Theorem 2 shows that if (u, v) is in (i, j)Šs orbit inG(t0), under the causal mechanism
invariance conditions from Assumptions 1 to 4 and identical exogenous variables, the probe outcome Y (t1)

ij

has the same distribution as the probe outcome Y
(t1)
uv (conditioned on G(t0)). That is, the invariances in

causal mechanisms coupled with identical exogenous variables ensure interventional lifting, i.e., identical
distributions in the orbit. The lifting is better observed in the equivalent causal DAG shown in Figure 3. We
then leverage i.i.d. exogenous variables to ensure independence between probes in (i, j) and in (u, v) to then
build an estimator in Corollary 1.

Theorem 2 (Invariances for interventional lifting in link prediction). Let C be the family of SCMs as deĄned
in DeĄnitions 13 and 14 in Appendix C and A be the domain of the entries of the adjacency matrices of the graphs
generated by it. Then,

i. if C ∈ C has the mechanism invariances described in Assumptions 1 to 4 and exogenous variable independence

at time t0 + 1, i.e., U
(t0+1)
X

⊥⊥ (U
(t)
X
)t0t=1 | (I, J) in DeĄnition 13. Then, the effect of an intervention in C can
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(K,L)(I, J)

For all (K,L) ∈ O(t0)
IJ \{(I, J)}:

W
O

(t0)

IJ

U(K,L)U(I,J) Y
(t1)
KLY

(t1)
IJ

Figure 3: (Theorem 2(i)) Causal DAG of an equivalent data generating process of a probe in (i, j) (left) and in its orbit
(right). As usual, we represent observed and unobserved variables with gray and white nodes respectively.

be equivalently described by Figure 3Šs causal DAG, where (I, J) ∼ µ(G(t0)) is the node pair we intervene in,

O(t0)
IJ := {π · (I, J) : π ∈ Aut(G(t0))} is the set of all structurally indistinguishable pairs to (I, J) in G(t0), and

W
O

(t0)

IJ

is a latent variable tied to O(t0)
IJ (the orbit of (I, J) in G(t0)).

ii. Under the conditions in (i) and assuming the extra symmetry P (U(I,J)) = P (Uπ·(I,J)) in Figure 3Šs DAG, we have

the following interventional lifting result (DeĄnition 2), where ∀π ∈ Aut(G(t0))

P
(

Y
(t1)
IJ

)

= P
(

A
(t1)

E(t1)

(

E(t1) = (I, J)
)

| G(t0)
)

= P
(

A
(t1)

E(t1)

(

E(t1) = π · (I, J)
)

| G(t0)
)

= P
(

Y
(t1)
π·(I,J)

)

.

In summary, Theorem 2 outlines a procedure to derive causal modeling conditions in which a probe
in (i, j) can be used as an unbiased estimate of Equation (2) on a subset of pairs: (i, j)Šs orbit. This is an
interventional lifting for link prediction (see Equation (9)). Then, Ąnally, if the exogenous variables of probes
in the same orbit U(i,j) and U(u,v) are i.i.d., we can introduce the following result.

Corollary 1 (Symmetries for interventional learning). Under conditions of Theorem 2, let (i, j) ∈ V (t0) × V (t0)

be an arbitrary node pair and (u, v) ∈ O(t0)
ij (i.e., (u, v) is structurally indistinguishable from (i, j) in G(t0)). Further,

assume U(i,j) and U(u,v) are i.i.d.. Then, by Theorem 2(ii)Šs DAG in Figure 3

P (Y (t1)
uv | Y (t1)

ij ) =

∫

W
O

(t0)
ij

P (Y (t1)
uv | W

O
(t0)
ij

)P (W
O

(t0)
ij

| Y (t1)
ij ) dW

O
(t0)
ij

. (10)

If P (W
O

(t0)
ij

| Y (t1)
ij ) has a single mode and low variance, the above equation can be approximated by

P (Y (t1)
uv | Y (t1)

ij ) ≈ P (Y (t1)
uv | W⋆

O
(t0)
ij

),

whereW⋆

O
(t0)
ij

= argmax
W

O
(t0)
ij

P (W
O

(t0)
ij

| Y (t1)
ij ) is a Maximum A Posteriori (MAP) estimate.

Theorem 2 together with Corollary 1 provide an identiĄcation and estimation procedure for causal link
prediction. In Figure 3 we depict how the hidden parameters associated with the orbit O(t0)

ij of a node pair
(i, j) in G(t0) d-separates the probe from the generating process of G(t0) . As such, we can see Equation (10)
as a sequence of abduction, action, and prediction (Theorem 7.1.7 in Pearl [53]), using structural information
to compose the admissible set of variables in the task. Note, however, that such a procedure learns from a
single probe in an isomorphic node pair. Next, we will extend our causal assumptions to allow us to learn
from multiple probes in different orbits.
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4.4 Lifting in causal link prediction with multiple probes

Corollary 1 shows how a probe in (i, j) can serve as unbiased estimate of the counterfactual query
(Equation (2)) on a pair (u, v) in (i, j)Šs orbit. A single training example (probe), however, is not an ideal
learning setting: We have the outcome of a probe in a single pair and we can answer counterfactual queries
only about its orbit. Now, we show how to extend our causal assumptions to learn to answer counterfactual
queries about any pair using multiple probes as training data (Equation (5)).

We start with the condition that allows us to use multiple probes to estimate the expected value in, for
instance, Corollary 1: Non-interfering probes (c.f. Assumption 5, formalized in Appendix D). In summary,
non-interference in probes means that the outcome of other probes does not interfere in each othersŠ results.
This assumption is widely used in causal inference for graph data, see for instance the work of Eckles et
al. [17]. In Assumption 5, however, we provide Ůto the best of our knowledgeŮ the Ąrst formalization of
non-interference with respect to the the underlying causal mechanisms of the task. Note that non-interfering
probes is an invariance condition depending on both the causal mechanisms and on the pairs (I(tm), J (tm))Šs
we probe at each time tm. Regarding the mechanisms, it needs to be taken as a causal modeling assumption.
As of how to choose probes that donŠt interfere with each other, we can treat it as an experimental design
choice. For instance, non-interference tends to be satisĄed with higher probability if the probes are performed
in pairs far away in the graph [44]. Finally, we refer the reader to [17] for a thorough analysis of experimental
design choices that result in non-interfering probes.

Assumption 5 (Non-interfering probes (informal)). We say that a sequence of probes inM pairs
(
(I(tm), J (tm))

)M

m=1

is non-interfering if every mechanism f
(tm)
X

: 1 < m ≤ M is invariant to probes performed between t1 and tm − 1.

Now, we can extend Corollary 1 to use Y(M), where under non-interference, multiple probes in the orbit
of (i, j) can be used to estimate the counterfactual query about any pair (u, v) also in (i, j)Šs orbit.

Corollary 2 (Symmetries for interventional learning with multiple non-interfering interventions). Under the

same conditions as Theorem 2(ii), let Y(M) := (Y
(tm)

i(tm)j(tm))
M
m=1 be a sequence of outcomes of probes in node pairs

in the same orbit (O(t0)

i(1)j(1)
= O(t0)

i(2)j(2)
= . . . = O(t0)

i(M)j(M)). Then, for (u, v) ∈ O(t0)

i(1)j(1)
, if the exogenous variables

{U(i(tm),j(tm)) : m ∈ [M ]} ∪ {U(u,v)} are i.i.d. and Y(M) is a sequence of non-interfering interventions, then

P (Y (t1)
uv | Y(M)) =

∫

W
O

(t0)
ij

P (Y (t1)
uv | W

O
(t0)
ij

)P (W
O

(t0)
ij

| Y(M)) dW
O

(t0)
ij

. (11)

If W
O

(t0)
ij

| Y(M) has low variance, the above equation can be well-approximated by

P (Y (t1)
uv | Y(M)) ≈ P (Y (t1)

uv | W⋆

O
(t0)
ij

),

whereW⋆

O
(t0)
ij

= argmax
W

O
(t0)
ij

P (W
O

(t0)
ij

)
∏M

m=1 P (Y
(t1)

i(m)j(m) | WO
(t0)
ij

) is a MAP estimate.

Although we can now use multiple probes to estimate our counterfactual query, we are still restricted
to probing in the orbit O(t0)

i(1)j(1)
of the Ąrst queried pair (i(1), j(1)). Such a setting tends to be impractical

since i) both random and real-world graphs tend to be nearly asymmetric (most orbits are of size one with
high probability) [18, 84] and ii) computing the orbit of a pair of nodes is as hard as solving the graph
isomorphism problem [24]. Therefore, we Ąnally consider a more practical solution, where we sample pairs
according to an arbitrary policy µ(G(t0)), probe into their relationships and learn a model capable of predicting
our counterfactual query (Equation (5)) for any (U, V ) ∼ µ(G(t0)).

Such a general solution relies on two extra assumptions: i) exogenous variables from the pairs sampled
during training, {U(i(tm),j(tm))}Mm=1, and the tested pair, U(u,v), are i.i.d. and ii) the parameters of the probesŠ
distributions are shared across all orbits. In particular, for ii) we consider a shared set of parameters
WΓ⋆ , which parameterizes a representation function Γ⋆. Note that, in order to express all possible probe
distributions, the set of parameters WΓ⋆ must assign the same value to (i, j) and (u, v) if and only if (u, v) is
in (i, j)Šs orbit. We refer to such as a most-expressive representation, deĄned next.
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Γ⋆
(
I, J, A(t0);WΓ⋆

) (K,L)(I, J)

For all (K,L) ∈ O(t0)
IJ \{(I, J)}:

U(K,L)U(I,J) Y
(t1)
KLY

(t1)
IJ

Figure 4: The causal diagram of the data generating process of a probe in (i, j) (left) and in its orbit (right) that allows us
to learn from interventions in a supervised learning fashion (see Equation (13) and Proposition 1).

DeĄnition 4 (Most-expressive pairwise representation). A most-expressive pairwise representation is given by

the functional Γ⋆ : V (t0) × V (t0) × An(t0)×n(t0) × Rp → Rd, parameterized by WΓ⋆ ∈ Rp, p ≥ 1, where

i. for any parameter WΓ⋆ , any input graph a(t0) ∈ An(t0)×n(t0)

and any pair (i, j) ∈ V (t0) × V (t0), we have that

Γ⋆(i, j, A(t0);WΓ⋆) = Γ⋆(k, l, A(t0);WΓ⋆), ∀ (k, l) ∈ O(t0)
i,j , and

ii. ∃ W′
Γ⋆ ∈ Rp such that for any input graph a(t0) ∈ An(t0)×n(t0)

and any pair (i, j) ∈ V (t0) × V (t0), we have that

Γ⋆(i, j, A(t0);W′
Γ⋆) ̸= Γ⋆(r, s, A(t0);W′

Γ⋆), ∀ (r, s) ∈ (V (t0) × V (t0)) \ O(t0)
i,j .

Leveraging DeĄnition 4, we depict this modiĄcation in the SCM in Figure 4. Now, we are ready to state
our main learning result and summarize its practical implications in experimental design and assumptions.

