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A B S T R A C T   

Living shorelines as a nature-based solution for climate change adaptation were constructed in many places 
around the world. The success of this type of projects requires long-term monitoring for adaptive management. 
The paper presents a novel framework leveraging scientific machine learning methods for accurate and rapid 
prediction of long-term hydrodynamic forcing impacting living shorelines using short-term measurements of 
water levels and wind waves in the largest estuary in the U.S. Different from existing data-driven wave prediction 
models focusing on significant wave heights, this study is focused on the prediction of wave energy spectra in 
shallow water using winds and tides as the input feature and short-term measurements of wave spectra and water 
depths as the label. Long Short-Term Memory (LSTM) models were developed using four-month wave mea
surements in the stormy seasons to predict integral wave parameters and energy spectra for multiple years. The 
developed models accurately predicted wave heights, peak periods, and energy spectra around the living 
shorelines, capturing complex wave dynamics, such as wave generation by wind, nonlinear wave-wave in
teractions, and depth-limited wave breaking in the shallow water of a large estuary. The validated models were 
then used to determine the long-term wave forcing impacting the living shorelines based on the modeled wave 
characteristics and spectra. Model results show that the surrogate models utilizing LSTM to predict wave spectra 
in the frequency domain enable long-term predictions of spectral wave evolution with a minimal computational 
cost. Our findings provide valuable insights into the efficacy of living shorelines in attenuating wave energy and 
demonstrate the utility of this approach in assessing the effectiveness of such living shoreline structures.   

1. Introduction 

Chesapeake Bay, situated on the East Coast of the United States, is 
renowned as the largest estuary in the country, spanning over 320 km 
from the Susquehanna River in Maryland to the Atlantic Ocean (Basco, 
2020). It is an important ecological, economic, and recreational 
resource, providing habitat for many species of plants and animals, 
supporting commercial and recreational fishing, and attracting millions 
of visitors each year. However, the coastlines of Chesapeake Bay have 
been enduring chronic erosion, with estimated rates varying from 0 to 3 
m/yr, primarily due to factors such as sea level rise, climate change, 
hurricanes, and storm surges (Sanford and Gao, 2018). Because of the 

anticipated increase in global sea levels, the Chesapeake Bay shorelines 
and salt marshes will be at greater risk of damage. Consequently, the 
development of adaptation strategies becomes imperative in order to 
mitigate coastal erosion and address flood hazards stemming from 
extreme storms and climate change. 

Traditionally, physical barriers like bulkheads, seawalls, revetments, 
groins, and breakwaters have been used to protect civil infrastructure 
from flooding and shorelines from erosion. However, these hard struc
tures tend to increase wave reflection and cause scouring at the edges, 
leading to a loss of habitat, such as intertidal flats (e.g., O’Donnell, 
2017). In recent years, more nature-based approaches (green ap
proaches) have been incorporated into shoreline protection and 
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restoration, such as using artificial oyster reefs (e.g., oyster castles, 
oyster shells) and vegetation (e.g., salt marshes, seagrass). One prom
ising strategy is the adoption of a hybrid approach called “living 
shorelines,” which combines both structural and natural elements. 
Living shorelines have the potential to mitigate coastal erosion and flood 
hazards by dissipating waves while providing crucial habitats. With the 
implementation of numerous living shoreline restoration projects along 
the Gulf Coast and Mid-Atlantic coast in the U.S., it becomes imperative 
to advance our comprehension of the efficacy of living shoreline struc
tures to help inform upcoming restoration initiatives. 

The correlation between wetland shoreline erosion rates and wave 
power has been established in previous studies (e.g., Schwimmer, 2001; 
Marani et al., 2011; McLoughlin et al., 2015; Leonardi et al., 2016; Zhu 
et al., 2020). Therefore, it is crucial to investigate the variations of wave 
power along the living shorelines. While integral wave parameters such 
as significant wave height and peak wave period are commonly utilized 
to characterize sea states and trends, they may not accurately represent 
the wave power within a complex wave field in shallow water. In the 
case of an estuary with living shorelines, relying solely on integral wave 
parameters to compute wave power could lead to underestimations 
(Zhu et al., 2020). Moreover, integral wave parameters can obscure 
essential characteristics of a wave field, potentially causing misinter
pretation when confronted with complex wave conditions involving 
multiple wave systems propagating through a specific area (Wang et al., 
2023b). In contrast, wave spectra offer a better approach to character
izing the wave field, providing precise insights into wave evolution with 
distinct energy sources and sinks. For instance, submerged vegetation 
can effectively dissipate the energy of the higher frequency band in a 
random wave field compared to the energy of the lower frequency band 
(Zhu and Chen, 2017). Therefore, obtaining accurate information about 
the wave spectra is essential as it enhances our understanding of the 
state of surface waves in coastal and estuarine regions, along with their 
long-term impacts on natural shorelines and civil infrastructure. 

