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Abstract
We initiate a general approach to the relative braid
group symmetries on (universal) 𝚤quantum groups, aris-
ing from quantum symmetric pairs of arbitrary finite
types, and their modules. Our approach is built on
new intertwining properties of quasi 𝐾-matrices which
we develop and braid group symmetries on (Drinfeld
double) quantum groups. Explicit formulas for these
new symmetries on 𝚤quantum groups are obtained.
We establish a number of fundamental properties for
these symmetries on 𝚤quantum groups, strikingly par-
allel to their well-known quantum group counterparts.
We apply these symmetries to fully establish rank 1 fac-
torizations of quasi 𝐾-matrices, and this factorization
property, in turn, helps to show that the new symme-
tries satisfy relative braid relations. As a consequence,
conjectures of Kolb–Pellegrini andDobson–Kolb are set-
tled affirmatively. Finally, the above approach allows us
to construct compatible relative braid group actions on
modules over quantum groups for the first time.
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1 INTRODUCTION

1.1 Background

Braid group symmetries have played an essential role in understanding the structures of Drinfeld–
Jimbo quantum groups 𝐔 and have found applications in geometric representation theory and
categorification among others. These symmetries were constructed by Lusztig and used in first
constructions of PBW bases and canonical bases in ADE type [26]. They have further been gener-
alized to nonsimply laced types and beyond [27, 28]. Another crucial property is that there exists
a compatible braid group action on integrable 𝐔-modules. A systematic exposition on the braid
group actions on quantum groups and their modules forms a significant portion of Lusztig’s book
[28, Ch. 5, Part VI].
Let 𝐔̃ = ⟨𝐸𝑖, 𝐹𝑖, 𝐾𝑖, 𝐾

′
𝑖
∣ 𝑖 ∈ 𝕀⟩ be the Drinfeld double quantum group, where 𝐾𝑖𝐾

′
𝑖
are central.

The quantum group𝐔 = ⟨𝐸𝑖, 𝐹𝑖, 𝐾±1
𝑖

∣ 𝑖 ∈ 𝕀⟩ is recovered from 𝐔̃ by a central reduction:

𝐔 = 𝐔̃∕(𝐾𝑖𝐾
′
𝑖 − 1 ∣ 𝑖 ∈ 𝕀).

The Drinfeld doubles naturally arise from the Hall algebra construction of Bridgeland [3], and
it is shown in [31] that reflection functors provide braid group actions on the Drinfeld doubles;
see Proposition 2.3. As a straightforward generalization for Lusztig’s symmetries on𝐔 [28, 37.2.4],
there are four variants of braid group operators 𝑇′

𝑖,𝑒
, 𝑇′′

𝑖,𝑒
on 𝐔̃, for 𝑒 ∈ {±1} and 𝑖 ∈ 𝕀, which are
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RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1341

related to each other by conjugations of certain (anti-) involutions [31]; see (2.10):

𝑇′
𝑖,−𝑒 = 𝜎 ◦𝑇′′

𝑖,+𝑒 ◦𝜎, 𝑇′′
𝑖,−𝑒 ∶= 𝜓 ◦𝑇′′

𝑖,+𝑒 ◦𝜓, 𝑇′
𝑖,+𝑒 ∶= 𝜓 ◦𝑇′

𝑖,−𝑒 ◦𝜓. (1.1)

Here, 𝜓 is the bar involution and 𝜎 is an anti-involution on 𝐔̃; see Proposition 2.2.
Associated with any Satake diagram (𝕀 = 𝕀∙ ∪ 𝕀◦, 𝜏), a quantum symmetric pair (𝐔,𝐔𝚤

𝝇) was
introduced by Gail Letzter in finite type [22, 23] as a 𝑞-deformation of the usual symmetric pair;
here, 𝐔𝚤

𝝇 is a coideal subalgebra of 𝐔 depending on parameters 𝝇 = (𝝇𝑖)𝑖∈𝕀◦ . Universal quantum
symmetric pairs (𝐔̃, 𝐔̃𝚤) (of quasi-split type) were formulated in [32], where the parameters are
replaced by suitable central elements in 𝐔̃𝚤, and 𝐔𝚤

𝝇 is recovered from 𝐔̃𝚤 by a central reduction.
(𝐔𝚤

𝝇, 𝐔̃
𝚤 will be referred to as 𝚤quantum groups, and they are called quasi-split if 𝕀∙ = ∅ and split

if in addition 𝜏 = Id.) Several fundamental constructions on quantum groups, including (quasi)
𝑅-matrix, canonical bases, and Hall algebra realization have been generalized to the setting of
quantum symmetric pairs in recent years; see [5, 7, 8, 32].
Lusztig’s braid group actions on𝐔 donot preserve the subalgebra𝐔𝚤

𝝇 in general. Kolb–Pellegrini
[20] proposed that there should be relative braid group symmetries on 𝚤quantum groups corre-
sponding to the relative (or restricted)Weyl groups for the underlying symmetric pairs. For a class
of 𝚤quantum groups of finite type (including all quasi-split types and type AII) with some specific
parameters, formulas for such braid group actions were found and verified loc. cit. via computer
computation. The relative braid group action for type AI appeared earlier in [10] and [33].
There has been some limited progress on relative braid group action on𝐔𝚤

𝝇 in the last decade; for
type AIII, see Dobson [14]. An 𝚤Hall algebra approach has been developed to realize the universal
quasi-split 𝚤quantum groups 𝐔̃𝚤 [32]. As a generalization of Ringel’s construction [35], reflection
functors [30, 31] are used to construct relative braid group actions on 𝐔̃𝚤 of quasi-split type, where
the braid group operators act on the central elements in 𝐔̃𝚤 nontrivially. For 𝐔̃𝚤 or 𝐔𝚤

𝝇 in gen-
eral beyond quasi-split type, no conjectural formulas or conceptual explanations for relative braid
group actions were available.
There are braid group actions on 𝐔-modules that are compatible with braid group actions on

quantum groups, cf. [28]. In contrast, no relative braid group action on 𝐔𝚤
𝝇-modules has been

known to date. The Hall algebra approach does not help providing any clue on such action at the
module level.

1.2 Goal

Our goal is to develop a conceptual and general approach to relative braid group actions on
𝚤quantum groups, arising from (universal) quantum symmetric pairs of arbitrary finite type, and
on their modules for the first time. This, in particular, settles the longstanding conjecture of Kolb
and Pellegrini [20] in a constructive manner.
It is crucial for us to work with universal 𝚤quantum groups. We shall formulate relative braid

group symmetries 𝐓̃′
𝑖,𝑒
, 𝐓̃′′

𝑖,𝑒
on 𝐔̃𝚤, for 𝑒 ∈ {±1} and 𝑖 ∈ 𝕀◦,𝜏, which are related to each other via

conjugations by a bar involution 𝜓𝚤 and an anti-involution 𝜎𝚤 on 𝐔̃𝚤; compare (1.1):

𝐓̃′
𝑖,−𝑒 = 𝜎𝚤 ◦ 𝐓̃′′

𝑖,+𝑒 ◦𝜎
𝚤, 𝐓̃′′

𝑖,−𝑒 ∶= 𝜓𝚤 ◦ 𝐓̃′′
𝑖,+𝑒 ◦𝜓

𝚤, 𝐓̃′
𝑖,+𝑒 ∶= 𝜓𝚤 ◦ 𝐓̃′

𝑖,−𝑒 ◦𝜓
𝚤.

By central reductions and rescaling automorphisms, these symmetries descend to relative braid
group actions on 𝚤quantum groups with parameters 𝐔𝚤

𝝇. Moreover, we are able to formulate
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1342 WANG and ZHANG

compatible relative braid group actions on integrable 𝐔-modules. We further establish a num-
ber of basic properties of these new symmetries that are natural 𝚤-counterparts of well-known
properties for Lusztig’s braid group symmetries.

1.3 The basic idea

Various constructions for quantum groups can be regarded as constructions for quantum sym-
metric pairs of diagonal type (𝐔 ⊗𝐔,𝐔), and hence, 𝚤quantum groups can be viewed as a vast
generalization of quantum groups. This simple observation can be instrumental on determining
what form a suitable 𝚤-generalization should take; for example, this view was applied successfully
in the developments of 𝚤canonical bases arising from quantum symmetric pairs in [8] and 𝚤Hall
algebras that realize universal 𝚤quantum groups [32]; see also the recent development of 𝚤crystal
bases by Watanabe [37].
Denote by 𝐋′′

𝑖
the rank 1 quasi 𝑅-matrix associated to 𝑖 ∈ 𝕀, and let 𝐋′

𝑖
be its inverse. The

following formula in [28, 37.3.2]

(𝑇′
𝑖,−1 ⊗ 𝑇′

𝑖,−1)Δ(𝑇
′′
𝑖,+1𝑢) = 𝐋′

𝑖Δ(𝑢)𝐋
′′
𝑖 (1.2)

provides a relation between braid group actions on𝐔 and𝐔⊗𝐔; a formula similar to (1.2) via a
different formulation of braid operators appeared in [24] and [17]. A starting point of this paper is
to view a variant of the identity (1.2) as a formula in the setting of (universal) quantum symmetric
pairs of diagonal type (𝐔̃ ⊗ 𝐔̃, 𝐔̃); see §4.4.
Now, let (𝐔̃, 𝐔̃𝚤) be a general universal quantum symmetric pair. Inspired by the relation (1.2),

we aim at formulating a relation between braid group action on the Drinfeld double 𝐔̃ and the
desired relative braid group action on the universal 𝚤quantum group 𝐔̃𝚤 through conjugations of
rank 1 quasi 𝐾-matrices Υ̃𝑖 , for 𝑖 ∈ 𝕀◦.
Quasi 𝐾-matrices were originally formulated in [7] as an intertwiner between the embedding

𝚤 ∶ 𝐔𝚤
𝝇 → 𝐔 and a bar-involution conjugated embedding (for parameters 𝝇 satisfying strong con-

straints); a proof in greater generality was given in [5] under a technical assumption (which was
removed later in [9]). A reformulation by Appel and Vlaar [2] (also see [21]) bypassed a direct
use of the bar maps, allowing more general parameters 𝝇. In this paper, we upgrade these con-
structions by formulating the quasi 𝐾-matrices Υ̃ for universal quantum symmetric pairs, and, in
particular, the rank 1 quasi 𝐾-matrices Υ̃𝑖 , for 𝑖 ∈ 𝕀◦.
Dobson and Kolb [15] proposed (conjectural) factorizations of quasi 𝐾-matrices in finite types

into products of rank 1 quasi 𝐾-matrices, analogous to factorizations of quasi 𝑅-matrices [17, 24].
In their formulation, a certain scaling twist shows up. In this paper, we upgrade the formulation
of the factorization together with the corresponding scaling twist to quasi 𝐾-matrices Υ̃ in the
universal setting.
Examples indicate that our basic idea of constructing the desired relative braid group action on

𝐔̃𝚤 via quasi 𝐾-matrix and braid group action on 𝐔̃ (viewed as a generalization of (1.2)) basically
works — up to a simple twist: it is necessary to use suitably rescaled braid group operators on 𝐔̃.
Remarkably, this scaling turns out to coincide with the aforementioned scaling which appears in
the factorizations of a quasi 𝐾-matrix Υ̃. We are able to explore this compatibility to draw strong
consequences on the seemingly unrelated topics: relative braid group actions and the factorization
of quasi 𝐾-matrices.
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1.4 Main results

1.4.1 New intertwining properties of quasi 𝐾-matrices

We formulate universal quantum symmetric pairs (𝐔̃, 𝐔̃𝚤) associated to arbitrary Satake diagrams
and their basic properties in Section 2.4, following and generalizing the quasi-split setting in [32].
The algebra 𝐔̃𝚤 contains 𝐔̃𝚤0 and 𝐔̃∙ naturally as subalgebras, where 𝐔̃∙ is the Drinfeld double
associated to 𝕀∙ and 𝐔̃𝚤0 is a Cartan subalgebra generated by 𝑘𝑖 = 𝐾𝑖𝐾

′
𝜏𝑖
, for 𝑖 ∈ 𝕀◦.

We recall the recent somewhat technical formulation of a quasi 𝐾-matrix Υ𝝇 for (𝐔,𝐔𝚤
𝝇) from

[2] (cf. [5, 7, 8] for earlier constructions) in Theorem 3.1 and upgrade it to a universal version Υ̃ for
(𝐔̃, 𝐔̃𝚤) in Theorem 3.2. It turns out that Υ̃ admits amore conceptual and simpler characterization
in terms of the anti-involution 𝜎 on 𝐔̃ as follows.

Theorem A (Theorem 3.6). The quasi 𝐾-matrix Υ̃ =
∑

𝜇∈ℕ𝕀 Υ̃
𝜇, for Υ̃𝜇 ∈ 𝐔̃+

𝜇 , is uniquely
characterized by Υ̃0 = 1 and the following intertwining relations:

𝐵𝑖Υ̃ = Υ̃𝐵𝜎
𝑖

(𝑖 ∈ 𝕀◦), 𝑥Υ̃ = Υ̃𝑥 (𝑥 ∈ 𝐔̃𝚤0𝐔̃∙).

This characterization of Υ̃ plays a basic role in producing explicit formulas for relative braid
group actions on 𝐔̃𝚤; see the proof of Theorem 5.5 in §5.4. There is a similar simple characterization
of Υ𝝇 for 𝐔𝚤

𝝇 in terms of the anti-involution 𝜎𝜏 on 𝐔; see Theorem 3.16. (It is tempting to regard
this as a new definition of Υ𝝇.)
We use a distinguished scaling automorphism Ψ̃𝝇⋆

to define a rescaled bar involution 𝜓⋆ on 𝐔̃

(by twisting the bar involution 𝜓 on 𝐔̃). By exploring further intertwining properties via Υ̃ as in
[19], we establish in Kac–Moody generality a bar involution 𝜓𝚤 (see Proposition 3.4) and an anti-
involution 𝜎𝚤 (see Proposition 3.12) from 𝜓⋆ and 𝜎, respectively. These (anti-)involutions 𝜓𝚤 and
𝜎𝚤 were known in some quasi-split cases; see [12].
Denote by Υ̃𝑖 , for 𝑖 ∈ 𝕀◦, the quasi 𝐾-matrix associated to the rank 1 Satake subdiagram (𝕀∙ ∪

{𝑖, 𝜏𝑖}, 𝜏).

1.4.2 New symmetries 𝐓̃′
𝑖,𝑒
, 𝐓̃′′

𝑖,𝑒

Associated to a Satake diagram (𝕀 = 𝕀∙ ∪ 𝕀◦, 𝜏), one has the (absolute) Weyl group 𝑊 generated
by the simple reflections 𝑠𝑖 , for 𝑖 ∈ 𝕀, and a finite parabolic subgroup 𝑊∙ = ⟨𝑠𝑖 ∣ 𝑖 ∈ 𝕀∙⟩ with the
longest element 𝑤∙. Given 𝑖 ∈ 𝕀◦, one has a rank 1 Satake subdiagram (𝕀∙,𝑖 = 𝕀∙ ∪ {𝑖, 𝜏𝑖}, 𝜏), and
define 𝐫𝑖 ∈ 𝑊 as in (2.14). As 𝐫𝑖 = 𝐫𝜏𝑖 , it suffices to restrict to 𝐫𝑖 , for 𝑖 ∈ 𝕀◦,𝜏 (here 𝕀◦,𝜏 is a set of
fixed representatives of 𝜏-orbits on 𝕀). The relative Weyl group𝑊◦ is a subgroup of𝑊 generated
by 𝐫𝑖 , for 𝑖 ∈ 𝕀◦,𝜏; abstractly,𝑊◦ is aWeyl group with 𝐫𝑖 (𝑖 ∈ 𝕀◦,𝜏) as simple reflections [25]; also see
[15, 29, 34].
Let𝑇′′

𝑖,+1
and𝑇′

𝑖,−1
, for 𝑖 ∈ 𝕀, be the braid group operators on 𝐔̃ [31]; see Proposition 2.3. Let T̃ ′′

𝑖,+1

and T̃ ′
𝑖,−1

be the rescaled version of 𝑇′′
𝑖,+1

and 𝑇′
𝑖,−1

via conjugation by a scaling automorphism
Ψ̃𝝇⋄

; see (4.2)–(4.3). As T̃ ′
𝑗,−1

, for 𝑗 ∈ 𝕀, satisfy the braid relations, we can make sense of T̃ ′
𝑤,−1

, for
𝑤 ∈ 𝑊, and, in particular, T̃ ′

𝐫𝑖 ,−1
, for 𝑖 ∈ 𝕀◦, as automorphisms of 𝐔̃.
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1344 WANG and ZHANG

Theorem B (Theorem 4.7, Proposition 4.11, Theorem 4.14, Theorem 5.5). Let 𝑖 ∈ 𝕀◦. There exists a
unique automorphism 𝐓̃′

𝑖,−1
of 𝐔̃𝚤 such that the following intertwining relation holds:

𝐓̃′
𝑖,−1(𝑥)Υ̃𝑖 = Υ̃𝑖T̃

′
𝐫𝑖 ,−1

(𝑥), for all 𝑥 ∈ 𝐔̃𝚤. (1.3)

More precisely, the action of 𝐓̃′
𝑖,−1

on 𝐔̃𝚤 is given as follows:

(1) 𝐓̃′
𝑖,−1

(𝑥) = (𝜏̂∙,𝑖 ◦ 𝜏̂)(𝑥), and 𝐓̃′
𝑖,−1

(𝑘𝑗,⋄) = 𝑘𝐫𝑖𝛼𝑗,⋄, for all 𝑥 ∈ 𝐔̃∙, 𝑗 ∈ 𝕀◦.
(2) 𝐓̃′

𝑖,−1
(𝐵𝑖) = −𝑞−(𝛼𝑖,𝑤∙𝛼𝜏𝑖)T̃ 2

𝑤∙
(𝐵𝜏∙,𝑖𝜏𝑖)

−1
𝜏∙,𝑖𝜏𝑖

.
(3) The formulas for 𝐓̃′

𝑖,−1
(𝐵𝑗) (𝑖 ≠ 𝑗 ∈ 𝕀◦,𝜏) are listed in Table 3.

See (2.15) and (4.15) for notation 𝜏∙,𝑖 and 𝑘𝜆,⋄; also see (4.5) and Remark 4.3 for the braid group
operator T̃𝑤∙

. By definition, we have 𝐫𝑖 = 𝐫𝜏𝑖 , Υ̃𝑖 = Υ̃𝜏𝑖 , and 𝐓̃′
𝑖,−1

= 𝐓̃′
𝜏𝑖,−1

; thus, we only need to
consider 𝐓̃′

𝑖,−1
, for 𝑖 ∈ 𝕀◦,𝜏.

In the same spirit of (1.3) in TheoremB, the identity (1.2) for theDrinfeld double quantumgroup
𝐔̃ can be reformulated as the intertwining relation (4.8) for quantum symmetric pair (𝐔̃ ⊗ 𝐔̃, 𝐔̃)

of diagonal type.
Another symmetry 𝐓̃′′

𝑖,+1
on 𝐔̃𝚤, for 𝑖 ∈ 𝕀◦, is formulated in Theorem 6.1 that satisfies the

following intertwining relation in (6.1), similar to (1.3):

𝐓̃′′
𝑖,+1(𝑥) T̃

′′
𝐫𝑖 ,+1

(Υ̃−1
𝑖 ) = T̃ ′′

𝐫𝑖 ,+1
(Υ̃−1

𝑖 ) T̃ ′′
𝐫𝑖 ,+1

(𝑥), for all 𝑥 ∈ 𝐔̃𝚤.

We further define two more symmetries 𝐓̃′
𝑖,+1

and 𝐓̃′′
𝑖,−1

on 𝐔̃𝚤 by conjugating 𝐓̃′
𝑖,−1

and 𝐓̃′′
𝑖,+1

via the involution 𝜓𝚤; see (6.11). These symmetries are related to each other as follows; compare
[28, Chap. 37].

Theorem C (Theorem 6.7). Let 𝑒 = ±1 and 𝑖 ∈ 𝕀◦. The symmetries 𝐓̃′
𝑖,𝑒
and 𝐓̃′′

𝑖,−𝑒
are mutual

inverses. Moreover, we have 𝐓̃′
𝑖,𝑒

= 𝜎𝚤 ◦ 𝐓̃′′
𝑖,−𝑒

◦𝜎𝚤.

Actually, part of the proof of Theorem B (i.e., the invertibility of 𝐓̃′
𝑖,−1

) is completed only when
it is established in Theorem C that 𝐓̃′

𝑖,−1
and 𝐓̃′′

𝑖,+1
are mutual inverses. This is one main reason

why we have formulated 𝐓̃′′
𝑖,+1

separately in spite of its many similarities with the properties for
𝐓̃′
𝑖,−1

which we already established.
Here is an outline of proofs of Theorems B–C. We first establish the existence of an endomor-

phism 𝐓̃′
𝑖,−1

on 𝐔̃𝚤 which satisfies the intertwining relation (1.3), by proving Properties (1)–(3) in
Theorem B one-by-one. Properties (1)–(2) are established uniformly in Proposition 4.11 and The-
orem 4.14. We formulate a structural result in Proposition 5.11 as a main step toward a uniform
proof of the rank 2 formulas in (3) (see Theorem 5.5); Proposition 5.11 is then verified by a type-
by-type computation in the Appendix. In order to prove the invertibility of 𝐓̃′

𝑖,−1
, we establish

another endomorphism 𝐓̃′′
𝑖,+1

on 𝐔̃𝚤 which satisfies the intertwining relation (6.1) in Theorem 6.1;
the existence for 𝐓̃′′

𝑖,+1
is proved by a strategy similar to the one for 𝐓̃′

𝑖,−1
. Finally, we show in Theo-

rem 6.7 that 𝐓̃′
𝑖,−1

and 𝐓̃′′
𝑖,+1

are mutual inverses by invoking the uniqueness of elements satisfying
an intertwining relation.
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RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1345

The formulas for actions of 𝐓̃′
𝑖,−1

and 𝐓̃′′
𝑖,+1

on generators of 𝐔̃𝚤 are mostly new. In quasi-split
types, up to some twistings, we recover the formulas obtained by Hall algebra computation in
[30], and by central reductions to𝐔𝚤

𝝇, we recover formulas obtained by computer computation in
[20].

1.4.3 A basic property of braid symmetries

The following theorem is a generalization of a well-known basic property of braid group action
on quantum groups; see [28].

Theorem D (See Theorem 7.13). Suppose that 𝑤𝑖 ∈ 𝕀◦, for 𝑤 ∈ 𝑊◦ and 𝑖 ∈ 𝕀◦. Then we have
𝐓̃′′
𝑤,+1

(𝐵𝑖) = 𝐵𝑤𝑖 .

The dependence in the formulation of Theorem 7.13 on reduced expressions 𝑤 of 𝑤 can be
removed, once Theorem F on braid relations for 𝐓̃′′

𝑗,+1
is established. We reduce the proof of

Theorem D to the rank 2 cases. The proofs in rank 2 cases are largely uniform (avoiding type-
by-type computation), based on the counterpart results in quantum group setting, the defining
intertwining property of 𝐓̃′′

𝑤,+1
, and some weight arguments.

1.4.4 Factorizations of a quasi 𝐾-matrix

It is well known that a quasi 𝑅-matrix admits a factorization into a product of rank 1 𝑅-matrices
parametrized by positive roots; see [17, 24]; also cf. [16].
Dobson and Kolb [15] proposed a conjecture on an analogous factorization of a quasi 𝐾-matrix

into a product, denoted by Υ̃𝒘◦
, of rank 1 factors parametrized by restricted positive roots; see

(8.1) for notation. They established a reduction from a general finite type to the rank 2 Satake
diagrams. In addition, they established the rank 2 cases of split types and type AII/AIII, via a
type-by-type lengthy computation based on several explicit formulas for rank 1 quasi 𝐾-matrices
which they computed.
Exploring (the rank 2 cases of) TheoremD and some of its consequences, we provide a uniform

and concise proof that Υ̃𝒘◦
satisfies the same defining intertwining relations for Υ̃. Then, the

factorization property for arbitrary finite types follows by the uniqueness of Υ̃.