Proposition 1. Under conditions of Theorem 2(ii), ifY(M) is a sequence of outcomes of non-interfering interventions
(Assumption 5), the exogenous variables {U(u,v)}∪{U(i(tm),j(tm)) : 1 ≤ m ≤ M} are i.i.d., andΓ⋆(·, ·, ·;WΓ⋆) : V (t0)×
V (t0) × An(t0)×n(t0) → Rd be a most-expressive pairwise representation function (cf. DeĄnition 4), we have that the
causal DAG in Figure 3 can be equivalently described by the causal DAG in Figure 4, which by Corollary 1 yields

P (Y (t1)
uv | Y(M)) =

∫

WΓ⋆

P (Y (t1)
uv | WΓ⋆)P (WΓ⋆ | Y(M)) dWΓ⋆ . (12)

Note that in practice we will approximate the above equation by

P (Y (t1)
uv | Y(M)) ≈ P (Y (t1)

uv | W⋆
Γ⋆),

whereW⋆
Γ⋆ = argmax

WΓ⋆
P (WΓ⋆)

∏M
m=1 P (Y

(t1)

i(m)j(m) | WΓ⋆) is a MAP estimate and the prior P (WΓ⋆) is a
hyperparameter of our model.
Proposition 1 in practice. Let us now summarize the practical conditions in which the estimator presented
in Proposition 1 (leveraged in our Ąnal solution) can be used. We can break down the assumptions into three
sets: i) causal model and mechanism invariances (Appendix C, Assumptions 1 to 4); ii) parameter-sharing in
orbit representation (DeĄnition 4); and iii) non-interference and i.i.d. exogenous variables (Assumption 5).

The causal modeling assumptions (i) are world models that we must believe to be true so we can identify
the causal quantities in the task at hand Ůas generally needed in causal inference settings [53]. Regarding
(ii), the assumption is related to the intuition we maintained throughout the paper: Structure induces link
formation. That is, in Proposition 1 we are assuming that two isomorphic node pairs have the same probe
distribution and that their orbit representations are given by a common set of parameters. In theory, since
Γ⋆ is most-expressive, we can assign arbitrary and unique representations to each orbit and thus they are
not necessarily related. However, in practice the parameter-sharing will induce similar predictions to node
pairs that have similar, but not necessarily identical, structure. Therefore, generally speaking, under the
assumption that structure can predict the (interventional) formation of links, this assumption is justiĄed. One
way to test this in practice is to probe into node pairs with similar structure and (statistically) test whether the
observed probe distributions are the same. In Appendix F we do this for real-world recommender systems
data and conĄrm the hypothesis.
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Finally, we have the assumptions about non-interference and i.i.d. exogenous variables (iii). These are
assumptions may not hold in practice but, unlike (i,ii), they can be enforced by experimental design. Non-
interference can be induced by sampling training (interventional) data from distant (e.g., different clusters)
parts of the graph, as extensively discussed in Eckles et al. [17]. Non-interference is important for our
counterfactual query since it allows us to use multiple interventions as training data. Note that our query is
about t1 and we can only interfere sequentially. As for exogenous variables, we can Ąrst think of them as the
hidden, i.e., unobserved, contexts of each pair. Having this in mind, it is clear that independent contexts can
expected to hold by sampling training (interventional) data from distant parts of the graph. Lastly, having
identical context (exogenous) distributions is a challenge often arising in causal inference [39]. A common
way to accomplish it through experimental design is to stratify, i.e., train a model for each population stratum
expected to have similar context (exogenous) distributions, e.g. user demographics.

4.5 Causal lifting induces a supervised learning solution to causal link prediction

Proposition 1 describeswhen it is possible to estimate our general causal link prediction task (Equation (5))
with multiple probes in different orbits. Let us now leverage such result to present our Ąnal practical solution to
the task. We are interested in a supervised learning-based approach, where the examples are the probed pairs
(i(tm), j(tm)) with their observed outcomes (y(M)

m ) as their labels. We are also interested in graph embedding
models, i.e., our prediction of Equation (5) is given by ρ

(
Γ(U, V,A(t0);W⋆

Γ);W
⋆
ρ

)
, where Γ(U, V,A(t0);W⋆

Γ)

outputs a pairwise representation (embedding) of (U, V ) in G(t0) and ρ(·;Wρ) is a link function (e.g., a
downstream neural network) where the parameters W⋆

ρ,W
⋆
Γ are learned by solving

W⋆
ρ,W

⋆
Γ := argmin

Wρ,WΓ

1

M

M∑

m=1

L
(

y(M)
m , ρ

(
Γ(i(tm), j(tm), A(t0);WΓ);Wρ

))

, (13)

with (I(tm), J (tm)) ∼ µ(G(t0)), where µ(G(t0)) is an arbitrary distribution over node pairs, y(M)
m is the outcome

of probe (i(tm), j(tm)) at time tm and L a nonnegative loss function that optimizesW⋆
ρ,W

⋆
Γ towards the MLE

estimates of the task.
We can now see how our solution in Equation (13) is estimating W⋆

Γ according to Proposition 1 Ů
where we assume a non-informative prior over WΓ. We can also interpret ρ(·,W⋆

ρ) as our estimation of the

mechanism that takes Γ(I, J, A(t0);W⋆
Γ) and outputs A(t1)

IJ . Finally, we highlight that Equation (13) relies on
the assumptions from Proposition 1 to guarantee that ρ(·,W⋆

ρ) is an unbiased estimate of our counterfactual
query from Equation (5).

With the myriad of existing graph embedding methods, we are Ąnally left with the question: What are
good choices for Γ? As usual in machine learning, a choice of Γ is better than another if it achieves lower
error with the same (or less) number of samples. Next, we show how classical node embedding methods,
such as matrix factorization and graph neural networks, fail at either achieving low error or capturing the
correct causal structure of the task. As an alternative, we show how structural (joint) pairwise embeddings
can overcome the existing issues with node embeddings.

5 Graph Embeddings for Causal Link Prediction

We now examine our general identiĄcation result (Proposition 1) when using structural and (strictly)
positional node embeddingsŮtwowidely-used family of graph embedding predictorsŮand structural (joint)
pairwise embeddings. Node embedding methods build Γ by separately computing the node embeddings of
the two nodes in the represented pair. Then, they are merged by some binding function. For instance, if the
graph is undirected, such binding can be done using a Hadamard product of the two node embeddings. We
note that our following analysis is agnostic to the choice of the binding function. Therefore, without loss of
generality, in node embedding methods we will consider Γ as the concatenation of the two embeddings. The
(arbitrary) binding operation is then incorporated by the link function ρ.

Overall, we Ąnd that structural (joint) pairwise embeddings present lower bias than structural node
embeddings and, unlike strictly positional node embeddings, correctly represents the causal structure of
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the task. Having the causal model from Figure 4 in mind, it is natural to turn to structural representations as
a candidate graph embedding choice.

5.1 Structural (joint) pairwise embeddings are the ideal graph embeddings for causal
link prediction tasks

In Proposition 1, and its causal DAG in Figure 4, we see that the natural representation for our causal
link prediction task is a most-expressive pairwise representation as in DeĄnition 4, which for any input pair
(i, j) ∈ V (t0) × V (t0) it is a (possibly unique) representation of the orbit O(t0)

ij . That is, under the conditions
of Theorem 2(ii), most-expressive pairwise embeddings capture all (causal) invariances in the task. In
practice, however, one generally chooses a less expressive model family, since most-expressive graph models
necessarily incur high computational costs (since they must solve the graph isomorphism task [12]).

Composing structural node embeddings is a popular attempt to design structural representations of node
pairs [36]. However, as we later show in Section 5.2, even most-expressive structural node embeddings can
induce model bias in causal link prediction tasks. Thus, to distinguish structural representations acting jointly
on the node pair from structural representations acting separately on its nodes, we next deĄne structural
joint pairwise embeddings.

DeĄnition 5 (Structural joint pairwise embeddings). A structural joint pairwise embedding is given by the

functional Γ(joint) : V (t0) × V (t0) × An(t0)×n(t0) × Rp → Rd, parameterized by WΓ(joint) ∈ Rp, p ≥ 1, where for some

graph a(t0) ∈ An(t0)×n(t0)

and some parameterWΓ(joint) ∈ Rp the joint representation encodes more than the node orbits

of i ∈ V (t0) and j ∈ V (t0) in a(t0) separately, it encodes (i, j)Šs the joint orbitO(t0)
(i,j). More precisely, Γ(joint) is such that

i. for any parameterWΓ(joint) , any input graph a(t0) ∈ An(t0)×n(t0)

and any pair (i, j) ∈ V (t0) × V (t0), we have that

Γ(joint)(i, j, A(t0);WΓ(joint)) = Γ(joint)(k, l, A(t0);WΓ(joint)), ∀ (k, l) ∈ O(t0)
i,j , and

ii. ∃W′
Γ(joint) ∈ Rp, ∃a(t0) ∈ An(t0)×n(t0)

, and ∃(i, j) ∈ V (t0)×V (t0) such that it does not exist a function over the set of

node orbits (
⋃

v∈V {O
(t0)
v }) that can be equivalent to Γ(joint), that is, for all f :

⋃

v∈V {O
(t0)
v }×⋃

v∈V {O
(t0)
v } → Rd

we have that f(O(t0)
i ,O(t0)

j ) ̸= Γ(joint)(i, j, a;W′
Γ(joint)).

Note how the above deĄnition guarantees that for some input graph G(t0), its structural pairwise embed-
ding could not have been computed from the nodesŠ individual orbits. At Ąrst sight it might seem that only
most-expressive pairwise representations are encompassed by DeĄnition 5, but this is not true. For instance,
pairwise distances cannot be computed from node orbits (see [45]), thus any structural pairwise represen-
tation capturing distances would be a joint embedding as in DeĄnition 5. In practice, we have seen how
even for observational link prediction tasks (e.g., see the OGB [36] suite1) architectures under DeĄnition 5
consistently outperform others using only structural node representations. This serves as evidence that joint
properties, i.e., as in DeĄnition 5(ii), such as distances and common neighbors indeed play a central role in
link formation mechanisms. Generally speaking, the beneĄts enjoyed by estimators using DeĄnition 5 are
tied to how much structural properties govern the (interventional) link formation process. In Appendix F
we test this assumption in practice. Finally, for simplicity we will often refer to representations satisfying
DeĄnition 5 simply as structural pairwise embeddings.

5.2 Structural node embeddings are undesirable for causal link prediction due tomodel
bias

Unlike joint embeddings (DeĄnition 5), Graph Neural Networks (GNNs) [64] are the most common
permutation-invariant2 node embeddings (a.k.a. structural node embeddings), where each node gets its
own representation as described in DeĄnition 6. A structural node embedding outputs the same node

1https://ogb.stanford.edu/docs/linkprop/
2Invariant node embeddings can also be seen as equivariant embeddings, where the input of the model is the adjacency a and the

output is a matrix of embeddings H ∈ Rn×d. Then, equivariance is achieved by having the action of permutation π in the input π · a

resulting in permuting the rows of the output matrix of embeddings accordingly, i.e., π ·H .

15



representations to any two isomorphic nodes in G(t0). That is, if π ∈ Aut(G(t0)) is an automorphism of
G(t0), then for any i ∈ V (t0) we have that π · a(t0) = a(t0) and thus nodes i and π · i are assigned the same
representation in a(t0). Overall, structural node embeddings encompass not only GNNs but also classical
structural node roles [31].