Despite the availability of conventional methods, such as process- 
based numerical simulations and field measurements, to obtain wave 
spectra of a study site, their applicability is often limited due to high 
computational and/or operational costs. For example, field measure
ments often require a substantial amount of time and financial re
sources, leading to data that is sparse in both spatial and temporal 
coverage. To address these challenges, researchers have turned to 
physics-based wave models such as SWAN (Booij et al., 1999) and 
WAVEWATCH (Tolman and Others, 2009) to simulate the evolution of 
wave spectra. However, applying these numerical models to simulate 
wave spectra in a living shoreline project area may require nested 
computational domains with varying spatial resolutions and the 
coupling of wave and nearshore-circulation models. These requirements 
can be expensive or impractical for long-term assessments over years 
and decades. Furthermore, certain numerical approximations, such as 
quadruplet wave-wave interactions and triad wave-wave interactions, 
can result in inaccurate predictions. For instance, Filipot and Cheung 
(2012) discovered that the original version of SWAN could not 
adequately capture the sub-harmonic component due to a lack of 
appropriate parameterization for describing nonlinear energy transfer 
towards the infra-gravity band. However, infra-gravity waves play a 
vital role in nearshore processes and require specific consideration in 
spectral wave modeling (Rijnsdorp et al., 2021). As an alternative 
approach, machine learning (ML) technology has emerged as a powerful 
tool that has revolutionized numerous scientific disciplines and intro
duced a novel paradigm to address current research needs (Xu et al., 
2023). Scientific ML models can serve as substitutes for simulating wave 
spectra, eliminating the need for extensive computational resources. 
Additionally, these models can effectively handle the complexities of 
strong nonlinearity and high dimensionality. 

In recent years, the utilization of ML in coastal and ocean engi
neering has gained significant attention. This interest is primarily driven 
by the accessibility of ML algorithms and the accumulation of 

comprehensive datasets from numerical simulations, field measure
ments, and laboratory experiments (Xu et al., 2023). ML refers to a 
computational system capable of learning and improving from experi
ence, typically in the form of datasets, without the need for explicit 
programming. Artificial Neural Network (ANN) has found extensive 
usage in coastal and ocean engineering applications to investigate 
nonlinear connections between input features and labels (e.g., Zheng 
et al., 2020; Bento et al., 2021; Mares-Nasarre et al., 2021; Elbisy and 
Elbisy, 2021). However, ANN models are limited in their ability to retain 
and utilize information from previous time steps. In contrast, Long 
Short-Term Memory (LSTM) models have the capacity to store infor
mation over longer time periods. LSTM models employ a memory cell to 
capture and retain past inputs and outputs, making them well-suited for 
handling time series data. They are particularly advantageous for tasks 
involving the identification of long-term dependencies in sequential 
data. Recent studies (Ni and Ma, 2020; Miky et al., 2021; Gao et al., 
2021; Meng et al., 2021; Wei, 2021, 2022; Yao and Wu, 2022; Hao et al., 
2022; Luo et al., 2022; Zhao et al., 2023; Sareen et al., 2023) have 
demonstrated the successful use of LSTM models for wave height fore
casting. For instance, Jörges et al. (2021) developed an LSTM model to 
reconstruct and predict the nearshore wave field, demonstrating 
remarkable accuracy in predicting significant wave height for both 
long-term and short-term periods. Similarly, Ti et al. (2022) applied 
LSTM models to forecast spatial-temporal significant wave height in the 
West Pacific, demonstrating better accuracy and computational effi
ciency compared to physics-based numerical models. Furthermore, 
Zhang et al. (2023) introduced a memory curve into the conventional 
Support Vector Regression model, which significantly improved the 
accuracy of significant wave height prediction. However, the majority of 
existing ML models for wave prediction have primarily focused on wave 
height. There has been a lack of research dedicated to exploring the 
spatial-temporal evolution of wave spectra in shallow waters using ML 
methods. 

This paper has two main objectives: (1) to examine the variations of 
energy spectra over time and space at the Fog Point living shoreline in 
Martin National Wildlife Refuge, Maryland, and (2) to develop LSTM 
models that can predict wave spectra and parameters at this specific site. 
The models were trained using wind, water level, and wave measure
ment data collected from February to May 2020. Subsequently, the 
trained models were employed to estimate wave parameters and energy 
spectra in 2020, 2021, and 2022, requiring minimal computational re
sources. This paper introduces an innovative approach for predicting 
energy spectra in the frequency domain in a large estuary, which can be 
extended to other living shoreline restoration projects to assess long- 
term variations in wave power, water level, and shoreline stability. 
We have applied a series of soft computing-based algorithms to address 
long-term wave prediction problems in coastal engineering. In our 
previous work (Wang et al., 2022b), we proposed a hybrid method that 
integrates a physics-based model (SWAN) with ML algorithms (i.e., 
bagged regression tree and ANN) to predict wave parameters and detect 
sources of error within the SWAN model. This hybrid approach can 
effectively overcome the limitation of using scarce observations to 
develop a predictive ANN model. To assess the long-term impact of 
constructed oyster reefs on wave fields in upper Delaware Bay, Wang 
et al. (2022c) developed ANN models to predict integral wave param
eters, including significant wave height and peak wave period, based on 
short-term wave measurements. Since wave spectra can provide a better 
approach to characterizing complex wave fields, Wang et al. (2023b) 
focused on predicting wave energy density spectra as well as wave pa
rameters using ANN models at the Chesapeake Bay Bridge-Tunnel with 
publicly available buoy data. Their goal was to separate the ocean swell 
spectra from the bay wave spectra at the estuarine entrance. In the 
current study, utilizing the capacity of LSTM algorithms to store and 
control relevant information over longer time periods, we developed a 
new data-driven model to investigate wave spectra along the 
headland-bay shoreline based on our field observations. Compared to 
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the estuarine entrance, the triad wave interactions are more pronounced 
at this study site due to nonlinear effects in the shallow water, affecting 
the spectral shape. Furthermore, modeling the impact of breakwaters on 
spectral wave evolution is challenging. This study tackled those issues. 

