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Living shorelines as a nature-based solution for climate change adaptation were constructed in many places
around the world. The success of this type of projects requires long-term monitoring for adaptive management.
The paper presents a novel framework leveraging scientific machine learning methods for accurate and rapid
prediction of long-term hydrodynamic forcing impacting living shorelines using short-term measurements of
water levels and wind waves in the largest estuary in the U.S. Different from existing data-driven wave prediction
models focusing on significant wave heights, this study is focused on the prediction of wave energy spectra in
shallow water using winds and tides as the input feature and short-term measurements of wave spectra and water
depths as the label. Long Short-Term Memory (LSTM) models were developed using four-month wave mea-
surements in the stormy seasons to predict integral wave parameters and energy spectra for multiple years. The
developed models accurately predicted wave heights, peak periods, and energy spectra around the living
shorelines, capturing complex wave dynamics, such as wave generation by wind, nonlinear wave-wave in-
teractions, and depth-limited wave breaking in the shallow water of a large estuary. The validated models were
then used to determine the long-term wave forcing impacting the living shorelines based on the modeled wave
characteristics and spectra. Model results show that the surrogate models utilizing LSTM to predict wave spectra
in the frequency domain enable long-term predictions of spectral wave evolution with a minimal computational
cost. Our findings provide valuable insights into the efficacy of living shorelines in attenuating wave energy and
demonstrate the utility of this approach in assessing the effectiveness of such living shoreline structures.

1. Introduction

Chesapeake Bay, situated on the East Coast of the United States, is
renowned as the largest estuary in the country, spanning over 320 km
from the Susquehanna River in Maryland to the Atlantic Ocean (Basco,
2020). It is an important ecological, economic, and recreational
resource, providing habitat for many species of plants and animals,
supporting commercial and recreational fishing, and attracting millions
of visitors each year. However, the coastlines of Chesapeake Bay have
been enduring chronic erosion, with estimated rates varying from 0 to 3
m/yr, primarily due to factors such as sea level rise, climate change,
hurricanes, and storm surges (Sanford and Gao, 2018). Because of the
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anticipated increase in global sea levels, the Chesapeake Bay shorelines
and salt marshes will be at greater risk of damage. Consequently, the
development of adaptation strategies becomes imperative in order to
mitigate coastal erosion and address flood hazards stemming from
extreme storms and climate change.

Traditionally, physical barriers like bulkheads, seawalls, revetments,
groins, and breakwaters have been used to protect civil infrastructure
from flooding and shorelines from erosion. However, these hard struc-
tures tend to increase wave reflection and cause scouring at the edges,
leading to a loss of habitat, such as intertidal flats (e.g., O’Donnell,
2017). In recent years, more nature-based approaches (green ap-
proaches) have been incorporated into shoreline protection and
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restoration, such as using artificial oyster reefs (e.g., oyster castles,
oyster shells) and vegetation (e.g., salt marshes, seagrass). One prom-
ising strategy is the adoption of a hybrid approach called “living
shorelines,” which combines both structural and natural elements.
Living shorelines have the potential to mitigate coastal erosion and flood
hazards by dissipating waves while providing crucial habitats. With the
implementation of numerous living shoreline restoration projects along
the Gulf Coast and Mid-Atlantic coast in the U.S., it becomes imperative
to advance our comprehension of the efficacy of living shoreline struc-
tures to help inform upcoming restoration initiatives.

The correlation between wetland shoreline erosion rates and wave
power has been established in previous studies (e.g., Schwimmer, 2001;
Marani et al., 2011; McLoughlin et al., 2015; Leonardi et al., 2016; Zhu
et al., 2020). Therefore, it is crucial to investigate the variations of wave
power along the living shorelines. While integral wave parameters such
as significant wave height and peak wave period are commonly utilized
to characterize sea states and trends, they may not accurately represent
the wave power within a complex wave field in shallow water. In the
case of an estuary with living shorelines, relying solely on integral wave
parameters to compute wave power could lead to underestimations
(Zhu et al., 2020). Moreover, integral wave parameters can obscure
essential characteristics of a wave field, potentially causing misinter-
pretation when confronted with complex wave conditions involving
multiple wave systems propagating through a specific area (Wang et al.,
2023Db). In contrast, wave spectra offer a better approach to character-
izing the wave field, providing precise insights into wave evolution with
distinct energy sources and sinks. For instance, submerged vegetation
can effectively dissipate the energy of the higher frequency band in a
random wave field compared to the energy of the lower frequency band
(Zhu and Chen, 2017). Therefore, obtaining accurate information about
the wave spectra is essential as it enhances our understanding of the
state of surface waves in coastal and estuarine regions, along with their
long-term impacts on natural shorelines and civil infrastructure.