Theorem E (Dobson–Kolb Conjecture, Theorem 8.1). The quasi 𝐾-matrix Υ̃ for 𝐔̃𝚤 of finite type
admits a factorization Υ̃ = Υ̃𝒘◦

.

1.4.5 Relative braid group relations

Recall Lusztig’s symmetries𝑇′
𝑖,𝑒
, 𝑇′′

𝑖,𝑒
on a quantumgroup𝐔 satisfy braid group relations associated

to the (absolute)Weyl group𝑊 [28]; see [31] for analogous statements on a Drinfeld double 𝐔̃. We
have the following generalization in the setting of 𝚤quantum groups. Denote by Br(𝑊◦) the braid
group associated to𝑊◦.
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1346 WANG and ZHANG

Theorem F (Theorem 9.1). Fix 𝑒 ∈ {±1}. The symmetries 𝐓̃′
𝑖,𝑒
(and respectively, 𝐓̃′′

𝑖,𝑒
) of 𝐔̃𝚤, for 𝑖 ∈

𝕀◦,𝜏, satisfy the relative braid group relations in Br(𝑊◦).

With the help of the intertwining relation (1.3), the proof of Theorem F is built on the
braid group relations for T̃𝑖 (𝑖 ∈ 𝕀) and the factorization properties of rank 2 quasi 𝐾-matrices
established in Theorem E.
It was shown in [8] that Lusztig’s symmetries 𝑇′

𝑖,𝑒
and 𝑇′′

𝑖,𝑒
on 𝐔, for 𝑖 ∈ 𝕀∙, preserve the sub-

algebra 𝐔𝚤
𝝇 (under some constraints on 𝝇). We easily upgrade this statement to the universal

quantum symmetric pair (𝐔̃, 𝐔̃𝚤), providing a braid group action of Br(𝑊∙) on 𝐔̃𝚤; see Proposi-
tion 4.5. Actually, we obtain four variants of actions of Br(𝑊∙) on 𝐔̃𝚤 generated by T̃ ′

𝑗,𝑒
or T̃ ′′

𝑗,𝑒
, for

𝑗 ∈ 𝕀∙, respectively.
It is further established that the two (“black and white”) braid group actions on 𝐔̃𝚤 combine

neatly into an action of a semidirect product Br(𝑊∙)⋊ Br(𝑊◦) on 𝐔̃𝚤.

Theorem G (Theorem 9.3, Corollary 9.7). Let 𝑒 = ±1.

(1) There exists a braid group action of Br(𝑊∙)⋊ Br(𝑊◦) on 𝐔̃𝚤 as automorphisms of algebras
generated by T̃ ′

𝑗,𝑒
(𝑗 ∈ 𝕀∙) and 𝐓̃′

𝑖,𝑒
(𝑖 ∈ 𝕀◦,𝜏).

(2) There exists a braid group action of Br(𝑊∙)⋊ Br(𝑊◦) on 𝐔̃𝚤 as automorphisms of algebras
generated by T̃ ′′

𝑗,𝑒
(𝑗 ∈ 𝕀∙) and 𝐓̃′′

𝑖,𝑒
(𝑖 ∈ 𝕀◦,𝜏).

Theorem G (or more precisely, its 𝐔𝚤
𝝇-counterpart in Theorem 9.10; see §1.4.6 below) confirms

an old conjecture of Kolb and Pellegrini [20, Conjecture 1.2] in full generality, and moreover, we
have provided precise formulas for the braid group actions.

1.4.6 Relative braid group symmetries on𝐔𝚤
𝜍

By central reductions, the symmetries 𝐓̃′
𝑖,−1

, 𝐓̃′′
𝑖,+1

on the universal 𝚤quantum group 𝐔̃𝚤, for 𝑖 ∈ 𝕀◦,
descend naturally to the 𝚤quantum group 𝐔𝚤

𝝇⋄
with the distinguished parameter 𝝇⋄. On the other

hand, the symmetries 𝐓̃′
𝑖,+1

, 𝐓̃′′
𝑖,−1

naturally descend to𝐔𝚤
𝝇⋆⋄
; see the commutative diagrams in §9.4.

We then transport the relative braid group symmetries from𝐔𝚤
𝝇⋄
and𝐔𝚤

𝝇⋆⋄
to the 𝚤quantum groups

𝐔𝚤
𝝇 (see Theorems 9.9–9.10), for an arbitrary parameter 𝝇, thanks to the isomorphism 𝐔𝚤

𝝇⋄
≅ 𝐔𝚤

𝝇

given in Proposition 2.7.

1.4.7 Relative braid group actions on𝐔-modules

Let 𝑖 ∈ 𝕀◦, 𝑒 = ±1, and 𝝇 be a balanced parameter (see the line below (2.18)). We show that
the symmetries 𝐓′

𝑖,𝑒
, 𝐓′′

𝑖,𝑒
on the 𝚤quantum group 𝐔𝚤

𝝇 (defined by central reductions) satisfy
natural intertwining relations with the usual braid group symmetries on 𝐔. These intertwin-
ing properties allow us to formulate automorphisms (denoted again by the same notations
𝐓′
𝑖,𝑒
, 𝐓′′

𝑖,𝑒
) on an arbitrary finite-dimensional 𝐔-module 𝑀 of type 1; see (10.12). These operators

on 𝑀 admit favorable properties parallel to those satisfied by Lusztig’s braid group actions on
modules.
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RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1347

Theorem H (Theorem 10.5, Theorem 10.6). Let 𝑖 ∈ 𝕀◦ and 𝑒 = ±1, and let 𝑀 be any finite-
dimensional 𝐔-module of type 1. The automorphisms 𝐓′

𝑖,𝑒
, 𝐓′′

𝑖,𝑒
on 𝑀 are compatible with the

corresponding automorphisms on𝐔𝚤
𝝇, that is,

𝐓′
𝑖,𝑒(𝑥𝑣) = 𝐓′

𝑖,𝑒(𝑥)𝐓
′
𝑖,𝑒(𝑣), 𝐓′′

𝑖,𝑒(𝑥𝑣) = 𝐓′′
𝑖,𝑒(𝑥)𝐓

′′
𝑖,𝑒(𝑣),

for any 𝑥 ∈ 𝐔𝚤
𝝇, 𝑣 ∈ 𝑀. Moreover, the operators 𝐓′

𝑖,𝑒
(respectively, 𝐓′′

𝑖,𝑒
) on 𝑀, for 𝑖 ∈ 𝕀◦, satisfy the

relative braid group relations in Br(𝑊◦).

In this paper, we have assumed that a ground field 𝔽 is the algebraic closure of ℚ(𝑞) partly
due to uses of rescaling automorphisms, though often it suffices to work with the field ℚ(𝑞

1
2 ) if

we choose the parameters 𝝇 suitably. There is a ℚ(𝑞)-form ℚ𝐔̃
𝚤 of 𝐔̃𝚤 such that 𝐔̃𝚤 = 𝔽 ⊗ℚ(𝑞) ℚ𝐔̃

𝚤;
see (5.17). The symmetries 𝐓̃′

𝑖,𝑒
, 𝐓̃′′

𝑖,𝑒
indeed preserve the ℚ(𝑞)-subalgebra ℚ𝐔̃

𝚤; see Proposition 5.9.
Theorems A–G remain valid for ℚ𝐔̃

𝚤.

1.5 Future works and applications

The formulations of the main results (Theorems A–H), up to some reasonable rephrasing, make
sense for universal quantum symmetric pairs of arbitrary Kac–Moody type (cf. [18]), and we con-
jecture they are valid in this great generality. For example, the symmetries 𝐓̃′

𝑖,−1
, for 𝑖 ∈ 𝕀◦, for 𝐔̃𝚤

of Kac-Moody type will follow once Conjecture 5.13 is confirmed. The main reason on the restric-
tion to finite types in this paper is that we rely on the classification of Satake diagrams to explicitly
compute the rank 2 formulas for 𝐓̃′

𝑖,−1
(𝐵𝑗) and 𝐓̃′′

𝑖,+1
(𝐵𝑗), which, in particular, verify that they lie

in 𝐔̃𝚤. Section 3 is valid in Kac–Moody generality. Steps (1)–(2) in Theorem B (which occupy most
of Section 4) are also valid in the Kac–Moody setting.
Some further developments will be carried out in future works. We shall extend the construc-

tions of relative braid group actions to (universal) 𝚤quantum groups of affine type. We plan to use
the new tools developed in this paper to attack the conjectures in [11, 12] on relative braid group
actions on quasi-split universal 𝚤quantum groups of Kac–Moody type. We also plan to understand
the relative braid group action on 𝐔𝚤

𝝇-modules more explicitly, and this may serve as a starting
point for a new approach toward relative braid group action on 𝚤quantum groups; compare [28].
The relative braid group symmetries of this paper (and their affine generalization) will be used

crucially in the Drinfeld-type presentation of quasi-split affine 𝚤quantum groups in an upcoming
work joint with Ming Lu. It is expected that they will continue to play a key role for Drinfeld-type
presentations of general affine 𝚤quantum groups.
One may hope that these new braid group symmetries preserve the integral ℤ[𝑞, 𝑞−1]-form on

(modified) 𝚤quantum groups in [8, 9]. (This will be highly nontrivial to verify, as the 𝚤divided pow-
ers aremuchmore sophisticated than the divided powers.) It will be interesting to develop further
connections among relative braid group actions, PBW bases, and 𝚤canonical bases; compare [28].
They may help to stimulate further Khovanov–Lauda–Rouquier (KLR)-type categorification of
𝚤quantum groups as well as 𝚤Hall algebra realization of 𝚤quantum groups beyond quasi-split type.
Kolb and Yakimov [21] extended the construction of quantum symmetric pairs to the setting

of Nichols algebras of diagonal type. The new intertwining properties of quasi 𝐾-matrices and
the relative braid group actions established in this paper seem well suited for generalizations in
this direction.
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1348 WANG and ZHANG

The notion of relative Coxeter groups, which is valid in a more general setting than symmetric
pairs, admits a geometric interpretation [25, 29]. It will be exciting to realize relative braid group
action in geometric and categorical frameworks, and develop possible connections to the repre-
sentation theory of real groups (cf. [6] and references therein). It will be very interesting to explore
more general braid group actions associated to relative Coxeter groups.

1.6 Organization

The paper is organized into Sections 2–10 and the Appendix. Below we provide a detailed
description section by section.
In Section 2, we review and set up the basics and notations on quantum groups𝐔 and Drinfeld

doubles 𝐔̃, including several (anti-) involutions and a rescaling automorphism Ψ̃𝐚 on 𝐔̃. We recall
explicit formulas for braid group actions on 𝐔̃. Associated to a Satake diagram (𝕀 = 𝕀∙ ∪ 𝕀◦, 𝜏), we
forma relativeWeyl group𝑊◦ = ⟨𝐫𝑖 ∣ 𝑖 ∈ 𝕀◦⟩. Then,we formulate (universal) quantum symmetric
pairs (𝐔̃, 𝐔̃𝚤) and (𝐔,𝐔𝚤

𝝇).
In Section 3, we formulate quasi 𝐾-matrix Υ̃ in the universal quantum symmetric pair setting,

and establish a new intertwining property via the anti-involution 𝜎 on 𝐔̃. We establish an anti-
involution𝜎𝚤 on 𝐔̃𝚤 via𝜎 and an intertwining property of Υ̃.We formulate a rescaled bar involution
𝜓⋆ on 𝐔̃, and then establish a bar involution 𝜓𝚤 on 𝐔̃𝚤 via 𝜓⋆ and an intertwining property of Υ̃.
An anti-involution 𝜎𝜏 on𝐔𝚤

𝝇 for an arbitrary parameter 𝝇 is also established.
In Section 4, we formulate rescaled braid group symmetries T̃ ′

𝑤,−1
, for𝑤 ∈ 𝑊, on 𝐔̃ via a rescal-

ing automorphism Ψ𝝇⋄
. We define 𝐓̃′

𝑖,−1
in terms of an intertwining property involving Υ̃ and the

rescaled braid group symmetries T̃ −1
𝐫𝑖

≡ T̃ ′
𝐫𝑖 ,−1

; see Theorem 4.7. We then formulate additional
symmetries 𝐓̃′

𝑖,−1
and 𝐓̃′′

𝑖,±1
on 𝐔̃𝚤 via conjugations of 𝐓̃′

𝑖,−1
by an anti-involution 𝜎𝚤 and a bar invo-

lution 𝜓𝚤. We obtain explicit formulas for the actions of 𝐓̃′
𝑖,−1

on 𝐔̃𝚤0𝐔̃∙ in Proposition 4.11 and on
𝐵𝑖 in Theorem 4.14.
In Section 5, we formulate a general structural result that relates formulas for 𝐓̃′

𝑖,−1
(𝐵𝑗)

and T̃ −1
𝐫𝑖

(𝐹𝑗); see Proposition 5.11. The explicit formulas for 𝐓̃′
𝑖,−1

(𝐵𝑗) in each rank 2 univer-
sal 𝚤quantum group are collected in Table 3. The type-by-type verification of these formulas is
postponed to the Appendix.
In Section 6.1, we formulate another symmetry 𝐓̃′′

𝑖,+1
on 𝐔̃𝚤 using a different intertwining prop-

erty. Then we formulate the counterparts of the results in Sections 4–5. We collect all rank 2
formulas for 𝐓̃′′

𝑖,+1
(𝐵𝑗) in Table 4, whose proofs similar to the Appendix will be skipped (the detail

can be found in Appendix B in an arXiv version).
We then show that 𝐓̃′

𝑖,−1
and 𝐓̃′′

𝑖,+1
are mutual inverses, completing the proofs that 𝐓̃′

𝑖,−1
and

𝐓̃′′
𝑖,+1

are automorphisms of 𝐔̃𝚤. The property 𝐓̃′
𝑖,𝑒

= 𝜎𝚤 ◦ 𝐓̃′′
𝑖,−𝑒

◦𝜎𝚤 follows by inspection from the
explicit formulas for the actions of 𝐓̃′

𝑖,−1
and 𝐓̃′′

𝑖,+1
.

In Section 7, we establish a basic formula 𝐓̃𝑤(𝐵𝑖) = 𝐵𝑗 , for 𝑖, 𝑗 ∈ 𝕀◦ and𝑤 ∈ 𝑊◦ such that𝑤𝛼𝑖 =
𝛼𝑗, generalizing a well-known formula in quantum groups. We reduce the proof of the formula to
the rank 2 Satake diagrams. We then provide uniform proofs in the rank 2 cases.
In Section 8, we prove uniformly the factorization property of quasi 𝐾-matrices in all rank 2

quantum symmetric pairs, completing the proof of Dobson–Kolb’s conjecture in arbitrary finite
types. This is an application of the formula established in Section 7.
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RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1349

In Section 9, we verify that the symmetries 𝐓̃′
𝑖,𝑒
, 𝐓̃′′

𝑖,𝑒
satisfy the braid group relations in Br(𝑊◦).

Together with the braid group action given by T̃ ′
𝑗,𝑒
, T̃ ′′

𝑗,𝑒
, for 𝑗 ∈ 𝕀∙, we obtain four braid group

actions of Br(𝑊∙)⋊ Br(𝑊◦) on 𝐔̃𝚤. By taking central reductions and using the isomorphism 𝜙𝝇 ∶

𝐔𝚤
𝝇⋄
≅ 𝐔𝚤

𝝇, we construct relative braid group symmetries 𝐓
′
𝑖,𝑒
, 𝐓′′

𝑖,𝑒
on 𝐔̃𝚤

𝝇 for general parameters 𝝇,
confirming the main conjecture in [20].
In Section 10, we formulate linear operators 𝐓′

𝑖,𝑒
, 𝐓′′

𝑖,𝑒
on any finite-dimensional𝐔-module. We

show that they are compatible with corresponding automorphisms on 𝐔̃𝚤, and that they satisfy
the relative braid group relations.

1.7 Notations

We list the notations that are often used throughout the paper.

⊳ ℕ,ℤ,ℚ, ℂ— sets of nonnegative integers, integers, rational, and complex numbers
⊳ ,∨ — systems of roots and coroots with simple systemsΠ = {𝛼𝑖|𝑖 ∈ 𝕀} andΠ∨ = {𝛼∨

𝑖
|𝑖 ∈ 𝕀},

respectively
⊳ 𝑊,𝓁(⋅)— the Weyl group and its length function
⊳ 𝑤0, 𝜏0 — the longest element in𝑊 and its associated diagram involution
⊳ 𝑇′

𝑖,𝑒
, 𝑇′′

𝑖,𝑒
— braid group symmetries on 𝐔̃

⊳ (𝕀 = 𝕀∙ ∪ 𝕀◦, 𝜏)— admissible pairs (aka Satake diagrams)
⊳ 𝑊∙,∙ — the Weyl group and root system associated to the subdiagram 𝕀∙
⊳ 𝑤∙ — the longest element in𝑊∙

⊳ 𝑊∙,𝑖 — the parabolic subgroup of𝑊 generated by 𝑠𝑘, for 𝑘 ∈ 𝕀∙,𝑖 ∶= 𝕀∙ ∪ {𝑖, 𝜏𝑖}

⊳ 𝑤∙,𝑖 , 𝜏∙,𝑖 — the longest element of𝑊∙,𝑖 and its associated diagram involution
⊳ 𝑊◦,𝓁◦(⋅) — the relative Weyl group generated by 𝐫𝑖 ∶= 𝑤∙,𝑖𝑤∙, for 𝑖 ∈ 𝕀◦, and its length

function such that 𝓁◦(𝐫𝑖) = 1

⊳ 𝒘◦ — the longest element in𝑊◦

⊳ 𝐔, 𝐔̃— quantum group and Drinfeld double
⊳ 𝜏̂, 𝜏̂0 — involutions on 𝐔̃ induced by the diagram involutions 𝜏, 𝜏0
⊳ 𝐔̃𝚤, 𝐔𝚤

𝝇 —universal 𝚤quantum group and 𝚤quantum group with parameter 𝝇
⊳ Υ̃ — quasi 𝐾-matrix for universal quantum symmetric pair (𝐔̃, 𝐔̃𝚤)

⊳ 𝝇⋄, 𝝇⋆ — two distinguished parameters; see (2.21) and (3.8)
⊳ Ψ̃𝐚 — a rescaling automorphism of 𝐔̃; see (2.7)
⊳ Φ𝐚 — a rescaling automorphism of𝐔; see (2.8)
⊳ 𝜋𝝇 — a central reduction from 𝐔̃ to𝐔; see (2.6)
⊳ 𝜋𝚤

𝝇 — a central reduction from 𝐔̃𝚤 to𝐔𝚤
𝝇; see Proposition 2.8

⊳ 𝜓𝚤 — a bar involution on 𝐔̃𝚤; see (3.10)
⊳ 𝜎𝚤 — an anti-involution on 𝐔̃𝚤; see (3.24)
⊳ 𝜎𝜏 — an anti-involution on𝐔𝚤

𝝇; see (3.26)
⊳ T̃ ′

𝑖,𝑒
, T̃ ′′

𝑖,𝑒
— rescaled (via Ψ̃𝐚) braid group symmetries on 𝐔̃; see (4.2)–(4.3)

⊳ 𝐓̃′
𝑖,𝑒
, 𝐓̃′′

𝑖,𝑒
— braid group symmetries on 𝐔̃𝚤

⊳ T̃𝑖 , T̃
−1
𝑖

, 𝐓̃𝑖 , 𝐓̃
−1
𝑖
— shorthand notations for T̃ ′′

𝑖,+1
, T̃ ′

𝑖,−1
, 𝐓̃′′

𝑖,+1
, 𝐓̃′

𝑖,−1

⊳ T ′
𝑖,𝑒;𝝇

,T ′′
𝑖,𝑒;𝝇

— rescaled braid group symmetries on𝐔; see (10.1), (10.7)
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1350 WANG and ZHANG

2 DRINFELD DOUBLES AND QUANTUM SYMMETRIC PAIRS

In this section, we set up notations for quantum groups, Drinfeld doubles, and quantum sym-
metric pairs. We review the relative Weyl and braid groups associated to Satake diagrams. Several
basic properties of (universal) 𝚤quantum groups are presented.

2.1 Quantum groups and Drinfeld doubles

We set up notations for a quantum group𝐔 of finite type and its Drinfeld double 𝐔̃.
Let 𝔤 be a semisimple Lie algebra over ℂwith a symmetrizable Cartan matrix 𝐶 = (𝑐𝑖𝑗)𝑖,𝑗∈𝕀. Let

𝐷 = diag(𝜖𝑖 ∣ 𝜖𝑖 ∈ ℤ⩾1, 𝑖 ∈ 𝕀) be a symmetrizer, that is,𝐷𝐶 is symmetric, such that gcd{𝜖𝑖 ∣ 𝑖 ∈ 𝕀} =

1. Fix a simple system Π = {𝛼𝑖|𝑖 ∈ 𝕀} of 𝔤 and a set of simple coroots Π∨ = {𝛼∨
𝑖
|𝑖 ∈ 𝕀}. Let  and

∨ be the corresponding root and coroot systems. Denote the root lattice by ℤ𝕀 ∶= ⊕𝑖∈𝕀ℤ𝛼𝑖 . Let
(⋅, ⋅) be the normalized Killing form onℤ𝕀 so that the short roots have squared length 2. TheWeyl
group𝑊 is generated by the simple reflections 𝑠𝑖 ∶ ℤ𝕀 → ℤ𝕀, for 𝑖 ∈ 𝕀, such that 𝑠𝑖(𝛼𝑗) = 𝛼𝑗 − 𝑐𝑖𝑗𝛼𝑖 .
Set 𝑤0 to be the longest element of𝑊.
Let 𝑞 be an indeterminate and ℚ(𝑞) be the field of rational functions in 𝑞 with coefficients in

ℚ, the field of rational numbers. Set 𝔽 to be the algebraic closure of ℚ(𝑞) and 𝔽× ∶= 𝔽 ⧵ {0}. We
denote

𝑞𝑖 ∶= 𝑞𝜖𝑖 , ∀𝑖 ∈ 𝕀.

Denote, for 𝑟,𝑚 ∈ ℕ,

[𝑟]𝑡 =
𝑡𝑟 − 𝑡−𝑟

𝑡 − 𝑡−1
, [𝑟]𝑡! =

𝑟∏
𝑖=1

[𝑖]𝑡,

[
𝑚

𝑟

]
𝑡

=
[𝑚]𝑡[𝑚 − 1]𝑡 … [𝑚 − 𝑟 + 1]𝑡

[𝑟]𝑡!
.