DeĄnition 6 (Structural (permutation-invariant) node embeddings [68]). A structural node embedding is given

by the functional Z : V (t0) × An(t0)×n(t0) × Rp → Rd parameterized by WZ ∈ Rp, p ≥ 1, where Z(i, a(t0);WZ) =

Z(π · i, π · a(t0);WZ) ∀ π ∈ Sn(t0) , ∀ a(t0) ∈ An(t0)×n(t0)

, ∀ i ∈ V (t0).

We now highlight that DeĄnitions 4 and 6 are not equivalent. In fact, next we prove that the family of all
models satisfying DeĄnition 5 have lower bias than those satisfying DeĄnition 6. We Ąrst deĄne the bias of a
graph embedding solution to our problem below.

DeĄnition 7 (Graph embedding bias). We deĄne the bias of a representation Γ(·;WΓ) together with a link function
ρ(·;Wρ) for a Ąxed t0 as the expectation

BΓ,ρ := min
WΓ,Wρ

E

[

L
(

Y
(t1)
IJ , ρ

(
Γ(I, J, A(t0);WΓ);Wρ

))
]

taken over (I, J), Y
(t1)
IJ and A(t0) with L being a loss function as in Equation (13).

Now, we deĄne a theoretically-relevant class of graphs in link prediction tasks: Pairwise symmetric graphs
(c.f. DeĄnition 8). In essence, pairwise symmetric graphs are symmetric graphs that contain pairs of nodes
that are node-wise isomorphic. That is, there exist permutations that map nodes individually from one pair
to the other, but there are at least two of these pairs that are not isomorphic, i.e., it does not exist a single
permutation bringing one pair to the other. These graphs are important since structural node embeddings
will mistakenly assign symmetries to non-isomorphic pairs Ůand thus they fail to fulĄll DeĄnition 5(ii).
Instead, we need to consider pairwise symmetries by using structural pairwise embeddings as in DeĄnition 5.

DeĄnition 8 (Pairwise symmetric graphs). We say that a symmetric graph a is pairwise symmetric if ∃ π, π′ ∈
Aut(a), ∃ i, j, u, v ∈ V such that u = π · i, v = π′ · j, but ̸ ∃ π⋆ ∈ Aut(A(t0)) such that (u, v) = π⋆ · (i, j).

We are now Ąnally ready to state when structural pairwise embeddings have lower bias than structural
node embeddings in Theorem 3.

Theorem 3. LetBZ,ρ andBΓ(joint),ρ be the respective biases (c.f. DeĄnition 7) of models using structural node embeddings
(c.f. DeĄnition 6) and structural pairwise embeddings (c.f. DeĄnition 5) in our causal link prediction task as described
in Proposition 1. Then, we have that if supp(A(t0)) contains at least one pairwise symmetric graph (cf. DeĄnition 8),

BZ,ρ ≥ BΓ(joint),ρ = 0.

The core of Theorem 3Šs proof (c.f. Appendix E) relies on showing (i) how structural node embeddings
cannot achieve zero error in pairwise symmetric graphs and (ii) that an SCM satisfying the conditions of
Proposition 1 can generate pairwise symmetric graphs Ůthus, structural node embeddings cannot achieve
zero-bias in causal link prediction tasks. We highlight how this result encompasses even most-expressive
structural node embeddings, i.e., representations unique to each node orbit. A natural follow-up question is:
What about matrix factorization-based methods? Since they do not explicitly capture invariances, they do
not seem to suffer from the same higher-bias problems as structural node embeddings. Next, we show how
matrix factorization and other types of (strictly) positional node embeddings, unlike structural pairwise
embeddings, do not capture the correct causal structure of our task.

5.3 (Strictly) positional node embeddings (e.g., matrix factorization embeddings)
incorrectly encode the causal structure for interventional lifting

Beyond structural node embeddings, it is also natural to consider positional node embeddings as our
choice for building Γ. The formal and most general deĄnition of positional node embeddings is given in [68],
where the embeddings are samples from an equivariant distribution.
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DeĄnition 9 (Positional node embeddings [68]). The positional node embeddings (θi)n
(t0)

i=1 of a graph G(t0) with

adjacency A(t0) are deĄned as joint samples (θi)n
(t0)

i=1 | A(t0) = a(t0) ∼ P (θ | A(t0) = a(t0)) with supp(θi) ⊆ Rd and
P (π · θ | A(t0) = a(t0)) = P (θ | A(t0) = π · a(t0)).

Deterministic algorithms for matrix factorization may not appear to follow the above deĄnition, however,
once we consider that node identiĄers are arbitrarily assigned, even deterministic factorization methods
follow DeĄnition 9. We refer the reader to Srinivasan & Ribeiro [68] for a more comprehensive discussion.
At this point, the attentive reader has noted how the presented deĄnition of positional node embeddings is
quite general. As such, as previously noted, the embeddings possibly do not encode any graph symmetry,
e.g., assign the same representation to isomorphic pairs in the graph. However, the deĄnition is so general
that the opposite might also be true, i.e., structural node embeddings can be framed as positional in this
framework. Thus, to capture the positional node embeddings that do not encapsulate any symmetry, we
next deĄne strictly positional node embeddings.

DeĄnition 10 (Strictly positional node embeddings). Given a symmetric graph G(t0) (| Aut(G(t0)) |> 1),

we say that the positional node embeddings (θ
(pos+)
i )ni=1 of nodes in G(t0) are strictly positional if for every (i, j) ∈

V (t0) × V (t0), i ̸= j we have that θ
(pos+)
i ̸= θ

(pos+)
j almost everywhere.

In words, DeĄnition 10 is deĄning the set of positional node embedding distributions that always assign
distinct representations to every node in a symmetric graph. Note that we focus on symmetric graphs
here since in asymmetric graphs (|Aut(G(t0)) |= 1) even structural node embeddings can assign distinct
representations to all nodes. We start by further noting how, just like structural pairwise embeddings, strictly
positional node embeddings can achieve zero-bias in any causal link prediction task. It follows from Theorem
2 in [68] that, with a powerful enough link function, strictly positional embeddings can in expectation recover
most-expressive pairwise representations (cf. DeĄnition 4) Ůwhich achieve zero-bias as shown in Theorem 3.

Although strictly positional node embeddings do not necessarily impose a model bias to the causal link
prediction task, they do suffer from a different challenge: Figure 5 shows that because strictly positional node
embeddings generally assigns different embeddings for pairs of nodes in the same orbit, they do not capture
the correct causal DAG of Figure 2. Further, having the causal model from Figure 2 in mind, we can see how

(θ
(pos+)
I , θ

(pos+)
J ) (θ

(pos+)
K , θ

(pos+)
L )

(K,L)
(I, J)

For all (K,L) ∈ O(t0)
IJ \{(I, J)}:

U(K,L)U(I,J) Y
(t1)
KLY

(t1)
IJ

Figure 5: Strictly positional node embeddingŠs incorrect causal structure of probes in (i, j) (left) and other pairs in the
orbit of O(t0)

(i,j) (right).

strictly positional node embeddings make it difficult to generalize to unseen node pairs. In practice, unless
we choose or learn a link function (a link function is the function that takes the embeddings and outputs a
link prediction) that assigns the same prediction to the different embeddings of node pairs in the same orbit,
the lifting does not occur.
Matrix factorization gives strictly positional node embeddings. When considering (strictly) positional
node embeddings, we are interested in matrix factorization and other factor models that reĆect some notion
of node distances in the graph in their node embeddings, such as metric embeddings [11, 20] and similar
traditional (associational) link prediction methods [27, 56, 59]. Thus, to illustrate how the analysis of strictly
positional node embeddings is insightful for factor models, we now prove that, in a wide family of graphs,
SVD behaves as a strictly positional embedding.

SVD node embeddings use the eigenvectors of a(t0)a(t0)
T
and a(t0)

T
a(t0) Ůhere we consider concatenating

both right and left eigenvectors. SVD justiĄes the positional node embedding name since it does reĆect
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the distances between nodes in the graph in its embedding space. As isomorphic nodes can be arbitrarily
distant in a graph, it is easy to see that SVD can assign them different embeddings. Thus, it has been believed
and recently conjectured in [85][Theorem 4.2] that SVD in general does not assign the same embedding to
isomorphic nodes. To Ąll this gap in literature, we next present the Ąrst result Ůto the best of our knowledgeŮ
on the exact invariances of SVD: When SVD assigns the same embedding to a node pair. The proof of
Theorem 4 is presented in Appendix E.

Theorem 4 (The invariances of SVD). Let G be a graph with adjacency a ∈ {0, 1}n×n and θ
(SVD)
i the SVD

embedding of node i ∈ V . Then, two nodes i, j ∈ V get the same SVD embedding θ
(SVD)
i = θ

(SVD)
j if and only if

(a) the nodes are isomorphic i ∼= j; and

(b) they have the exact same neighborhood: aiv = ajv, avi = avj , ∀v ∈ V.

From Theorem 4 we can directly derive Corollary 3, in which we outline the exact set of symmetric
graphs where SVD embeddings are strictly positional. These symmetric graphs are quite speciĄc: they have
duplicate nodes, i.e., nodes that are not only symmetric, but that carry the exact same information: equal
neighborhood.

Corollary 3. Given a symmetric and unattributed (A = {0, 1}) graph G(t0), its SVD embeddings (θ
(SVD)
i )n

(t0)

i=1 are

strictly positional if and only if there exist two nodes i, j ∈ V (t0) such that j ∈ O(t0)
i and a

(t0)
iv = a

(t0)
jv , ∀v ∈ V (t0).

Note that even in graphs with duplicate nodes, SVD will assign different embeddings to all other nodes.
Therefore, although it can capture some degree of invariance from very speciĄc nodes, SVD in general behaves
as a strictly positional embedding. As such, it encodes the causal process from Figure 5, i.e., it does not
encapsulates the known invariance of the task: two isomorphic pairs must be assigned the same prediction.

Apart from SVD, we can also relate strictly positional node embeddings to neural matrix factorization [16].
Neural matrix factorization can be seen as using a one-hot encoding of the node identiĄer as the node
embedding. Then, it uses a multi-layer perceptron in the link function Ůin general if the graph is undirected
there exists some level of weight-sharing between the two node embeddings in the link function as well.
Since node identiĄers are by deĄnition unique, it is straightforward to see that neural matrix factorization
produces strictly positional node embeddings.

Overall, our theory implies that the use of strictly positional node embeddings, such as SVD and neural
matrix factorization, entails an incorrect causal structure under our assumptions that does not result in a causal
lifting for the causal link prediction task in Equation (2). As a result, models using strictly positional node
embeddings will not generalize as well as models using pairwise structural embeddings. More speciĄcally,
the sensitivity to training data here is attached to the fact that positional node embeddings might overĄt to
the training probes while not capturing its symmetry (invariance) properties of their orbits. Next, in the
experimental section, we show how this result indeed translates into practice: (Strictly) Positional node
embeddings struggle with generalizing to node pairs not probed during training.

6 Experimental Results

We now evaluate our theoretical Ąndings on identifying and estimating the counterfactual query from
Equation (5) with experimental data using our supervised learning solution from Equation (13). Concretely,
we investigate how accurately (strictly) positional node embeddings (DeĄnition 10), structural node em-
beddings (DeĄnition 6), and pairwise invariant embeddings (DeĄnition 5) can estimate our counterfactual
query from Equation (5). We are interested in empirically answering the following four questions.