Despite the availability of conventional methods, such as process-
based numerical simulations and field measurements, to obtain wave
spectra of a study site, their applicability is often limited due to high
computational and/or operational costs. For example, field measure-
ments often require a substantial amount of time and financial re-
sources, leading to data that is sparse in both spatial and temporal
coverage. To address these challenges, researchers have turned to
physics-based wave models such as SWAN (Booij et al., 1999) and
WAVEWATCH (Tolman and Others, 2009) to simulate the evolution of
wave spectra. However, applying these numerical models to simulate
wave spectra in a living shoreline project area may require nested
computational domains with varying spatial resolutions and the
coupling of wave and nearshore-circulation models. These requirements
can be expensive or impractical for long-term assessments over years
and decades. Furthermore, certain numerical approximations, such as
quadruplet wave-wave interactions and triad wave-wave interactions,
can result in inaccurate predictions. For instance, Filipot and Cheung
(2012) discovered that the original version of SWAN could not
adequately capture the sub-harmonic component due to a lack of
appropriate parameterization for describing nonlinear energy transfer
towards the infra-gravity band. However, infra-gravity waves play a
vital role in nearshore processes and require specific consideration in
spectral wave modeling (Rijnsdorp et al., 2021). As an alternative
approach, machine learning (ML) technology has emerged as a powerful
tool that has revolutionized numerous scientific disciplines and intro-
duced a novel paradigm to address current research needs (Xu et al.,
2023). Scientific ML models can serve as substitutes for simulating wave
spectra, eliminating the need for extensive computational resources.
Additionally, these models can effectively handle the complexities of
strong nonlinearity and high dimensionality.

In recent years, the utilization of ML in coastal and ocean engi-
neering has gained significant attention. This interest is primarily driven
by the accessibility of ML algorithms and the accumulation of
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comprehensive datasets from numerical simulations, field measure-
ments, and laboratory experiments (Xu et al., 2023). ML refers to a
computational system capable of learning and improving from experi-
ence, typically in the form of datasets, without the need for explicit
programming. Artificial Neural Network (ANN) has found extensive
usage in coastal and ocean engineering applications to investigate
nonlinear connections between input features and labels (e.g., Zheng
et al., 2020; Bento et al., 2021; Mares-Nasarre et al., 2021; Elbisy and
Elbisy, 2021). However, ANN models are limited in their ability to retain
and utilize information from previous time steps. In contrast, Long
Short-Term Memory (LSTM) models have the capacity to store infor-
mation over longer time periods. LSTM models employ a memory cell to
capture and retain past inputs and outputs, making them well-suited for
handling time series data. They are particularly advantageous for tasks
involving the identification of long-term dependencies in sequential
data. Recent studies (Ni and Ma, 2020; Miky et al., 2021; Gao et al.,
2021; Meng et al., 2021; Wei, 2021, 2022; Yao and Wu, 2022; Hao et al.,
2022; Luo et al., 2022; Zhao et al., 2023; Sareen et al., 2023) have
demonstrated the successful use of LSTM models for wave height fore-
casting. For instance, Jorges et al. (2021) developed an LSTM model to
reconstruct and predict the nearshore wave field, demonstrating
remarkable accuracy in predicting significant wave height for both
long-term and short-term periods. Similarly, Ti et al. (2022) applied
LSTM models to forecast spatial-temporal significant wave height in the
West Pacific, demonstrating better accuracy and computational effi-
ciency compared to physics-based numerical models. Furthermore,
Zhang et al. (2023) introduced a memory curve into the conventional
Support Vector Regression model, which significantly improved the
accuracy of significant wave height prediction. However, the majority of
existing ML models for wave prediction have primarily focused on wave
height. There has been a lack of research dedicated to exploring the
spatial-temporal evolution of wave spectra in shallow waters using ML
methods.

This paper has two main objectives: (1) to examine the variations of
energy spectra over time and space at the Fog Point living shoreline in
Martin National Wildlife Refuge, Maryland, and (2) to develop LSTM
models that can predict wave spectra and parameters at this specific site.
The models were trained using wind, water level, and wave measure-
ment data collected from February to May 2020. Subsequently, the
trained models were employed to estimate wave parameters and energy
spectra in 2020, 2021, and 2022, requiring minimal computational re-
sources. This paper introduces an innovative approach for predicting
energy spectra in the frequency domain in a large estuary, which can be
extended to other living shoreline restoration projects to assess long-
term variations in wave power, water level, and shoreline stability.
We have applied a series of soft computing-based algorithms to address
long-term wave prediction problems in coastal engineering. In our
previous work (Wang et al., 2022b), we proposed a hybrid method that
integrates a physics-based model (SWAN) with ML algorithms (i.e.,
bagged regression tree and ANN) to predict wave parameters and detect
sources of error within the SWAN model. This hybrid approach can
effectively overcome the limitation of using scarce observations to
develop a predictive ANN model. To assess the long-term impact of
constructed oyster reefs on wave fields in upper Delaware Bay, Wang
et al. (2022c) developed ANN models to predict integral wave param-
eters, including significant wave height and peak wave period, based on
short-term wave measurements. Since wave spectra can provide a better
approach to characterizing complex wave fields, Wang et al. (2023b)
focused on predicting wave energy density spectra as well as wave pa-
rameters using ANN models at the Chesapeake Bay Bridge-Tunnel with
publicly available buoy data. Their goal was to separate the ocean swell
spectra from the bay wave spectra at the estuarine entrance. In the
current study, utilizing the capacity of LSTM algorithms to store and
control relevant information over longer time periods, we developed a
new data-driven model to investigate wave spectra along the
headland-bay shoreline based on our field observations. Compared to
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the estuarine entrance, the triad wave interactions are more pronounced
at this study site due to nonlinear effects in the shallow water, affecting
the spectral shape. Furthermore, modeling the impact of breakwaters on
spectral wave evolution is challenging. This study tackled those issues.