We mainly take 𝑡 = 𝑞, 𝑞𝑖 .
Then 𝐔̃ ∶= 𝐔̃𝑞(𝔤) is defined to be the 𝔽-algebra generated by 𝐸𝑖, 𝐹𝑖, 𝐾𝑖, 𝐾

′
𝑖
, 𝑖 ∈ 𝕀, where 𝐾𝑖, 𝐾

′
𝑖

are invertible, subject to the following relations: 𝐾𝑖, 𝐾
′
𝑗
commute with each other, for all 𝑖, 𝑗 ∈ 𝕀,

[𝐸𝑖, 𝐹𝑗] = 𝛿𝑖𝑗
𝐾𝑖 − 𝐾′

𝑖

𝑞 − 𝑞−1
, 𝐾𝑖𝐸𝑗 = 𝑞

𝑐𝑖𝑗
𝑖
𝐸𝑗𝐾𝑖, 𝐾𝑖𝐹𝑗 = 𝑞

−𝑐𝑖𝑗
𝑖

𝐹𝑗𝐾𝑖, (2.1)

𝐾′
𝑖 𝐸𝑗 = 𝑞

−𝑐𝑖𝑗
𝑖

𝐸𝑗𝐾
′
𝑖 , 𝐾′

𝑖 𝐹𝑗 = 𝑞
𝑐𝑖𝑗
𝑖
𝐹𝑗𝐾

′
𝑖 , (2.2)

and the quantum Serre relations, for 𝑖 ≠ 𝑗 ∈ 𝕀,

1−𝑐𝑖𝑗∑
𝑠=0

(−1)𝑠
[
1 − 𝑐𝑖𝑗

𝑠

]
𝑞𝑖

𝐸𝑠
𝑖
𝐸𝑗𝐸

1−𝑐𝑖𝑗−𝑠

𝑖
= 0, (2.3)

1−𝑐𝑖𝑗∑
𝑠=0

(−1)𝑠
[
1 − 𝑐𝑖𝑗

𝑠

]
𝑞𝑖

𝐹𝑠
𝑖
𝐹𝑗𝐹

1−𝑐𝑖𝑗−𝑠

𝑖
= 0. (2.4)

Note that 𝐾𝑖𝐾
′
𝑖
are central in 𝐔̃, for all 𝑖 ∈ 𝕀.
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RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1351

The comultiplication Δ ∶ 𝐔̃ → 𝐔̃ ⊗ 𝐔̃ is defined as follows:

Δ(𝐸𝑖) = 𝐸𝑖 ⊗ 1 + 𝐾𝑖 ⊗ 𝐸𝑖, Δ(𝐹𝑖) = 1 ⊗ 𝐹𝑖 + 𝐹𝑖 ⊗ 𝐾′
𝑖 ,

Δ(𝐾𝑖) = 𝐾𝑖 ⊗ 𝐾𝑖, Δ(𝐾′
𝑖 ) = 𝐾′

𝑖 ⊗ 𝐾′
𝑖 .

(2.5)

Let 𝐔 = 𝐔𝑞(𝔤) be the Drinfeld–Jimbo quantum group associated to 𝔤 over 𝔽 with Chevalley
generators {𝐸𝑖, 𝐹𝑖, 𝐾

±1
𝑖
|𝑖 ∈ 𝕀}, whose relations can be obtained from 𝐔̃ above by simply replacing

𝐾′
𝑖
by 𝐾−1

𝑖
, for all 𝑖; that is, one identifies𝐔 = 𝐔̃∕(𝐾𝑖𝐾

′
𝑖
− 1 ∣ 𝑖 ∈ 𝕀). Both 𝐔̃ and𝐔 admit standard

triangular decompositions, 𝐔̃ = 𝐔̃−𝐔̃0𝐔̃+ and𝐔 = 𝐔−𝐔0𝐔+; we identify 𝐔̃+ = 𝐔+ = ⟨𝐸𝑖 ∣ 𝑖 ∈ 𝕀⟩
and 𝐔̃− = 𝐔−.
For any scalars 𝐚 = (𝑎𝑖)𝑖∈𝕀 ∈ 𝔽×,𝕀, one has a isomorphism

𝐔̃∕(𝐾𝑖𝐾
′
𝑖 − 𝑎𝑖 ∣ 𝑖 ∈ 𝕀)

≅
⟶ 𝐔

through the central reduction

𝜋𝐚 ∶ 𝐔̃ ⟶ 𝐔,

𝐹𝑖 ↦ 𝐹𝑖, 𝐸𝑖 ↦
√
𝑎𝑖𝐸𝑖, 𝐾𝑖 ↦

√
𝑎𝑖𝐾𝑖, 𝐾′

𝑖 ↦
√
𝑎𝑖𝐾

−1
𝑖 .

(2.6)

The canonical identification uses 𝜋𝟏, for 𝟏 = {1}𝑖∈𝕀.

Proposition 2.1. Let 𝐚 = (𝑎𝑖)𝑖∈𝕀 ∈ (𝔽×)𝕀. We have an automorphism Ψ̃𝐚 on the 𝔽-algebra 𝐔̃ such
that

Ψ̃𝐚 ∶ 𝐾𝑖 ↦ 𝑎
1∕2

𝑖
𝐾𝑖, 𝐾′

𝑖 ↦ 𝑎
1∕2

𝑖
𝐾′
𝑖 , 𝐸𝑖 ↦ 𝑎

1∕2

𝑖
𝐸𝑖, 𝐹𝑖 ↦ 𝐹𝑖. (2.7)

We have an automorphism Φ𝐚 on the 𝔽-algebra𝐔 such that

Φ𝐚 ∶ 𝐾𝑖 ↦ 𝐾𝑖, 𝐸𝑖 ↦ 𝑎
1∕2

𝑖
𝐸𝑖, 𝐹𝑖 ↦ 𝑎

−1∕2

𝑖
𝐹𝑖. (2.8)

We have

𝜋𝐚 = 𝜋𝟏 ◦ Ψ̃𝐚. (2.9)

A ℚ-linear operator on a 𝔽-algebra is antilinear if it sends 𝑞𝑚 ↦ 𝑞−𝑚, for𝑚 ∈ ℤ.

Proposition 2.2.

(1) There exists an antilinear involution 𝜓 on 𝐔̃, which fixes 𝐸𝑖, 𝐹𝑖 and swaps 𝐾𝑖 ↔ 𝐾′
𝑖
, for 𝑖 ∈ 𝕀.

(2) There exists an antilinear involution on𝐔, also denoted by 𝜓, which fixes 𝐸𝑖, 𝐹𝑖 and swaps𝐾𝑖 ↔

𝐾−1
𝑖
, for 𝑖 ∈ 𝕀.

(3) There exists an anti-involution 𝜎 on 𝐔̃ that fixes 𝐸𝑖, 𝐹𝑖 and swaps 𝐾𝑖 ↔ 𝐾′
𝑖
, for 𝑖 ∈ 𝕀.

(4) There exists a Chevalley involution 𝜔 on 𝐔̃ that swaps 𝐸𝑖 and 𝐹𝑖 and swaps 𝐾𝑖 ↔ 𝐾′
𝑖
, for 𝑖 ∈ 𝕀.

Let 𝐔̃ =
⨁

𝜈∈ℤ𝕀 𝐔̃𝜈 be the weight decomposition of 𝐔̃ such that 𝐸𝑖 ∈ 𝐔̃𝛼𝑖
, 𝐹𝑖 ∈ 𝐔̃−𝛼𝑖

, 𝐾𝑖, 𝐾
′
𝑖
∈

𝐔̃0. Write 𝐔̃+
𝜈 ∶= 𝐔̃𝜈 ∩ 𝐔̃+.
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1352 WANG and ZHANG

2.2 Braid group action on the Drinfeld double 𝐔̃

Lusztig introduced braid group symmetries 𝑇′
𝑖,𝑒
, 𝑇′′

𝑖,𝑒
, for 𝑖 ∈ 𝕀 and 𝑒 = ±1, on a quantum group𝐔

[28, §37.1.3]. Analogous braid group symmetries𝑇′
𝑖,𝑒
, 𝑇′′

𝑖,𝑒
, for 𝑖 ∈ 𝕀 and 𝑒 = ±1, exist on theDrinfeld

double 𝐔̃; see [31, Propositions 6.20–6.21]. (Our notations 𝑇′
𝑖,𝑒
, 𝑇′′

𝑖,𝑒
here correspond to 𝐓′

𝑖,𝑒
, 𝐓′′

𝑖,𝑒

therein.) We recall the formulation of 𝑇′′
𝑖,+1

below.

Proposition 2.3 [31, Proposition 6.21]. Set 𝑟 = −𝑐𝑖𝑗 . There exist an automorphism 𝑇′′
𝑖,+1

, for 𝑖 ∈ 𝕀,
on 𝐔̃ such that

𝑇′′
𝑖,+1(𝐾𝑗) = 𝐾𝑗𝐾

−𝑐𝑖𝑗
𝑖

, 𝑇′′
𝑖,+1(𝐾

′
𝑗) = 𝐾′

𝑗𝐾
′
𝑖
−𝑐𝑖𝑗 ,

𝑇′′
𝑖,+1(𝐸𝑖) = −𝐹𝑖𝐾

′
𝑖
−1
, 𝑇′′

𝑖,+1(𝐹𝑖) = −𝐾−1
𝑖 𝐸𝑖,

𝑇′′
𝑖,+1(𝐸𝑗) =

𝑟∑
𝑠=0

(−1)𝑠𝑞−𝑠
𝑖
𝐸(𝑟−𝑠)
𝑖

𝐸𝑗𝐸
(𝑠)
𝑖
, 𝑗 ≠ 𝑖,

𝑇′′
𝑖,+1(𝐹𝑗) =

𝑟∑
𝑠=0

(−1)𝑠𝑞𝑠
𝑖
𝐹
(𝑠)
𝑖
𝐹𝑗𝐹

(𝑟−𝑠)
𝑖

, 𝑗 ≠ 𝑖.

Moreover, the 𝑇′′
𝑖,+1

, for 𝑖 ∈ 𝕀, satisfy the braid relations.

We sometimes use the following conventional short notations:

𝑇𝑖 ∶= 𝑇′′
𝑖,+1, 𝑇−1

𝑖 ∶= 𝑇′
𝑖,−1, 𝑇𝑖 ∶= 𝑇′′

𝑖,+1, 𝑇−1
𝑖 ∶= 𝑇′

𝑖,−1.

Hence, we can define

𝑇𝑤 ≡ 𝑇′′
𝑤,+1 ∶= 𝑇𝑖1 ⋯𝑇𝑖𝑟 ∈ Aut(𝐔̃),

where 𝑤 = 𝑠𝑖1 ⋯ 𝑠𝑖𝑟 is any reduced expression of 𝑤 ∈ 𝑊. Similarly, one defines 𝑇𝑤 for 𝑤 ∈ 𝑊.
The symmetries 𝑇′

𝑖,𝑒
and 𝑇′′

𝑖,𝑒
, for 𝑖 ∈ 𝕀, satisfy the following identities in 𝐔̃ [31] (analogous to

[28, 37.2.4] in𝐔):

𝑇′
𝑖,−1 = 𝜎 ◦𝑇′′

𝑖,+1 ◦𝜎,

𝑇′′
𝑖,−𝑒 = 𝜓 ◦𝑇′′

𝑖,+𝑒 ◦𝜓, 𝑇′
𝑖,+𝑒 = 𝜓 ◦𝑇′

𝑖,−𝑒 ◦𝜓.
(2.10)

The automorphism 𝑇′′
𝑖,+1

descends to Lusztig’s automorphisms 𝑇′′
𝑖,+1

on𝐔:

𝜋𝟏◦𝑇
′′
𝑖,+1 = 𝑇′′

𝑖,+1◦𝜋𝟏. (2.11)

2.3 Satake diagrams and relative Weyl/braid groups

Given a subset 𝕀∙ ⊂ 𝕀, denote by𝑊∙ the parabolic subgroup of𝑊 generated by 𝑠𝑖, 𝑖 ∈ 𝕀∙. Set 𝑤∙ to
be the longest element of𝑊∙. Let∙ be the set of roots that lie in the span of 𝛼𝑖, 𝑖 ∈ 𝕀∙. Similarly,
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RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1353

∨
∙ is the set of coroots that lie in the span of 𝛼

∨
𝑖
, 𝑖 ∈ 𝕀∙. Let 𝜌∙ be the half sum of positive roots in

the root system∙, and 𝜌∨∙ be the half sum of positive coroots in∨
∙ .

An admissible pair (𝕀 = 𝕀∙ ∪ 𝕀◦, 𝜏) (cf. [4, 18]) consists of a partition 𝕀∙ ∪ 𝕀◦ of 𝕀, and a Dynkin
diagram involution 𝜏 of 𝔤 (where 𝜏 = Id is allowed) such that

(1) 𝑤∙(𝛼𝑗) = −𝛼𝜏𝑗 for 𝑗 ∈ 𝕀∙,
(2) If 𝑗 ∈ 𝕀◦ and 𝜏𝑗 = 𝑗, then 𝛼𝑗(𝜌

∨
∙ ) ∈ ℤ.

The diagrams associated to admissible pairs are known as Satake diagrams.We shall use the terms
between admissible pairs and Satake diagrams interchangeably. Throughout the paper, we shall
always work with admissible pairs (𝕀 = 𝕀∙ ∪ 𝕀◦, 𝜏). A symmetric pair (𝔤, 𝜃) (of finite type) consists
of a semisimple Lie algebra 𝔤 and an involution 𝜃 on 𝔤; the irreducible symmetric pairs (of finite
type) are classified by Satake diagrams.
Given an admissible pair (𝕀 = 𝕀∙ ∪ 𝕀◦, 𝜏), the corresponding involution 𝜃 (acting on the weight

lattice) is recovered as

𝜃 = −𝑤∙ ◦ 𝜏. (2.12)

Set 𝕀◦,𝜏 to be a (fixed) set of representatives of 𝜏-orbits in 𝕀◦. The (real) rank of a Satake diagram is
the cardinality of 𝕀◦,𝜏. We call a Satake diagram (𝕀1 = 𝕀1∙ ∪ 𝕀1◦, 𝜏

1) a subdiagram of another Satake
diagram (𝕀 = 𝕀∙ ∪ 𝕀◦, 𝜏), if 𝕀1◦ ⊂ 𝕀◦, 𝕀1∙ ⊂ 𝕀∙,𝜏1|𝕀1◦ = 𝜏|𝕀1◦ , and 𝕀1∙ contains all black nodes in 𝕀 which lie
in the connected components of 𝕀1◦ in 𝕀∙ ∪ 𝕀1◦.
Given an admissible pair (𝕀 = 𝕀∙ ∪ 𝕀◦, 𝜏) and 𝑖 ∈ 𝕀◦, we set

𝕀∙,𝑖 ∶= 𝕀∙ ∪ {𝑖, 𝜏𝑖}. (2.13)

Let 𝑊∙,𝑖 be the parabolic subgroup of 𝑊 generated by 𝑠𝑖, 𝑖 ∈ 𝕀∙,𝑖 . Let 𝑤∙,𝑖 the longest element of
𝑊∙,𝑖 . The following constructions are a special case of those by Lusztig [25]; also cf. [15, 29]. Define
𝐫𝑖 ∈ 𝑊∙,𝑖 such that

𝑤∙,𝑖 = 𝐫𝑖𝑤∙ (= 𝑤∙𝐫𝑖), where 𝓁(𝑤∙,𝑖) = 𝓁(𝐫𝑖) + 𝓁(𝑤∙). (2.14)

(It follows from the admissible pair requirement that 𝑤∙,𝑖, 𝐫𝑖 , and 𝑤∙ commute with each other.)
Then the subgroup of𝑊,

𝑊◦ ∶= ⟨𝐫𝑖|𝑖 ∈ 𝕀◦,𝜏⟩,
is a Weyl group by itself with its simple reflections identified with {𝐫𝑖 ∣ 𝑖 ∈ 𝕀◦,𝜏}. Denote by 𝓁◦ the
length function of the Coxeter systerm (𝑊◦, 𝕀◦,𝜏) and by𝒘◦ its longest element.

Proposition 2.4 ([25, Theorem 5.9]). Let𝑤1,𝑤2 ∈ 𝑊◦. Then𝓁(𝑤1𝑤2) = 𝓁(𝑤1) + 𝓁(𝑤2) if and only
if 𝓁◦(𝑤1𝑤2) = 𝓁◦(𝑤1) + 𝓁◦(𝑤2).

Hence, there is no ambiguity to refer to the Coxeter system 𝑊◦ or 𝑊 when we talk about
reduced expressions of an element 𝑤 ∈ 𝑊◦ ⊂ 𝑊. By definition, we have identifications 𝕀∙,𝑖 =

𝕀∙,𝜏𝑖,𝑊∙,𝑖 = 𝑊∙,𝜏𝑖, 𝑤∙,𝑖 = 𝑤∙,𝜏𝑖 , and 𝐫𝑖 = 𝐫𝜏𝑖 . Denote by 𝜏∙,𝑖 the diagram involution on 𝕀∙,𝑖 such that

𝑤∙,𝑖(𝛼𝑗) = −𝛼𝜏∙,𝑖𝑗, ∀𝑗 ∈ 𝕀∙,𝑖 . (2.15)
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1354 WANG and ZHANG

The relative Weyl group associated to the Satake diagram (𝕀 = 𝕀∙ ∪ 𝕀◦, 𝜏) can be identified with
𝑊◦. Let {𝛼𝑖|𝑖 ∈ 𝕀◦,𝜏} be the simple system of the relative (or restricted) root system, where 𝛼𝑖 is
identified with the following element (cf. [15, §2.3]):

𝛼𝑖 ∶=
𝛼𝑖 − 𝜃(𝛼𝑖)

2
, (𝑖 ∈ 𝕀◦). (2.16)

Note that 𝛼𝑖 = 𝛼𝜏𝑖 .
We introduce a subgroup of𝑊:

𝑊𝜃 = {𝑤 ∈ 𝑊 ∣ 𝑤𝜃 = 𝜃𝑤}.

It is well known that (see, e.g., [15, §2.2])

𝑊∙ ⋊𝑊◦ ≅ 𝑊𝜃.

We shall refer to the braid group associated to the relative Weyl group𝑊◦ as the relative braid
group and denote it by Br(𝑊◦). Accordingly, we denote the braid group associated to 𝑊∙ by
Br(𝑊∙).

2.4 Universal 𝒊quantum groups

We set up some basics for the universal quantum symmetric pair (𝐔̃, 𝐔̃𝚤), following and somewhat
generalizing [32].
Let (𝕀 = 𝕀∙ ∪ 𝕀◦, 𝜏) be a Satake diagram. Define 𝐔̃∙ to be the subalgebra of 𝐔̃ with the set of

Chevalley generators

̃∙ ∶= {𝐸𝑗, 𝐹𝑗, 𝐾𝑗, 𝐾
′
𝑗 ∣ 𝑗 ∈ 𝕀∙}.

The universal 𝚤quantum group associated to the Satake diagram (𝕀 = 𝕀∙ ∪ 𝕀◦, 𝜏) is defined to be the
𝔽-subalgebra of 𝐔̃

𝐔̃𝚤 = ⟨𝐵𝑖, 𝑘𝑖, g ∣ 𝑖 ∈ 𝕀◦, g ∈ ̃∙⟩
via the embedding 𝚤 ∶ 𝐔̃𝚤 → 𝐔̃, 𝑢 ↦ 𝑢𝚤, with

𝐵𝑖 ↦ 𝐹𝑖 + 𝑇𝑤∙
(𝐸𝜏𝑖)𝐾

′
𝑖 , 𝑘𝑖 ↦ 𝐾𝑖𝐾

′
𝜏𝑖, g ↦ g , for 𝑖 ∈ 𝕀◦, g ∈ ̃∙. (2.17)

(The notation 𝑢𝚤 for 𝑢 ∈ 𝐔̃𝚤, for example, 𝐵𝚤
𝑖
, is mainly used when we need to apply braid group

operators on 𝐔̃ to 𝑢𝚤.) By definition, 𝐔̃𝚤 contains the Drinfeld double 𝐔̃∙ associated to 𝕀∙ as
a subalgebra.
Let 𝐔̃𝚤0 denote the subalgebra of 𝐔̃𝚤 generated by 𝑘𝑖, 𝐾𝑗, 𝐾

′
𝑗
, for 𝑖 ∈ 𝕀◦, 𝑗 ∈ 𝕀∙. The following

lemma is clear.

Lemma 2.5. If 𝑖 = 𝜏𝑖, 𝑖 ∈ 𝕀◦, then 𝑘𝑖 is central in 𝐔̃𝚤. If 𝜏𝑖 ≠ 𝑖 ∈ 𝕀◦, then 𝑘𝑖𝑘𝜏𝑖 is central in 𝐔̃𝚤.

Following [22] and [18, §6.2], we formulate a monomial basis for 𝐔̃𝚤. Denote 𝐵𝑗 = 𝐹𝑗 , for 𝑗 ∈ 𝕀∙.
For a multi-index 𝐽 = (𝑗1, 𝑗2, … , 𝑗𝑛) ∈ 𝕀𝑛, we define 𝐹𝐽 ∶= 𝐹𝑗1𝐹𝑗2 ⋯𝐹𝑗𝑛 and 𝐵𝐽 ∶= 𝐵𝑗1𝐵𝑗2 ⋯𝐵𝑗𝑛 .
Let  be a fixed subset of

⋃
𝑛⩾0 𝕀

𝑛 such that {𝐹𝐽|𝐽 ∈  } forms a basis of 𝐔̃ as a 𝐔̃+𝐔̃0-module.
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RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1355

Proposition 2.6 (cf. [18, Proposition 6.2]). The set {𝐵𝐽|𝐽 ∈  } is a basis of the left (or right) 𝐔̃+
∙ 𝐔̃

𝚤0-
modules 𝐔̃𝚤.

2.5 𝒊Quantum group𝐔𝒊
𝝇
via central reduction

We recall some basics for quantum symmetric pairs (𝐔,𝐔𝚤
𝝇), cf. [18, 22], where the parameter

𝝇 = (𝜍𝑖)𝑖∈𝕀◦ ∈ 𝔽×,𝕀◦ is always assumed to satisfy the following conditions (cf. [22] [18, Section 5.1]):

𝜍𝑖 = 𝜍𝜏𝑖, if 𝜏𝑖 ≠ 𝑖 and (𝛼𝑖, 𝑤∙𝛼𝜏𝑖) = 0. (2.18)

We call 𝝇 a balanced parameter, if 𝜍𝑖 = 𝜍𝜏𝑖 for any 𝑖 ∈ 𝕀◦. For an arbitrary parameter 𝝇, we define
an associated balanced parameter 𝝇𝑒 such that

𝜍𝑒
𝑖
= 𝜍𝑒

𝜏𝑖
=
√
𝜍𝑖𝜍𝜏𝑖. (2.19)

Define𝐔∙ to be the subalgebra of𝐔 with the set of Chevalley generators

∙ ∶= {𝐸𝑗, 𝐹𝑗, 𝐾
±1
𝑗

∣ 𝑗 ∈ 𝕀∙}.

The 𝚤quantum group associated to the Satake diagram (𝕀 = 𝕀∙ ∪ 𝕀◦, 𝜏) with parameter 𝝇 is defined
to be the 𝔽-subalgebra of𝐔

𝐔𝚤
𝝇 = ⟨𝐵𝑖, 𝑘𝑗, g ∣ 𝑖 ∈ 𝕀◦, 𝑗 ∈ 𝕀 ⧵ 𝕀◦,𝜏, g ∈ ∙⟩

via the embedding 𝚤 ∶ 𝐔𝚤
𝝇 → 𝐔 with

𝐵𝑖 ↦ 𝐹𝑖 + 𝜍𝑖𝑇𝑤∙
(𝐸𝜏𝑖)𝐾

−1
𝑖 , 𝑘𝑗 ↦ 𝐾𝑗𝐾

−1
𝜏𝑗 , ∀𝑖 ∈ 𝕀◦, 𝑗 ∈ 𝕀 ⧵ 𝕀◦,𝜏. (2.20)

Note that𝐔𝚤 contains𝐔∙ as a subalgebra. For 𝑖 ∈ 𝕀◦,𝜏, we set 𝑘𝑖 = 1 if 𝑖 = 𝜏𝑖 and 𝑘𝑖 = 𝑘−1
𝜏𝑖
if 𝑖 ≠ 𝜏𝑖.