The paper is structured as follows: In Section 2, detailed information 
is provided regarding the field experiment conducted and the LSTM 
model development, containing details about the model’s input, output, 
and configuration. In Section 3, an evaluation is carried out to assess the 
effectiveness of the LSTM models in predicting wave parameters and 
energy spectra through a comparison of model outputs against field 
observations. Section 4 explores the application of transfer learning 
techniques to improve the accuracy of simulating high harmonics in 
shallow water due to triad wave-wave interactions. Furthermore, Sec
tion 4 also includes a representativeness test of the training data, 
ensuring the reliability of the year-long hindcast of wave energy spectra 
and wave power. In conclusion, Section 5 summarizes the main findings 
of the paper. 

2. Methodology 

2.1. Study site and field observations 

Our study site (around 38◦ 1’47.64” N, 76◦ 2’34.08” W) is at the Fog 
Point shorelines in the Martin National Wildlife Refuge, Maryland, US 
located in the middle of the Chesapeake Bay (Fig. 1). The shorelines are 
exposed to prevailing winds, making them highly vulnerable to storms. 
Research shows that the shorelines along the northern and western 
shores of the refuge have receded at a rate of 0.61 to 5.5 m/yr from 2001 
to 2013, leading to a loss of nearly 3.3 acres of prime fish and wildlife 
habitat annually (Perini Management Services, 2014). Therefore, it is 
important to address the issue of shoreline erosion. Rock breakwaters, 
sand nourishment, and planting of salt marsh species as living shoreline 

structures were constructed along the Fog Point shoreline in the Martin 
National Wildlife Refuge in 2016 in response to Hurricane Sandy (2012) 
and future storms. The type of living shoreline is featured with the 
“headland(breakwater)-embayment-headland (breakwater)” pattern 
(Hardaway and Gunn, 2010). Rock breakwaters at the study site are 
typically 76.2 m long, with sand added behind connecting to the island. 
The tidal range is about 0.56 m, based on the measurements from a 
nearby NOAA station (8571421). The wave height variations at the 
study site were influenced by the combination of the structures and 
changes in bathymetry. 

To evaluate the effectiveness of the living shoreline structures, six 
pressure transducers (i.e., wave gages (WG)) were deployed at low tides 
during February 10–14, 2020, and were originally planned to be 
retrieved in May 2020. Unfortunately, due to the COVID-19 travel re
strictions, the retrieval was delayed until August 25, 2021, and only 
three of the gages (WG3, WG4, and WG5, Fig. 1(b)) were found. 
Furthermore, it was found that the wave data collected at WG5 after 
May 11 were inaccurate, possibly due to the gage being disturbed by an 
unknown force. As our study site is far away from the mouth of the 
Chesapeake Bay, the measured wave energy from the three gages was 
considered entirely generated locally by winds. As Tp from OCEANLYZ 
v2.0 may be incorrectly calculated when Hm0 is very small, waves with 
Hm0 < 1 cm were excluded from further analysis. Field data are available 
in Wang et al. (2023a). 

2.2. Machine learning models 

To forecast wave parameters and spectra over an extended period, 
we constructed three composite LSTM networks at each gage location. 
These networks were developed by leveraging the domain knowledge 
regarding wave responses to forcing functions and the interrelation 
among wave parameters. To ensure the accuracy of the modeled long- 

Fig. 1. (a) A map displaying the locations of the wave gages and the structure. (b) Salt marsh plants, S. alterniflora grow behind the breakwaters. The photograph 
was taken on July 11, 2017, nearly one year after breakwater construction (Photograph taken by Hongqing Wang, U.S. Geological Survey). (c) An illustration 
displaying the study area, indicated by a yellow triangle representing Fog Point Beach, along with nearby NOAA wind stations denoted by red dots in Chesapeake 
Bay. The small map shows Chesapeake Bay marked by a red dot. 
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term wave parameters and energy spectra, a representative test was 
conducted. This test aimed to determine whether the wave fields 
measured during the four-month period could be extrapolated to 
analyze long-term wave fields, as outlined in Section 4.2. This precau
tion was necessary since LSTM models tend to lack generalization ability 
for scenarios that were not part of the training dataset, which is a 
common limitation of purely data-driven models. 

2.2.1. Wind and water level data 
The wave development within an estuary is widely acknowledged to 

be influenced by two factors: the wind field and water depth. In the case 
of finite depth conditions, wave height is known to be constrained 
(Karimpour et al., 2017). To effectively model wave parameters and 
energy spectra, this study incorporated wind and water level data as 
input features for the LSTM models. The water level data were obtained 
from NOAA 8571421, located at Bishops Head, approximately 21.3 km 
north of Fog Point. As for the wind data, it was sourced from four 
dispersed NOAA stations across the bay: 8571421 at Bishops Head, 
8635750 at Lewisetta, 8632837 at Front Range, and 8638901 at Ches
apeake Channel. These stations were carefully chosen to encompass the 
large variation in wind fields observed within the large bay area. Both 
the geographic locations and data availability were taken into account 
during the station selection process. The wind roses derived from the 
measurements at these stations exhibit notable spatial heterogeneity in 
wind fields across the Chesapeake Bay (Fig. 2), which further supported 
the inclusion of wind data from all four stations as input features. 