(Q1) How do structural node embeddings perform when our test set contains tuples (U, V ) that are node-wise
isomorphic to the ones used in training (I(t1), J (t1)), . . . , (I(tM ), J (tM ))? In Theorem 3 we proved that
structural node embeddings are not unbiased estimators of Equation (5) in this setting. We are now
interested in evaluating the practical impact of this result.
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(Q2) How do (strictly) positional node embeddings perform when our test set contains tuples (U, V ) such that
neither U or V participated in the probes (I(t1), J (t1)), . . . , (I(tM ), J (tM )) used for training? In Figure 5 we
can see that (strictly) positional node embeddings cannot learn a single representation for multiple pairs.
Does such a property translate into poor practical performance when new pairs are tested? That is, in
an inductive setting where we have to extrapolate our knowledge from training, do we need to explore
symmetries?

(Q3) How do (strictly) positional and structural (node and pairwise) embedding solutions perform in real-
world scenarios where we are not aware of the underlying causal model? Here we are interested in testing
all the assumptions involved in Proposition 1 in real-world data.

(Q4) (Appendix F) In Figure 4 we can see a central assumption in Proposition 1: The (interventional) link
formation process can be retrieved by a common set of parameters representing the structure of the node
pairs. Here we ask: Is this assumption reasonable with real-world data? To answer this, we test whether
structurally similar node pairs have the same probe outcome distribution (Equation (1)).

We evaluate Q1 and Q2 in a knowledge base completion task, Q2 in a covariance matrix estimation task
andQ2,Q3 andQ4 in two user-item recommendation tasks. For each scenario, we present the problem as
the counterfactual query in causal link prediction and discuss the conditions for its identiĄcation. Next, we
brieĆy introduce the graph embedding methods we evaluate in the proposed tasks.

Node embedding methods. As representatives of (strictly) positional node embedding methods we
use Nonnegative Matrix Factorization (NMF) [43], SVD [30] and positional GCN [41], which is obtained by
using node identiĄers as node features. As for structural node embeddings, we choose the classical GCN [41]
model and the more recent UniMP [66] GNN. SpeciĄcally for the knowledge base experiment, we also choose
some popular knowledge graph embeddings, namely TransE [7], DistMult [78] and ComplEX [71]. For all
methods, we use multi-layer perceptrons as link functions (ρ in Equation (13)). Implementation details can
be found in Appendix G.
Structural pairwise embedding methods. The importance of structural pairwise embeddings has been
showed only recently in [68] and thus its literature is still underexplored. Here, we use SEAL [81] and
Neo-GNNs [80] as representative methods. SEAL extends GNNs to output structural pairwise embeddings.
The idea behind SEAL was generalized and named labeling trick [82]. Essentially, methods of this kind
apply a GNN over the graph but mark (only) the two nodes in the represented pair. In its simplest form,
this marking can be done by a single bit added to the node features Ůindicating whether the node is in the
pair. Here, we also consider what we call Label-GCNŮan approximate and more scalable application of
the labeling trick. Originally, the labeling trick computes the GNN representation of each pair separately.
This process is considerably less scalable than a standard GNN model where only one GNN computation is
performed to represent all pairs. To reduce the computational burden of the labeling trick, in Label-GCN we
mark all the pairs in a mini-batch of our (stochastic) optimization procedure. By using a small mini-batch
size, we expect representations from a sparse graph to not interfere with each other Ůproviding a good
approximation of the labeling trick method. Note that during test we also need to use the same small
mini-batch size. Implementation details can be found in Appendix G.

6.1 Impact on knowledge graph queries

Here we consider the causal link prediction task in knowledge graphs. In this scenario, we are interested
in questions as those described earlier:

ŞGiven our current knowledge about the world and some fact-Ąnding mission that added a
new piece of information, i.e. new relations, what other pieces would have been added had we
investigated these relations in other parts of the graph?Ť

To answer queries of this type, we construct a knowledge base which comprises 100 non-isomorphic family
trees, built using the methods provided in Hohenecker et al. [32], whose procedure we follow verbatim. In
total, the dataset contains 28 relation types. The parentOf relation represents the current knowledge about
the world and it is used to construct the observed graphG(t0). The goal is to predict the other family relations,
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A Notation and Background

Graph notation. We consider a graph G with adjacency a ∈ An×n, where each entry aij ∈ A belongs to
an arbitrary domain A with at least two elements. Without loss of generality, we consider the node set
V = [n] := {1, . . . , n}. In simple unattributed graphs a is a binary matrix, while for general attributed
(multi)graphs a can be seen as a tensor, where its third mode encodes edge and node attributes3. Note that
following this deĄnition a completely deĄnes G. Since our exposition is mostly agnostic to its third mode,
unless otherwise stated we consider a ∈ An×n. Further, we denote the value representing a non-link as 0 ∈ A.
Finally, we use capital letters to denote the corresponding random variable of an observation, e.g., A is a
random variable of a. As such, if a ∈ An×n was produced by some mechanism that contains some intrinsic
randomness (even noise), then A describes the other possible outcomes with their respective probabilities.

Symmetry deĄnitions. We denote the symmetric group of [n] by Sn, i.e., the set of all permutations of
{1, . . . , n}. Further, we let π · i be the mapping of i ∈ [n] in permutation π ∈ Sn and π−1 · i its inverse, i.e.,
the element that π maps to i. Finally, we let the action of π in a be denoted by π · a, i.e., aij = (π · a)π·iπ·j .
Note that π · a permutes the rows and columns of a (or Ąrst two modes if a is a tensor) according to the
permutation π. We say that G ∼= H are isomorphic graphs if there exists a permutation π ∈ Sn such that the
adjacency of H is equal to π · a.

Apart from isomorphism between graphs, we now deĄne isomorphism between nodes and node pairs
in the same graph. For that, we need to Ąrst deĄne the automorphism group of a graph G: Aut(G) : {π ∈
Sn : π · a = a}. Note that Aut(G) deĄnes the set of permutations that map the graph G to itself. Now, we say
nodes i and j in G are isomorphic4 i ∼= j if there exists a permutation π ∈ Aut(G) where j = π · i. Similarly,
two node pairs (i, j), (u, v) in G are isomorphic (i, j) ∼= (u, v) if there exists a permutation π ∈ Aut(G)
where (u, v) = π · (i, j). Finally, we denote by Oi : {j ∈ V : j ∼= i} the orbit of node i in G and by
Oij : {(u, v) ∈ V 2 : (u, v) ∼= (i, j)} the orbit of the node pair (i, j) in G. Overall, the orbit of a node (or node
pair) deĄnes the set of nodes (or node pairs) isomorphic to it (including itself). Note that the orbit of a node
or of a node pair in G contains elements other than themselves only if |Aut(G) |> 1. We call graphs that
satisfy such property symmetric graphs.

Now that we have deĄned symmetry between graphs, nodes and node pairs, we can turn our attention
to a symmetry in the graph distribution. The random variable of a graph is Ąnite (jointly) exchangeable if
any two isomorphic graphs are generated with the same probability. That is, node identiĄers, that are what
distinguish isomorphic graphs, are not relevant to the task at hand. In DeĄnition 11we overload this deĄnition
and deĄne Ąnite exchangeable graphs as graphs that come from such a distribution. Throughout this work
we consider Ąnite exchangeable graphs as input data to our problem, i.e., G(t0) in Equations (2) and (5).
Although this is an assumption about the data distribution, Ąnite exchangeability is also what distinguishes
graph from sequence data. If node identiĄers are not arbitrary, we can treat the graphŠs adjacency as a long
sequence of edges (a11, a12, . . .). Thus, Ąnite exchangeability can be seen as assuming that our input data is a
graph.

DeĄnition 11 (Finite exchangeable graphs). We say that an adjacency matrix random variable A is Ąnite (jointly)
exchangeable if

P (A = a) = P (A = π · a), ∀π ∈ Sn, a ∈ An×n.

We overload Ąnite (joint) exchangeability to ease notation and say that a graph G is Ąnite exchangeable if its adjacency
matrix random variable A is Ąnite (jointly) exchangeable.

Causality deĄnitions.
Any causal query can be seen as an inquiry about the underlying Structural Causal Model (SCM) of the

task [5]. An SCM is a mathematical description of the mechanisms behind the data generating process of
interest. We start by formally deĄning what an SCM is below.

DeĄnition 12 (Structural Causal Model (SCM) [5]). A Structural Causal Model (SCM) is a 4-tuple C =
(U,V,F, P (U)), where

3The node attribute of node i can be encoded in its self-loop entry aii.
4In graph theory we also often say i is similar to j.
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• U is the set of external noise random variables Ůalso called background or exogenous variablesŮ which are
generated by (unknown) mechanisms outside the model;

• V = {V1,V2 . . . ,Vq} is the set of endogenous random variables, which are generated by variables inside the
model (V ∪ U);

• F = {f1, f2 . . . , fq} is a set of functions deĄning a mapping between U and V with each fi mapping from the
domains of Pai and UVi

to Vi with UVi
⊆ U,Pai ⊆ V\Vi. In practice, each fi ∈ F is a mechanism that outputs

the ith endogenous variable Vi given its exogenous variables UVi
and its endogenous parent variables Pai, i.e.

Vi = fi(Pai,UVi
);

and

• P (U) is a probability distribution over U.

Note from above that an SCM C is a data generating process for V and as such induces an (associational)
probability distribution P (V = v) =

∑

u

∏

i|Vi∈V
P (vi | paiuVi

)P (u). We can then deĄne the interventional
distribution P (V(Vi = vi)) as the distribution induced by an altered model CVi=vi

, where CVi=vi
is exactly

as C with the difference that Vi is replaced by a constant value vi Ůwe often denote such distribution by
PVi=vi

(V). Now, the counterfactual distribution P (V(Vi = vi) | V = v′) can be deĄned as the distribution
induced by the altered model CVi=vi

| v′, where CVi=vi
| v′ is exactly as CVi=vi with the difference that

P (U) is replaced by P (U | V = v′), i.e., the exogenous variables distribution changes based on our observed
evidence v′ Ůwe often denote such distribution by PVi=vi|v′(V). Finally, note that the evidence v′ can also be
the outcome of an interventional distribution, as we have in Equation (2). In this case, what changes is how
we update the exogenous variable distribution, i.e., P (U) is replaced by P (U | V(Vi = vi) = v). From these
deĄnitions, we now have the tools to evaluate interventional and counterfactual quantities, as required by
our task (cf. Equations (2) and (5)).

B Link Prediction through self-supervision

In what followswe formalize the observational task of predicting whether a node pair (i, j) ∈ V (t0)×V (t0)

forms a link in G(t0) in the context of Graph Neural Networks and Matrix Factorization. We will show how,
for both methods, this task can be viewed as a self-supervised learning one. LetA(t0)

−ij and a
(t0)
−ij be respectively

the random variable A(t0) and the adjacency matrix a(t0) without the pair (i, j) ∈ V (t0) × V (t0). Note how
this is different from assuming (i, j) is a nonedge (i.e., that there is no edge between nodes i and j). The
adjacency matrix a

(t0)
−ij has no information about a(t0)ij , including whether it is an edge or a nonedge.