The paper is structured as follows: In Section 2, detailed information
is provided regarding the field experiment conducted and the LSTM
model development, containing details about the model’s input, output,
and configuration. In Section 3, an evaluation is carried out to assess the
effectiveness of the LSTM models in predicting wave parameters and
energy spectra through a comparison of model outputs against field
observations. Section 4 explores the application of transfer learning
techniques to improve the accuracy of simulating high harmonics in
shallow water due to triad wave-wave interactions. Furthermore, Sec-
tion 4 also includes a representativeness test of the training data,
ensuring the reliability of the year-long hindcast of wave energy spectra
and wave power. In conclusion, Section 5 summarizes the main findings
of the paper.

2. Methodology
2.1. Study site and field observations

Our study site (around 38° 1°47.64” N, 76° 2°34.08” W) is at the Fog
Point shorelines in the Martin National Wildlife Refuge, Maryland, US
located in the middle of the Chesapeake Bay (Fig. 1). The shorelines are
exposed to prevailing winds, making them highly vulnerable to storms.
Research shows that the shorelines along the northern and western
shores of the refuge have receded at a rate of 0.61 to 5.5 m/yr from 2001
to 2013, leading to a loss of nearly 3.3 acres of prime fish and wildlife
habitat annually (Perini Management Services, 2014). Therefore, it is
important to address the issue of shoreline erosion. Rock breakwaters,
sand nourishment, and planting of salt marsh species as living shoreline
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structures were constructed along the Fog Point shoreline in the Martin
National Wildlife Refuge in 2016 in response to Hurricane Sandy (2012)
and future storms. The type of living shoreline is featured with the
“headland(breakwater)-embayment-headland (breakwater)” pattern
(Hardaway and Gunn, 2010). Rock breakwaters at the study site are
typically 76.2 m long, with sand added behind connecting to the island.
The tidal range is about 0.56 m, based on the measurements from a
nearby NOAA station (8571421). The wave height variations at the
study site were influenced by the combination of the structures and
changes in bathymetry.

To evaluate the effectiveness of the living shoreline structures, six
pressure transducers (i.e., wave gages (WG)) were deployed at low tides
during February 10-14, 2020, and were originally planned to be
retrieved in May 2020. Unfortunately, due to the COVID-19 travel re-
strictions, the retrieval was delayed until August 25, 2021, and only
three of the gages (WG3, WG4, and WG5, Fig. 1(b)) were found.
Furthermore, it was found that the wave data collected at WG5 after
May 11 were inaccurate, possibly due to the gage being disturbed by an
unknown force. As our study site is far away from the mouth of the
Chesapeake Bay, the measured wave energy from the three gages was
considered entirely generated locally by winds. As T, from OCEANLYZ
v2.0 may be incorrectly calculated when H,y is very small, waves with
H;,0 < 1 cm were excluded from further analysis. Field data are available
in Wang et al. (2023a).

2.2. Machine learning models

To forecast wave parameters and spectra over an extended period,
we constructed three composite LSTM networks at each gage location.
These networks were developed by leveraging the domain knowledge
regarding wave responses to forcing functions and the interrelation
among wave parameters. To ensure the accuracy of the modeled long-

8571421

8635750 A study site

8632837

8638901

Fig. 1. (a) A map displaying the locations of the wave gages and the structure. (b) Salt marsh plants, S. alterniflora grow behind the breakwaters. The photograph
was taken on July 11, 2017, nearly one year after breakwater construction (Photograph taken by Hongqing Wang, U.S. Geological Survey). (c) An illustration
displaying the study area, indicated by a yellow triangle representing Fog Point Beach, along with nearby NOAA wind stations denoted by red dots in Chesapeake

Bay. The small map shows Chesapeake Bay marked by a red dot.
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term wave parameters and energy spectra, a representative test was
conducted. This test aimed to determine whether the wave fields
measured during the four-month period could be extrapolated to
analyze long-term wave fields, as outlined in Section 4.2. This precau-
tion was necessary since LSTM models tend to lack generalization ability
for scenarios that were not part of the training dataset, which is a
common limitation of purely data-driven models.

2.2.1. Wind and water level data

The wave development within an estuary is widely acknowledged to
be influenced by two factors: the wind field and water depth. In the case
of finite depth conditions, wave height is known to be constrained
(Karimpour et al., 2017). To effectively model wave parameters and
energy spectra, this study incorporated wind and water level data as
input features for the LSTM models. The water level data were obtained
from NOAA 8571421, located at Bishops Head, approximately 21.3 km
north of Fog Point. As for the wind data, it was sourced from four
dispersed NOAA stations across the bay: 8571421 at Bishops Head,
8635750 at Lewisetta, 8632837 at Front Range, and 8638901 at Ches-
apeake Channel. These stations were carefully chosen to encompass the
large variation in wind fields observed within the large bay area. Both
the geographic locations and data availability were taken into account
during the station selection process. The wind roses derived from the
measurements at these stations exhibit notable spatial heterogeneity in
wind fields across the Chesapeake Bay (Fig. 2), which further supported
the inclusion of wind data from all four stations as input features.