Similarly, we denote by𝐔𝚤0 the subalgebra of𝐔𝚤 generated by 𝑘𝑖, 𝐾𝑗 , for 𝑖 ∈ 𝕀◦, 𝑗 ∈ 𝕀∙.
Recall from (2.16) that 𝛼𝑖 = (𝛼𝑖 + 𝑤∙𝛼𝜏𝑖)∕2. Define a distinguished balanced parameter 𝝇⋄ =

(𝜍𝑖,⋄)𝑖∈𝕀◦ such that

𝜍𝑖,⋄ = −𝑞−(𝛼𝑖,𝛼𝑖+𝑤∙𝛼𝜏𝑖)∕2 = −𝑞−(𝛼𝑖,𝛼𝑖), for 𝑖 ∈ 𝕀◦. (2.21)

The parameter 𝝇⋄ will play a basic role in this paper; also cf. [15].
Letzter [23] and Kolb [18, Proposition 9.2, Theorem 9.7] raised and addressed the question on

when 𝚤quantum groups for different parameters are related by Hopf algebra automorphisms of 𝐔̃.
Watanabe [36, Lemma 2.5.1] showed that the 𝚤quantum groups for arbitrarily different parame-
ters are all isomorphic (not necessarily by Hopf algebra automorphisms); we recall the following
special case of Watanabe’s result.

Proposition 2.7 [36, Lemma 2.5.1]. For any parameter 𝝇, there exists an algebra isomorphism 𝜙𝝇 ∶

𝐔𝚤
𝝇⋄
→ 𝐔𝚤

𝝇 which sends 𝐵𝑖 ↦
√

𝜍𝑖,⋄(𝜍𝑖𝜍𝜏𝑖)
−1∕2𝐵𝑖, 𝐸𝑗 ↦ 𝐸𝑗, 𝐹𝑗 ↦ 𝐹𝑗, 𝐾𝑗 ↦ 𝐾𝑗, 𝑘𝑟 ↦

√
𝜍−1𝑟 𝜍𝜏𝑟𝑘𝑟, 𝑖 ∈

𝕀◦, 𝑗 ∈ 𝕀∙, 𝑟 ∈ 𝕀 ⧵ 𝕀◦,𝜏 .
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1356 WANG and ZHANG

TABLE 1 Rank 1 Satake diagrams and local datum.

Type Satake diagram 𝝇𝒊,⋄ 𝐫𝒊

AI1 𝜍1,⋄ = −𝑞−2 𝐫1 = 𝑠1

AII3 𝜍2,⋄ = −𝑞−1 𝐫2 = 𝑠2132

AIII11 𝜍1,⋄ = −𝑞−1 𝐫1 = 𝑠1𝑠2

AIV, n≥2 𝜍1,⋄ = −𝑞−1∕2 𝐫1 = 𝑠1⋯𝑛⋯1

BII, n≥ 2 𝜍1,⋄ = −𝑞−1
1

𝐫1 = 𝑠1⋯𝑛⋯1

CII, n≥3 𝜍2,⋄ = −𝑞
−1∕2

2
𝐫2 = 𝑠2⋯𝑛⋯212⋯𝑛⋯2

DII, n≥4 𝜍1,⋄ = −𝑞−1 𝐫1 = 𝑠1⋯𝑛−2⋅𝑛−1⋅𝑛⋅𝑛−2⋯1

FII 𝜍4,⋄ = −𝑞
−1∕2

4
𝐫4 = 𝑠432312343231234

It follows that there is an algebra isomorphism

𝜙𝝇𝜙
−1
𝝇𝑒 ∶ 𝐔𝚤

𝝇𝑒 ⟶ 𝐔𝚤
𝝇 (2.22)

which sends 𝐵𝑖 ↦ 𝐵𝑖, 𝐸𝑗 ↦ 𝐸𝑗, 𝐹𝑗 ↦ 𝐹𝑗, 𝐾𝑗 ↦ 𝐾𝑗, 𝑘𝑟 ↦
√

𝜍−1𝑟 𝜍𝜏𝑟𝑘𝑟, for 𝑖 ∈ 𝕀◦, 𝑗 ∈ 𝕀∙, 𝑟 ∈ 𝕀 ⧵ 𝕀◦,𝜏.
We have the following central reduction 𝜋𝚤

𝝇 ∶ 𝐔̃𝚤 → 𝐔𝚤
𝝇, generalizing [32, Proposition 6.2] in the

quasi-split setting.

Proposition 2.8. There exists a quotient morphism 𝜋𝚤
𝝇 ∶ 𝐔̃𝚤 → 𝐔𝚤

𝝇 sending

𝐵𝑖 ↦ 𝐵𝑖, 𝑘𝑗 ↦ 𝜍𝜏𝑗𝑘𝑗, 𝑘𝜏𝑗 ↦ 𝜍𝑗𝑘𝜏𝑗, (𝑖 ∈ 𝕀◦, 𝑗 ∈ 𝕀◦,𝜏),

and 𝜋𝚤
𝝇|𝐔̃∙

= 𝜋𝟏|𝐔̃∙
. The kernel of 𝜋𝚤

𝝇 is generated by

𝑘𝑖 − 𝜍𝑖 (𝑖 = 𝜏𝑖, 𝑖 ∈ 𝕀◦), 𝑘𝑖𝑘𝜏𝑖 − 𝜍𝑖𝜍𝜏𝑖 (𝑖 ≠ 𝜏𝑖, 𝑖 ∈ 𝕀◦), 𝐾𝑗𝐾
′
𝑗 − 1 (𝑗 ∈ 𝕀∙).

Proof. By (2.6), the restriction of 𝜋𝝇 on 𝐔̃𝚤 sends

𝐵𝑖 ↦ 𝐹𝑖 +
√
𝜍𝑖𝜍𝜏𝑖𝑇𝑤∙

(𝐸𝜏𝑖)𝐾
−1
𝑖 , 𝑘𝑖 ↦

√
𝜍𝑖𝜍𝜏𝑖𝑘𝑖, 𝑖 ∈ 𝕀◦,

𝐾𝑗 ↦ 𝐾𝑗, 𝐸𝑗 ↦ 𝐸𝑗, 𝐹𝑗 ↦ 𝐹𝑗, 𝑗 ∈ 𝕀∙.

Since the images generate𝐔𝚤
𝝇𝑒
(see (2.19) for the definition of 𝝇𝑒), 𝜋𝝇 restricts to a surjective homo-

morphism 𝐔̃𝚤 → 𝐔𝚤
𝝇𝑒
, and we denote it by 𝜋𝚤

𝝇𝑒
. Moreover, we have ker 𝜋𝚤

𝝇𝑒
= ker 𝜋𝝇 ∩ 𝐔̃𝚤. Since
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RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1357

ker 𝜋𝝇 is generated by elements 𝐾𝑖𝐾
′
𝑖
− 𝜍𝑖 for 𝑖 ∈ 𝕀, we conclude that ker 𝜋𝚤

𝝇𝑒
is generated by

𝑘𝑖 − 𝜍𝑖 (𝑖 = 𝜏𝑖, 𝑖 ∈ 𝕀◦), 𝑘𝑖𝑘𝜏𝑖 − 𝜍𝑖𝜍𝜏𝑖 (𝑖 ≠ 𝜏𝑖, 𝑖 ∈ 𝕀◦), 𝐾𝑗𝐾
′
𝑗 − 1 (𝑗 ∈ 𝕀∙).

The composition with the isomorphism 𝜙𝝇𝜙
−1
𝝇𝑒

from (2.22), 𝜋𝚤
𝝇 ∶= 𝜙𝝇𝜙

−1
𝝇𝑒
◦𝜋𝚤

𝝇𝑒
, defines a surjec-

tive homomorphism 𝐔̃𝚤 → 𝐔𝚤
𝝇. Finally, it is clear from Proposition 2.7 that ker 𝜋𝚤

𝝇 is generated by
the desired elements. □

Remark 2.9. For a balanced parameter 𝝇, 𝜋𝚤
𝝇 coincides with the restriction of 𝜋𝝇 on 𝐔̃𝚤. However,

this is not the case for an unbalanced parameter.

3 QUASI 𝑲-MATRIX AND INTERTWINING PROPERTIES

In this section, we establish the quasi 𝐾-matrix Υ̃ for the universal quantum symmetric pair
(𝐔̃, 𝐔̃𝚤), and a new characterization of Υ̃ in terms of an anti-involution 𝜎. Then using suitable
intertwining properties with the quasi𝐾-matrix, we establish an anti-involution 𝜎𝚤 and a bar invo-
lution𝜓𝚤 on 𝐔̃𝚤 from the anti-involution 𝜎 and a rescaled bar involution𝜓⋆ on 𝐔̃. We also establish
an anti-involution 𝜎𝜏 on𝐔𝚤

𝝇 for an arbitrary parameter 𝝇.

3.1 Quasi 𝑲-matrix

The quasi 𝐾-matrix was introduced in [7, §2.3] as the intertwiner between the embedding 𝚤 ∶

𝐔𝚤
𝝇 → 𝐔 and its bar-conjugated embedding (where some constraints on 𝝇 are imposed); this was

expected to be valid for general quantum symmetric pairs early on. A proof for the existence of the
quasi 𝐾-matrix was given in [5] in greater generality (modulo a technical assumption, which was
later removed in [9]). Appel-Vlaar [2, Theorem 7.4] reformulated the definition of quasi 𝐾-matrix
Υ𝝇 associated to (𝐔,𝐔𝚤

𝝇) without reference to the bar involution on 𝐔𝚤
𝝇; this somewhat technical

(see (3.1)) reformulation removes constraints on the parameter 𝝇 for quasi 𝐾-matrix. Recall the
bar involution 𝜓 on𝐔.

Theorem3.1 (cf. [2]). There exists a unique elementΥ𝝇 =
∑

𝜇∈ℕ𝕀 Υ
𝜇
𝝇 , forΥ

𝜇
𝝇 ∈ 𝐔+

𝜇 , such thatΥ
0
𝝇 = 1

and the following identities hold:

𝐵𝑖Υ𝝇 = Υ𝝇

(
𝐹𝑖 + (−1)𝛼𝑖(2𝜌

∨
∙ )𝑞(𝛼𝑖 ,𝑤∙(𝛼𝜏𝑖)+2𝜌∙)𝜍𝜏𝑖𝜓

(
𝑇𝑤∙

𝐸𝜏𝑖

)
𝐾𝑖

)
, (3.1)

𝑥Υ𝝇 = Υ𝝇𝑥, (3.2)

for 𝑖 ∈ 𝕀◦ and 𝑥 ∈ 𝐔𝚤0𝐔∙. Moreover, Υ̃𝜇 = 0 unless 𝜃(𝜇) = −𝜇.

Recall the bar involution 𝜓 on 𝐔̃ from Proposition 2.2. The quasi 𝐾-matrix Υ̃ associated to
(𝐔̃, 𝐔̃𝚤) is defined in a similar way as in Theorem 3.1.
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1358 WANG and ZHANG

Theorem 3.2. There exists a unique element Υ̃ =
∑

𝜇∈ℕ𝕀 Υ̃
𝜇 such that Υ̃0 = 1, Υ̃𝜇 ∈ 𝐔̃+

𝜇 and the
following identities hold:

𝐵𝑖Υ̃ = Υ̃
(
𝐹𝑖 + (−1)𝛼𝑖(2𝜌

∨
∙ )𝑞(𝛼𝑖 ,𝑤∙𝛼𝜏𝑖+2𝜌∙)𝜓

(
𝑇𝑤∙

𝐸𝜏𝑖

)
𝐾𝑖

)
, (3.3)

𝑥Υ̃ = Υ̃𝑥, (3.4)

for 𝑖 ∈ 𝕀◦ and 𝑥 ∈ 𝐔̃𝚤0𝐔̃∙. Moreover, Υ̃𝜇 = 0 unless 𝜃(𝜇) = −𝜇.

Proof. Follows by a rerun of the proof of Theorem 3.1 as in [2] or in [19]. (The strategy of the proof
does not differ substantially from the one given in [7].) □

Remark 3.3. Applying the central reduction 𝜋𝝇 in (2.6) to (3.3) gives us(
𝐹𝑖 +

√
𝜍𝑖𝜍𝜏𝑖𝑇𝑤∙

(𝐸𝜏𝑖)𝐾
−1
𝑖

)
𝜋𝝇(Υ̃)

= 𝜋𝝇(Υ̃)
(
𝐹𝑖 + (−1)𝛼𝑖(2𝜌

∨
∙ )𝑞(𝛼𝑖 ,𝑤∙(𝛼𝜏𝑖)+2𝜌∙)

√
𝜍𝑖𝜍𝜏𝑖𝜓

(
𝑇𝑤∙

(𝐸𝜏𝑖)
)
𝐾𝑖

)
, (3.5)

𝑥𝜋𝝇(Υ̃) = 𝜋𝝇(Υ̃)𝑥, (3.6)

for 𝑖 ∈ 𝕀◦, 𝑥 ∈ 𝐔𝚤0𝐔∙. Comparing (3.5) with (3.1), we obtain by the uniqueness of the quasi 𝐾-
matrix that (see (2.19) for 𝝇𝑒)

𝜋𝝇(Υ̃) = Υ𝝇𝑒 . (3.7)

In particular, 𝜋𝝇(Υ̃) = Υ𝝇 if and only if 𝝇 is a balanced parameter.

3.2 A bar involution 𝝍𝒊 on 𝐔̃𝒊

Introduce a balanced parameter 𝝇⋆ = (𝜍𝑖,⋆)𝑖∈𝕀◦ by letting

𝜍𝑖,⋆ = (−1)𝛼𝑖(2𝜌
∨
∙ )𝑞(𝛼𝑖 ,𝑤∙𝛼𝜏𝑖+2𝜌∙), (𝑖 ∈ 𝕀◦). (3.8)

Note that 𝜍𝑖,⋆ are exactly the scalars appearing on the RHS (3.3). We extend 𝝇⋆ trivially to an
𝕀-tuple, again denoted by 𝝇⋆ by abuse of notation, by setting

𝜍𝑗,⋆ = 1 (𝑗 ∈ 𝕀∙).

Recall the scaling automorphism Ψ̃𝝇⋆
from (2.7) and the bar involution 𝜓 on 𝐔̃ from

Proposition 2.2. The composition

𝜓⋆ ∶= Ψ̃𝝇⋆
◦𝜓 (3.9)

is an antilinear involutive automorphism of 𝐔̃.
Let Ad𝑦 be the operator such that Ad𝑦(𝑢) ∶= 𝑦𝑢𝑦−1 for 𝑦 invertible.
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RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1359

Proposition 3.4. There exists a unique antilinear involution 𝜓𝚤 of 𝐔̃𝚤 such that

𝜓𝚤(𝐵𝑖) = 𝐵𝑖, 𝜓𝚤(𝑥) = 𝜓⋆(𝑥), for 𝑖 ∈ 𝕀◦, 𝑥 ∈ 𝐔̃𝚤0𝐔̃∙. (3.10)

Moreover, 𝜓𝚤 satisfies the following intertwining relation:

𝜓𝚤(𝑥)Υ̃ = Υ̃𝜓⋆(𝑥), for all 𝑥 ∈ 𝐔̃𝚤. (3.11)

(𝜓𝚤 is called a bar involution on 𝐔̃𝚤.)

Proof. We follow the same strategy in [19] who established a bar involution on𝐔𝚤
𝝇 (for suitable 𝝇)

without using a Serre presentation.
By definition of 𝜓⋆, we have, for 𝑖 ∈ 𝕀◦, 𝑥 ∈ 𝐔̃𝚤0𝐔̃∙,

𝜓⋆(𝐵𝑖) = 𝐹𝑖 + (−1)𝛼𝑖(2𝜌
∨
∙ )𝑞(𝛼𝑖 ,𝑤∙𝛼𝜏𝑖+2𝜌∙)𝜓

(
𝑇𝑤∙

𝐸𝜏𝑖

)
𝐾𝑖,

𝜓⋆(𝑥) ∈ 𝐔̃𝚤0𝐔̃∙.

(3.12)

The composition AdΥ̃ ◦𝜓⋆ is an antilinear homomorphism from 𝐔̃ to a completion of 𝐔̃. Then,
the image of 𝐔̃𝚤 under AdΥ̃ ◦𝜓⋆ is a subalgebra generated by

(AdΥ̃ ◦𝜓⋆)(𝐵𝑖), (AdΥ̃ ◦𝜓⋆)(𝑥), for 𝑖 ∈ 𝕀◦, 𝑥 ∈ 𝐔̃𝚤0𝐔̃∙.

By Theorem 3.2 and the identities (3.12), we have, for 𝑖 ∈ 𝕀◦, 𝑥 ∈ 𝐔̃𝚤0𝐔̃∙,

(AdΥ̃ ◦𝜓⋆)(𝐵𝑖) = 𝐵𝑖, (AdΥ̃ ◦𝜓⋆)(𝑥) = 𝜓⋆(𝑥). (3.13)

Since each element in (3.13) lies in 𝐔̃𝚤, AdΥ̃ ◦𝜓⋆ restricts to an antilinear endomorphism on 𝐔̃𝚤,
which we shall denote by 𝜓𝚤 ∶ 𝐔̃𝚤 → 𝐔̃𝚤.
By construction, 𝜓𝚤 satisfies (3.10)–(3.11). Finally, 𝜓𝚤 is unique and is an involutive automor-

phism of 𝐔̃𝚤 since it satisfies (3.10). □

Proposition 3.5. We have

𝜓⋆(Υ̃)Υ̃ = 1. (3.14)

Proof. Applying 𝜓⋆ to (3.11) results the identity 𝜓⋆(𝑦)𝜓⋆(Υ̃) = 𝜓⋆(Υ̃)𝜓
𝚤(𝑦), for 𝑦 ∈ 𝐔̃𝚤. We rewrite

this identity as

𝜓𝚤(𝑦)𝜓⋆(Υ̃)
−1 = 𝜓⋆(Υ̃)

−1𝜓⋆(𝑦). (3.15)

Using (3.12) and Proposition 3.4, the above identity (3.15) implies following relations:

𝐵𝑖𝜓⋆(Υ̃)
−1 = 𝜓⋆(Υ̃)

−1
(
𝐹𝑖 + (−1)𝛼𝑖(2𝜌

∨
∙ )𝑞(𝛼𝑖 ,𝑤∙𝛼𝜏𝑖+2𝜌∙)𝜓

(
𝑇𝑤∙

𝐸𝜏𝑖

)
𝐾𝑖

)
,

𝑥𝜓⋆(Υ̃)
−1 = 𝜓⋆(Υ̃)

−1𝑥,

(3.16)

for 𝑖 ∈ 𝕀◦, 𝑥 ∈ 𝐔̃𝚤0𝐔̃∙. Hence, 𝜓⋆(Υ̃)
−1 satisfies (3.3)–(3.4) as well. Clearly, 𝜓⋆(Υ̃)

−1 has constant
term 1. Thanks to the uniqueness of Υ̃ in Theorem 3.2, we have 𝜓⋆(Υ̃)

−1 = Υ̃. □
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1360 WANG and ZHANG

3.3 Quasi 𝑲-matrix and anti-involution 𝝈

We provide a new characterization for Υ̃ in terms of the anti-involution 𝜎 (see Proposition 2.2),
which turns out to be much cleaner than Theorem 3.2. Denote

𝐵𝜎
𝑖
= 𝜎(𝐵𝑖) = 𝐹𝑖 + 𝐾𝑖𝑇

−1
𝑤∙
(𝐸𝜏𝑖), (3.17)

where the second identity above follows by noting 𝑇−1
𝑤∙

= 𝜎𝑇𝑤∙
𝜎; see (2.10). The following

characterization of a quasi 𝐾-matrix Υ̃ is valid for 𝐔̃𝚤 of arbitrary Kac–Moody type.

Theorem 3.6. There exists a unique element Υ̃ =
∑

𝜇∈ℕ𝕀 Υ̃
𝜇 such that Υ̃0 = 1, Υ̃𝜇 ∈ 𝐔̃+

𝜇 and the
following intertwining relations hold:

𝐵𝑖Υ̃ = Υ̃𝐵𝜎
𝑖
, (𝑖 ∈ 𝕀◦),

𝑥Υ̃ = Υ̃𝑥, (𝑥 ∈ 𝐔̃𝚤0𝐔̃∙).
(3.18)

Moreover, Υ̃𝜇 = 0 unless 𝜃(𝜇) = −𝜇.

Proof. We show that the identity (3.18) is equivalent to (3.3), for any fixed 𝑖 ∈ 𝕀◦. Since 𝜓(𝑇𝑤∙
(𝐸𝜏𝑖))

has weight 𝑤∙𝛼𝜏𝑖 , the identity (3.3) is equivalent to

𝐵𝑖Υ̃ = Υ̃
(
𝐹𝑖 + (−1)𝛼𝑖(2𝜌

∨
∙ )𝑞(𝛼𝑖 ,2𝜌∙)𝐾𝑖𝜓

(
𝑇𝑤∙

(𝐸𝜏𝑖)
))

. (3.19)

Moreover, by [8, Lemma 4.17] and 𝐔̃+ = 𝐔+, we have

(−1)𝛼𝑖(2𝜌
∨
∙ )𝑞(𝛼𝑖 ,2𝜌

∨
∙ )𝜓

(
𝑇𝑤∙

(𝐸𝜏𝑖)
)
= 𝑇−1

𝑤∙
(𝐸𝜏𝑖),

and hence, the identity (3.19) is equivalent to (3.18) as desired. □

Remark 3.7. By abuse of notation, we denote again by 𝜎 the anti-involution on𝐔 that fixes 𝐸𝑖, 𝐹𝑖
and sends 𝐾𝑖 ↦ 𝐾−1

𝑖
for 𝑖 ∈ 𝕀. For a balanced parameter 𝝇, we obtain the intertwining relation

for 𝐔𝚤
𝝇, 𝐵𝑖Υ𝝇 = Υ𝝇𝐵

𝜎
𝑖
(𝑖 ∈ 𝕀◦), by applying the central reduction 𝜋𝝇 to (3.18), thanks to (3.7). Here,

𝐵𝜎
𝑖
= 𝜎(𝐵𝑖) = 𝐹𝑖 + 𝜍𝑖𝐾𝑖𝑇

−1
𝑤∙
(𝐸𝜏𝑖).

On the other hand, for (not necessarily balanced) parameter 𝝇, we have

𝐵𝑖Υ𝝇 = Υ𝝇𝐵
𝜎𝜏
𝜏𝑖
. (3.20)

Note that the involution 𝜏 induces an involution 𝜏̂ ∈ Aut(𝐔̃) that preserves 𝐔̃𝚤. For 𝑖 ∈ 𝕀◦, the
rank 1 quasi 𝐾-matrix

Υ̃𝑖 ∈ 𝐔̃+
𝕀∙,𝑖
(⊂ 𝐔̃+)

is defined to be the quasi 𝐾-matrix associated to the rank 1 Satake subdiagram (𝕀∙ ∪ {𝑖, 𝜏𝑖}, 𝜏); cf.
(2.13). Clearly, we have Υ̃𝑖 = Υ̃𝜏𝑖 .

Proposition 3.8. We have 𝜎(Υ̃) = Υ̃ and 𝜏̂(Υ̃) = Υ̃, In addition, for 𝑖 ∈ 𝕀◦, we have

𝜎(Υ̃𝑖) = Υ̃𝑖, 𝜏̂(Υ̃𝑖) = Υ̃𝑖.