Relation to Graph Neural Networks (GNNs). Existing works in link prediction using GNN node em-
beddings make use of the graph structure to predict missing links [36]. To predict A(t0)

IJ , the embeddings of
I and J are obtained by applying a GNN over the training graph G(t0) with adjacency a(t0). Thus, instead
of learning the self-supervision task P (A

(t0)
IJ = a

(t0)
IJ | A(t0)

−IJ = a
(t0)
−IJ), previous works on GNNs for link

prediction are learning P (A
(t0)
IJ = a

(t0)
IJ | A(t0) = a(t0)). Note, however, that A(t0)

IJ is contained in A(t0), hence
this is not a sound statistical learning task. Instead, we should remove the information about A(t0)

IJ and
thus use the self-supervised objective. In practice, we note that the information about A(t0)

IJ is not directly
encoded in GNN embeddings, i.e., it is used implicitly via the message-passing scheme. Thus, most training
procedures are not impacted when using a(t0) instead of a(t0)−IJ to compute GNN embeddings.

Relation to matrix factorization. Matrix (or tensor) factorization methods are one of the most used tools for
link prediction and clustering tasks in graphs. For undirected unattribued graphs, such methods learn a
matrix of embeddings ϕ ∈ Rn×d, where each row ϕi is the embedding of node i. For directed graphs, ϕ is a
pair of such matrices, encoding the source and the target embedding of each node. Finally, heterogeneous
graphs also add edge type embeddings in ϕ. How do these methods learn ϕ?
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Matrix factorization-based models learn the joint distribution P (A(t0) = a(t0) | Φ = ϕ). The key assump-
tion here is edge (conditional) independence, that is

P (A(t0) = a(t0) | Φ = ϕ) =
∏

(i,j)∈V (t0)×V (t0)

P (A
(t0)
ij = a

(t0)
ij | Φ = ϕ). (14)

These methods learn ϕ∗ by maximizing the log-likelihood of Equation (14), a problem that can be written as

ϕ∗ = argmax
ϕ

E(I,J)

[
logP (A

(t0)
IJ = a

(t0)
IJ | Φ = ϕ)

]
, (15)

with (I, J) ∼ Uniform(V (t0) × V (t0)).
Finally, what is the relationship between Equation (14) and the self-supervised learning task P (A

(t0)
IJ =

a
(t0)
IJ | A(t0)

−IJ = a
(t0)
−IJ) ? First, note that we can rewrite the self-supervised learning task when learning

parameters ϕ as

P (A
(t0)
IJ = a

(t0)
IJ | A(t0)

−IJ = a
(t0)
−IJ) =

∫

ϕ

P (A
(t0)
IJ = a

(t0)
IJ | Φ = ϕ)P (Φ = ϕ | A(t0)

−IJ = a
(t0)
−IJ) dϕ, (16)

which can be expressed as the log-likelihood

ϕ∗ = argmax
ϕ

E(I,J)

[
logE

Φ=ϕ|a
(t0)

−IJ

[P (A
(t0)
IJ = a

(t0)
IJ | Φ = ϕ)]

]
, (17)

with (I, J) ∼ Uniform(V (t0) × V (t0)). We can see how the difference between the training objectives Equa-
tion (17) and Equation (15) is the expectation over the prior P (Φ = ϕ | A(t0)

−IJ = a
(t0)
−IJ). Finally, if we assume

a Ćat prior P (Φ = ϕ | A(t0)
−ij = a

(t0)
−ij ) over all (i, j) ∈ V (t0) × V (t0), the two objectives become the same. Thus,

we can see how matrix factorization methods are simply ignoring the rest of the observed graph as an input
signal to predict A(t0)

IJ .

C A Universal Family of Causal Models for Graphs

The conditions needed to perform counterfactual lifting in our task (Equations (2) and (5)) are with
respect to its underlying Structural Causal Model (SCM), i.e., the graphŠs causal generating process. To this
end, here we present a universal family of SCMs for graphs, where we are able to deĄne our task and derive
sufficient conditions for counterfactual lifting and other identiĄcation results. Without loss of generality, we
show how to generate A(t0) Ůwhich completely deĄnes the observed graph G(t0). Note that unlike in usual
causal models, we observe Ąnite exchangeable graph data and thus our SCM needs to be Ąnite exchangeable
with respect to A(t0). A Ąnite (jointly) exchangeable SCM generates an observation a(t0) with the same
probability as π · a(t0) for any permutation π ∈ Sn, i.e., any two isomorphic graphs are generated with the
same probability. Since an SCM generates every random variable as a function of its parents, causal models
have an intrinsic (partial) ordering, i.e., parents must be generated before their children. Thus, designing an
SCM for our task implies generating (partially) ordered sequences of random variables. How can we go from
(partially) ordered sequences to Ąnite exchangeable random variables? Next, we deĄne a family of SCMs
with such property. Intuitively, our causal models achieve Ąnite exchangeability by randomly reassigning
node identiĄers. Later in Theorem 1 (i)Šs proof we formally show how this family of SCMs is indeed Ąnite
exchangeable.

We denote the proposed family of SCMs by C. Each SCM C ∈ C has a speciĄc set of mechanisms F and
exogenous variables distribution P (U). To generate the observed graph, C has two stages: the data generating
process (DeĄnition 13) and the adjacency observation process (DeĄnition 14). The data generating process
outputs two inĄnite-size sequences (X(t))∞t=1, (E

(t))∞t=1. Each X(t) has the same support as the entries of A(t0)

(supp(X(t)) = A), while each E(t) deĄnes a node pair (supp(E(t)) = Z+ × Z+). Since it generates (X(t))∞t=1

and (E(t))∞t=1 sequentially, the SCM has a notion of time, where at time t it generates the value X(t) of the
interaction (or its absence) between E(t). At a given observation time t0, the adjacency observation process in
DeĄnition 14 generates A(t0) by using (E(t))t0t=1 to map (X(t))t0t=1 to a matrix (or tensor) and jointly shuffling
its rows and columns (or its Ąrst two modes).
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DeĄnition 13 (Data generating process). We start by deĄning E(1) = (1, 1). Then, at time t, for two mechanisms

f
(t)
X

and f
(t)
E

we deĄne the recurrence relations

E(t) = f
(t)
E

(

(E(r))t−1
r=1, (X

(r))t−1
r=1,U

(t)
E

)

,

X(t) =







f
(t)
X

(

U
(t)
X

)

, if t = 1,

f
(t)
X

(

(E(r))tr=1, (X
(r))t−1

r=1,U
(t)
X

)

, otherwise,

where U
(t)
X

∼ P (U
(t)
X

| E(t), (U
(m)
X

)t−1
m=1) are sampled (given E(t) and all previous exogenous variables) and U

(t)
E

∼
P (U

(t)
E

| (U(m)
E

)t−1
m=1) are exogenous variables sampled at time t. Note that the distribution of U

(t)
X

takes E(t) as a
parameter and thus the exogenous variable at time t is dependent not only on the previously generated exogenous
variables, but also on the pair being generated5. Finally,

f
(1)
X

: supp(U
(1)
X

) → A

f
(t)
X

:

t⋃

r=1

((
Z+ × Z+

)r ×
(
A
)r−1

)

× supp
(

U
(t)
X

)

→ A, t > 1,

are measurable maps and

f
(t)
E

:
(

Z+ × Z+
)t

×
(

A
)t

× supp
(

U
(t)
E

)

→ Z+ × Z+

is a measurable map such that max(E(t)) ≤ max
((

max(E(r))
)t−1

r=1

)

+ 1, i.e., the pair to be generated at time t can

contain up to one node that has not yet been generated until time t− 1.

The only mechanism restriction is a simple rule on f
(t)
E

: the pair to be generated can contain only up
to one unseen node6 and its identiĄer is the smallest positive integer not seen yet. This way, if n nodes
have appeared in interactions at any point of time, their identiĄers will be [n] := {1, . . . , n}. Note, however,
that we do not observe the sequences that DeĄnition 13 outputs. Instead, we partially observe them as
G(t0), i.e., a graph at some given point of time t0. The process generating our observed data (DeĄnition 14)
takes as input (E(t))t0t=1, (X

(t))t0t=1 from DeĄnition 13 and outputs A(t0). It samples a permutation π of the
node identiĄers and maps the sequence to the observed matrix (or tensor) A(t0). Thus, t0 and π are the
observation parameters Ůwhen we observe the graph and what we see as arbitrary node identiĄers. Note
how in DeĄnition 13 a pair (i, j) can be generated multiple times by f

(t)
E

. Therefore, the observation process
only considers the most recent interaction occurred at time t◦ (cf. DeĄnition 14).

DeĄnition 14 (Adjacency observation process). Let n(t0) := max
((

max(E(t))
)t0

t=1

)

be the number of different

nodes appearing in pairs generated by C until time t0. Then, we can generate A(t0) by Ąrst sampling a permutation of
the node identiĄers

π ∼ Uniform(Sn(t0))

and then assigning

A
(t0)
ij =

{

0, if (π−1 · i, π−1 · j) /∈ {E(t)}t0t=1,

X(t◦ij), t◦ij := max
(
{t : E(t) = (π−1 · i, π−1 · j), 1 ≤ t ≤ t0}

)
, otherwise.

Undirected graphs. Note that if G(t0) is an undirected graph we have that all mechanisms f
(t)
X

, t ≥ 1 are invariant
to the order of the input pairs, i.e., each E(t) is treated as a set rather than a tuple. Finally, we have an extra step

here setting A
(t0)
ji to A

(t0)
ij if (π−1

i , π−1
j ) ∈ {E(t)}t0t=1. In the case that (j, i) was also generated by the SCM, i.e.,

(π−1 · j, π−1 · i) ∈ {E(t)}t0t=1, we set A
(t0)
ji to A

(t0)
ij only if t◦ij > t◦ji.

5Note that in fact U(t)
X

is not an exogenous variable, since it is modeled inside our SCM, but we refer to it as such for the sake of
simplicity.

6An unseen node in the SCM is a node which has not appeared in any generated pairs until time t.
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We thus deĄne a graph SCM C ∈ C as the coupling of DeĄnitions 13 and 14. At this point, it is worth taking
a moment to understand CŮsee Figure 2 for a sample generation of a graph with four nodes. The data gener-
ating process (DeĄnition 13) is an underlying evolving process, deciding at each time step which node pairs
will be assigned a link (and its value) or a non-link. We do not observe the execution of DeĄnition 13 or the
observation parameter π, i.e., we are not aware of nodesŠ original identiĄers. We only observe the graphŠs adja-
cencyA(t0). Finally, note that a nonedge entry inA(t0) does not imply that the pair was generated as a nonedge.
It can also be that it was not yet generated by the causal model. What does this mean in practice? For instance,
consider a streaming platform where we do not observe an interaction between user i and movie j. In this
case, either user i does not know movie j is in the platform or i has actively made the decision to not watch j.
The underlying causal model explaining the lack of an interaction is hidden from us. Later we show how this
notion between nonedges and pairs yet not generated by the SCM is central to identify our counterfactual task.

Generating temporal and dynamic graphs. Up until now, we have referred to our observed graph G(t0) as a
static graph. That is, a graph where all edges are observed together at once with no temporal information.
However, note that although there is no explicit notion of time inG(t0), its underlying data generating process
(DeĄnition 13) is temporal. Because of such feature, our model can actually represent not only static, but
also temporal and dynamic graphs. In temporal graphs we observe the edge creation time. In this case, our
model can output in A

(t0)
ij the most recent time step t◦ (cf. DeĄnition 14) together with the interaction value.