2.2.2. LSTM model setup

Previous studies have utilized past wave measurements, such as
wave parameters recorded 3 or 6 h earlier, as input features for training
LSTM models to forecast wave characteristics (e.g., Fan et al., 2020;
Wei, 2021). However, this study does not incorporate previous wave
measurements as input features during LSTM training. The reason for
this omission is that the measured wave parameters were obtained from
temporary wave gages deployed in 2020, rather than a permanent sta-
tion. Consequently, including previous wave parameters as input fea-
tures would render the developed models unsuitable for predicting
waves in the future, or wave hindcast, such as in 2021, due to the

Bishop Head
N

Chesapeake Channel

S

Rappahannock Light
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unavailability of wave measurements from that year. Essentially, this
study focuses on constructing cause-effect wave models by solely
applying forcing functions (e.g., wind and water level data) to predict
wave parameters and energy spectra (Londhe and Panchang, 2018).
Given the typically continuous availability of wind data, the input fea-
tures in this study encompassed both the current wind data and the wind
data recorded 1 h, 2 h, and 3 h prior, accounting for the time required for
wave growth along the wind fetch. We further examined whether the
inclusion of past water level data as input features could enhance the
accuracy of the models. The findings indicated that the model accuracy
remained comparable to the one achieved when using solely the current
water level data as an input feature. Therefore, the developed LSTM
models in this study employed the current and previous 3 h of wind data,
along with the current water level, as the input features to predict wave
parameters and energy spectra of the current state.

In this study, the input features used to estimate wind waves
included wind and water level data. Specifically, the hourly u- and v-
wind velocity components and water levels measured at NOAA station
8571421 were utilized to predict the local water depth (d) at each wave
gage location. This information was then employed to calculate wave
power in this study. To model H,,, a network was developed using the
wind data from all four NOAA stations and the water level data from
NOAA station 8571421 as input features. Since H,,o is important for
predicting T, it was applied as an input along with wind and water
levels in the T, prediction. To simulate energy spectra E in the frequency
domain, the inputs included wind, water level, Hyo, and T,. The loss
function for the complete network was determined by summing the
error functions of d, Hyo, T, and E. Fig. 3 and Table 1 show the archi-
tecture of composite networks, as well as input features and labels.
Although it was possible to use independent networks to predict d, Hyo,
T,, and E separately, this approach was not employed in this study to
avoid the potential propagation of errors from one network to another.

The composite LSTM models were tested and validated using hourly
datasets from 03/07,/2020 to 03/15/2020 and 03/01/2020 to 03/07/
2020, respectively. The training data encompassed the remaining
dataset in 2020. The development of LSTM models involved the utili-
zation of PyTorch. The training procedure aimed to minimize the mean
square error (MSE) for simulating wave parameters and spectra

Lewisetta
N

Wind Speeds in mv/s
—_— > 15
I 12 < Wg <15
[ ]9 W <12
6 < W <9
G < W <6
B0 < W, <3

w u u u

Fig. 2. Wind roses at NOAA stations 8571421 at Bishops Head, 8635750 at Lewisetta, 8632837 at Front Range, and 8638901 at Chesapeake Channel based on

measurements from 2020 to 2022.
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LSTM-Hmo LSTM-Tp LSTM-E
v-wind T
Water
level 7L d
LSTM-d

Fig. 3. A diagram showing the design of the LSTM models used to estimate d, Hyo, Ty, and E. The ‘S’ marker in the orange box represents hyperbolic tangent

functions (the activation function).

Table 1
Input features and labels to estimate wave parameters and spectra using LSTM
models.

Targets  Input features Labels

d u- and v-wind speed and water level data at NOAA Measured d
stations 8571421

Hyo u- and v-wind speed data at NOAA stations 8571421, Measured
8635750, 8632837, and 8638901, water level data at Hyo
NOAA station 8571421

T, u- and v-wind speed data at NOAA stations 8571421, Measured T,
8635750, 8632837, and 8638901, water level data at
NOAA station 8571421, predicted Hno in

E u- and v-wind speed data at NOAA stations 8571421, Measured E

8635750, 8632837, and 8638901, water level data at
NOAA station 8571421, predicted Hyo and T,

(Table A1). The training process continued until the MSE for d, Hno, Ty,
or E ceased to decrease. The LSTM models had a sequence length of 16
and utilized the sigmoid and hyperbolic tangent functions as the gating
and output activation functions, respectively (Hochreiter and Schmid-
huber, 1997). The weights and biases were initialized using a uniform
distribution ranging from —/K to v/K, where K is calculated as 1 divided
by the number of nodes. Normalization techniques were applied to
ensure inputs and outputs fell within the range of —1 to 1, thereby

mitigating the impact of variations in parameters. The Adam optimiza-
tion algorithm was employed for network training (Kingma and Ba,
2014), with an initial learning rate of 0.01. The training process was
performed on a system equipped with an Intel Core i7 processor and 32
GB memory, taking approximately 30 s to complete.

To identify the most suitable network structures for predicting wave
parameters and spectra at each wave gage location (Wang et al., 2022c,
2023b), a thorough examination of 156 structures was conducted. These
structures encompassed 1 to 4 hidden layers, each with 2 to 40 nodes.
The performance of different structures was quantified using a com-
posite performance score, including bias, SI, and R? (Table A1). The
structure with the highest score was considered the optimal choice
(Table A2).