In addition, 𝜏̂∙,𝑖(Υ̃𝑖) = Υ̃𝑖 .
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RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1361

Proof. By applying the anti-involution 𝜎 to the identities in Theorem 3.6, we have

𝜎(Υ̃)𝐵𝜎
𝑖
= 𝐵𝑖𝜎(Υ̃), (𝑖 ∈ 𝕀◦), (3.21)

𝜎(Υ̃)𝑦 = 𝑦𝜎(Υ̃), (𝑥 ∈ 𝐔̃𝚤0𝐔̃∙), (3.22)

where 𝑦 = 𝜎(𝑥) ∈ 𝐔̃𝚤0𝐔̃∙. Thismeans that 𝜎(Υ̃) satisfies the same characterization in Theorem 3.6
as Υ̃, and hence by uniqueness, we have 𝜎(Υ̃) = Υ̃.
Noting that 𝜎𝜏̂ = 𝜏̂𝜎 and 𝜏̂ preserves 𝐔̃𝚤0𝐔̃∙, then the identity 𝜏̂(Υ̃) = Υ̃ follows by the same type

argument as above.
The identities 𝜎(Υ̃𝑖) = Υ̃𝑖 and 𝜏̂(Υ̃𝑖) = Υ̃𝑖 are immediate by restricting 𝜎 and 𝜏̂ to the Drinfeld

double associated to rank 1 Satake subdiagram (𝕀∙,𝑖 , 𝕀∙, 𝜏|𝕀∙,𝑖 ).
According to the rank 1 Table 1, 𝜏∙,𝑖 = 1 except in type AIV when 𝜏∙,𝑖 coincides with the

restriction of 𝜏 to the rank 1 Satake diagram. In either case, we have 𝜏̂∙,𝑖(Υ̃𝑖) = Υ̃𝑖 . □

Remark 3.9. For balanced parameters 𝝇, by taking a central reduction𝜋𝝇, the property 𝜏(Υ𝑖,𝝇) = Υ𝑖,𝝇

remains valid. However, for unbalanced parameters 𝝇, we do not necessarily have 𝜏(Υ𝑖,𝝇) = Υ𝑖,𝝇;
instead, we have 𝜏(Υ𝑖,𝝇) = Υ𝑖,𝜏𝝇, which can be proved by Theorem 3.1. The property Υ𝑖,𝝇 = Υ𝜏𝑖,𝝇 is
true, regardless of balanced or unbalanced parameters.

Remark 3.10. It follows by Theorem 3.2 that the rank 1 quasi 𝐾-matrix Υ̃𝑖 has the form Υ̃𝑖 =∑
𝑚⩾0 Υ̃𝑖,𝑚, for Υ̃𝑖,𝑚 ∈ 𝐔̃𝑚(𝛼𝑖+𝑤∙𝛼𝜏𝑖)

.

3.4 An anti-involution 𝝈𝒊 on 𝐔̃𝒊

Define𝑖 ∈ 𝐔̃𝚤 by

𝑖 = 𝐾𝑖𝐾
′
𝑤∙𝛼𝜏𝑖

, for 𝑖 ∈ 𝕀◦. (3.23)

Lemma 3.11. Let 𝑖 ∈ 𝕀◦. We have𝑖 ∈ 𝐔̃𝚤0.

Proof. By definition, the element 𝑖 is a product of 𝑘𝑖 = 𝐾𝑖𝐾
′
𝜏𝑖
∈ 𝐔̃𝚤0 and an element in 𝐔̃0

∙ , and
hence,𝑖 ∈ 𝐔̃𝚤0. □

Recall the anti-involution 𝜎 on 𝐔̃ from Proposition 2.2.

Proposition 3.12. There exists a unique anti-involution 𝜎𝚤 of 𝐔̃𝚤 such that

𝜎𝚤(𝐵𝑖) = 𝐵𝑖, 𝜎𝚤(𝑥) = 𝜎(𝑥), for 𝑖 ∈ 𝕀◦, 𝑥 ∈ 𝐔̃𝚤0𝐔̃∙. (3.24)

Moreover, 𝜎𝚤 satisfies the following intertwining relation:

𝜎𝚤(𝑥)Υ̃ = Υ̃𝜎(𝑥), for all 𝑥 ∈ 𝐔̃𝚤. (3.25)

Proof. Given 𝑥 ∈ 𝐔̃𝚤, an element 𝑥 ∈ 𝐔̃𝚤 (if it exists) such that 𝑥Υ̃ = Υ̃𝜎(𝑥) must be unique due
to the invertibility of Υ̃.
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1362 WANG and ZHANG

Claim (∗). Suppose that there exist 𝑥, 𝑦 ∈ 𝐔̃𝚤 that 𝑥Υ̃ = Υ̃𝜎(𝑥) and 𝑦Υ̃ = Υ̃𝜎(𝑦), for given 𝑥, 𝑦 ∈

𝐔̃𝚤. Then we have

𝑦𝑥Υ̃ = Υ̃𝜎(𝑥𝑦).

Indeed, the Claim holds since 𝑦𝑥Υ̃ = 𝑦Υ̃𝜎(𝑥) = Υ̃𝜎(𝑦)𝜎(𝑥) = Υ̃𝜎(𝑥𝑦).

Observe that 𝜎 preserves the subalgebra 𝐔̃𝚤0𝐔̃∙ of 𝐔̃𝚤. Hence, by Theorem 3.6, we have 𝜎(𝑥)Υ̃ =

Υ̃𝜎(𝑥), for all 𝑥 ∈ 𝐔̃𝚤0𝐔̃∙. By Theorem 3.6 again, we have 𝐵𝑖Υ̃ = Υ̃𝜎(𝐵𝑖), for all 𝑖 ∈ 𝕀◦. Since the
assumption for Claim (∗) holds for a generating set 𝐔̃𝚤0𝐔̃∙ ∪ {𝐵𝑖|𝑖 ∈ 𝕀◦} of 𝐔̃𝚤, we conclude by
Claim (∗) that there exists a (unique) 𝑥 ∈ 𝐔̃𝚤 such that 𝑥Υ̃ = Υ̃𝜎(𝑥), for any 𝑥 ∈ 𝐔̃𝚤, andmoreover,
sending 𝑥 ↦ 𝑥 defines an antiendmorphism of 𝐔̃𝚤 (which will be denoted by 𝜎𝚤).
Clearly, by construction, 𝜎𝚤 satisfies (3.24) and the identity (3.25). Finally, 𝜎𝚤 is an involutive

antiautomorphism of 𝐔̃𝚤 since it satisfies (3.24). □

Remark 3.13. The strategy in establishing a bar involution on 𝐔𝚤
𝝇 without use of a Serre presen-

tations appeared first in [19]. For quasi-split 𝚤quantum groups, that is, 𝕀∙ = ∅, our 𝜓𝚤 coincides
with the bar involution in [12, Lemma 2.4(a)] (see also [31, Lemma 6.9]). Unlike the proof loc. cit.,
our proofs of Propositions 3.4 and 3.12 do not use a Serre presentation of 𝐔̃𝚤. Hence, the (anti-)
involutions 𝜎𝚤 and 𝜓𝚤 are valid for 𝐔̃𝚤 of arbitrary Kac–Moody type.

3.5 An anti-involution 𝝈𝝉 on𝐔𝒊
𝝇

The anti-involution𝜎𝚤 on 𝐔̃𝚤 in Proposition 3.12 can descend to an 𝚤quantumgroup𝐔𝚤
𝝇, only for any

balanced parameter 𝝇. It turns out that the anti-involution 𝜎𝚤𝜏 on 𝐔̃𝚤 can descend to an 𝚤quantum
group𝐔𝚤

𝝇, for an arbitrary parameter 𝝇.

Proposition 3.14. Let 𝝇 be an arbitrary parameter. There exists a unique anti-involution 𝜎𝜏 of 𝐔𝚤
𝝇

such that

𝜎𝜏(𝐵𝑖) = 𝐵𝜏𝑖, 𝜎𝜏(𝑥) = 𝜎𝜏(𝑥), for 𝑖 ∈ 𝕀◦, 𝑥 ∈ 𝐔𝚤0𝐔∙. (3.26)

Moreover, 𝜎𝜏 satisfies the following intertwining relation:

𝜎𝜏(𝑥)Υ𝝇 = Υ𝝇𝜎𝜏(𝑥), for all 𝑥 ∈ 𝐔𝚤
𝝇. (3.27)

Proof. A proof similar to the one for Proposition 3.12 works here, and we outline it.
We claim that, for any 𝑥 ∈ 𝐔𝚤

𝝇, there exists 𝑥 ∈ 𝐔𝚤
𝝇 such that

𝑥Υ𝝇 = Υ𝝇𝜎𝜏(𝑥). (3.28)

As argued in the proof of Proposition 3.12, it suffices to show that (3.28) holds for 𝑥 in a generating
set {𝐵𝑖|𝑖 ∈ 𝕀◦} ∪ 𝐔𝚤0𝐔∙ of 𝐔𝚤

𝝇. Indeed, by (3.20), we have 𝐵𝜏𝑖Υ𝝇 = Υ𝝇𝜎𝜏(𝐵𝑖). For 𝑥 ∈ 𝐔𝚤0𝐔∙, note
that 𝜎𝜏(𝑥) ∈ 𝐔𝚤0𝐔∙, and then by Theorem 3.1, we have 𝜎𝜏(𝑥)Υ𝝇 = Υ𝝇𝜎𝜏(𝑥). This proves (3.28).
Now sending 𝑥 ↦ 𝑥 defines an antiendomorphism 𝜎𝜏, which satisfies (3.26) and (3.27) by

construction above. Finally, 𝜎𝜏 is involutive since it satisfies (3.26). □

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12562 by U

N
IV

ER
SITY

 O
F V

IR
G

IN
IA

, W
iley O

nline Library on [10/11/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s­and­conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1363

Remark 3.15. Our construction of𝜎𝜏 generalizes the𝜎𝚤 in [9, Proposition 3.13],which is constructed
via bar involutions under certain restrictions on parameters.

Thanks to Proposition 3.14, we have a conceptual formulation of the quasi K-matrix Υ𝝇 for 𝐔𝚤
𝝇

below, which is a variant of Theorem 3.6; compare Theorem 3.1 (see [2]). This new formulation
can also be proved directly.

Theorem 3.16. Let 𝝇 be an arbitrary parameter. There exists a unique element Υ𝝇 =
∑

𝜇∈ℕ𝕀 Υ
𝜇 such

that Υ0 = 1, Υ𝜇 ∈ 𝐔̃+
𝜇 and the following intertwining relations hold:

𝐵𝜏𝑖Υ̃ = Υ̃𝜎𝜏(𝐵𝑖), (𝑖 ∈ 𝕀◦),

𝑥Υ̃ = Υ̃𝑥, (𝑥 ∈ 𝐔𝚤0𝐔∙).

4 NEW SYMMETRIES 𝐓̃′
𝒊,−𝟏

ON 𝐔̃𝒊

In this section, we define explicitly certain rescaled braid group actions T̃ ′
𝑗,−1

on aDrinfeld double
𝐔̃. We then formulate the new symmetries 𝐓̃′

𝑖,−1
on 𝐔̃𝚤, for 𝑖 ∈ 𝕀◦, via an intertwining property

using the quasi𝐾-matrix Υ̃ and a rescaled braid automorphism T̃ ′
𝐫𝑖 ,−1

; the proof will be completed
in the coming sections. We show that T̃ ′

𝐫𝑖 ,−1
on 𝐔̃ preserves the subalgebra 𝐔̃𝚤0𝐔̃∙, and that the

actions of 𝐓̃′
𝑖,−1

and T̃ ′
𝐫𝑖 ,−1

on 𝐔̃𝚤0𝐔̃∙ coincide. Explicit formulas for the action of 𝐓̃′
𝑖,−1

on 𝐔̃𝚤0𝐔̃∙

are presented. Then, we obtain a compact close rank 1 formula for 𝐓̃′
𝑖,−1

(𝐵𝑖).

4.1 Rescaled braid group action on 𝐔̃

Recall the distinguished parameter 𝝇⋄ from (2.21). Extend 𝝇⋄ trivially to an 𝕀-tuple of scalars (𝜍𝑖,⋄)𝑖∈𝕀
by setting

𝜍𝑗,⋄ = 1, for 𝑗 ∈ 𝕀∙. (4.1)

Then, we have the scaling automorphism Ψ̃𝝇⋄
on 𝐔̃ by Proposition 2.1. We define symmetries

T̃ ′′
𝑖,+1

and T̃ ′
𝑖,−1

on 𝐔̃ by rescaling 𝑇′′
𝑖,+1

and 𝑇′
𝑖,−1

in Proposition 2.3 and (2.10) via the rescaling
automorphism Ψ̃𝝇⋄

:

T̃ ′′
𝑖,+1 ∶= Ψ̃−1

𝝇⋄
◦𝑇′′

𝑖,+1 ◦ Ψ̃𝝇⋄
, (4.2)

T̃ ′
𝑖,−1 ∶= Ψ̃−1

𝝇⋄
◦𝑇′

𝑖,−1 ◦ Ψ̃𝝇⋄
. (4.3)

Since 𝑇′′
𝑖,+1

, 𝑇′
𝑖,−1

are mutually inverses, T̃ ′′
𝑖,+1

, T̃ ′
𝑖,−1

are also mutually inverses. We shall often
use the shorthand notation

T̃𝑖 = T̃ ′′
𝑖,+1, T̃ −1

𝑖 = T̃ ′
𝑖,−1. (4.4)
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1364 WANG and ZHANG

Remark 4.1. These rescaled symmetries T̃ −1
𝑖

will play a central role in our construction of sym-
metries on 𝐔̃𝚤; see Theorem 4.7. Our rescaling twist using Ψ̃𝝇⋄

is compatible with the rescaling
twist in [15, (3.45), Remark 3.16].

We write down the explicit actions for T̃𝑖 and T̃ −1
𝑖

for later use.

Proposition 4.2. Set 𝑟 = −𝑐𝑖𝑗 , for 𝑖, 𝑗 ∈ 𝕀. The automorphism T̃𝑖 ∈ Aut(𝐔̃) defined in (4.2) is given
by

T̃𝑖(𝐾𝑗) = 𝜍
𝑐𝑖𝑗∕2

𝑖,⋄ 𝐾𝑗𝐾
−𝑐𝑖𝑗
𝑖

, T̃𝑖(𝐾
′
𝑗) = 𝜍

𝑐𝑖𝑗∕2

𝑖,⋄ 𝐾′
𝑗𝐾

′
𝑖
−𝑐𝑖𝑗 ,

T̃𝑖(𝐸𝑖) = −𝜍𝑖,⋄𝐹𝑖𝐾
′
𝑖
−1
, T̃𝑖(𝐹𝑖) = −𝐾−1

𝑖 𝐸𝑖,

T̃𝑖(𝐸𝑗) = 𝜍
−𝑟∕2

𝑖,⋄

𝑟∑
𝑠=0

(−1)𝑠𝑞−𝑠
𝑖
𝐸
(𝑟−𝑠)
𝑖

𝐸𝑗𝐸
(𝑠)
𝑖
, 𝑗 ≠ 𝑖,

T̃𝑖(𝐹𝑗) =

𝑟∑
𝑠=0

(−1)𝑠𝑞𝑠
𝑖
𝐹(𝑠)
𝑖
𝐹𝑗𝐹

(𝑟−𝑠)
𝑖

, 𝑗 ≠ 𝑖.

The inverse of T̃𝑖 (see (4.3)) is given by

T̃ −1
𝑖 (𝐾𝑗) = 𝜍

𝑐𝑖𝑗∕2

𝑖,⋄ 𝐾𝑗𝐾
−𝑐𝑖𝑗
𝑖

, T̃ −1
𝑖 (𝐾′

𝑗) = 𝜍
𝑐𝑖𝑗∕2

𝑖,⋄ 𝐾′
𝑗𝐾

′
𝑖
−𝑐𝑖𝑗 ,

T̃ −1
𝑖 (𝐸𝑖) = −𝜍𝑖,⋄𝐾

−1
𝑖 𝐹𝑖, T̃ −1

𝑖 (𝐹𝑖) = −𝐸𝑖𝐾
′
𝑖
−1
,

T̃ −1
𝑖 (𝐸𝑗) = 𝜍

−𝑟∕2

𝑖,⋄

𝑟∑
𝑠=0

(−1)𝑠𝑞−𝑠
𝑖
𝐸(𝑠)
𝑖
𝐸𝑗𝐸

(𝑟−𝑠)
𝑖

, 𝑗 ≠ 𝑖,

T̃ −1
𝑖 (𝐹𝑗) =

𝑟∑
𝑠=0

(−1)𝑠𝑞𝑠
𝑖
𝐹
(𝑟−𝑠)
𝑖

𝐹𝑗𝐹
(𝑠)
𝑖
, 𝑗 ≠ 𝑖.

Moreover, T̃𝑖 , for 𝑖 ∈ 𝕀, satisfy the braid group relations.

Hence, we obtain

T̃𝑤 = T̃ ′′
𝑤,+1 ∶= T̃𝑖1

⋯ T̃𝑖𝑟
∈ Aut(𝐔̃), for 𝑤 ∈ 𝑊, (4.5)

where 𝑤 = 𝑠𝑖1 ⋯ 𝑠𝑖𝑟 is any reduced expression. Similarly, we have T̃ ′
𝑤,−1

∈ Aut(𝐔̃).

Remark 4.3. Let 𝑖 ∈ 𝕀∙. The rescaling for T̃ ±1
𝑖

is trivial, thanks to 𝜍⋄,𝑖 = 1; that is, T̃𝑖 = 𝑇𝑖 . In
particular, T̃𝑤∙

= 𝑇𝑤∙
. Moreover, 𝑇𝑤∙

(𝐸𝜏𝑖) = T̃𝑤∙
(𝐸𝜏𝑖) = 𝑇𝑤∙

(𝐸𝜏𝑖) in 𝐔̃+ = 𝐔+; cf. the formula for
𝐵𝑖 in (2.17).

Let 𝜏0 be the diagram automorphism associated to the longest element 𝑤0 of the Weyl group
𝑊. The following fact is well known (up to the rescaling via 𝝇⋄); cf. for example, [18, Lemma 3.4].
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Lemma 4.4. We have, for 𝑗 ∈ 𝕀,

T̃𝑤0
(𝐹𝑗) = −𝐾−1

𝜏0𝑗
𝐸𝜏0𝑗, T̃𝑤0

(𝐸𝑗) = −𝜍𝑗,⋄𝐹𝜏0𝑗𝐾
′−1
𝜏0𝑗

,

T̃ −1
𝑤0

(𝐸𝑗) = −𝜍𝑗,⋄𝐾
−1
𝜏0𝑗

𝐹𝜏0𝑗, T̃ −1
𝑤0

(𝐹𝑗) = −𝐸𝜏0𝑗𝐾
′−1
𝜏0𝑗

.

4.2 Symmetries T̃ ′′
𝒋,+𝟏

, for 𝒋 ∈ 𝕀∙

It is known [8] that Lusztig’s operators𝑇′
𝑗,±1

, 𝑇′′
𝑗,±1

on𝐔, for 𝑗 ∈ 𝕀∙, restrict to automorphisms of𝐔𝚤
𝝇

(where the 𝝇 satisfies certain constraints); moreover, these operators fix Υ. In this subsection, we
formulate analogous statements for the universal quantum symmetric pair (𝐔̃, 𝐔̃𝚤)while skipping
the identical proofs.
Recall the automorphisms 𝑇′′

𝑖,+1
on the Drinfeld double 𝐔̃, for 𝑖 ∈ 𝕀, from Proposition 2.3, and

recall Remark 4.3.

Proposition 4.5 (cf. [8, Theorem 4.2]). Let 𝑗 ∈ 𝕀∙. The automorphism T̃ ′′
𝑗,+1

= 𝑇′′
𝑗,+1

on 𝐔̃ restricts
to an automorphism of 𝐔̃𝚤. Moreover, the action of T̃ ′′

𝑗,+1
on 𝐵𝑖 (𝑖 ∈ 𝕀◦) is given by

T̃ ′′
𝑗,+1(𝐵𝑖) =

𝑟∑
𝑠=0

(−1)𝑠𝑞𝑠
𝑗
𝐹
(𝑠)
𝑗
𝐵𝑖𝐹

(𝑟−𝑠)
𝑗

, for 𝑟 = −𝑐𝑖𝑗. (4.6)

Proposition 4.6 (cf. [8, Proposition 4.13]). Let 𝑗 ∈ 𝕀∙. Then T̃ ′′
𝑗,+1

(Υ̃) = Υ̃, and T̃ ′′
𝑗,+1

(Υ̃𝑖) = Υ̃𝑖 , for
𝑖 ∈ 𝕀◦.

4.3 Characterization of 𝐓̃′
𝒊,−𝟏

Let (𝐔̃, 𝐔̃𝚤) be the quantum symmetric pair associated to an arbitrary Satake diagram (𝕀 = 𝕀∙ ∪

𝕀◦, 𝜏). Recall that Υ̃𝑖 , for 𝑖 ∈ 𝕀◦, are the quasi 𝐾-matrix associated to the rank 1 Satake subdiagram
(𝕀∙ ∪ {𝑖, 𝜏𝑖}, 𝜏|𝕀∙∪{𝑖,𝜏𝑖}). Recall 𝐫𝑖 ∈ 𝑊 from (2.14) and T̃ ′

𝐫𝑖 ,−1
∈ Aut(𝐔̃) from (4.5) whose definition

uses (4.2). We now formulate our first main result.

Theorem 4.7. Let 𝑖 ∈ 𝕀◦.

(1) For any 𝑥 ∈ 𝐔̃𝚤, there is a unique element 𝑥̂ ∈ 𝐔̃𝚤 such that 𝑥̂Υ̃𝑖 = Υ̃𝑖T̃
′
𝐫𝑖 ,−1

(𝑥𝚤).
(2) The map 𝑥 ↦ 𝑥̂ is an automorphism of the algebra 𝐔̃𝚤, denoted by 𝐓̃′

𝑖,−1
.

Therefore, we have

𝐓̃′
𝑖,−1(𝑥)Υ̃𝑖 = Υ̃𝑖T̃

′
𝐫𝑖 ,−1

(𝑥𝚤), for all 𝑥 ∈ 𝐔̃𝚤. (4.7)

Proof. A complete proof of this theorem requires the developments in the coming Sections 4–6.1.
Let us outline the main steps below.
For a given 𝑥 ∈ 𝐔̃𝚤, the element 𝑥̂ ∈ 𝐔̃𝚤 satisfying the identity in (1) is clearly unique (if it exists)

since Υ̃𝑖 is invertible.
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1366 WANG and ZHANG

The explicit formulas of 𝑥̂ associated to generators 𝑥 of 𝐔̃𝚤, for each of (ranks 1 and 2) Satake
diagrams, are given in the forthcoming Sections 4–5. The formulas therein show manifestly that
𝑥̂ ∈ 𝐔̃𝚤; see Proposition 4.11 on 𝐔̃𝚤0𝐔̃∙, Theorem 4.14 for rank 1, and Theorem 5.5 for rank 2.
Assume that 𝑥̂, 𝑦̂ ∈ 𝐔̃𝚤 satisfy (1), for 𝑥, 𝑦 ∈ 𝐔̃𝚤; that is, 𝑥̂Υ̃𝑖 = Υ̃𝑖T̃

′
𝐫𝑖 ,−1

(𝑥𝚤), and 𝑦′Υ̃𝑖 =

Υ̃𝑖T̃
′
𝐫𝑖 ,−1

(𝑦𝚤). Then it follows readily that 𝑥̂𝑦̂ ∈ 𝐔̃𝚤 satisfies the identity in (1) for 𝑥𝑦; that is,
𝑥̂𝑦̂Υ̃𝑖 = Υ̃𝑖T̃

′
𝐫𝑖 ,−1

((𝑥𝑦)𝚤). Hence, we have obtained a well-defined endomorphism 𝐓̃′
𝑖,−1

on 𝐔̃𝚤 that
sends 𝑥 ↦ 𝑥̂.
To complete the proof of the theorem, it remains to show that 𝐓̃′

𝑖,−1
is surjective. To this end,

we introduce and study in depth a variant of 𝐓̃′
𝑖,−1

, a second endomorphism 𝐓̃′′
𝑖,+1

on 𝐔̃𝚤 in Sec-
tion 6.1. The bijectivity of 𝐓̃′

𝑖,−1
follows by Theorem 6.7 that shows that 𝐓̃′

𝑖,−1
and 𝐓̃′′

𝑖,+1
are mutual

inverses. □

Remark 4.8. By Proposition 3.8 and the definition (2.14) of 𝐫𝑖 , we have Υ̃𝑖 = Υ̃𝜏𝑖 , 𝐫𝑖 = 𝐫𝜏𝑖 , and hence
𝐓̃′
𝑖,−1

= 𝐓̃′
𝜏𝑖,−1

. Thus, we may label 𝐓̃′
𝑖,−1

by 𝕀◦,𝜏 instead of 𝕀◦.