2.2.2. LSTM model setup 
Previous studies have utilized past wave measurements, such as 

wave parameters recorded 3 or 6 h earlier, as input features for training 
LSTM models to forecast wave characteristics (e.g., Fan et al., 2020; 
Wei, 2021). However, this study does not incorporate previous wave 
measurements as input features during LSTM training. The reason for 
this omission is that the measured wave parameters were obtained from 
temporary wave gages deployed in 2020, rather than a permanent sta
tion. Consequently, including previous wave parameters as input fea
tures would render the developed models unsuitable for predicting 
waves in the future, or wave hindcast, such as in 2021, due to the 

unavailability of wave measurements from that year. Essentially, this 
study focuses on constructing cause-effect wave models by solely 
applying forcing functions (e.g., wind and water level data) to predict 
wave parameters and energy spectra (Londhe and Panchang, 2018). 
Given the typically continuous availability of wind data, the input fea
tures in this study encompassed both the current wind data and the wind 
data recorded 1 h, 2 h, and 3 h prior, accounting for the time required for 
wave growth along the wind fetch. We further examined whether the 
inclusion of past water level data as input features could enhance the 
accuracy of the models. The findings indicated that the model accuracy 
remained comparable to the one achieved when using solely the current 
water level data as an input feature. Therefore, the developed LSTM 
models in this study employed the current and previous 3 h of wind data, 
along with the current water level, as the input features to predict wave 
parameters and energy spectra of the current state. 

In this study, the input features used to estimate wind waves 
included wind and water level data. Specifically, the hourly u- and v- 
wind velocity components and water levels measured at NOAA station 
8571421 were utilized to predict the local water depth (d) at each wave 
gage location. This information was then employed to calculate wave 
power in this study. To model Hm0, a network was developed using the 
wind data from all four NOAA stations and the water level data from 
NOAA station 8571421 as input features. Since Hm0 is important for 
predicting Tp, it was applied as an input along with wind and water 
levels in the Tp prediction. To simulate energy spectra E in the frequency 
domain, the inputs included wind, water level, Hm0, and Tp. The loss 
function for the complete network was determined by summing the 
error functions of d, Hm0, Tp, and E. Fig. 3 and Table 1 show the archi
tecture of composite networks, as well as input features and labels. 
Although it was possible to use independent networks to predict d, Hm0, 
Tp, and E separately, this approach was not employed in this study to 
avoid the potential propagation of errors from one network to another. 

The composite LSTM models were tested and validated using hourly 
datasets from 03/07/2020 to 03/15/2020 and 03/01/2020 to 03/07/ 
2020, respectively. The training data encompassed the remaining 
dataset in 2020. The development of LSTM models involved the utili
zation of PyTorch. The training procedure aimed to minimize the mean 
square error (MSE) for simulating wave parameters and spectra 

Fig. 2. Wind roses at NOAA stations 8571421 at Bishops Head, 8635750 at Lewisetta, 8632837 at Front Range, and 8638901 at Chesapeake Channel based on 
measurements from 2020 to 2022. 
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(Table A1). The training process continued until the MSE for d, Hm0, Tp, 
or E ceased to decrease. The LSTM models had a sequence length of 16 
and utilized the sigmoid and hyperbolic tangent functions as the gating 
and output activation functions, respectively (Hochreiter and Schmid
huber, 1997). The weights and biases were initialized using a uniform 
distribution ranging from −

̅̅̅̅
K

√
to 

̅̅̅̅
K

√
, where K is calculated as 1 divided 

by the number of nodes. Normalization techniques were applied to 
ensure inputs and outputs fell within the range of − 1 to 1, thereby 

mitigating the impact of variations in parameters. The Adam optimiza
tion algorithm was employed for network training (Kingma and Ba, 
2014), with an initial learning rate of 0.01. The training process was 
performed on a system equipped with an Intel Core i7 processor and 32 
GB memory, taking approximately 30 s to complete. 

To identify the most suitable network structures for predicting wave 
parameters and spectra at each wave gage location (Wang et al., 2022c, 
2023b), a thorough examination of 156 structures was conducted. These 
structures encompassed 1 to 4 hidden layers, each with 2 to 40 nodes. 
The performance of different structures was quantified using a com
posite performance score, including bias, SI, and R2 (Table A1). The 
structure with the highest score was considered the optimal choice 
(Table A2). 

3. Results 

3.1. Measured wave characteristics 

The time series of measured d, Hm0, and Tp at WG3, WG4, and WG5 
are shown in Figs. 4, A1 and A2 (in the appendix), respectively. It should 
be noted that the wave data collected at WG5 after May 11 had poor 
quality, so the data were excluded from further analysis in this paper. 
The comparisons of Hm0 and Tp at three gages are presented in Fig. 5. As 
expected, the Hm0 at WG3 (offshore location) was the highest, while the 
Hm0 at WG4 protected by structures was the lowest among the three 
gages. The Tp values at WG3 and WG5 (embayment location) are similar, 

Fig. 3. A diagram showing the design of the LSTM models used to estimate d, Hm0, Tp, and E. The ‘S’ marker in the orange box represents hyperbolic tangent 
functions (the activation function). 

Table 1 
Input features and labels to estimate wave parameters and spectra using LSTM 
models.  

Targets Input features Labels 

d u- and v-wind speed and water level data at NOAA 
stations 8571421 

Measured d 

Hm0 u- and v-wind speed data at NOAA stations 8571421, 
8635750, 8632837, and 8638901, water level data at 
NOAA station 8571421 

Measured 
Hm0 

Tp u- and v-wind speed data at NOAA stations 8571421, 
8635750, 8632837, and 8638901, water level data at 
NOAA station 8571421, predicted Hm0,in  

Measured Tp 

E u- and v-wind speed data at NOAA stations 8571421, 
8635750, 8632837, and 8638901, water level data at 
NOAA station 8571421, predicted Hm0 and Tp  

Measured E  

Fig. 4. Time series of measured d, Hm0, and Tp at WG3.  
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which are generally smaller than those observed at WG4, indicating 
short waves were dissipated more by the low-crested breakwater. 
Throughout the deployment period, the average Hm0 measured at WG3, 
WG4, and WG5 were 0.28 m, 0.04 m, and 0.25 m, respectively. The 
averaged Tp measured were 2.77 s, 3.85 s, and 2.78 s at WG3, WG4, and 
WG5, respectively. The decrease in wave height observed from WG3 to 
WG4 may be attributed to a combination of factors, including bathym
etry (wave breaking due to varying depths), bottom friction, and the 
presence of breakwaters (Wang et al., 2022c). 