3. Results
3.1. Measured wave characteristics

The time series of measured d, Hyo, and T, at WG3, WG4, and WG5
are shown in Figs. 4, A1l and A2 (in the appendix), respectively. It should
be noted that the wave data collected at WG5 after May 11 had poor
quality, so the data were excluded from further analysis in this paper.
The comparisons of Hy,o and T), at three gages are presented in Fig. 5. As
expected, the Hyo at WG3 (offshore location) was the highest, while the
Hpo at WG4 protected by structures was the lowest among the three
gages. The T}, values at WG3 and WG5 (embayment location) are similar,

WG3

May Jun
2020

Fig. 4. Time series of measured d, Hy,, and T, at WG3.
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Fig. 5. Comparison of measured H,,o and T, at WG3, WG4, and WG5.

which are generally smaller than those observed at WG4, indicating
short waves were dissipated more by the low-crested breakwater.
Throughout the deployment period, the average H,,o measured at WG3,
WG4, and WG5 were 0.28 m, 0.04 m, and 0.25 m, respectively. The
averaged T, measured were 2.77 s, 3.85 s, and 2.78 s at WG3, WG4, and
WGS5, respectively. The decrease in wave height observed from WG3 to
WG4 may be attributed to a combination of factors, including bathym-
etry (wave breaking due to varying depths), bottom friction, and the
presence of breakwaters (Wang et al., 2022c).

For the measured wave spectra (E), several energy densities (with the
peak energy density Epq, > 0.1 m%/Hz at WG3) are shown as examples in
Fig. 6. It was found that the energy spectra recorded at WG4 were much
lower than those recorded at WG3 and WG5, attributed to the dissipa-
tion caused by the depth-limited wave breaking, bottom friction, and
structures. Interesting to see is that the energy spectra at low frequencies
(f < 0.015 Hz) at WG4 exhibited similar magnitudes to those at WG3,
indicating that subharmonic waves may propagate over the structures
without experiencing significant damping effects. Moreover, the peak
wave frequency (f,) at WG4 is no greater than the ones at WG3 and
WGS, consistent with the previous observations of T,. Because of the
wave-wave triad interactions (Zhu et al., 2020), two spectral peaks with
frequencies of f, and 2f, can be observed at WG3 and WG5 (e.g., Feb 27
2020 07:00:00). These peaks align with the primary waves and their
higher harmonics, respectively. It was found that the observation of high
harmonics was more frequent when k,d (Kp is the wave number) smaller
than 1 and 0.8 at WG3 and WG5, respectively. The occurrence of these
high harmonics accounted for 27 % and 48 % of all wave measurements

during the deployment period at WG3 and WG5, respectively. Fig. 7(a)
shows the wave spectra normalized by f, at each gage location averaged
over the entire deployment period. At both WG3 and WG5, two spectral
peaks are visible in sea wave band, although the feature at WG5 is more
pronounced, consistent with the analysis presented earlier. Fig. 7(b)
offers a zoomed-in view of the averaged wave spectra with the same
vertical axis, highlighting the details of the infragravity waves (IG
waves). It is evident that IG waves were present at all three gages with
the same order of magnitude. The peak energy of the IG waves at
different gages follows this order: IGywgs > IGwgs >= IGwgs. The higher
IG energy observed at WG5, compared to WG3, can be attributed to the
energy transfer from the short waves to the IG band during wave
shoaling and the varying breaking locations. The breakwaters leads to a
significant reduction in short-wave energy, yet the IG wave energy at
WG4 remains comparable to that at WG3. We think that the IG waves at
WG4 mainly stem from the interplay of breaking and wave groups
during wave overtopping and the energy transfer from higher to lower
frequency bands over the mud flat located seaward of the breakwaters.
Although resonance could occur between the shoreline and the break-
waters, given the short distance, the existence of vegetation, and a
sloping seabed, it is unlikely to happen in this scenario. Further studies
using numerical models, such as Funwave-TVD, could be carried out to
test the hypothesis.

3.2. Prediction of integral wave parameters and energy density spectra

Fig. 8 presents the comparisons of d, Hyo, and T, between the LSTM-
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Fig. 7. Averaged wave spectra at WG3, WG4, and WG5 for the entire deployment duration. (a) full spectra (WG3 and WG5 use the left vertical axis, and WG4 uses
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predicted and observed values during the testing phase. The composite
wave models demonstrate strong predictive abilities in estimating Hp,o
at WG3 and WG5, exhibiting R? values of approximately 0.84 and RMSE
of around 0.07 m. Similarly, the prediction precision for T, at WG3 and
WGS also quite satisfactory, with R? values about 0.80 and RMSE about
0.27 s. As the training data at WG4 are much fewer than the ones at WG3
and WG5, the estimated wave parameters are less accurate than the ones
at WG3 and WGS5, especially for predicting T,. However, it is worth
mentioning that many existing data-driven wave models have difficulty
predicting T, and are mostly only focused on predicting Hyo.

The developed networks in this study also generate predictions of
frequency spectra. The comparison of the estimated and observed
spectra at each wave gage can be found in Fig. 9. The findings demon-
strate a significant level of agreement between the model results and the
field measurements, with R? values of about 0.69. Some examples of

comparison between measured and estimated spectra values at WG3 and
WG4 (with high energy) are shown in Fig. 10. To further determine the
model performance for estimating energy spectra, extra parameters
were computed to investigate the discrepancies between the measured
and simulated energy spectra. These parameters encompass the peak
energy density (Epa.x) and zero moment of the wave power spectra (my).
Enax serves as an indicator of the peak wave spectral density in the
frequency domain and has been previously explored in studies con-
ducted by Dabbi et al. (2015) and Wang et al. (2023b). my is defined as
fmax
my = S,y(f)df, which shows the area under the spectral curve. To
Foin
better examine the prediction skill of the developed models, the spectra
were separated into two parts by the fi, = 1.5/T,, and mg o and
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Fig. 8. Comparison of measured and predicted d, Hy,, and T, at each gage location (testing data only).
fep and observed spectra to the left and right of the thresholds (i.e., my, s
Mo, rigy were calculated as mopp = Syy(f)df and Mg = and myg, rgy) separately, we can investigate the model performance on
fon predicting low and high harmonics on the wave energy spectra more
Fonan clearly. The time series of predicted and measured Epax, My, 1o, and