In this and later sections, we shall construct four variants of symmetries of 𝐔̃𝚤 (denoted by 𝐓̃′
𝑖,𝑒
,

𝐓̃′′
𝑖,𝑒
) via (4.7) and three additional intertwining relations and the rescaled braid group symmetries

T̃ ′
𝐫𝑖 ,±1

, T̃ ′′
𝐫𝑖 ,±1

of 𝐔̃𝚤. We choose to start with the (simplest) intertwining relation (4.7) for T̃ ′
𝐫𝑖 ,−1

.
From now on, following (4.4), we often write

T̃ −1
𝐫𝑖

= T̃ ′
𝐫𝑖 ,−1

, T̃𝐫𝑖
= T̃ ′′

𝐫𝑖 ,+1
.

4.4 Quantum symmetric pairs of diagonal type

Recall from Proposition 2.2 the Chevalley involution 𝜔 and the comultiplication Δ (2.5) on 𝐔̃.
Denote 𝜔𝐋′′

𝑖
∶= (𝜔 ⊗ 1)𝐋′′

𝑖
for 𝑖 ∈ 𝕀, where 𝐋′′

𝑖
, 𝑖 ∈ 𝕀 is the rank 1 quasi 𝑅-matrix for 𝐔̃ (same as

for𝐔); see [28].We regard 𝐔̃ as a coideal subalgebra of 𝐔̃ ⊗ 𝐔̃ via the embedding 𝜔Δ ∶= (𝜔 ⊗ 1)Δ,
and then, (𝐔̃ ⊗ 𝐔̃, 𝐔̃) is a universal quantum symmetric pair of diagonal type; cf. [8, Remark 4.10].
In this way, the rank 1 quasi 𝐾-matrices for quantum symmetric pairs of diagonal type are given
by 𝜔𝐋′′

𝑖
.

In this subsection, we shall reformulate the identity [28, 37.3.2] (= (1.2)) as an intertwining
relation in the framework of quantum symmetric pairs of diagonal type.

Proposition 4.9. For the quantum symmetric pair of diagonal type (𝐔̃ ⊗ 𝐔̃, 𝐔̃), the following
intertwining relation holds:

𝜔Δ(𝑇′
𝑖,−1𝑢)

𝜔𝐋′′
𝑖 = 𝜔𝐋′′

𝑖 (T̃ ′′
𝑖,−1 ⊗ T̃ ′

𝑖,−1)
𝜔Δ(𝑢), ∀𝑢 ∈ 𝐔̃. (4.8)

Proof. Recall from [28, 37.2.4] that

𝜔 ◦𝑇′
𝑖,−1◦𝜔 = 𝑇′′

𝑖,−1. (4.9)

The identity (1.2) for 𝐔 admits an identical version for 𝐔̃. Applying 𝜔 ⊗ 1 to this identity, we
obtain

𝜔Δ(𝑇′
𝑖,−1𝑢)

𝜔𝐋′′
𝑖 = 𝜔𝐋′′

𝑖 (𝑇′′
𝑖,−1 ⊗ 𝑇′

𝑖,−1)
𝜔Δ(𝑢), ∀𝑢 ∈ 𝐔̃. (4.10)
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To prove (4.8), it suffices to prove the following identity:

(T̃ ′′
𝑗,−1 ⊗ T̃ ′

𝑗,−1)
𝜔Δ(𝑢) = (𝑇′′

𝑗,−1 ⊗ 𝑇′
𝑗,−1)

𝜔Δ(𝑢), ∀𝑢 ∈ 𝐔̃. (4.11)

Clearly, it suffices to prove (4.11) when 𝑢 is the generator of 𝐔̃. We have the following formulas:

𝜔Δ(𝐸𝑗) = 𝐹𝑗 ⊗ 1 + 𝐾′
𝑗 ⊗ 𝐸𝑗,

𝜔Δ(𝐹𝑗) = 1 ⊗ 𝐹𝑗 + 𝐸𝑗 ⊗ 𝐾′
𝑗,

𝜔Δ(𝐾𝑗) = 𝐾′
𝑗 ⊗ 𝐾𝑗,

𝜔Δ(𝐾′
𝑗) = 𝐾𝑗 ⊗ 𝐾′

𝑗.
(4.12)

Recall T̃ ′
𝑗,−1

= Ψ̃−1
𝝇⋄
𝑇′
𝑗,−1

Ψ̃𝝇⋄
from (4.3). By Lemma 9.5 and noting that 𝝇⋆⋄ = 𝝇⋄ in our case, the

twisting for T̃ ′′
𝑗,−1

is opposite to the one on T̃ ′
𝑗,−1

, that is, T̃ ′′
𝑗,−1

= Ψ̃𝝇⋄
𝑇′′
𝑗,−1

Ψ̃−1
𝝇⋄
. By Proposition 2.1,

we see that the RHS of each formula in (4.12) is fixed by Ψ̃−1
𝝇⋄

⊗ Ψ̃𝝇⋄
. The formulas for 𝑇′′

𝑖,+1
is

given in Proposition 2.3, and the formulas for 𝑇′
𝑖,−1

, 𝑇′′
𝑖,−1

can be obtained from there by suitable
twisting; using these formulas, we observe that (𝑇′′

𝑗,−1
⊗ 𝑇′

𝑗,−1
) 𝜔Δ(𝑢) is fixed by Ψ̃𝝇⋄

⊗ Ψ̃−1
𝝇⋄

for
𝑢 = 𝐸𝑗, 𝐹𝑗, 𝐾𝑗, 𝐾

′
𝑗
. Hence, for 𝑢 = 𝐸𝑗, 𝐹𝑗, 𝐾𝑗, 𝐾

′
𝑗
, 𝑗 ∈ 𝕀,

(T̃ ′′
𝑗,−1 ⊗ T̃ ′

𝑗,−1)
𝜔Δ(𝑢) = (Ψ̃𝝇⋄

⊗ Ψ̃−1
𝝇⋄
)(𝑇′′

𝑗,−1 ⊗ 𝑇′
𝑗,−1)(Ψ̃

−1
𝝇⋄

⊗ Ψ̃𝝇⋄
)𝜔Δ(𝑢)

= (𝑇′′
𝑗,−1 ⊗ 𝑇′

𝑗,−1)
𝜔Δ(𝑢),

which implies the desired identity (4.11). □

In this way, the intertwining relation (4.8) (reformulated from (4.10) via (4.9)) can be viewed as
a variant of the intertwining relation (4.7) in the setting of quantum symmetric pair (𝐔̃ ⊗ 𝐔̃, 𝐔̃),
where the coideal subalgebra is identified with the image of the embedding 𝜔Δ ∶ 𝐔̃ → 𝐔̃ ⊗ 𝐔̃.

4.5 Action of 𝐓̃′
𝒊,−𝟏

on 𝐔̃𝒊𝟎𝐔̃∙

We formulate 𝐓̃′
𝑖,−1

(𝑥), for 𝑖 ∈ 𝕀◦, 𝑥 ∈ 𝐔̃𝚤0𝐔̃∙ in this subsection. We will show that T̃ −1
𝐫𝑖

preserves
both 𝐔̃𝚤0 and 𝐔̃∙; hence, by Theorem 3.6, the element 𝐓̃′

𝑖,−1
(𝑥) ∶= T̃ −1

𝐫𝑖
(𝑥) satisfies (4.7) for 𝑥 ∈

𝐔̃𝚤0𝐔̃∙.
Recall that the diagram involution associated to 𝑤∙,𝑖 is denoted by 𝜏∙,𝑖 . By definition of admis-

sible pairs, the diagram involution associated to 𝑤∙ is 𝜏|𝕀∙ . Both 𝜏∙,𝑖 and 𝜏 induce (commuting)
involutive automorphisms, denoted by 𝜏̂∙,𝑖 and 𝜏̂, on 𝐔̃∙.
We first calculated T̃ −1

𝐫𝑖
(𝑥) for 𝑥 ∈ 𝐔̃∙. By applying Lemma 4.4 twice, we obtain

T̃ −1
𝑤∙

𝜏̂(𝑥) = T̃ −1
𝑤∙,𝑖

𝜏̂∙,𝑖(𝑥) = T̃ −1
𝑤∙

T̃ −1
𝐫𝑖

𝜏̂∙,𝑖(𝑥);

note that the second identity above holds since T̃ −1
𝑤∙,𝑖

= T̃ −1
𝑤∙

T̃ −1
𝐫𝑖

by (2.14). Hence, we have 𝜏̂(𝑥) =

T̃ −1
𝐫𝑖

𝜏̂∙,𝑖(𝑥), which implies that

T̃ −1
𝐫𝑖

(𝑥) = 𝜏̂∙,𝑖 ◦ 𝜏̂(𝑥) ∈ 𝐔̃∙, for all 𝑥 ∈ 𝐔̃∙. (4.13)
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1368 WANG and ZHANG

We next formulate the actions of T̃ −1
𝐫𝑖

on 𝐔̃𝚤0, for 𝑖 ∈ 𝕀◦. Recall 𝝇⋄ from (2.21) and (4.1), and Ψ̃𝝇⋄
from Proposition 2.1. Denote

𝑘𝑖,⋄ ∶= Ψ̃−1
𝝇⋄
(𝑘𝑖) = 𝜍−1𝑖,⋄𝐾𝑖𝐾

′
𝜏𝑖 ∈ 𝐔̃𝚤0. (4.14)

Note that 𝑘𝑗,⋄ = 𝑘𝑗 = 𝐾𝑗𝐾
′
𝜏𝑗
, for 𝑗 ∈ 𝕀∙. We shall denote

𝑘𝜆,⋄ ∶=
∏
𝑖∈𝕀

𝑘
𝑚𝑖

𝑖,⋄ ∈ 𝐔̃𝚤0, for 𝜆 =
∑
𝑖∈𝕀

𝑚𝑖𝛼𝑖 ∈ ℤ𝕀. (4.15)

Lemma 4.10. Let 𝑤 ∈ 𝑊 be such that 𝑤𝜏 = 𝜏𝑤. Then T̃ ′
𝑤,−1

(𝑘𝑗,⋄) = 𝑘𝑤𝛼𝑗,⋄, for 𝑗 ∈ 𝕀◦.

Proof. By Proposition 2.3, we have

𝑇′
𝑤,−1(𝑘𝑗) = 𝑇′

𝑤,−1(𝐾𝑗𝐾
′
𝜏𝑗) = 𝐾𝑤𝛼𝑗

𝐾′
𝑤𝛼𝜏𝑗

= 𝐾𝑤𝛼𝑗
𝐾′
𝜏𝑤𝛼𝑗

= 𝑘𝑤𝛼𝑗 .

By (4.14)–(4.15), we have 𝑘𝜆,⋄ = Ψ̃−1
𝝇⋄
(𝑘𝜆), for 𝜆 ∈ ℤ𝕀. By (4.2) and (4.5), we have T̃ ′

𝑤,−1
=

Ψ̃−1
𝝇⋄

◦𝑇′
𝑤,−1

◦Ψ̃𝝇⋄
, and hence,

T̃ ′
𝑤,−1(𝑘𝑗,⋄) = (Ψ̃−1

𝝇⋄
◦𝑇′

𝑤,−1)(𝑘𝑗) = Ψ̃−1
𝝇⋄
(𝑘𝑤𝛼𝑗 ) = 𝑘𝑤𝛼𝑗,⋄.

The lemma is proved. □

In particular, setting 𝑤 = 𝐫𝑖 (𝑖 ∈ 𝕀◦) in Lemma 4.10 gives us

T̃ −1
𝐫𝑖

(𝑘𝑗,⋄) = 𝑘𝐫𝑖𝛼𝑗,⋄.

Summarizing the above discussion, we have obtained the following.

Proposition 4.11. Let 𝑖 ∈ 𝕀◦. There exists element 𝐓̃′
𝑖,−1

(𝑥) ∶= T̃ −1
𝐫𝑖

(𝑥), which satisfies the
intertwining relation (4.7), for 𝑥 ∈ 𝐔̃𝚤0𝐔̃∙. More explicitly, we have

𝐓̃′
𝑖,−1(𝑢) = (𝜏̂∙,𝑖 ◦ 𝜏̂)(𝑢), for 𝑢 ∈ 𝐔̃∙, (4.16)

𝐓̃′
𝑖,−1(𝑘𝑗,⋄) = 𝑘𝐫𝑖𝛼𝑗,⋄, for 𝑗 ∈ 𝕀◦. (4.17)

4.6 Integrality of 𝐓̃′
𝒊,−𝟏

The formula (4.16) clearly preserves the Lusztig integral ℤ[𝑞, 𝑞−1]-form on 𝐔̃∙. We shall explain
below that our braid group action is also integral on the Cartan part, even though the definition
(4.14) of 𝑘𝑗,⋄ may involve 𝑞1∕2.

Lemma 4.12. We have

𝐓̃′
𝑖,−1(𝑘𝑗) = 𝜍−1𝐫𝑖𝛼𝑗−𝛼𝑗,⋄

𝑘𝐫𝑖𝛼𝑗 , (4.18)

where 𝜍−1𝐫𝑖𝛼𝑗−𝛼𝑗,⋄ ∈ ℤ[𝑞, 𝑞−1], for all 𝑖, 𝑗 ∈ 𝕀◦.
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RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1369

Proof. Formula (4.18) follows from (4.17) by unraveling the notation 𝑘𝑗,⋄, 𝑘𝐫𝑖𝛼𝑗,⋄ in (4.14)–(4.15).
It remains to show that 𝜍−1𝐫𝑖𝛼𝑗−𝛼𝑗,⋄ ∈ ℤ[𝑞, 𝑞−1]. Recall from the definition (2.21), we have 𝜍𝑗,⋄ ∈

−𝑞ℤ∕2, for all 𝑗 ∈ 𝕀◦.
For 𝑗 = 𝑖, since 𝐫𝑖(𝛼𝑖) = −𝛼𝑖 + 𝛼∙ for some 𝛼∙ ∈ ℤ𝕀∙, we have

𝐓̃′
𝑖,−1(𝑘𝑖) = 𝜍2𝑖,⋄𝑘𝐫𝑖𝛼𝑖 .

where 𝜍2
𝑖,⋄ ∈ 𝑞ℤ. The integrality for 𝐓̃′

𝑖,−1
(𝑘𝜏𝑖) can be then obtained by applying 𝜏̂ to the

above formula.
For 𝑗 ≠ 𝑖, 𝜏𝑖, we only need to consider the case 𝜍𝑖,⋄ = −𝑞−1∕2. In this case, by (2.21), 𝛼𝑖 is a short

root. Moreover, due to the classification of Satake diagrams and the corresponding restricted root
systems [1], we have

(𝛼𝑗,𝛼𝑖)

(𝛼𝑖 ,𝛼𝑖)
= −2 or 0. It remains to consider the nontrivial case

(𝛼𝑗,𝛼𝑖)

(𝛼𝑖 ,𝛼𝑖)
= −2. It

follows that 𝐫𝑖𝛼𝑗 − 𝛼𝑗 = 2𝛼𝑖 , which implies 𝐫𝑖𝛼𝑗 ∈ 𝛼𝑗 + 𝑘𝛼𝑖 + 𝑙𝛼𝜏𝑖 + ℤ𝕀∙, for some 𝑘, 𝑙 ⩾ 0, 𝑘 + 𝑙 =

2. Since 𝜍𝑖,⋄ = 𝜍𝜏𝑖,⋄, the formula (4.18) is unraveled as the following integral formula 𝐓̃′
𝑖,−1

(𝑘𝑗) =

𝜍−2
𝑖,⋄ 𝑘𝐫𝑖𝛼𝑗 .
Therefore, the integrality of (4.18) holds in all cases. □

4.7 A uniform formula for 𝐓̃′
𝒊,−𝟏

(𝑩𝒊)

In this subsection, we introduce a uniform method to calculate 𝐓̃′
𝑖,−1

(𝐵𝑖). Note that 𝐓̃𝑖 = 𝐓̃𝜏𝑖 and
this takes care of 𝐓̃′

𝑖,−1
(𝐵𝜏𝑖). To that end, without loss of generality, we can restrict ourselves to a

Satake diagram (𝕀 = 𝕀∙ ∪ 𝕀◦, 𝜏) of real rank 1; that is, 𝕀◦ = {𝑖, 𝜏𝑖} for some 𝑖 ∈ 𝕀◦.
Recall the diagram involution 𝜏∙,𝑖 associated to the longest element 𝑤∙,𝑖 in the Weyl group

𝑊𝕀∙∪{𝑖,𝜏𝑖}
. By definition of admissible pairs, the diagram involution associated to 𝑤∙ is 𝜏. Observe

that 𝜏∙,𝑖𝜏𝑖 ∈ {𝑖, 𝜏𝑖}, by Table 1 on rank 1 Satake diagrams.
Recall𝑖 ,𝜏𝑖 ∈ 𝐔̃𝚤0 from (3.23).

Lemma 4.13. We have

T̃ −1
𝐫𝑖

(𝐵𝑖) = −𝑞−(𝛼𝑖,𝑤∙𝛼𝜏𝑖)T̃ 2
𝑤∙
(𝐵𝜎

𝜏∙,𝑖𝜏𝑖
)−1

𝜏∙,𝑖𝜏𝑖
, (4.19)

where 𝐵𝜎
𝑖
is given in (3.17).

Proof. Recall from (2.21) and (4.1) that 𝜍𝑖,⋄ = −𝑞−(𝛼𝑖,𝛼𝑖+𝑤∙𝛼𝜏𝑖)∕2, for 𝑖 ∈ 𝕀◦, and 𝜍𝑗,⋄ = 1, for 𝑗 ∈ 𝕀∙.
By (2.14), we have T̃𝑤∙,𝑖

= T̃𝐫𝑖
T̃𝑤∙

. By Lemma 4.4, we compute

T̃ −1
𝐫𝑖

(𝐵𝑖) = T̃ −1
𝐫𝑖

(
𝐹𝑖 + T̃𝑤∙

(𝐸𝜏𝑖)𝐾
′
𝑖

)
= T̃𝑤∙

T̃ −1
𝑤∙,𝑖

(
𝐹𝑖 + T̃𝑤∙

(𝐸𝜏𝑖)𝐾
′
𝑖

)
= T̃ 2

𝑤∙

(
T̃ −1
𝑤∙

T̃ −1
𝑤∙,𝑖

(𝐹𝑖) + T̃ −1
𝑤∙,𝑖

(𝐸𝜏𝑖)T̃
−1
𝑤∙

T̃ −1
𝑤∙,𝑖

(𝐾′
𝑖 )
)

= T̃ 2
𝑤∙

(
−T̃ −1

𝑤∙
(𝐸𝜏∙,𝑖 𝑖𝐾

′−1
𝜏∙,𝑖 𝑖

) − 𝑞−(𝛼𝑖,𝛼𝑖+𝑤∙𝛼𝜏𝑖)𝐾−1
𝜏∙,𝑖𝜏𝑖

𝐹𝜏∙,𝑖𝜏𝑖T̃
−1
𝑤∙

(𝐾′−1
𝜏∙,𝑖 𝑖

)
)
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1370 WANG and ZHANG

= −T̃ 2
𝑤∙

(
T̃ −1
𝑤∙

(𝐸𝜏∙,𝑖 𝑖)𝐾𝜏∙,𝑖𝜏𝑖
+ 𝑞−(𝛼𝑖,𝑤∙𝛼𝜏𝑖)𝐹𝜏∙,𝑖𝜏𝑖

)
𝐾−1
𝜏∙,𝑖𝜏𝑖

T̃𝑤∙
(𝐾′

𝜏∙,𝑖 𝑖
)−1

= −𝑞−(𝛼𝑖,𝑤∙𝛼𝜏𝑖)T̃ 2
𝑤∙

(
𝐾𝜏∙,𝑖𝜏𝑖

T̃ −1
𝑤∙

(𝐸𝜏∙,𝑖 𝑖) + 𝐹𝜏∙,𝑖𝜏𝑖

)
−1

𝜏∙,𝑖𝜏𝑖

= −𝑞−(𝛼𝑖,𝑤∙𝛼𝜏𝑖)T̃ 2
𝑤∙
(𝐵𝜎

𝜏∙,𝑖𝜏𝑖
)−1

𝜏∙,𝑖𝜏𝑖
.

This proves the lemma. □

Theorem4.14. Let 𝑖 ∈ 𝕀◦. There exists a unique element 𝐓̃′
𝑖,−1

(𝐵𝑖) ∈ 𝐔̃𝚤 which satisfies the following
intertwining relation (see (4.7))

𝐓̃′
𝑖,−1(𝐵𝑖)Υ̃𝑖 = Υ̃𝑖T̃

−1
𝐫𝑖

(𝐵𝑖).

More explicitly, we have

𝐓̃′
𝑖,−1(𝐵𝑖) = −𝑞−(𝛼𝑖,𝑤∙𝛼𝜏𝑖)T̃ 2

𝑤∙
(𝐵𝜏∙,𝑖𝜏𝑖)

−1
𝜏∙,𝑖𝜏𝑖

. (4.20)

Proof. Recall 𝜏∙,𝑖𝜏𝑖 ∈ {𝑖, 𝜏𝑖}; see Table 1. By Theorem 3.6, we have Υ̃𝑖𝐵
𝜎
𝜏∙,𝑖𝜏𝑖

= 𝐵𝜏∙,𝑖𝜏𝑖Υ̃𝑖 . By Proposi-

tion 4.6, we have T̃𝑤∙
(Υ̃𝑖) = Υ̃𝑖 , and hence Υ̃𝑖T̃

2
𝑤∙
(𝐵𝜎

𝜏∙,𝑖𝜏𝑖
) = T̃ 2

𝑤∙
(𝐵𝜏∙,𝑖𝜏𝑖)Υ̃𝑖 . By Lemma 3.11, we have

𝜏∙,𝑖𝜏𝑖
∈ 𝐔̃𝚤0, and hence,𝜏∙,𝑖𝜏𝑖

commutes with Υ̃𝑖 . Putting these together with (4.19), we have

−𝑞−(𝛼𝑖,𝑤∙(𝛼𝜏𝑖))T̃ 2
𝑤∙
(𝐵𝜏∙,𝑖𝜏𝑖)

−1
𝜏∙,𝑖𝜏𝑖

Υ̃𝑖 = Υ̃𝑖T̃
−1
𝐫𝑖

(𝐵𝑖). (4.21)

It follows by Proposition 4.5 that −𝑞−(𝛼𝑖,𝑤∙(𝛼𝜏𝑖))T̃ 2
𝑤∙
(𝐵𝜏∙,𝑖𝜏𝑖)

−1
𝜏∙,𝑖𝜏𝑖

∈ 𝐔̃𝚤. Hence, setting 𝐓̃′
𝑖,−1

(𝐵𝑖) =

−𝑞−(𝛼𝑖,𝑤∙𝛼𝜏𝑖)T̃ 2
𝑤∙
(𝐵𝜏∙,𝑖𝜏𝑖)

−1
𝜏∙,𝑖𝜏𝑖

, we have proved the theorem. □

5 RANK 2 FORMULAS FOR 𝐓̃′
𝒊,−𝟏

(𝑩𝒋)

Let (𝕀 = 𝕀∙ ∪ 𝕀◦, 𝜏) be a rank 2 irreducible Satake diagram. Fix 𝑖, 𝑗 ∈ 𝕀◦,𝜏 such that 𝑖 ≠ 𝑗, such that
𝕀◦ = {𝑖, 𝜏𝑖, 𝑗, 𝜏𝑗}. A complete list of formulas for 𝐓̃′

𝑖,−1
(𝐵𝑗) is formulated in Table 3 (listed after

§10.3). We show that the formulas for 𝐓̃′
𝑖,−1

(𝐵𝑗) in Table 3 satisfy the intertwining relation (4.7);
see Theorem 5.5. Together with the formulas in the previous section, we have established the
existence of an endomorphism 𝐓̃′

𝑖,−1
on 𝐔̃𝚤 satisfying (4.7).