For the measured wave spectra (E), several energy densities (with the 
peak energy density Emax > 0.1 m2/Hz at WG3) are shown as examples in 
Fig. 6. It was found that the energy spectra recorded at WG4 were much 
lower than those recorded at WG3 and WG5, attributed to the dissipa
tion caused by the depth-limited wave breaking, bottom friction, and 
structures. Interesting to see is that the energy spectra at low frequencies 
(f < 0.015 Hz) at WG4 exhibited similar magnitudes to those at WG3, 
indicating that subharmonic waves may propagate over the structures 
without experiencing significant damping effects. Moreover, the peak 
wave frequency (fp) at WG4 is no greater than the ones at WG3 and 
WG5, consistent with the previous observations of Tp. Because of the 
wave-wave triad interactions (Zhu et al., 2020), two spectral peaks with 
frequencies of fp and 2fp can be observed at WG3 and WG5 (e.g., Feb 27 
2020 07:00:00). These peaks align with the primary waves and their 
higher harmonics, respectively. It was found that the observation of high 
harmonics was more frequent when kpd (Kp is the wave number) smaller 
than 1 and 0.8 at WG3 and WG5, respectively. The occurrence of these 
high harmonics accounted for 27 % and 48 % of all wave measurements 

during the deployment period at WG3 and WG5, respectively. Fig. 7(a) 
shows the wave spectra normalized by fp at each gage location averaged 
over the entire deployment period. At both WG3 and WG5, two spectral 
peaks are visible in sea wave band, although the feature at WG5 is more 
pronounced, consistent with the analysis presented earlier. Fig. 7(b) 
offers a zoomed-in view of the averaged wave spectra with the same 
vertical axis, highlighting the details of the infragravity waves (IG 
waves). It is evident that IG waves were present at all three gages with 
the same order of magnitude. The peak energy of the IG waves at 
different gages follows this order: IGWG5 > IGWG4 >= IGWG3. The higher 
IG energy observed at WG5, compared to WG3, can be attributed to the 
energy transfer from the short waves to the IG band during wave 
shoaling and the varying breaking locations. The breakwaters leads to a 
significant reduction in short-wave energy, yet the IG wave energy at 
WG4 remains comparable to that at WG3. We think that the IG waves at 
WG4 mainly stem from the interplay of breaking and wave groups 
during wave overtopping and the energy transfer from higher to lower 
frequency bands over the mud flat located seaward of the breakwaters. 
Although resonance could occur between the shoreline and the break
waters, given the short distance, the existence of vegetation, and a 
sloping seabed, it is unlikely to happen in this scenario. Further studies 
using numerical models, such as Funwave-TVD, could be carried out to 
test the hypothesis. 

3.2. Prediction of integral wave parameters and energy density spectra 

Fig. 8 presents the comparisons of d, Hm0, and Tp between the LSTM- 

Fig. 5. Comparison of measured Hm0 and Tp at WG3, WG4, and WG5.  

N. Wang et al.                                                                                                                                                                                                                                   



Applied Ocean Research 141 (2023) 103782

7

predicted and observed values during the testing phase. The composite 
wave models demonstrate strong predictive abilities in estimating Hm0 
at WG3 and WG5, exhibiting R2 values of approximately 0.84 and RMSE 
of around 0.07 m. Similarly, the prediction precision for Tp at WG3 and 
WG5 also quite satisfactory, with R2 values about 0.80 and RMSE about 
0.27 s. As the training data at WG4 are much fewer than the ones at WG3 
and WG5, the estimated wave parameters are less accurate than the ones 
at WG3 and WG5, especially for predicting Tp. However, it is worth 
mentioning that many existing data-driven wave models have difficulty 
predicting Tp and are mostly only focused on predicting Hm0. 

The developed networks in this study also generate predictions of 
frequency spectra. The comparison of the estimated and observed 
spectra at each wave gage can be found in Fig. 9. The findings demon
strate a significant level of agreement between the model results and the 
field measurements, with R2 values of about 0.69. Some examples of 

comparison between measured and estimated spectra values at WG3 and 
WG4 (with high energy) are shown in Fig. 10. To further determine the 
model performance for estimating energy spectra, extra parameters 
were computed to investigate the discrepancies between the measured 
and simulated energy spectra. These parameters encompass the peak 
energy density (Emax) and zero moment of the wave power spectra (m0). 
Emax serves as an indicator of the peak wave spectral density in the 
frequency domain and has been previously explored in studies con
ducted by Dabbi et al. (2015) and Wang et al. (2023b). m0 is defined as 

m0 =

∫fmax

fmin

Syy(f)df , which shows the area under the spectral curve. To 

better examine the prediction skill of the developed models, the spectra 
were separated into two parts by the fsep = 1.5/Tp, and m0, left and 

Fig. 6. Measured spectra at WG3, WG4, and WG5 at selected time slots.  
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m0, right were calculated as m0,left =

∫fsep

fmin

Syy(f)df and m0,right =

∫fmax

fsep

Syy(f)df, respectively. fsep = 1.5/Tp was set as the threshold in this 

study, because f × Tp = 1.5 correlates to the separation of the two har
monics at WG3 and WG5, as shown in Fig. 7. By comparing the predicted 

and observed spectra to the left and right of the thresholds (i.e., m0, left 

and m0, right) separately, we can investigate the model performance on 
predicting low and high harmonics on the wave energy spectra more 
clearly. The time series of predicted and measured Emax, m0, left, and 
m0, right are shown in Fig. 11. The good agreement observed in these 
results further indicates the high accuracy of the composite models in 
predicting wave spectra at the study site. 
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4. Discussion 