Syy(f)df, respectively. fep = 1.5/T, was set as the threshold in this

Soep
study, because f x T, = 1.5 correlates to the separation of the two har-

monics at WG3 and WG5, as shown in Fig. 7. By comparing the predicted

My, righe are shown in Fig. 11. The good agreement observed in these
results further indicates the high accuracy of the composite models in
predicting wave spectra at the study site.
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4. Discussion
4.1. Transfer learning for predicting spectra at WG5

Normally, the neural networks are trained from scratch (e.g.,
initialized with uniform distribution in this work), while transfer
learning utilizes pretrained networks to initialize the subsequent pre-
dictions. By doing so, transfer learning can expedite the training process
and enhance prediction accuracy, when the upcoming prediction in-
volves slightly altered wave boundary conditions or bathymetry (e.g.,
Kissas et al., 2020). In this study, the measured integral wave parameters
present some similar patterns at WG3 and WG5 (Fig. 5), and the
measured energy spectra at both gages show energy transfer to higher
harmonics owing to triad wave-wave interactions (Fig. 7). Therefore, to
better capture the secondary peaks in the wave spectra at WG5, we
developed a pretrained model at WG3 only using the training data with
k,d < 1 (i.e., at low tides or shallow water depths, when significant
cross-spectral energy transfers to higher harmonics were observed at
WG3). The pretrained model at WG3 was then used to initialize the
model training at WG5. Afterward, the parameters of the second
network were fine-tuned using the training data specifically from WGS5.
This process led to an enhancement in the prediction accuracy and
computational efficiency for subsequent predictions at WG5.

Fig. 12 presents examples of estimated wave spectra at WG5,
comparing the results obtained with and without the utilization of
transfer learning. The findings demonstrate that the composite models
incorporating transfer learning exhibit better prediction performance.

Moreover, when employing transfer learning, the loss function con-
verges after approximately 100 iterations, which is faster compared to
the model without transfer learning, requiring approximately 300 iter-
ations. This improvement in convergence speed can be attributed to the
similarity in wave boundary conditions and bathymetry between WG3
and WGS5. Consequently, initializing the network parameters at WG5
with the pretrained model from WG3 leads to enhanced prediction skills
and accelerated convergence.

4.2. Wind field representativeness during deployment

This section shows a representative test for assessing the suitability
of using models trained with measured wave parameters from February
to May 2020 for predicting long-term wave processes. The importance of
this test lies in the fact that purely data-driven models, such as LSTM,
often face challenges in accurately predicting scenarios that were not
included in the training dataset. To assess the representativeness of the
wave generation forcing, the following procedures were implemented as
outlined by Wang et al. (2022b). First, hourly wind direction and wind
speed datasets were partitioned into 36 directional bins with 10° in-
tervals (i.e., 0—10, ..., 350—360) and 50 speed bins with 0.5 m/s in-
tervals (i.e., 0-0.5, ..., 24.5-25 m/s) for both the four-month period in
2020 and the years of 2020, 2021, and 2022. This division process
resulted in a total of 1800 divisions (i.e., 36 x 50 = 1800). In order for a
wind forcing to be considered representable by the four-month data, it
must fall within one of the divisions shared by the four-month data
(Fig. 13). It was found that, on average, 95.5 % of the wind conditions
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recorded at the four stations between 2020 and 2022 could be repre-
sented by the wind conditions observed during the four-month period in
2020 (Table 2). Hence, given that the majority of the wind conditions
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over the three-year period could be represented by the wind conditions
from February to May 2020, the measured wave parameters were
employed in this study to build LSTM models for predicting wave spectra
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and parameters in 2020, 2021, and 2022.

4.3. Wave power computed by spectra and integral wave parameters

During storms and hurricanes, the wave environment in the estuary
can be complicated due to the swift changes in wind fetch and wind
speed. Thus, the integral wave parameters, such as Hy,o and Tj,, may not
be applied to determine the wave power changes nearshore adequately.
By contrast, wave spectra can better reveal the energy changes in
different frequency bands when waves propagate to shorelines. In this
section, we evaluated the differences between the wave power
computed using integral parameters and spectra at the study site in
2020, 2021, and 2022.

To determine the wave power in a narrow-banded spectrum, the
wave power can be calculated by the integral wave parameters and local
water depth as

ngrznO
16

g (@]

Ppammerer =

11

where, c, is wave group velocity and p is water density. For a complex
wave field with multiple spectral peaks or a broad spectral shape, the
wave power can be better calculated based on the spectra directly as
P spectra = P& / CHE (f)df (2)
The results indicate that the estimated wave power based on spectra
was higher than the values calculated based on integral parameters at
WG3, WG4, and WGS5 over the three-year period. For instance, in 2020,
the annual wave power calculated based on wave spectra at WG3, WG4,
and WG5 was 188.7 W/m, 1.33 W/m, and 90.6 W/m, respectively.
However, when the wave power was computed based on the integral
parameters, these values decreased to 148.5 W/m, 1.28 W/m, and 78.0
W/m. To better understand the differences in wave power computed
using two different approaches, the proportion and discrepancy of wave
power determined by integral parameters and spectra were computed
(Fig. 14). It can be observed that the wave powers calculated based on
integral wave parameters are lower than those calculated using spectra,
especially at WG3 and WGS5 (the difference can go up to 448 W/m and
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Fig. 13. Hourly data of measure wind speed and direction at (a) Bishops Head (8571421), (b) Front Range (8632837), (c) Lewisetta (8635750), and (d) Chesapeake

Channel (8638901) in 2020 versus February to June 2020.