5.1 Some commutator relations with 𝚼

For 𝑤 ∈ 𝑊, let𝐔+[𝑤] be the well-known subalgebra of𝐔+ spanned by PBW basis elements gen-
erated by certain 𝑞-root vectors so that𝐔+[𝑤0] = 𝐔+; see [16, 8.24]. As we identify 𝐔̃+ = 𝐔+, we
denote by 𝐔̃+[𝑤] the subalgebra of 𝐔̃+ corresponding to 𝐔+[𝑤]. The next lemma is valid for all
Satake diagrams.
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Lemma 5.1. For 𝑖 ≠ 𝑗 ∈ 𝕀◦,𝜏, we have

𝐹𝑗Υ̃𝑖 = Υ̃𝑖𝐹𝑗, (5.1)

T̃ −1
𝐫𝑖

(
T̃𝑤∙

(𝐸𝜏𝑗)𝐾
′
𝑗

)
⋅ Υ̃𝑖 = Υ̃𝑖 ⋅ T̃

−1
𝐫𝑖

(
T̃𝑤∙

(𝐸𝜏𝑗)𝐾
′
𝑗

)
. (5.2)

Proof. Write Υ̃𝑖 =
∑

𝑚⩾0 Υ̃𝑖,𝑚, where Υ̃𝑖,𝑚 ∈ 𝐔̃+
𝑚(𝛼𝑖+𝑤∙𝛼𝜏𝑖)

. By [8, Proposition 4.5], we have Υ̃𝑖,𝑚 ∈

𝐔̃+[𝐫𝑖], for 𝑚 ⩾ 0. Since the simple reflection 𝑠𝑗 does not appear in any reduced expression of 𝐫𝑖 ,
𝐹𝑗 commutes with any element in 𝐔̃+[𝐫𝑖]; in particular, 𝐹𝑗 commutes with Υ̃𝑖 . This proves the
identity (5.1).
By Proposition 3.8, Υ̃ is fixed by 𝜏̂∙,𝑖 (which is equal to either Id or 𝜏̂). Hence, by Lemma 4.4

and the fact that Υ̃𝑖,𝑚 ∈ 𝐔̃+
𝑚(𝛼𝑖+𝑤∙𝛼𝜏𝑖)

, we have

T̃𝑤∙,𝑖
(Υ̃𝑖,𝑚) = T̃𝑤∙,𝑖

𝜏̂∙,𝑖(Υ̃𝑖,𝑚) ∈ 𝐔̃−
−𝑚(𝛼𝑖+𝑤∙𝛼𝜏𝑖)

𝐾′−𝑚
𝛼𝑖+𝑤∙𝛼𝜏𝑖

,

or equivalently,

 ∶= T̃𝑤∙,𝑖
(Υ̃𝑖,𝑚)𝐾

′𝑚
𝛼𝑖+𝑤∙𝛼𝜏𝑖

∈ 𝐔̃−
−𝑚(𝛼𝑖+𝑤∙𝛼𝜏𝑖)

. (5.3)

Since 𝑤∙𝛼𝜏𝑖 = 𝛼𝜏𝑖 +
∑

𝑟∈𝕀∙
𝑎𝑟𝛼𝑟 for some 𝑎𝑟 ∈ ℕ, the eigenspace 𝐔̃−

−𝑚(𝛼𝑖+𝑤∙𝛼𝜏𝑖)
lies in the subalge-

bra of 𝐔̃− generated by 𝐹𝑖, 𝐹𝜏𝑖, 𝐹𝑟, 𝑟 ∈ 𝕀∙; clearly, 𝐸𝜏𝑗 commutes with any of these elements, and
hence, we have by (5.3) that [𝐸𝜏𝑗,] = 0. For each𝑚, we compute[

𝐸𝜏𝑗T̃𝑤∙
(𝐾′

𝑗), T̃𝑤∙,𝑖
(Υ̃𝑖,𝑚)

]
=
[
𝐸𝜏𝑗T̃𝑤∙

(𝐾′
𝑗),𝐾

′−𝑚
𝛼𝑖+𝑤∙(𝛼𝜏𝑖)

]
= 𝑞𝑚(𝑤∙𝛼𝑗,𝛼𝑖+𝑤∙𝛼𝜏𝑖)𝐸𝜏𝑗T̃𝑤∙

(𝐾′
𝑗)𝐾

′−𝑚
𝛼𝑖+𝑤∙𝛼𝑖

− 𝑞𝑚(𝛼𝜏𝑗,𝛼𝑖+𝑤∙𝛼𝜏𝑖)𝐸𝜏𝑗T̃𝑤∙
(𝐾′

𝑗)𝐾
′−𝑚
𝛼𝑖+𝑤∙𝛼𝑖

= 𝑞𝑚(𝛼𝜏𝑗,𝛼𝑖+𝑤∙𝛼𝜏𝑖)[𝐸𝜏𝑗,] ⋅ T̃𝑤∙
(𝐾′

𝑗)𝐾
′−𝑚
𝛼𝑖+𝑤∙𝛼𝑖

= 0.

Hence, we obtain an identity

𝐸𝜏𝑗T̃𝑤∙
(𝐾′

𝑗) ⋅ T̃𝑤∙,𝑖
(Υ̃𝑖) = T̃𝑤∙,𝑖

(Υ̃𝑖) ⋅ 𝐸𝜏𝑗T̃𝑤∙
(𝐾′

𝑗). (5.4)

The desired identity (5.2) now follows by applying T̃ −1
𝐫𝑖

T̃𝑤∙
to (5.4). Indeed, we have

T̃ −1
𝐫𝑖

T̃𝑤∙
T̃𝑤∙,𝑖

(Υ̃𝑖) = T̃ 2
𝑤∙
(Υ̃𝑖) = Υ̃𝑖 since T̃𝑤∙,𝑖

= T̃𝐫𝑖
T̃𝑤∙

= T̃𝑤∙
T̃𝐫𝑖

by (2.14) and T̃𝑤∙
(Υ̃𝑖) = Υ̃𝑖 by

Proposition 4.6. Also, we clearly have T̃ 2
𝑤∙
(𝐾′

𝑗
) = 𝐾′

𝑗
. □

5.2 Motivating examples: Types BI, DI, DIII𝟒

We provide examples in this subsection to motivate how we obtain the general rank 2 formulas
𝐓̃′
𝑖,−1

(𝐵𝑗) in Theorem 5.5 below. The three examples are of types BI𝑛 (𝑛 ⩾ 3), DI𝑛 (𝑛 ⩾ 5), DIII4,
and they will be treated uniformly.
The Satake diagrams of these types are listed below. For each type, we define elements 𝑡𝑗 ∈ 𝑊∙

for 𝑗 ∈ 𝕀∙ following each diagram; these notations 𝑡𝑗 allow a uniform proof of Lemma 5.2 thanks
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1372 WANG and ZHANG

to the properties (5.5) below.

Note that, for each of the three types, we always have

𝐫2 = 𝑠2𝑡3𝑠2, 𝓁(𝐫2) = 𝓁(𝑡3) + 2, 𝐵1 = 𝐹1 + 𝐸1𝐾
′
1. (5.5)

Recall the notation 𝐵𝜎
𝑖
from (3.17).

Lemma 5.2. We have

T̃ −1
𝐫2

(𝐹1) =
[
T̃𝑤∙

(𝐵𝜎
2 ), [𝐵

𝜎
2 , 𝐹1]𝑞2

]
𝑞2
− 𝑞2𝐹1T̃𝑤∙

(𝐾2)𝐾
′
2. (5.6)

Proof. By Lemma A.1, [𝐵𝜎
2
, 𝐹1]𝑞2 = [𝐹2, 𝐹1]𝑞2 , and RHS (5.6) is simplified as follows:[

T̃𝑤∙
(𝐵𝜎

2 ), [𝐵
𝜎
2 , 𝐹1]𝑞2

]
𝑞2

=
[
T̃𝑤∙

(𝐵𝜎
2 ), [𝐹2, 𝐹1]𝑞2

]
𝑞2

=
[
T̃𝑤∙

(𝐹2), [𝐹2, 𝐹1]𝑞2

]
𝑞2
+
[
𝐸2T̃𝑤∙

(𝐾2), [𝐹2, 𝐹1]𝑞2

]
𝑞2

=
[
T̃𝑤∙

(𝐹2), [𝐹2, 𝐹1]𝑞2

]
𝑞2
+ 𝑞2𝐹1T̃𝑤∙

(𝐾2)𝐾
′
2. (5.7)

On the other hand, by a direct computation using (5.5) and Proposition 4.2, we have

T̃ −1
𝐫2

(𝐹1) = T̃ −1
2 T̃ −1

𝑡3
([𝐹2, 𝐹1]𝑞2)

=
[
T̃ −1
2 T̃ −1

𝑡3
(𝐹2), [𝐹2, 𝐹1]𝑞2

]
𝑞2

=
[
T̃𝑡3

(𝐹2), [𝐹2, 𝐹1]𝑞2

]
𝑞2
. (5.8)

The desired formula (5.6) follows from (5.7)–(5.8) by noting that T̃𝑤∙
(𝐹2) = T̃𝑡3

(𝐹2). □
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RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1373

Note that 𝑞1 = 𝑞2 in all three types.

Lemma 5.3. We have

T̃ −1
𝐫2

(𝐸1𝐾
′
1) =

[
T̃𝑤∙

(𝐵2), [𝐵2, 𝐸1𝐾
′
1]𝑞2

]
𝑞2
− 𝑞2𝐸1𝐾

′
1T̃𝑤∙

(𝐾2)𝐾
′
2. (5.9)

Proof. We shall establish the identity (5.9) by applying the operator ∍ ∶= T̃𝑤∙
T̃𝑤0

to (5.6)
as follows.
Recall𝑖 ∈ 𝐔̃𝚤0 from (3.23). By (4.19) and noting (𝛼2, 𝑤∙𝛼𝜏2) = 0 in each of the three types, we

have T̃ −1
𝐫2

(𝐵𝚤
2
) = −T̃ 2

𝑤∙
(𝐵𝜎

2
)−1

2
, or equivalently,

T̃ −1
𝐫2

(𝐵𝚤
2)2 = −T̃ 2

𝑤∙
(𝐵𝜎

2 ). (5.10)

By Lemma 4.4, we have T̃𝑤0
(𝐵𝜎

2
) = T̃𝑤∙,2

(𝐵𝜎
2
). Hence, applying T̃𝐫2

to both sides of (5.10), we
obtain

𝐵2T̃𝐫2
(𝚤

2) = −T̃𝑤∙
T̃𝑤∙,2

(𝐵𝜎
2 ) = −T̃𝑤∙

T̃𝑤0
(𝐵𝜎

2 ). (5.11)

Moreover, by Lemma 4.4, we have ∍(𝐹1) = −𝐾−1
1
𝐸1 = −𝑞2

−2𝐸1𝐾
′
1
𝑘−1
1
. Note also that ∍ commutes

with both T̃𝑤∙
and T̃𝐫2

. Hence, by applying ∍ to (5.6) and then using (5.11), we have

T̃ −1
𝐫2

(𝐸1𝐾
′
1)T̃𝐫2

(𝑘−11 ) =
[
T̃𝑤∙

(𝐵2)T̃𝑤∙,2
(2), [𝐵2T̃𝐫2

(2), 𝐸1𝐾
′
1𝑘

−1
1 ]𝑞2

]
𝑞2

− 𝑞2𝐸1𝐾
′
1𝑘

−1
1 T̃𝑤∙

∍(2). (5.12)

For weight reason, (5.12) is simplified as

T̃ −1
𝐫2

(𝐸1𝐾
′
1)T̃𝐫2

(𝑘−11 ) = 𝑞2
2
[
T̃𝑤∙

(𝐵2), [𝐵2, 𝐸1𝐾
′
1]𝑞2

]
𝑞2

T̃𝑤∙,2
(2)T̃𝐫2

(2)𝑘
−1
1

− 𝑞2𝐸1𝐾
′
1𝑘

−1
1 T̃𝐫2

(𝑘2)𝐾𝑤∙𝛼2−𝛼2
. (5.13)

By definition (3.23), we have2 = 𝑘2𝐾
′
𝑤∙𝛼2−𝛼2

; in addition, by (4.13), 𝐾′
𝑤∙𝛼2−𝛼2

is fixed by T̃𝐫2
. We

also have T̃𝑤∙,2
(2) = 𝑞2

−2−1
2
. Hence, (5.13) is further simplified as

T̃ −1
𝐫2

(𝐸1𝐾
′
1)T̃𝐫2

(𝑘−11 ) =
[
T̃𝑤∙

(𝐵2), [𝐵2, 𝐸1𝐾
′
1]𝑞2

]
𝑞2
𝑘−12 T̃𝐫2

(𝑘2)𝑘
−1
1

− 𝑞2𝐸1𝐾
′
1𝐾𝑤∙(𝛼2)

𝐾′
2𝑘

−1
1 T̃𝐫2

(𝑘2)𝑘
−1
2 . (5.14)

Finally, by Lemma 4.10, we have T̃𝐫2
(𝑘−1

1
) = 𝑘−1

1
T̃𝐫2

(𝑘2)𝑘
−1
2
, and then, the identity (5.14) can be

transformed into an equivalent form (5.9). □

Proposition 5.4. The following element

𝐓̃′
2,−1(𝐵1) ∶=

[
T̃𝑤∙

(𝐵2), [𝐵2, 𝐵1]𝑞2

]
𝑞2
− 𝑞2𝐵1T̃𝑤∙

(2) ∈ 𝐔̃𝚤 (5.15)

satisfies the intertwining relation 𝐓̃′
2,−1

(𝐵1)Υ̃2 = Υ̃2T̃
−1
𝐫2

(𝐵𝚤
1
) (i.e., (4.7), for 𝑖 = 2, 𝑥 = 𝐵1).
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1374 WANG and ZHANG

TABLE 2 Rank 2 Satake diagrams.

SP Satake diagrams RS Satake diagrams RS

AI2 A2 CII𝑛 BC2

CI2 C2 CII4 C2

G2 G2 EIV A2

BI𝑛 B2 AIII3 C2

DI𝑛 B2 AIII𝑛 BC2

DIII4 C2 DIII5 BC2

AII5 A2 EIII BC2

RS, relative root system; SP, symmetric pair.

Proof. The intertwining relation follows by the following computation:

Υ̃2T̃
−1
𝐫2

(𝐵𝚤
1)Υ̃

−1
2

= Υ̃2

(
T̃ −1
𝐫2

(𝐹1) + T̃ −1
𝐫2

(𝐸1𝐾
′
1)
)
Υ̃−1
2

(5.2)
= Υ̃2T̃

−1
𝐫2

(𝐹1)Υ̃
−1
2 + T̃ −1

𝐫2
(𝐸1𝐾

′
1)

(5.6)
= Υ̃2

([
T̃𝑤∙

(𝐵𝜎
2 ), [𝐵

𝜎
2 , 𝐹1]𝑞2

]
𝑞2
− 𝑞2𝐹1T̃𝑤∙

(𝐾2)𝐾
′
2

)
Υ̃−1
2 + T̃ −1

𝐫2
(𝐸1𝐾

′
1)

(∗)
=

[
T̃𝑤∙

(𝐵2), [𝐵2, 𝐹1]𝑞2

]
𝑞2
− 𝑞2𝐹1T̃𝑤∙

(𝐾2)𝐾
′
2 + T̃ −1

𝐫2
(𝐸1𝐾

′
1)

(5.9)
=

[
T̃𝑤∙

(𝐵2), [𝐵2, 𝐹1]𝑞2

]
𝑞2
− 𝑞2𝐹1T̃𝑤∙

(𝐾2)𝐾
′
2

+
[
T̃𝑤∙

(𝐵2), [𝐵2, 𝐸1𝐾
′
1]𝑞2

]
𝑞2
− 𝑞2𝐸1𝐾

′
1T̃𝑤∙

(𝐾2)𝐾
′
2

=
[
T̃𝑤∙

(𝐵2), [𝐵2, 𝐵1]𝑞2

]
𝑞2
− 𝑞2𝐵1T̃𝑤∙

(𝐾2)𝐾
′
2 = 𝐓̃′

2,−1(𝐵1),

where the equality (*) follows from Theorem 3.6 and Lemma 5.1. □
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RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1375

5.3 Formulation for 𝐓̃′
𝒊,−𝟏

(𝑩𝒋)

Theorem 5.5. The elements 𝐓̃′
𝑖,−1

(𝐵𝑗) ∈ 𝐔̃𝚤 listed in Table 3 satisfy the following intertwining
relation (see (4.7)):

𝐓̃′
𝑖,−1(𝐵𝑗)Υ̃𝑖 = Υ̃𝑖T̃

′
𝐫𝑖 ,−1

(𝐵𝑗). (5.16)

We clarify a few points regarding Table 3 in the following remarks.

Remark 5.6. Recall that T̃𝑠 (𝑠 ∈ 𝕀∙) restrict to automorphisms on 𝐔̃𝚤 by Proposition 4.5; hence, the
use of T̃𝑠 (𝑠 ∈ 𝕀∙) in the formulas of 𝐓̃′

𝑖,−1
(𝐵𝑗) is legitimate; see (4.6).

Remark 5.7. Let 𝜌 be a diagram involution on the underlying Dynkin diagram (𝜌 is not necessarily
equal to 𝜏). By the intertwining relation (4.7), the formula of 𝐓̃′

𝜌𝑖,−1
(𝐵𝜌𝑗) can be obtained from

𝐓̃′
𝑖,−1

(𝐵𝑗) via

𝐓̃′
𝜌𝑖,−1(𝐵𝜌𝑗) = 𝜌

(
𝐓̃′
𝑖,−1(𝐵𝑗)

)
.

In particular, when 𝜌 = 𝜏, we have 𝐓̃′
𝑖,−1

(𝐵𝜏𝑗) = 𝜏̂(𝐓̃′
𝑖,−1

(𝐵𝑗)) by Remark 4.8. Accordingly, only one
formula of 𝐓̃′

𝜌𝑖,−1
(𝐵𝜌𝑗) and 𝐓̃′

𝑖,−1
(𝐵𝑗) is included in the table; see types AII5, EIV, and all types with

𝜏 ≠ Id.

Remark 5.8. The formulas of 𝐓̃′
𝑖,−1

(𝐵𝑗) only depend on the subdiagram generated by nodes 𝑖, 𝜏𝑖, 𝑗
and the component of black nodes which is connected to either 𝑖 or 𝜏𝑖. For example, the formula
for 𝐓̃′

2,−1
(𝐵4) in type DIII5 is formally identical to the formula for 𝐓̃′

2,−1
(𝐵4) in type AII5. (Note

that such a subdiagram may not be a Satake subdiagram as the vertex 𝜏𝑗 is not included.)

Recall that 𝐔̃𝚤 is defined over an extension field 𝔽 of ℚ(𝑞). Denote

ℚ𝐔̃
𝚤 ∶= ℚ(𝑞)-subalgebra of 𝐔̃𝚤 generated by 𝐵𝑖, 𝑘𝑖, 𝑥 for 𝑖 ∈ 𝕀◦, 𝑥 ∈ ̃∙. (5.17)

Proposition 5.9. The symmetries 𝐓̃′
𝑖,−1

(𝑖 ∈ 𝕀◦) preserve the ℚ(𝑞)-algebra ℚ𝐔̃
𝚤.

Proof. This follows by the formula for 𝐓̃′
𝑖,−1

acting on the Cartan part in Proposition 4.11 (see
Lemma 4.12), the rank 1 formulas in (4.20), and the rank 2 formulas in Table 3. □

Remark 5.10. It would cause no difficulty if we have replaced 𝐔̃𝚤 (over𝔽) by ℚ𝐔̃
𝚤 overℚ(𝑞) through-

out the paper. We need to work with 𝐔̃ over ℚ(𝑞
1
2 ) in several places. The results for 𝐔𝚤

𝝇⋄
will be

valid over ℚ(𝑞), while some results over𝐔𝚤
𝝇, for 𝝇 over ℚ(𝑞), are valid over ℚ(𝑞

1
2 ).

5.4 Proof of Theorem 5.5

Proposition 5.11. Let 𝑖, 𝑗 ∈ 𝕀◦,𝜏 be such that 𝑗 ∉ {𝑖, 𝜏𝑖}. Then there exists a noncommutative
polynomial 𝑅𝑖𝑗(𝑥𝑖, 𝑥𝜏𝑖, 𝑦𝑖, 𝑦𝜏𝑖, 𝑧; ̃∙), which is linear in 𝑧, such that

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12562 by U

N
IV

ER
SITY

 O
F V

IR
G

IN
IA

, W
iley O

nline Library on [10/11/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s­and­conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



1376 WANG and ZHANG

(1) T̃ −1
𝐫𝑖

(𝐹𝑗) = 𝑅𝑖𝑗(𝐵
𝜎
𝑖
, 𝐵𝜎

𝜏𝑖
,𝑖 ,𝜏𝑖, 𝐹𝑗; ̃∙);

(2) T̃ −1
𝐫𝑖

(T̃𝑤∙
(𝐸𝜏𝑗)𝐾

′
𝑗
) = 𝑅𝑖𝑗(𝐵𝑖, 𝐵𝜏𝑖,𝑖 ,𝜏𝑖, T̃𝑤∙

(𝐸𝜏𝑗)𝐾
′
𝑗
; ̃∙).

Remark 5.12. In case 𝜏𝑖 = 𝑖, the polynomials 𝑅𝑖𝑗 depend only on 𝑥𝑖, 𝑦𝑖, 𝑧 and ̃∙. In this case, it is
understood in Proposition 5.11 that 𝑅𝑖𝑗(𝑥𝑖, 𝑥𝜏𝑖, 𝑦𝑖, 𝑦𝜏𝑖, 𝑧; ̃∙) is replaced by 𝑅𝑖𝑗(𝑥𝑖, 𝑦𝑖, 𝑧; ̃∙) (which
is linear in 𝑧), and 𝑅𝑖𝑗(𝐵𝜎

𝑖
, 𝐵𝜎

𝜏𝑖
,𝑖 ,𝜏𝑖, 𝐹𝑗; ̃∙) is replaced by 𝑅𝑖𝑗(𝐵𝜎

𝑖
,𝑖 , 𝐹𝑗; ̃∙), and so on.

The proof of Proposition 5.11 will be carried out through type-by-type computation in
the Appendix.
We define

𝐓̃′
𝑖,−1(𝐵𝑗) ∶=

{
𝑅𝑖𝑗(𝐵𝑖,𝑖 , 𝐵𝑗; ̃∙), if 𝑖 = 𝜏𝑖,

𝑅𝑖𝑗(𝐵𝑖, 𝐵𝜏𝑖,𝑖 ,𝜏𝑖, 𝐵𝑗; ̃∙) if 𝑖 ≠ 𝜏𝑖.
(5.18)

Clearly, we have 𝐓̃′
𝑖,−1

(𝐵𝑗) ∈ 𝐔̃𝚤; see Table 3.
The polynomials 𝑅𝑖𝑗 in all types can be read off from Table 3. For instance, in type AII5 it reads

as follows:

𝑅𝑖𝑗(𝑥, 𝑦, 𝑧; ̃∙) = [[𝑥, 𝐹3], 𝑧]𝑞.