4.1. Transfer learning for predicting spectra at WG5 

Normally, the neural networks are trained from scratch (e.g., 
initialized with uniform distribution in this work), while transfer 
learning utilizes pretrained networks to initialize the subsequent pre
dictions. By doing so, transfer learning can expedite the training process 
and enhance prediction accuracy, when the upcoming prediction in
volves slightly altered wave boundary conditions or bathymetry (e.g., 
Kissas et al., 2020). In this study, the measured integral wave parameters 
present some similar patterns at WG3 and WG5 (Fig. 5), and the 
measured energy spectra at both gages show energy transfer to higher 
harmonics owing to triad wave-wave interactions (Fig. 7). Therefore, to 
better capture the secondary peaks in the wave spectra at WG5, we 
developed a pretrained model at WG3 only using the training data with 
kpd < 1 (i.e., at low tides or shallow water depths, when significant 
cross-spectral energy transfers to higher harmonics were observed at 
WG3). The pretrained model at WG3 was then used to initialize the 
model training at WG5. Afterward, the parameters of the second 
network were fine-tuned using the training data specifically from WG5. 
This process led to an enhancement in the prediction accuracy and 
computational efficiency for subsequent predictions at WG5. 

Fig. 12 presents examples of estimated wave spectra at WG5, 
comparing the results obtained with and without the utilization of 
transfer learning. The findings demonstrate that the composite models 
incorporating transfer learning exhibit better prediction performance. 

Moreover, when employing transfer learning, the loss function con
verges after approximately 100 iterations, which is faster compared to 
the model without transfer learning, requiring approximately 300 iter
ations. This improvement in convergence speed can be attributed to the 
similarity in wave boundary conditions and bathymetry between WG3 
and WG5. Consequently, initializing the network parameters at WG5 
with the pretrained model from WG3 leads to enhanced prediction skills 
and accelerated convergence. 

4.2. Wind field representativeness during deployment 

This section shows a representative test for assessing the suitability 
of using models trained with measured wave parameters from February 
to May 2020 for predicting long-term wave processes. The importance of 
this test lies in the fact that purely data-driven models, such as LSTM, 
often face challenges in accurately predicting scenarios that were not 
included in the training dataset. To assess the representativeness of the 
wave generation forcing, the following procedures were implemented as 
outlined by Wang et al. (2022b). First, hourly wind direction and wind 
speed datasets were partitioned into 36 directional bins with 10◦ in
tervals (i.e., 0̊− 10̊, ..., 350̊− 360̊) and 50 speed bins with 0.5 m/s in
tervals (i.e., 0–0.5, ..., 24.5–25 m/s) for both the four-month period in 
2020 and the years of 2020, 2021, and 2022. This division process 
resulted in a total of 1800 divisions (i.e., 36 × 50 = 1800). In order for a 
wind forcing to be considered representable by the four-month data, it 
must fall within one of the divisions shared by the four-month data 
(Fig. 13). It was found that, on average, 95.5 % of the wind conditions 

Fig. 9. Comparison of measured and predicted wave spectra at (a) WG3, (b) WG4, and (c) WG5 (testing data only).  
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recorded at the four stations between 2020 and 2022 could be repre
sented by the wind conditions observed during the four-month period in 
2020 (Table 2). Hence, given that the majority of the wind conditions 

over the three-year period could be represented by the wind conditions 
from February to May 2020, the measured wave parameters were 
employed in this study to build LSTM models for predicting wave spectra 
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Fig. 11. Time series of observed and predicted m0 and Emax at WG3 (only contain the testing data).  
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and parameters in 2020, 2021, and 2022. 

4.3. Wave power computed by spectra and integral wave parameters 

During storms and hurricanes, the wave environment in the estuary 
can be complicated due to the swift changes in wind fetch and wind 
speed. Thus, the integral wave parameters, such as Hm0 and Tp, may not 
be applied to determine the wave power changes nearshore adequately. 
By contrast, wave spectra can better reveal the energy changes in 
different frequency bands when waves propagate to shorelines. In this 
section, we evaluated the differences between the wave power 
computed using integral parameters and spectra at the study site in 
2020, 2021, and 2022. 

To determine the wave power in a narrow-banded spectrum, the 
wave power can be calculated by the integral wave parameters and local 
water depth as 

Pparameter =
ρgH2

m0

16
cg (1)  

where, cg is wave group velocity and ρ is water density. For a complex 
wave field with multiple spectral peaks or a broad spectral shape, the 
wave power can be better calculated based on the spectra directly as 

Pspectra = ρg
∫

cgE(f )df (2) 

The results indicate that the estimated wave power based on spectra 
was higher than the values calculated based on integral parameters at 
WG3, WG4, and WG5 over the three-year period. For instance, in 2020, 
the annual wave power calculated based on wave spectra at WG3, WG4, 
and WG5 was 188.7 W/m, 1.33 W/m, and 90.6 W/m, respectively. 
However, when the wave power was computed based on the integral 
parameters, these values decreased to 148.5 W/m, 1.28 W/m, and 78.0 
W/m. To better understand the differences in wave power computed 
using two different approaches, the proportion and discrepancy of wave 
power determined by integral parameters and spectra were computed 
(Fig. 14). It can be observed that the wave powers calculated based on 
integral wave parameters are lower than those calculated using spectra, 
especially at WG3 and WG5 (the difference can go up to 448 W/m and 
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Fig. 12. Comparison of measured and estimated wave spectra at WG5 (a) with and (b) without transfer learning.  
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103 W/m at WG3 and WG5, respectively), where the wave energy is 
relatively high. The mean values of Pspectra/Pintegral and abs(Pspectra − Pintegral)

at WG5 are 1.3 and 13.0 W/m, respectively, and these values increase to 
1.4 and 40.5 W/m at WG3. This indicates that using integral parameters 
to obtain wave power can result in an even greater underestimation of 
wave power with larger waves. 