In dynamic graphs, an edge can be created multiple times, disappear, take new values and so on. In this
setting we would then not only observe the time of an interaction, but also all past interactions. Note that
although f

(t)
E

can generate an interaction between the same pair multiple times, the observation model only
outputs the most recent one at t◦. On the other hand, since f (t)

X
takes as input all previous interactions, it

can copy the history of interactions between i and j to A
(t0)
ij (together with their time steps) making A(t0) a

sample of a dynamic graph.

Exchangeability and expressive power. After designing our family of SCMs C, we turn to the two central
theoretical questions around it: i. Is C Ąnite exchangeable? ii. How expressive is C? In Theorem 1 we show
that i. any SCM C ∈ C generates any two isomorphic graphs with the same probability, hence the entire
family C is Ąnite exchangeable and ii. there exists an SCM C ∈ C that generates every pair of non-isomorphic
graphs (with countable domain) with different probabilities. Ultimately, Theorem 1(i, ii) proves that C is
both a Ąnite exchangeable and universal family of graph SCMs. Next, we present the proofs of items i. and ii.
from Theorem 1.

C.1 Proof of Theorem 1

Theorem 1 (Universality of our graph SCM). Let C be the family of SCMs as deĄned in DeĄnitions 13 and 14 in
Appendix C and A be the domain of the entries of the adjacency matrices of the graphs generated by it. Then,

i. For every SCM C ∈ C at an arbitrary observation time t0 ≥ 0, C always generates observed graphs G(t0) where
P (A(t0) = a) = P (A(t0) = a′) for any two isomorphic graphs with adjacencies a, a′ ∈ A;

ii. For all Ąnite (jointly) exchangeable graph distributions P (A(t0)), if A is a countable set there exists an SCM C ∈ C
and an observation time t0 ≥ 0 that induces it.

Proof.
i. Let C(u, π, t0) be the output of an SCM C ∈ C with input exogenous variables u ∈ supp(U), permutation π
and observation time t0. Note that given these three variables assignments C is a deterministic mapping to
an observed graph a. We need to prove that any C(u, π, t0) gives isomorphic graphs the same probability.
Now, the probability of any model C ∈ C generating graphs a, a′ ∈ A is

P (A(t0) = a | C) =
∞∑

t0=1

1

|Sn |
∑

π∈Sn

∫

u∈supp(U)

1(C(u, π, t0) = a)P (U = u)du, (18)
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and

P (A(t0) = a′ | C) =
∞∑

t0=1

1

|Sn |
∑

π∈Sn

∫

u∈supp(U)

1(C(u, π, t0) = a′)P (U = u)du (19)

respectively. Note that since a and a′ are isomorphic, we can rewrite a′ as π′ · a for some π′ ∈ Sn. Now, since
Sn is a group, for every π ∈ Sn there exists another π† such that π = π† ◦ π′. Thus, for every π ∈ Sn we can
deĄne another permutation π⋆ := π† ◦ π′ giving us π · a = π⋆ · a′. Thus, whenever C(u, π, t0) = a there exists
a π⋆ such that C(u, π⋆, t0) = a′. As a result of such bijection, since the other terms match in Equations (18)
and (19), we have that P (A(t0) = a | C) = P (A(t0) = a′ | C).

ii. We now show that for any Ąnite graph (Ąnite jointly exchangeable random array) A there exists an SCM

C ∈ C and a time t0 ∈ R such thatA d
= A(t0), whereA(t0) is the graph generated byC at time t0. SinceA is count-

able, letŠs enumerate all graphsA1, A2, . . . ∈ A such thatA = ∪∞
i=1{Ai}, noting that graphwith distinct indices

may be isomorphic. Now, we partition the interval [0, 1) into intervals Uj =
[∑j

i=1 P (Ai),
∑j+1

i=1 P (Ai)
)
,

where we deĄne P (A0) = 0, noting that by the total law of probability [0, 1) = ∪∞
j=1Uj . Following DeĄni-

tion 13 we can construct arbitrary functions f (t)
X

, f
(t)
E

, t = 1, . . . , t0, for SCM C ∈ C such that with probability
Uj we generate deterministic sequences U(1)

X
, . . . ,U

(t0)
X

and U
(1)
E

, . . . ,U
(t0)
E

that will exactly generate the edges
of Aj (in the same order). The exchangeability of A(t0) comes from DeĄnition 13, which permutes the node
ids at the observation time t0.

From the above we highlight the result in (ii). Our family of SCMs is not trivial nor attached to a restricted
set of distributions. There exists a causal model in it that is able to generate all non-isomorphic graphs with
different probabilities, i.e., it can distinguish them and thus we call it an universal class of causal models
for graphs. This result comes at the cost of a (possibly7) prohibitively large amount of causal dependencies
between variables (see Figure 2 for an illustration). Since in practice it is hard to have assumptions removing
them, we maintain such structural dependencies and still identify and estimate Equations (2) and (5) by
posing invariance restrictions to the causal mechanisms and some experimental (probe) conditions.

D Interventional Lifting for Link Prediction

Now that we have formalized or class of SCMs, we can precisely describe Assumptions 1 to 4 and
Assumption 5.

Assumption 1 (Time gap ignorability). We say that an SCM C ∈ C satisĄes time gap ignorability for observation
time t0 and Ąrst experiment time t1 if

f
(t1)
X

(

(E(t))t1t=1, (X
(t))t1−1

t=1 ,U
(t1)
X

)

= f
(t0+1)
X

(

(E(t))t0+1
t=1 , (X(t))t0t=1,U

(t0+1)
X

)

.

Assumption 2 (Time exchangeability). We say that an SCM C ∈ C satisĄes time exchangeability for observation
time if

f
(t0+1)
X

(

(E(t))t0+1
t=1 , (X(t))t0t=1,U

(t0+1)
X

)

= f
(t0+1)
X

(

(E(πt))t0+1
t=1 , (X(πt))t0t=1,U

(t0+1)
X

)

,

∀π ∈ St0+1 : πt0+1 = t0 + 1.

Assumption 3 (Non-link ignorability). Let N(t0) :=
{
t ∈ [t0] : X

(t) = 0
}
be the set of time steps (until t0) where

non-links were created. Then, we say that an SCM C ∈ C satisĄes non-link ignorability for observation time t0 if its

mechanism f
(t0+1)
X

is invariant to the removal of non-links from the input sequence, i.e.,

f
(t0+1)
X

(

(E(t))t0+1
t=1 , (X(t))t0t=1,U

(t0+1)
X

)

= f
(t0+1)
X

((
(E(t))t0+1

t=1

)

−N(t0) ,
(
(X(t))t0t=1

)

−N(t0) ,U
(t0+1)
X

)

.

7We say possibly since in practice the mechanisms of the true and unknown underlying SCMmight be ignoring parts of the input
and thus removing such dependencies.
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Assumption 4 (IdentiĄer exchangeability). We say that an SCM C ∈ C satisĄes identiĄer exchangeability for
observation time t0 and Ąrst experiment time t0 + 1 if

f
(t0+1)
X

(

(E(t))t0+1
t=1 , (X(t))t0t=1,U

(t0+1)
X

)

= f
(t0+1)
X

((
(πi, πj) : (i, j) := E(t)

)t0+1

t=1
, (X(t))t0t=1,U

(t0+1)
X

)

,

∀π ∈ Sn.

DeĄnition 4 (Non-interfering probes). We say that a sequence of probes in M pairs
(
(I(tm), J (tm))

)M

m=1
is

non-interfering if the following invariance holds

f
(tm)
X

((
(E(t))t0t=1, ((I

(tm′ ), J (tm′ )))mm′=1

)
,
(
(X(t))t0t=1, ((I

(tm′ ), J (tm′ )))m−1
m′=1

)
,U

(tm)
X

)

=

f
(t0+1)
X

((
(E(t))t0t=1, (I

(t1), J (t1))
)
, (X(t))t0t=1,U

(t0+1)
X

)

.

D.1 Proof of Theorem 2

Theorem 2 (Invariances for interventional lifting in link prediction). Let C be the family of SCMs as deĄned
in DeĄnitions 13 and 14 in Appendix C and A be the domain of the entries of the adjacency matrices of the graphs
generated by it. Then,

i. if C ∈ C has the mechanism invariances described in Assumptions 1 to 4 and exogenous variable independence

at time t0 + 1, i.e., U
(t0+1)
X

⊥⊥ (U
(t)
X
)t0t=1 | (I, J) in DeĄnition 13. Then, the effect of an intervention in C can

be equivalently described by Figure 3Šs causal DAG, where (I, J) ∼ µ(G(t0)) is the node pair we intervene in,

O(t0)
IJ := {π · (I, J) : π ∈ Aut(G(t0))} is the set of all structurally indistinguishable pairs to (I, J) in G(t0), and

W
O

(t0)

IJ

is a latent variable tied to O(t0)
IJ (the orbit of (I, J) in G(t0)).

ii. Under the conditions in (i) and assuming the extra symmetry P (U(I,J)) = P (Uπ·(I,J)) in Figure 3Šs DAG, we have

the following interventional lifting result (DeĄnition 2), where ∀π ∈ Aut(G(t0))

P
(

Y
(t1)
IJ

)

= P
(

A
(t1)

E(t1)

(

E(t1) = (I, J)
)

| G(t0)
)

= P
(

A
(t1)

E(t1)

(

E(t1) = π · (I, J)
)

| G(t0)
)

= P
(

Y
(t1)
π·(I,J)

)

.

Proof.
ii. We start by noting that from DeĄnition 13, we have that

Y
(t1)
IJ = f

(t1)
X

(

(X(t))t1−1
t=1 , (E(t))t1t=1,U

(t1)
X

)

,

where E(t1) = (I, J) is the intervened random variable while (X(t))t1−1
t=1 ∼ P ((X(t))t1−1

t=1 | G(t0)) and
(E(t))t1−1

t=1 ∼ P ((E(t))t1−1
t=1 | G(t0)) are (random) sequences that must have generated G(t0) until t0. We

start by considering Assumption 1, which directly reduces the above problem to an intervention at the next
time step t0 + 1

Y
(t1)
IJ = f

(t1)
X

(

(X(t))t0t=1, (E
(t))t0+1

t=1 ,U
(t0+1)
X

)

,

where E(t0+1) = (I, J) is the intervened random variable while (X(t))t0t=1 ∼ P ((X(t))t0t=1 | G(t0)) and
(E(t))t0t=1 ∼ P ((E(t))t0t=1 | G(t0)) are (random) sequences that must have generated G(t0).

Further, from Theorem 2Šs statement, we have that the exogenous variables sampled before time t0 +1 are
independent from U

(t0+1)
X

given (I, J), i.e., P (U
(t0+1)
X

| (U(t)
X
)t0t=1, (I, J)) = P (U

(t0+1)
X

| (I, J)). Thus, we will
be assuming U(I,J) = U

(t0+1)
X

to prove (iii). from Theorem 2 it suffices to show that there exists a mechanism

h : supp(W
O

(t0)

IJ

)× supp(U
(t0+1)
X

) → A such that

h(W
O

(t0)
ij

, u
(t0+1)
X

) = f
(t0+1)
X

(

(x(t))t0t=1, (e
(t))t0+1

t=1 , u
(t0+1)
X

)

,

∀x(t) ∈ supp(X(t)), ∀e(t) ∈ supp(E(t)), t = 1, . . . , t0, ∀u(t0+1)
X

∈ supp(U
(t0+1)
X

),

∀1 ≤ n(t0) ≤ t0, ∀a(t0) ∈ An(t0)×n(t0)

, ∀(i, j) ∈ V (t0) × V (t0), with e(t0+1) = (i, j).