Table 2

The percentages of wind data from various years that can be captured by the

four-month data in 2020.

Year Bishops head Front range Lewisetta Chesapeake
(8571421) (8632837) (8635750) channel
(8638901)
2020 97.8 % 95.9 % 98.0 % 95.9 %
2021 98.1 % 95.3 % 93.5 % 95.2 %
2022 94.7 % 92.9 % 96.1 % 93.0 %
Average  96.9 % 94.7 % 95.8 % 94.7 %

103 W/m at WG3 and WG5, respectively), where the wave energy is
relatively high. The mean values of Pypecira /Pintegrat a0d abs(Pspectra —Pingegrat)
at WGS5 are 1.3 and 13.0 W/m, respectively, and these values increase to
1.4 and 40.5 W/m at WG3. This indicates that using integral parameters
to obtain wave power can result in an even greater underestimation of
wave power with larger waves.

Using wave spectra to compute wave power has an implication for
marsh edge stability analysis. There is a linear relationship between the
rate of salt marsh edge erosion and the annual wave power of wind
waves (Leonardi et al., 2016). Taking the wave conditions at WG5 in
2020 as an example, if the wave power and marsh edge retreat rate were
calculated based on the integral wave parameters (78.0 W/m) instead of
the wave spectra (90.6 W/m), there would be an approximate 16 %
underestimation of shoreline retreat at the study site. Therefore, it is

12

recommended that wave spectra be used to compute wave power for
shoreline erosion prediction and for design of flood protection struc-
tures, particularly under energetic storm conditions.

The wave power calculated from LSTM-predicted wave spectra from
2020 to 2022 is presented in Table 3. On average, the wave power was
194.1 W/m, 1.3 W/m, and 92.8 W/m at WG3, WG4, and WG5 over the
three years, respectively. It is worth mentioning that during the field
experiments between February and May 2020, the measured wave
powers were higher, with values of 211.0 W/m, 1.4 W/m, and 99.3 W/m
at WG3, WG4, and WGS5, respectively. This can be attributed to the
energetic wave conditions in the stormy months when the experiments
took place. Specifically, the wave climate during late winter and spring
was more severe than that over the entire year, leading to higher
observed wave power levels over the four-month period.

4.4. Implications to living shoreline sustainability

In these living shorelines with bay beaches, headland breakwaters,
and marsh planting, the wave energy reduction by the breakwaters is
considerable (i.e., WG3 vs. WG4), while the wave energy in the bay
remains constantly lower than the offshore under energetic wave con-
ditions due to wave breaking and wave refraction (i.e., WG3 vs. WG5).
However, the annual wave power in the bay between two headland
breakwaters remains very high (> 90 w/m) in this energetic wave
environment. Because of a lack of sandy material in the study site to
form a stable beach, as seen from historical aerial images, significant
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Fig. 14. Comparison between hourly wave power calculated from predicted spectra and integral parameters at WG3, WG4, and WG5 in 2020, 2021, and 2022. Left:
Ratios of wave power computed by spectra and integral parameters as a function of wave power; Right: Differences in wave power computed by two

different methods.

Table 3
Annual average wave power at WG3, WG4, and WG5 in 2020, 2021, and 2022
(unit: W/m).

WG3 WG4 WG5
2020 188.7 1.3 90.6
2021 187.2 1.3 91.8
2022 206.4 1.3 96.1

marsh edge erosion is expected to continue based on the relationship
between annual wave power and marsh edge retreat rate (Leonardi
et al., 2016) and an analysis of aerial imagery between 2016 and 2022
(Wang et al., 2023b). Thus, a secondary sill structure would be needed to
further reduce the wave power near the shoreline in the bay between
two headland breakwaters to protect the marsh edge.

Although the considerable wave power reduction from WG3 to WG4
was observed over the four-month field experiments and predicted by
the LSTM models over three years, it may not necessarily result in
sediment deposition and marsh accretion for the salt marshes behind the
breakwaters. Marsh erosion is still possible due to the limited sediment
supply from marine sources, as well as the impacts of circulation and

13
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current velocity behind the headland breakwater on the settling and
deposition of suspended sediments. Furthermore, marine sediments are
likely blocked by the breakwaters with a relatively high crest elevation,
except during storms when waves can overtop the breakwaters and carry
sediments to the tidal flat and salt marshes behind it. Therefore, an
application of external sources of sediments, such as dredging materials,
may be needed to supplement sediments for marsh accretion both
laterally and vertically. Marsh planting can be another critical compo-
nent of this type of living shoreline structure. Overall, to promote sus-
tainable living shoreline development, in addition to reducing wave
energy, it is important to maintain the physical conditions, such as
ensuring inundation duration at marsh surface elevation to promote
vegetation growth and trap inorganic sediments.