Using wave spectra to compute wave power has an implication for 
marsh edge stability analysis. There is a linear relationship between the 
rate of salt marsh edge erosion and the annual wave power of wind 
waves (Leonardi et al., 2016). Taking the wave conditions at WG5 in 
2020 as an example, if the wave power and marsh edge retreat rate were 
calculated based on the integral wave parameters (78.0 W/m) instead of 
the wave spectra (90.6 W/m), there would be an approximate 16 % 
underestimation of shoreline retreat at the study site. Therefore, it is 

recommended that wave spectra be used to compute wave power for 
shoreline erosion prediction and for design of flood protection struc
tures, particularly under energetic storm conditions. 

The wave power calculated from LSTM-predicted wave spectra from 
2020 to 2022 is presented in Table 3. On average, the wave power was 
194.1 W/m, 1.3 W/m, and 92.8 W/m at WG3, WG4, and WG5 over the 
three years, respectively. It is worth mentioning that during the field 
experiments between February and May 2020, the measured wave 
powers were higher, with values of 211.0 W/m, 1.4 W/m, and 99.3 W/m 
at WG3, WG4, and WG5, respectively. This can be attributed to the 
energetic wave conditions in the stormy months when the experiments 
took place. Specifically, the wave climate during late winter and spring 
was more severe than that over the entire year, leading to higher 
observed wave power levels over the four-month period. 

4.4. Implications to living shoreline sustainability 

In these living shorelines with bay beaches, headland breakwaters, 
and marsh planting, the wave energy reduction by the breakwaters is 
considerable (i.e., WG3 vs. WG4), while the wave energy in the bay 
remains constantly lower than the offshore under energetic wave con
ditions due to wave breaking and wave refraction (i.e., WG3 vs. WG5). 
However, the annual wave power in the bay between two headland 
breakwaters remains very high (> 90 w/m) in this energetic wave 
environment. Because of a lack of sandy material in the study site to 
form a stable beach, as seen from historical aerial images, significant 
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Fig. 13. Hourly data of measure wind speed and direction at (a) Bishops Head (8571421), (b) Front Range (8632837), (c) Lewisetta (8635750), and (d) Chesapeake 
Channel (8638901) in 2020 versus February to June 2020. 

Table 2 
The percentages of wind data from various years that can be captured by the 
four-month data in 2020.  

Year Bishops head 
(8571421) 

Front range 
(8632837) 

Lewisetta 
(8635750) 

Chesapeake 
channel 
(8638901) 

2020 97.8 % 95.9 % 98.0 % 95.9 % 
2021 98.1 % 95.3 % 93.5 % 95.2 % 
2022 94.7 % 92.9 % 96.1 % 93.0 % 
Average 96.9 % 94.7 % 95.8 % 94.7 %  
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marsh edge erosion is expected to continue based on the relationship 
between annual wave power and marsh edge retreat rate (Leonardi 
et al., 2016) and an analysis of aerial imagery between 2016 and 2022 
(Wang et al., 2023b). Thus, a secondary sill structure would be needed to 
further reduce the wave power near the shoreline in the bay between 
two headland breakwaters to protect the marsh edge. 

Although the considerable wave power reduction from WG3 to WG4 
was observed over the four-month field experiments and predicted by 
the LSTM models over three years, it may not necessarily result in 
sediment deposition and marsh accretion for the salt marshes behind the 
breakwaters. Marsh erosion is still possible due to the limited sediment 
supply from marine sources, as well as the impacts of circulation and 

Fig. 14. Comparison between hourly wave power calculated from predicted spectra and integral parameters at WG3, WG4, and WG5 in 2020, 2021, and 2022. Left: 
Ratios of wave power computed by spectra and integral parameters as a function of wave power; Right: Differences in wave power computed by two 
different methods. 

Table 3 
Annual average wave power at WG3, WG4, and WG5 in 2020, 2021, and 2022 
(unit: W/m).   

WG3 WG4 WG5 

2020 188.7 1.3 90.6 
2021 187.2 1.3 91.8 
2022 206.4 1.3 96.1  
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current velocity behind the headland breakwater on the settling and 
deposition of suspended sediments. Furthermore, marine sediments are 
likely blocked by the breakwaters with a relatively high crest elevation, 
except during storms when waves can overtop the breakwaters and carry 
sediments to the tidal flat and salt marshes behind it. Therefore, an 
application of external sources of sediments, such as dredging materials, 
may be needed to supplement sediments for marsh accretion both 
laterally and vertically. Marsh planting can be another critical compo
nent of this type of living shoreline structure. Overall, to promote sus
tainable living shoreline development, in addition to reducing wave 
energy, it is important to maintain the physical conditions, such as 
ensuring inundation duration at marsh surface elevation to promote 
vegetation growth and trap inorganic sediments. 