(20)
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Let us now deĄne the equivalence relation ∼ on the set of sequences Ξ(t0) := supp
(

(X(t))t0t=1, (E
(t))t0+1

t=1

)

:

(

(x(t))t0t=1,(e
(t))t0+1

t=1

)

∼
(

(x(t)′)t0t=1, (e
(t)′)t0+1

t=1

)

if ∃ π ∈ Sn(t0) , ∃ π† ∈ St0+1 : π
† · (t0 + 1) = t0 + 1

such that
((

(x(t))t0t=1

)

−N(t0) ,
(
(e(t))t0+1

t=1

)

−N(t0)

)

=
(((

x(π†·t)′)t0t=1

)

−N(t0) ,
(
(π · e(π†·t)′)t0+1

t=1

)

−N(t0)

)

,

where (·)−N(t0) removes the non-links from the sequence as in Assumption 3. Let [·] denote the equivalence
class of a sequence and [Ξ(t0)] :=

{[(
(x(t))t0t=1, (e

(t))t0+1
t=1

)]

:
(
(x(t))t0t=1, (e

(t))t0+1
t=1

)
∈ Ξ(t0)

}

be the set of all

equivalence classes in Ξ(t0). Then, it directly follows from the invariances in Assumptions 2 to 4 that there
exists a function g : [Ξ(t0)] → A such that, ∀

(
(x(t))t0t=1, (e

(t))t0+1
t=1

)
∈ Ξ(t0),

g
([(

(x(t))t0t=1, (e
(t))t0+1

t=1

)]

,U
(t0+1)
X

)

= f
(t0+1)
X

(

(x(t))t0t=1, (e
(t))t0+1

t=1 ,U
(t0+1)
X

)

, (21)

where, as deĄned earlier, [·] denotes the equivalence class of the sequences.
Now, we are ready to prove that there exists a bijective mapping from [Ξ(t0)] to the set of all input orbits

O(t0) = {O(t0)
ij : n(t0) = 1, · · · , t0 a(t0) ∈ An(t0)×n(t0)

, (i, j) ∈ V (t0) × V (t0)}. More speciĄcally, consider the
bijection as taking an arbitrary temporal sequence

(
(x(t))t0t=1, (e

(t))t0t=1

)
∈

[(
(x(t))t0t=1, (e

(t))t0t=1

)]
, applying

DeĄnition 14 and computing the orbit of e(t0+1) = (i, j) in the generated graph G(t0). It is straightforward
from DeĄnition 14 that any other temporal sequence in

[(
(x(t))t0t=1, (e

(t))t0+1
t=1

)]
also generates O(t0)

ij . Also, for
an arbitrary graphG(t0) and (i, j) ∈ V (t0)×V (t0), consider the temporal sequence

(
(x(t))t0t=1, (e

(t))t0t=1

)
where

for any t† ∈ {1, . . . , t0}, s.t. either (a) ∃e(t
†) ∈ E(t0), x(t†) = a

(t0)

e(t
†)
, or (b) ∄e(t

†) ∈ E(t0), and x(t′) = 0. It is clear

from DeĄnition 14 that this procedure would generate any graph isomorphic toG(t0) simply by performing a
permutation π ∈ Sn(t0) . If π is the identity permutation we generate the orbitO(t0)

ij with
(
(x(t))t0t=1, (e

(t))t0+1
t=1

)

where e(t0+1) = (i, j). Thus, DeĄnition 14 deĄnes a surjection from [Ξ(t0)] to O(t0). Next, we will show that it
is also an injection.

Now, consider applying DeĄnition 14 to an arbitrary temporal sequence
(
(x(t)′)t0t=1, (e

(t)′)t0t=1

)
, with

e(t0+1)′ = (i′, j′) ∈ V (t0) × V (t0). This temporal sequence deĄnes a (static) graph G′. Let O′
i′j′ be the orbit

of (i′, j′) in G′. To prove DeĄnition 14 is also an injection, we need to show that if O′
i′j′ = O(t0)

ij , then
(
(x(t)′)t0t=1, (e

(t)′)t0t=1

)
∈
[(
(x(t))t0t=1, (e

(t))t0t=1

)]
. If O′

i′j′ = O(t0)
ij , then the graphs are isomorphic G′ ∼= G(t0).

Then, apart from having the same number of nodes and edges, there exists a permutation π+ ∈ Sn(t0) such
that a′ = π+ · a(t0). Now, let π̄ ∈ Sn(t0) be the permutation sampled in DeĄnition 14 to generate a(t0) from an
arbitrary sequence

(
(x(t))t0t=1, (e

(t))t0+1
t=1

)
∈
[(
(x(t))t0t=1, (e

(t))t0+1
t=1

)]
and π′ ∈ Sn(t0) the one used to generate

G′. Then, we can deĄne the permutation π⋆ := π̄−1 ◦ (π+)−1 ◦ π′ and use it to match the two edge sets
{
(x(t), e(t)) : t = 1, · · · , t0, x(t) ̸= 0

}
=

{
(x(t)′ , π⋆ · e(t)′) : t = 1, · · · , t0, x(t) ̸= 0

}
. Finally, we can deĄne a

permutation π† ∈ St0+1 where π · t′ = t for π⋆ · e(t′)′ = e(t). We then have

G′ ∼= G(t0) =⇒
(
(x(t))t0t=1, (e

(t))t0+1
t=1

)

−N(t0) =
(
(x(t)′)t0t=1, (π

⋆ · e(π†·t)′)t0+1
t=1

)

−N(t0)

=⇒
(
(x(t)′)t0t=1, (e

(t)′)t0+1
t=1

)
∈
[(
(x(t))t0t=1, (e

(t))t0+1
t=1

)]
,

which implies that there exists a bijective mapping q : [Ξ(t0)] → O(t0).
Finally, we can now deĄne W

O
(t0)
ij

as a bijective mapping W
O

(t0)
ij

: O(t0) → Rd. Since q and W
O

(t0)
ij

are

bijective, they are invertible and thus we can deĄne h(a, b) = g(q−1 ◦W−1

O
(t0)
ij

(a), b) and Equation (20) follows

from Equation (21).
ii. From i. we have that the input to Y

(t1)
IJ and Y

(t1)
π(I,J) only differ on their input exogenous variables, which

are sampled from their marginal distributions. From the theorem statement, their marginal distributions are
the same and thus the random variables are equal everywhere.
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D.2 Proof of Corollary 1

Corollary 1 follows directly from the DAG in Theorem 2 and the backdoor adjustment, see 3.2 in [53].

D.3 Proof of Corollary 2

Note that the deĄnition of non-interfering probes (cf. Assumption 5) and the fact that exogenous variables
are i.i.d. make the entire set of random variables {Y (tm)

I(tm)J(tm) : 1 ≤ m ≤ M} also i.i.d.. Then, Corollary 2
follows directly from Corollary 1.

D.4 Proof of Proposition 1

Proof. Here we are left to show that under the stated conditions the causal DAG from Figure 3 can be
equivalently represented by the one in Figure 4. Note that in Figure 3 A

(t1)
IJ is generated by a mechanism

f that takes as inputW
O

(t0)

IJ

and U(I,J). Now, from DeĄnition 4 we know that there exists a set of weights

W′
Γ⋆ that makes Γ assign a unique representation to each orbit of nodes. Therefore, there exists a surjection

s : {Γ(i, j, a(t0);W′
Γ⋆) : (i, j) ∈ V (t0) × V (t0)} → {W

O
(t0)
ij

: (i, j) ∈ V (t0) × V (t0)}. Hence, we can deĄne A(t1)
IJ

in Figure 4 as A(t1)
IJ = f(s(Γ(I, J, a(t0);W′

Γ⋆)),U(I,J)) and by the deĄnition of s and f have the same SCM as
Figure 3.

E Graph Embeddings for Causal Link Prediction

E.1 Proof of Theorem 3

Proof. From the deĄnition of DeĄnition 5, we can see that most-expressive pairwise representations are under
structural (joint) pairwise representations. Therefore, it follows from [12] that with an expressive enough
link function, e.g., multi-layer perceptron with a sufficient number of neurons, we can achieve zero-bias in
the task. Now, we are left to show that representations using structural node representations cannot achieve
zero-bias for in some outcome distributions.

From DeĄnition 6 we know that if the node pairs are node-wise isomorphic, i.e., i ∼= u, j ∼= v, we have that

Z(i, a(t0);WZ) = Z(u, a(t0);WZ),

Z(j, a(t0);WZ) = Z(v, a(t0);WZ).

Note that from the deĄnition of isomorphic nodes there exists a permutation π ∈ Aut(G(t0)) and a (possibly
other) permutation π′ such that u = πi, v = π′

j . Then, by deĄning Γ as the concatenation ([·, ·]) of the two
structural node embeddings it follows that if u ∼= i, j ∼= v we have that

ρ

([

Z(i, a(t0);WZ), Z(j, a(t0);WZ)

]

;Wρ

)

= ρ

([

Z(u, a(t0);WZ), Z(v, a(t0);WZ)

]

;Wρ

)

. (22)

Now, in a pairwise symmetric graph there are at least two node pairs that are node-wise isomorphic, i.e.,
u ∼= i, j ∼= v, but not isomorphic, i.e., (i, j) ̸∼= (u, v). That is, in such graphs the above equality holds for (i, j)
and (u, v) and any choice of parameters WZ ,Wρ and link function ρ. However, since (i, j) ̸∼= (u, v), there
exist distributions such that P (Y

(t1)
ij = e) ̸= P (Y

(t1)
uv = e) for some e ∈ A. Finally, from Equation (22) we

know that structural embedding models cannot output different distributions for Y (t1)
ij and Y

(t1)
uv and thus

cannot achieve zero-bias for such an outcome distribution.
Now, to show that the bound is relevant to our task it is left for us to prove that there exists at least one

pairwise symmetric graph G(t0) generated by a model C ∈ C. Note that the model restrictions are about the
generation process after time t0, so we can leverage Theorem 2 directly. It follows from Theorem 2Šs proof that
the results i. and ii. also hold for graphs G(t0) observed at a Ąxed time t0 when n ≤ √

t0. Consider a graph
G(t0), n ≤ √

t0 that has zero probability in every C ∈ C. Now, if G′(t0), n ≤ √
t0 is a graph non-isomorphic to
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it, it follows from Theorem 2 that there exists a model C′ ∈ C that generates them with different probabilities,
that is, G′(t0) can be generated by C′. Therefore, Theorem 2 guarantees that at most one graph with n ≤ √

t0
(and the others isomorphic to it) cannot be generated by anymodel C ∈ C at time t0. In [85][Theorem 4.2] the
authors show that any graph with two isomorphic components has nodes i, j, u, v satisfying Equation (22).
Thus, since for a number of nodes n ≥ 6 this class has more than one graph, there exists a G(t0) with nodes
i, j, u, v generated by a model C ∈ C with t0 ≥ 36where Equation (22) is satisĄed.