5. Conclusions

Rock breakwaters, sand nourishment, and planting of salt marsh
species as living shoreline structures were constructed along the Fog
Point shoreline in Martin National Wildlife Refuge, Maryland, in 2016 in
response to the impact of Superstorm Sandy (2012) and future storms.
To assess the influence of the living shoreline structures in mitigating
wave energy, wave gages and current meters were deployed seaward
and shoreward of the structures from February to May 2020. The paper
introduces a new framework for constructing surrogate models that
accurately predict wave frequency spectra and integral wave parame-
ters, employing the LSTM algorithm with minimal computational re-
quirements. This approach enables us to better comprehend the
fluctuation in wave power surrounding the living shoreline structures
ranging from hours to years. Our findings contribute to the development
of effective and efficient methods for predicting wave energy and
assessing the efficacy of living shoreline structures for coastal protection
and habitat enhancement.

In this research, we presented field observations of wind waves based
on four-month in-situ measurements and developed composite LSTM
models to estimate long-term spectral wave evolution along the living
shoreline structures at Fog Point. As the estuarine wind fields showed
significant variability, we employed wind data from four NOAA stations,
namely 8571421 at Bishops Head, 8635750 at Lewisetta, 8632837 at
Front Range, and 8638901 at Chesapeake Channel, as input features to
the machine learning algorithms. The novel composite LSTM wave
models exhibited a notable level of accuracy in predicting Hy,o at WG3
and WG5, with R? values of about 0.84 and RMSE of about 0.07 m.
Similarly, the models exhibited satisfactory accuracy in simulating T, at
WG3 and WG5, with R? values around 0.80 and RMSE of approximately
0.27 s. As the amount of training data at WG4 was much less than that at
WG3 and WGS5, the estimated wave parameters at WG4 were less ac-
curate, particularly for simulating T,,. Moreover, the composite networks
were able to generate predictions of wave frequency spectra, with R?
values around 0.69. To better capture the secondary peaks in the wave
spectra at WG5 and accelerate the convergence speed of training the ML
models, the transfer learning method was employed to compute wave
spectra based on data collected at WG3, given their similarity in wave
boundary conditions and bathymetry.

To examine whether the models trained by the measured wave pa-
rameters can be used to predict long-term wave processes, a test was
conducted to assess the representativeness of the wind data during the
four-month period in 2020. On average, it was found that the four-
month data from the four NOAA stations could represent approxi-
mately 95.5 % of the annual forcings in 2020, 2021, and 2022. With this
validation, the developed LSTM models were employed to investigate
the wave spectra and parameters around the structures throughout the
years. Subsequently, the wave power variations along the structures
were computed using the estimated wave parameters and energy spectra
over the three-year period. The results revealed that the estimated wave
power from spectra was higher than the values calculated based on
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integral parameters at WG3, WG4, and WG5 from 2020 to 2022. This
emphasizes the potential underestimation of wave power when relying
solely on integral parameters in a complex wave field in the shallow
water of an estuary, which could compromise the safety of engineering
designs.

While this method offers predictions specific to a particular location,
it serves as a valuable tool for quickly approximating long-term wave
characteristics in scenarios requiring location-specific forecasts. It is
important to note that the input parameters (e.g., wind and water level)
must cover a sufficient duration to ensure that the training data accu-
rately reflects wave conditions across multiple years. This is important
because purely data-driven models often struggle with extrapolation
tasks. A potential approach to address this challenge is to incorporate
prior domain knowledge into machine learning techniques, such as the
physics-informed neural networks introduced by Wang et al. (2022a).
To sum up, this study introduces a new approach utilizing LSTM models
to predict wave frequency spectra in estuaries. The results demonstrate
that the proposed approach can provide an accurate and efficient esti-
mation of wave spectra, making it a valuable tool for long-term wave
forecasts or hindcasts. Additionally, it was found that relying solely on
integral parameters may lead to an underestimation of the wave power
of a complex wave field with multiple spectral peaks on broad spectra in
shallow waters, highlighting the importance of considering wave spectra
when assessing wave power and designing resilient shoreline structures.
In closing, the findings presented in this study can be useful in assessing
the effectiveness of the living shorelines in mitigating the impact of
energetic wind waves. The methodology employed for modeling wave
spectra and parameters can be extended to various coastal regions and
estuaries.
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Table Al

Statistical measures used in this study to evaluate the performance of the developed models.

MSE:
MSE — EL Oﬁ YJ

RMSE:
RMSE = Zl O"

Scatter index (SI):

s1 - RMSE
y
bias: . 1 N_.
bias :Nzi%—)ﬁ'
R2 2
. ( S0 7)
\/Zz i —yi) Ex Yi

(continued on next page)
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Table A1 (continued)
Normalized SI performance: SI=1-8I
Normalized bias performance: Bias = 1— abs(;las)
Composite Performance Score: R2 + ST + bias
CPS = — 5
Total composite performance score: TCPS — % (CPS4 + CPSy,, + CPSy, + CPSg)
in which N is the number of samples, y; is the estimated values, and y; is the true value.
Table A2
Optimal network structures applied in this study for estimating wave parameters and spectra at different gages.
d Huno T, E
WG3 layer 1 2 1 4
node 4 8 8 32
WG4 layer 2 2 2 4
node 4 8 8 64
WG5 layer 1 2 1 4
node 4 8 8 64
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