5. Conclusions 

Rock breakwaters, sand nourishment, and planting of salt marsh 
species as living shoreline structures were constructed along the Fog 
Point shoreline in Martin National Wildlife Refuge, Maryland, in 2016 in 
response to the impact of Superstorm Sandy (2012) and future storms. 
To assess the influence of the living shoreline structures in mitigating 
wave energy, wave gages and current meters were deployed seaward 
and shoreward of the structures from February to May 2020. The paper 
introduces a new framework for constructing surrogate models that 
accurately predict wave frequency spectra and integral wave parame
ters, employing the LSTM algorithm with minimal computational re
quirements. This approach enables us to better comprehend the 
fluctuation in wave power surrounding the living shoreline structures 
ranging from hours to years. Our findings contribute to the development 
of effective and efficient methods for predicting wave energy and 
assessing the efficacy of living shoreline structures for coastal protection 
and habitat enhancement. 

In this research, we presented field observations of wind waves based 
on four-month in-situ measurements and developed composite LSTM 
models to estimate long-term spectral wave evolution along the living 
shoreline structures at Fog Point. As the estuarine wind fields showed 
significant variability, we employed wind data from four NOAA stations, 
namely 8571421 at Bishops Head, 8635750 at Lewisetta, 8632837 at 
Front Range, and 8638901 at Chesapeake Channel, as input features to 
the machine learning algorithms. The novel composite LSTM wave 
models exhibited a notable level of accuracy in predicting Hm0 at WG3 
and WG5, with R2 values of about 0.84 and RMSE of about 0.07 m. 
Similarly, the models exhibited satisfactory accuracy in simulating Tp at 
WG3 and WG5, with R2 values around 0.80 and RMSE of approximately 
0.27 s. As the amount of training data at WG4 was much less than that at 
WG3 and WG5, the estimated wave parameters at WG4 were less ac
curate, particularly for simulating Tp. Moreover, the composite networks 
were able to generate predictions of wave frequency spectra, with R2 

values around 0.69. To better capture the secondary peaks in the wave 
spectra at WG5 and accelerate the convergence speed of training the ML 
models, the transfer learning method was employed to compute wave 
spectra based on data collected at WG3, given their similarity in wave 
boundary conditions and bathymetry. 

To examine whether the models trained by the measured wave pa
rameters can be used to predict long-term wave processes, a test was 
conducted to assess the representativeness of the wind data during the 
four-month period in 2020. On average, it was found that the four- 
month data from the four NOAA stations could represent approxi
mately 95.5 % of the annual forcings in 2020, 2021, and 2022. With this 
validation, the developed LSTM models were employed to investigate 
the wave spectra and parameters around the structures throughout the 
years. Subsequently, the wave power variations along the structures 
were computed using the estimated wave parameters and energy spectra 
over the three-year period. The results revealed that the estimated wave 
power from spectra was higher than the values calculated based on 

integral parameters at WG3, WG4, and WG5 from 2020 to 2022. This 
emphasizes the potential underestimation of wave power when relying 
solely on integral parameters in a complex wave field in the shallow 
water of an estuary, which could compromise the safety of engineering 
designs. 

While this method offers predictions specific to a particular location, 
it serves as a valuable tool for quickly approximating long-term wave 
characteristics in scenarios requiring location-specific forecasts. It is 
important to note that the input parameters (e.g., wind and water level) 
must cover a sufficient duration to ensure that the training data accu
rately reflects wave conditions across multiple years. This is important 
because purely data-driven models often struggle with extrapolation 
tasks. A potential approach to address this challenge is to incorporate 
prior domain knowledge into machine learning techniques, such as the 
physics-informed neural networks introduced by Wang et al. (2022a). 
To sum up, this study introduces a new approach utilizing LSTM models 
to predict wave frequency spectra in estuaries. The results demonstrate 
that the proposed approach can provide an accurate and efficient esti
mation of wave spectra, making it a valuable tool for long-term wave 
forecasts or hindcasts. Additionally, it was found that relying solely on 
integral parameters may lead to an underestimation of the wave power 
of a complex wave field with multiple spectral peaks on broad spectra in 
shallow waters, highlighting the importance of considering wave spectra 
when assessing wave power and designing resilient shoreline structures. 
In closing, the findings presented in this study can be useful in assessing 
the effectiveness of the living shorelines in mitigating the impact of 
energetic wind waves. The methodology employed for modeling wave 
spectra and parameters can be extended to various coastal regions and 
estuaries. 
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Appendix

Fig. A1. Time series of measured water depth, Hm0, and Tp at WG4.  

Fig. A2. Time series of measured water depth, Hm0, and Tp at WG5.   

Table A1 
Statistical measures used in this study to evaluate the performance of the developed models.  
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Scatter index (SI): SI =
RMSE

y 
bias: bias =

1
N

∑N
i

ŷi − yi 

R2: 

R2 =

⎛

⎝

∑N
i (yi − ŷi )

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i (yi − yi )
2∑N

i (ŷi − ŷi )
2

√

⎞

⎟
⎠

2 

(continued on next page) 
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Table A1 (continued ) 

Normalized SI performance: S̃I = 1 − SI 
Normalized bias performance: 

B̃ias = 1 −
abs(bias)

y 
Composite Performance Score: 

CPS =
R2 + S̃I + b̃ias

3 
Total composite performance score: TCPS =

1
4
(CPSd + CPSHmo + CPSTp + CPSE)

in which N is the number of samples, ŷi is the estimated values, and yi is the true value.  

Table A2 
Optimal network structures applied in this study for estimating wave parameters and spectra at different gages.    

d Hmo Tp E 

WG3 layer 1 2 1 4 
node 4 8 8 32 

WG4 layer 2 2 2 4 
node 4 8 8 64 

WG5 layer 1 2 1 4 
node 4 8 8 64  
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