E.2 Proof of Theorem 4

Proof. Let Pπ be the permutation matrix of π ∈ Sn and θ
(SVD,r)
i the SVD embedding of node iwith respect

to the right eigenvectors and θ
(SVD,ℓ)
i with respect to the left. Remember that the embedding of a node θi is

considered as the concatenation of both θ
(SVD,r)
i and θ

(SVD,ℓ)
i .

• Same embeddings =⇒ Pπaa
T = aaTPπ = aaT and Pπa

Ta = aTaPπ = aTa.

Let Ω(G) := {π ∈ Sn : πi = j, θ
(SVD,r)
i = θ

(SVD,r)
j , θ

(SVD,ℓ)
i = θ

(SVD,ℓ)
j } be the set of permutations that map

nodes to other nodes with the same SVD embeddings. Then, for every eigenvector xwith corresponding
eigenvalue λ of aaT and π ∈ Ω(G),

aaTx = λx,

and since Pπx = x we have
aaTPπx = λx,

and
Pπaa

Tx = λx.

That is, Pπaa
T , aaTPπ and aaT all have the same set of right eigenvectors and corresponding eigenvalues,

thus
Pπaa

T = aaTPπ = aaT .

Note that the same procedure can be applied to the eigenvectors of aTa and thus

Pπaa
T = Pπaa

T = aaT , Pπa
Ta = aTaPπ = aTa, ∀π ∈ Ω.

• Same embeddings ⇐= Pπaa
T = Pπaa

T = aaT and Pπa
Ta = aTaPπ = aTa.

Then, for every eigenvector x with corresponding eigenvalue λ of aaT and π ∈ ω(G),

aaTx = λx,

multiply by Pπ on both sides
Pπaa

Tx = λPπx.

Now, since Pπaa
T = aaT we have that

aaTx = λPπx,

which implies that Pπx = x for every eigenvector x of aaT and π ∈ ω(G). Note that again the exact same
procedure can be applied to aTa and thus ω(G) = Ω(G).

• Pπaa
T = aaT , Pπa

Ta = aTa ⇐⇒ akv = aℓv, avk = avℓ ∀v ∈ V, k, ℓ ∈ V : k ∼= ℓ.

Ű First, if aaT = aaTPπ = Pπaa
T for π ∈ Ω(G),

(aaT )ii =
∑

v∈V

aivaiv,

and
(aaT )πii =

∑

v∈V

aπivaiv,

which implies that aiv = aπiv ∀v ∈ V, π ∈ Ω(G).
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Ű Now, we apply the same procedure leveraging Pπa
Ta

(aTa)ii =
∑

v∈V

aviavi,

and
(aTa)πi =

∑

v∈V

avπi
avi,

which implies that avi = avπi
∀v ∈ V, π ∈ Ω(G).

Ű The other direction is satisĄed straightforwardly.

Note from the last item that Ω(G) ⊆ Sn is the set of permutations that swaps only nodes with identical
neighborhoods. From that it follows that Ω(G) ⊆ Aut(G) is a subset of the automorphisms of G as well,
thus only isomorphic nodes can get the same SVD embeddings. Overall, two nodes get the same SVD
embedding if they have the exact same neighborhood.

E.3 Proof of Corollary 3

Proof. As mentioned in the main text, Corollary 3 follows directly from Theorem 4 and the deĄnition of
strictly positional node embeddings (cf. DeĄnition 10).

F Can structure capture the link formation process of real-world net-
works?

Here we investigateQ4 from Section 6, i.e., the extent to which a shared set of parameters representing
node pairsŠ structure can encapsulate the link formation process of real-world graphs. More speciĄcally, we

are interested in testing whether Y (t1)
IJ

d
= Y

(t1)
UV when (I, J) and (U, V ) are structurally similar. In order to

select node pairs with such a property, we consider an arbitrary pair (I, J) in the test set and the pair (U, V )
such that Γ(I, J, A(t0);W⋆

Γ);Wρ

)
≈ Γ(U, V,A(t0);W⋆

Γ);Wρ

)
, where Γ(a, b, A(t0);W⋆

Γ) is the trained Label
GCN pairwise embedding space of pair (a, b) ∈ V (t0) × V (t0) on graph A(t0). As an alternate hypothesis,
we also consider the case where (U, V ) is a node pair selected uniformly at random (from the test set as
well). Note, however, that we only have a sample of Y (t1)

IJ and Y
(t1)
UV . Thus, to construct the probe outcome

distribution of each node pair we consider the outcome of its 10 closest neighbors in the Label GCN pairwise
embedding space. Since the two tested node pairs might share neighbors and directly induce the same
distribution, we only consider the non-intersecting sets of 10 neighbors Ůif a node pair is a neighbor of both

tested pairs, we assign it to the closest tested pair. To test if the distributions are the same (Y (t1)
IJ

d
= Y

(t1)
UV ), we

use FisherŠs exact test [23] with a signiĄcance level of 0.05. Results are shown for all node pairs in the test
set of both AE and LFM datasets from Section 6.3 in Figures 12 and 13. We can see how indeed structurally
similar node pairs tend to have the same probe outcome distribution, in contrast to pairs selected at random,
giving credence to the central assumption in our work that in some real-world tasks structural similarity
before probing also implies similarity of probe outcomes.

G Datasets and Models

We conducted our experiments on four datasets: (1) Family tree, (2) Covariance matrix, (3) Amazon
Electronics (AE) and (4) Last FM (LFM) datasets. These datasets allowed us to evaluate our Ąndings in
different settings, since they are diverse in terms of number of nodes and sparsity of their graphs. We
compared (strictly) positional node embeddings, structural node embeddings and structural pairwise node
embeddings, whose representative architectures are described in the main text. For the family tree dataset,
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11/24/2015 to 12/24/2015 in AE and from 2007 until 2013 in LFM. In train and test we use interactions
happening between 12/24/2015 and 12/31/2015 for AE and in 2014 for LFM. In both datasets we experiment
with the subgroup of male users, while, at test time, our counterfactual queries are about female users. Note
that, as mentioned in the main text, nonedges are obtained by sampling nodes uniformly at random.

G.2 Trained models

For all node embedding models we use as link function a Hadamard product followed by a multi-layer
perceptron with one hidden layer, of the same size as the embedding, and ELU activations. In the following,
we discuss details of embedding architectures and their hyperparameters.

G.2.1 Positional Node Embeddings

Below we discuss the architectureŠs choices for each dataset.

Family tree. We evaluated Nonnegative Matrix Factorization (NMF) [43] using the default implemen-
tation provided in Scikit-Learn [54]. For SVD [30] we make use of the low-rank implementation available
in Pytorch [52]. Both models generated embeddings of size 256. We implemented positional GCN on top
of a GCN architecture by using an additional embedding layer with the same size of the GNN layers. We
used 3 GCN layers with dimension 256. Our models are trained with batches of sizes 32 (NMF) and 1024
(positional GCN) and an Adam optimizer with learning rate 0.005.

Covariance matrix. Same as Family tree for SVD, but with an embedding of size 64 and a learning rate
of 0.01.

Amazon Electronics. Same as Family tree for NMF and SVD but with an embedding of size 8. Positional GCN
uses 2 GNN layers with dimension 8. Our models are trained with batches of size 32 and an Adam optimizer
with learning rate 0.005.

Last FM. Same as Family tree for NMF and SVD and positional GCN. Our models are trained with batches of
size 32 and an Adam optimizer with learning rate 0.001.

G.2.2 Structural Node Embeddings

Below we discuss the architectureŠs choices for each dataset.

Family tree. We considered a GCN architecture with 3 layers with dimension 256. Our models are trained
with batches of size 32 and an Adam optimizer with learning rate 0.005.

Covariance matrix. We considered a GCN architecture with 3 layers with dimension 64. We addition-
ally make use of batch norm between each convolutional layer. Our models are trained with batches of size
16 and an Adam optimizer with learning rate 0.01.

Amazon Electronics. We considered a GCN architecture with 2 layers with dimension 8. Our models
are trained with batches of size 32 and an Adam optimizer with learning rate 0.005.

Last FM. We considered a GCN architecture with 3 layers with dimension 256. Our models are trained with
batches of size 32 and an Adam optimizer with learning rate 0.001.

G.2.3 Knowledge Graph Embeddings

For the Family tree dataset we used the Torch KGE [8] implementation of ComplEx, TransE and DistMult.
Note that like SVD and NMF, the KGE embeddings are obtained through a pre-training procedure Ůthe
embeddings are then used to train a link function with Equation (13) as our taskŠs objective. The pre-training
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procedure uses Torch KGE implementation with a learning rate of 0.005, 0.00001 as the L2 regularization
parameter and 2000 as the batch size.

G.2.4 Structural Pairwise Node Embeddings

Below we discuss the architectureŠs choices for each dataset.

Family tree. We use the same training hyperparameters as the GCN model, except for LabelGCN where we
reduce the batch size to 8. For SEAL we use a dimension of 32 and k-hops subgraphs around the node pairs
with k = 3 Ůother parameters follow the original work default implementation. For Neo-GNN, we used 3
GCN layers of dimension 32, learning rate of 0.005, batch size 32, paths of length 2, node dimension 128 and
edge dimension 8 Ů all other parameters follow the original work default implementation.

Covariance matrix. We use LabelGCN as representative of structural pairwise embeddings. We use 3
GCN layers of size 64with batch norm. We train with batches of size 16 and an Adam optimizer with learning
rate 0.01.

Amazon Electronics. SEAL uses k-hops subgraphs around the node pairs with k = 1 and a model composed
of 2 GCN layers with dimension 32. The model is trained with batches of size 32 and an Adam optimizer
with learning rate 0.005 and weight decay of 0.00005. For LabelGCN we instead use a model with 2 GCN
layers with dimension 8. The model is trained with batches of size 8 and an Adam optimizer with learning
rate 0.005. As for Neo-GNN, we used an L2 regularization of 0.00005, a learning rate of 0.005, batch size 32,
2 GNN layers with dimension 32, paths of length 1, node dimension 128 and edge dimension 8Ů all other
parameters follow the original work verbatim.

Last FM. For LabelGCN we use a model with 3 GCN layers with dimension 256. The model is trained
with batches of size 10 and an Adam optimizer with learning rate 0.001. For SEALwe use a dimension of 16, 3
GCN layers, and k-hops subgraphs around the node pairs with k = 1 Ůother parameters follow the original
work default implementation. For Neo-GNN, we used 2 GCN layers with dimension 16, a learning rate of
0.001, batch size 10, paths of length 1, node dimension 128 and edge dimension 8 Ů all other parameters
follow the original work default implementation.

H Limitations and Possible Extensions

Finally, we would like to highlight two limitations of our work that could be explored in future research.
First, our family of SCMs is designed to model systems with causal link prediction tasks in mind, that is,
they are universal models with respect to the observational distribution of the graph, designed to answer
causal link prediction queries. For tasks focused on intervening, for instance, in higher-order structures, the
query cannot be trivially formulated through our SCMs. Possible extensions could include higher-order
generalizations of DeĄnition 12. Finally, we also highlight how Assumption 1, a central assumption in our
work, is not satisĄed in some speciĄc scenarios. In particular, in very large, highly dynamical, graphs nodes
may signiĄcantly evolve in the time between a probe and its observed effect. In these scenarios, Assumption 1
may be violated and further work is needed in order to address these cases.
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