In order to read 𝑅𝑖𝑗 off from Table 3, one first needs to unravel T̃𝑤, for𝑤 ∈ 𝑊∙, appearing in those
formulas in terms of 𝐸𝑗, 𝐹𝑗, 𝐾𝑗, 𝐾

′
𝑗
, 𝑗 ∈ 𝕀∙.

Proof of Theorem 5.5. We start with a general comment. Originally, we computed the explicit
formulas in Table 3 type by type; see §5.2 for examples in types BI, DI, andDIII4. In the process, we
observed that parts of the arguments can be streamlined a uniform formulation in Proposition 5.11,
even though its proof requires quite some computations. We hope that this uniform formulation
helps to conceptualize the structures of the formulas for T̃ −1

𝐫𝑖
(𝐵𝑗).

We now prove Theorem 5.5 using Proposition 5.11. Recall by Theorem 3.6 that Υ̃𝑖𝐵
𝜎
𝑖
Υ̃−1
𝑖

= 𝐵𝑖
and Υ̃𝑖𝑥Υ̃

−1
𝑖

= 𝑥 for 𝑥 ∈ 𝐔̃𝚤0𝐔̃∙.
For definiteness, let us assume that 𝑖 ≠ 𝜏𝑖. (The case when 𝑖 = 𝜏𝑖 is similar using the interpre-

tation of notation in Remark 5.12.) By Lemma 5.1, Proposition 5.11, and definition of 𝐓̃′
𝑖,−1

(𝐵𝑗) in
(5.18), we have

Υ̃𝑖T̃
−1
𝐫𝑖

(𝐵𝑗) = Υ̃𝑖T̃
−1
𝐫𝑖

(𝐹𝑗) + Υ̃𝑖T̃
−1
𝐫𝑖

(T̃𝑤∙

(
𝐸𝜏𝑗)𝐾

′
𝑗

)
= Υ̃𝑖T̃

−1
𝐫𝑖

(𝐹𝑗) + T̃ −1
𝐫𝑖

(T̃𝑤∙

(
𝐸𝜏𝑗)𝐾

′
𝑗

)
Υ̃𝑖

= Υ̃𝑖𝑅𝑖𝑗(𝐵
𝜎
𝑖
, 𝐵𝜎

𝜏𝑖
,𝑖 ,𝜏𝑖, 𝐹𝑗; ̃∙) + 𝑅𝑖𝑗(𝐵𝑖, 𝐵𝜏𝑖,𝑖 ,𝜏𝑖, T̃𝑤∙

(𝐸𝜏𝑗)𝐾
′
𝑗; ̃∙)Υ̃𝑖

= 𝑅𝑖𝑗(𝐵𝑖, 𝐵𝜏𝑖,𝑖 ,𝜏𝑖, 𝐹𝑗; ̃∙)Υ̃𝑖 + 𝑅𝑖𝑗(𝐵𝑖, 𝐵𝜏𝑖,𝑖 ,𝜏𝑖, T̃𝑤∙
(𝐸𝜏𝑗)𝐾

′
𝑗; ̃∙)Υ̃𝑖

= 𝑅𝑖𝑗(𝐵𝑖, 𝐵𝜏𝑖,𝑖 ,𝜏𝑖, 𝐵𝑗; ̃∙)Υ̃𝑖 = 𝐓̃′
𝑖,−1(𝐵𝑗)Υ̃𝑖,

where the second last step follows form the linearity of 𝑅𝑖𝑗 in its fifth component. This proves the
desired identity (5.16), whence the theorem. □

Conjecture 5.13. For 𝐔̃𝚤 of Kac–Moody type, Proposition 5.11 remains valid.
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Assume Conjecture 5.13 holds. Then 𝐓̃′
𝑖,−1

(𝐵𝑗) ∈ 𝐔̃𝚤 defined in (5.18) satisfies the intertwining
relation (5.16), and hence, 𝐓̃′

𝑖,−1
is a symmetry of 𝐔̃𝚤 of Kac–Moody type.

5.5 A comparison with earlier results

We compare our formulas with some special cases obtained in the literature.
By choosing a reduced expression of 𝑤∙, we can write out the formula (4.20) explicitly for rank

1 Satake diagrams in Table 1. We list some explicit formulas of 𝐓̃′
𝑖,−1

(𝐵𝑖) and compare them with
braid group actions obtained earlier in [14, 20, 30]. (The index 𝑖 is specified in each case.) In some
rank 2 cases, our formulas differ from those in [30] and they can be matched by some twisting. As
noted in [30, Remark 7.4], the formulas for braid operators in [20] may involve

√
𝑣 and are related

to those in [30] by some other twisting.

5.5.1 Type AI1

We shall label the single white node in rank 1 type AI by 1. In this case, the formula (4.20) reads
as follows:

𝐓̃′
1,−1(𝐵1) = −𝑞−2𝐵1

−1
1 = −𝑞−2𝐵1𝑘

−1
1 . (5.19)

Note also that 𝜍1,⋄ = −𝑞−2. Applying the central reduction 𝜋𝚤
𝝇⋄
to (5.19), we have 𝐓−1

1,⋄(𝐵1) = 𝐵1 ∈

𝐔𝚤
𝝇⋄
. Our formula (5.19) of 𝐓̃′

1,−1
(𝐵1) coincides with the formula T−1𝑖 (𝐵𝑖) in [30, Lemma 5.1]. Our

formulation of 𝐓−1
1,⋄(𝐵1) coincides with the formula 𝜏

−1
𝑖
(𝐵𝑖) given in [20, (3.1)] for (𝐔,𝐔𝚤

𝑞−2
).

5.5.2 Type AII3

The rank 1 Satake diagram of type AII is given by

By Table 1, 𝐫2 = 𝑠2132, and the formula (4.20) reads as follows:

𝐓̃′
2,−1(𝐵2) = − 𝑞−2(𝑞 − 𝑞−1)2

[
[𝐵2, 𝐹3]𝑞, 𝐹1

]
𝑞
𝐸3𝐸1𝑘

−1
2

+ (𝑞 − 𝑞−1)
(
[𝐵2, 𝐹3]𝑞𝐾1𝐸3 + [𝐵2, 𝐹1]𝑞𝐾3𝐸1

)
𝑘−12 − 𝑞2𝐵2𝐾3𝐾1𝑘

−1
2 .

5.5.3 Type AIII11

The AIII11 Satake diagram is given by

In this case, the formula (4.20) reads as 𝐓̃′
1,−1

(𝐵1) = −𝐵2
−1
2

= −𝐵2𝑘
−1
2
.
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1378 WANG and ZHANG

5.5.4 Type AIII11

The rank 1 AIV Satake diagram is given by

In this case, the formula (4.20) reads as 𝐓̃′
1,−1

(𝐵1) = −𝑞T̃ 2
𝑤∙
(𝐵1)

−1
1

∏
𝑗∈𝕀∙

𝐾′
𝑗
−1.

Remark 5.14. For type AIV, Dobson [14, Theorem 3.4] obtained a different automorphism 1 on
𝐔𝚤

𝝇 such that 
−1
1

(𝐵1) = 𝑞𝐵1𝑘𝑛𝐾𝜛𝑛−1−𝜛2
. Here,𝜛𝑗 are the fundamental weights and 𝑘𝑖 is denoted

by 𝐿𝑖 loc. cit.

5.5.5 Split type

The formulas of 𝐓̃′
𝑖,−1

(𝐵𝑗) in the split types AI2, CI2, and G2 are identical to the braid group
operators obtained using the 𝚤Hall algebra approach, cf. [30, Lemma 5.1].

5.5.6 Formulas on𝐔𝚤
𝜍⋄

Applying central reductions and isomorphisms 𝜙𝝇 ∶ 𝐔𝚤
𝝇⋄
≅ 𝐔𝚤

𝝇 (see §9.4 below) to our formulas,
we recover various formulas obtained for𝐔𝚤

𝝇 in [20] in split types and type AII.

6 NEW SYMMETRIES 𝐓̃′′
𝒊,+𝟏

ON 𝐔̃𝒊

In this section, we introduce new symmetries 𝐓̃′′
𝑖,+1

on 𝐔̃𝚤, for 𝑖 ∈ 𝕀◦, via a new intertwining prop-
erty using the quasi 𝐾-matrix, and establish explicit formulas of 𝐓̃′′

𝑖,+1
acting on the generators

of 𝐔̃𝚤. Then, we show that 𝐓̃′
𝑖,−1

and 𝐓̃′′
𝑖,+1

are mutual inverses. (This in particular completes the
proof of Theorem 4.7 that 𝐓̃′

𝑖,−1
is an automorphism.)

6.1 Characterization of 𝐓̃′′
𝒊,+𝟏

We formulate 𝐓̃′′
𝑖,+1

below, as a variant of 𝐓̃′
𝑖,−1

introduced in Theorem 4.7.

Theorem 6.1. Let 𝑖 ∈ 𝕀◦.

(1) For any 𝑥 ∈ 𝐔̃𝚤, there is a unique element 𝑥′′ ∈ 𝐔̃𝚤 such that 𝑥′′T̃𝐫𝑖
(Υ̃−1

𝑖
) = T̃𝐫𝑖

(Υ̃−1
𝑖
)T̃𝐫𝑖

(𝑥).
(2) The map 𝑥 ↦ 𝑥′′ defines an automorphism of the algebra 𝐔̃𝚤, denoted by 𝐓̃′′

𝑖,+1
.

The strategy of proving Theorem 6.1 is largely parallel to that of Theorem 4.7 given in the previ-
ous sections. We shall prove Theorem 6.1(1) and a weaker version of Part (2) that 𝑥 ↦ 𝑥′′ defines
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an endomorphism 𝐓̃′′
𝑖,+1

of the algebra 𝐔̃𝚤, by combining Proposition 6.2, Proposition 6.3, and
Theorem 6.6. Finally, we show that 𝐓̃′′

𝑖,+1
is an automorphism of 𝐔̃𝚤 in Theorem 6.7.

Hence, 𝐓̃′′
𝑖,+1

satisfies the following intertwining relation:

𝐓̃′′
𝑖,+1(𝑥)T̃𝐫𝑖

(Υ̃−1
𝑖 ) = T̃𝐫𝑖

(Υ̃−1
𝑖 )T̃𝐫𝑖

(𝑥), for all 𝑥 ∈ 𝐔̃𝚤. (6.1)

6.2 Action of 𝐓̃′′
𝒊,+𝟏

on 𝐔̃𝒊𝟎𝐔̃∙

Just as for Proposition 4.11, we can prove the following.

Proposition 6.2. Let 𝑖 ∈ 𝕀◦. For each 𝑥 ∈ 𝐔̃𝚤0𝐔̃∙, there is a unique element 𝐓̃′′
𝑖,+1

(𝑥) ∈ 𝐔̃𝚤0𝐔̃∙ such
that the intertwining relation 𝐓̃′′

𝑖,+1
(𝑥)T̃𝐫𝑖

(Υ̃−1
𝑖
) = T̃𝐫𝑖

(Υ̃−1
𝑖
)T̃𝐫𝑖

(𝑥) holds; see (6.1). More explicitly,

𝐓̃′′
𝑖,+1(𝑢) = (𝜏̂∙,𝑖 ◦ 𝜏̂)(𝑢), 𝐓̃′′

𝑖,+1(𝑘𝑗,⋄) = 𝑘𝐫𝑖𝛼𝑗,⋄, for 𝑢 ∈ 𝐔̃∙ and 𝑗 ∈ 𝕀◦.

It follows byPropositions 4.11 and 6.2 that 𝐓̃′
𝑖,−1

, 𝐓̃′′
𝑖,+1

, and T̃ ±1
𝐫𝑖

coincide on 𝐔̃𝚤0𝐔̃∙. In particular,
we have

𝐓̃′′
𝑖,+1(𝑥) = (𝜎𝚤 ◦ 𝐓̃′

𝑖,−1 ◦𝜎
𝚤)(𝑥), for 𝑥 ∈ 𝐔̃𝚤0𝐔̃∙. (6.2)

6.3 Rank 1 formula for 𝐓̃′′
𝒊,+𝟏

(𝑩𝒊)

We shall establish a uniform formula for 𝐓̃′′
𝑖,+1

(𝐵𝑖), for 𝑖 ∈ 𝕀◦, a counterpart of Theorem 4.14. Recall
the anti-involution 𝜎𝚤 of 𝐔̃𝚤 from Proposition 3.12.

Proposition 6.3. Let 𝑖 ∈ 𝕀◦. There exists a unique element 𝐓̃′′
𝑖,+1

(𝐵𝑖) ∈ 𝐔̃𝚤 which satisfies the
following intertwining relation (see (6.1))

𝐓̃′′
𝑖,+1(𝐵𝑖) T̃𝐫𝑖

(Υ̃𝑖)
−1 = T̃𝐫𝑖

(Υ̃𝑖)
−1 T̃𝐫𝑖

(𝐵𝑖). (6.3)

More explicitly, we have

𝐓̃′′
𝑖,+1(𝐵𝑖) = −𝑞−(𝛼𝑖,𝛼𝑖)T̃ −2

𝑤∙
(𝐵𝜏∙,𝑖𝜏𝑖)T̃𝑤∙

(−1
𝜏∙,𝑖 𝑖

). (6.4)

In particular, we have 𝐓̃′′
𝑖,+1

(𝐵𝑖) = (𝜎𝚤 ◦ 𝐓̃′
𝑖,−1

)(𝐵𝑖).

Proof. ByTheorem 3.6 (applied to the rank 1 setting), we have𝐵𝑖Υ̃𝑖 = Υ̃𝑖𝐵
𝜎
𝑖
, which can be rewritten

as

T̃𝐫𝑖
(Υ̃𝑖)T̃𝐫𝑖

(𝐵𝜎
𝑖
) = T̃𝐫𝑖

(𝐵𝑖)T̃𝐫𝑖
(Υ̃𝑖). (6.5)

Hence, by comparing (6.3) and (6.5) and then applying (2.10), we obtain that

𝐓̃′′
𝑖,+1(𝐵𝑖) = T̃𝐫𝑖

(𝐵𝜎
𝑖
) = (𝜎 ◦ T̃ −1

𝐫𝑖
)(𝐵𝑖). (6.6)
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1380 WANG and ZHANG

We now convert the formula (6.6) to the desired formula (6.4) for 𝐓̃′′
𝑖,+1

(𝐵𝑖), which particu-
larly shows that 𝐓̃′′

𝑖,+1
(𝐵𝑖) ∈ 𝐔̃𝚤. To that end, note that 𝜎(𝜏∙,𝑖𝜏𝑖

) = T̃𝑤∙
(𝜏∙,𝑖 𝑖

), by Proposition 2.2
and definition (3.23) of𝑖 . Applying 𝜎 to the identity T̃ −1

𝐫𝑖
(𝐵𝑖) = −𝑞−(𝛼𝑖,𝑤∙𝛼𝜏𝑖)T̃ 2

𝑤∙
(𝐵𝜎

𝜏∙,𝑖𝜏𝑖
)−1

𝜏∙,𝑖𝜏𝑖
in

(4.19) and using (6.6), we have established the formula (6.4) for 𝐓̃′′
𝑖,+1

(𝐵𝑖).
It remains to show that 𝐓̃′′

𝑖,+1
(𝐵𝑖) = (𝜎𝚤 ◦ 𝐓̃′

𝑖,−1
)(𝐵𝑖). Recall (𝜎𝚤)2 = 1. Indeed, we have

𝐓̃′′
𝑖,+1(𝐵𝑖)

(6.6)
= (𝜎 ◦ T̃ −1

𝐫𝑖
)(𝐵𝑖)

(∗)
= (𝜎 ◦AdΥ̃−1

𝑖
◦𝐓̃′

𝑖,−1)(𝐵𝑖)

(†)
=

(
𝜎𝚤 ◦ 𝐓̃′

𝑖,−1

)
(𝐵𝑖),

where (*) follows by Theorem 4.14, and (†) follows by applying (3.25) to the rank 1 Satake
subdiagram associated with 𝑖. □

6.4 Rank 2 formulas for 𝐓̃′′
𝒊,+𝟏

(𝑩𝒋)

The following lemma is a reformulation of Lemma 5.1.

Lemma 6.4. We have

(1) T̃𝐫𝑖
(𝐹𝑗) commutes with T̃𝐫𝑖

(Υ̃𝑖);
(2) T̃𝑤∙

(𝐸𝜏𝑗)𝐾
′
𝑗
commutes with T̃𝐫𝑖

(Υ̃𝑖).

Introduce a shorthand notation

𝐵𝑖 ∶= T̃𝐫𝑖

(
𝐓̃′
𝑖,−1(𝐵𝑖)

)
. (6.7)

We reformulate the intertwining relation (5.16) as

𝐵𝑖 ⋅ T̃𝐫𝑖
(Υ̃𝑖) = T̃𝐫𝑖

(Υ̃𝑖) ⋅ 𝐵𝑖. (6.8)

Proposition 6.5. Let 𝑖 ≠ 𝑗 ∈ 𝕀◦,𝜏 be such that 𝑗 ∉ {𝑖, 𝜏𝑖}. Then there exists a noncommutative
polynomial 𝑃𝑖𝑗(𝑥𝑖, 𝑥𝜏𝑖, 𝑦𝑖, 𝑦𝜏𝑖, 𝑧; ̃∙), which is linear in 𝑧, such that

(1) T̃𝐫𝑖
(𝐹𝑗) = 𝑃𝑖𝑗(𝐵𝑖, 𝐵𝜏𝑖, 𝑘𝑖, 𝑘𝜏𝑖, 𝐹𝑗; ̃∙),

(2) T̃𝐫𝑖
(T̃𝑤∙

(𝐸𝜏𝑗)𝐾
′
𝑗
) = 𝑃𝑖𝑗(𝐵𝑖, 𝐵𝜏𝑖, 𝑘𝑖, 𝑘𝜏𝑖, T̃𝑤∙

(𝐸𝜏𝑗)𝐾
′
𝑗
; ̃∙).

The proof of Proposition 6.5 is carried out through a type-by-type computation similar to the
Appendix (the detail can be found in Appendix B in an arXiv version).
We set

𝐓̃′′
𝑖,+1(𝐵𝑗) ∶= 𝑃𝑖𝑗(𝐵𝑖, 𝐵𝜏𝑖, 𝑘𝑖, 𝑘𝜏𝑖, 𝐵𝑗; ̃∙). (6.9)

Clearly, we have 𝐓̃′′
𝑖,+1

(𝐵𝑗) ∈ 𝐔̃𝚤.
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Theorem 6.6. Let 𝑖 ≠ 𝑗 ∈ 𝕀◦,𝜏 . The elements 𝐓̃′′
𝑖,+1

(𝐵𝑗) listed in Table 4 satisfy the following
intertwining relation (see (6.1)):

𝐓̃′′
𝑖,+1(𝐵𝑗)T̃𝐫𝑖

(Υ̃𝑖)
−1 = T̃𝐫𝑖

(Υ̃𝑖)
−1T̃𝐫𝑖

(𝐵𝑗). (6.10)

Proof. Recall 𝐵𝑗 = 𝐹𝑗 + T̃𝑤∙
(𝐸𝜏𝑗)𝐾

′
𝑗
. By Lemma 6.4, (6.8), and (6.9), we have

T̃𝐫𝑖
(Υ̃𝑖)

−1 ⋅ T̃𝐫𝑖
(𝐵𝑗) ⋅ T̃𝐫𝑖

(Υ̃𝑖)

= T̃𝐫𝑖
(Υ̃𝑖)

−1
(
T̃𝐫𝑖

(𝐹𝑗) + T̃𝐫𝑖

(
T̃𝑤∙

(𝐸𝜏𝑗)𝐾
′
𝑗

))
T̃𝐫𝑖

(Υ̃𝑖)

= T̃𝐫𝑖
(Υ̃𝑖)

−1T̃𝐫𝑖
(𝐹𝑗)T̃𝐫𝑖

(Υ̃𝑖) + T̃𝐫𝑖
(Υ̃𝑖)

−1T̃𝐫𝑖

(
T̃𝑤∙

(𝐸𝜏𝑗)𝐾
′
𝑗

)
T̃𝐫𝑖

(Υ̃𝑖)

= 𝑃𝑖𝑗(𝐵𝑖, 𝐵𝜏𝑖, 𝑘𝑖, 𝑘𝜏𝑖, 𝐹𝑗; ̃∙) + 𝑃𝑖𝑗(𝐵𝑖, 𝐵𝜏𝑖, 𝑘𝑖, 𝑘𝜏𝑖, T̃𝑤∙
(𝐸𝑗)𝐾

′
𝑗; ̃∙)

= 𝑃𝑖𝑗(𝐵𝑖, 𝐵𝜏𝑖, 𝑘𝑖, 𝑘𝜏𝑖, 𝐵𝑗; ̃∙)

= 𝐓̃′′
𝑖,+1(𝐵𝑗),

where the linearity of the polynomial 𝑃𝑖𝑗 with respect to the fifth variable is used in the last step.
This proves the desired intertwining property (6.10) and whence the theorem. □

6.5 𝐓̃′
𝒊,𝒆
and 𝐓̃′′

𝒊,−𝒆
as inverses

Recall the automorphisms 𝐓̃′
𝑖,−1

∈ Aut(𝐔̃𝚤) by Theorem 4.7. Recalling the bar involution 𝜓𝚤 on 𝐔̃𝚤

from Proposition 3.4, we define two more automorphisms 𝐓̃′′
𝑖,−1

, 𝐓̃′
𝑖,+1

∈ Aut(𝐔̃𝚤) via

𝐓̃′′
𝑖,−1 ∶= 𝜓𝚤 ◦ 𝐓̃′′

𝑖,+1 ◦𝜓
𝚤, 𝐓̃′

𝑖,+1 ∶= 𝜓𝚤 ◦ 𝐓̃′
𝑖,−1 ◦𝜓

𝚤. (6.11)

Recall that Lusztig’s symmetries 𝑇′
𝑖,𝑒
and 𝑇′′

𝑖,−𝑒
are mutually inverses, for 𝑖 ∈ 𝕀, 𝑒 = ±1; see [28,

37.1.2]. They in addition satisfy the relation 𝑇′
𝑖,−1

= 𝜎 ◦𝑇′′
𝑖,+1

◦𝜎; see (2.10). We prove the following
𝚤-analog of Lusztig’s symmetries.

Theorem 6.7. 𝐓̃′
𝑖,𝑒

and 𝐓̃′′
𝑖,−𝑒

are mutually inverse automorphisms on 𝐔̃𝚤, for 𝑒 = ±1, 𝑖 ∈ 𝕀◦.
Moreover, we have

𝐓̃′
𝑖,𝑒 = 𝜎𝚤 ◦ 𝐓̃′′

𝑖,−𝑒 ◦𝜎
𝚤. (6.12)

Proof. By definition (6.11), 𝐓̃′′
𝑖,−1

= 𝜓𝚤𝐓̃′′
𝑖,+1

𝜓𝚤, and 𝐓̃′
𝑖,+1

= 𝜓𝚤𝐓̃′
𝑖,−1

𝜓𝚤. Hence, it suffices to show that
𝐓̃′
𝑖,−1

and 𝐓̃′′
𝑖,+1

are mutually inverses.
We already knew that 𝐓̃′

𝑖,−1
∶ 𝐔̃𝚤 → 𝐔̃𝚤 is an injective endomorphism. Let us now prove that

this endomorphism 𝐓̃′
𝑖,−1

is surjective. More precisely, we shall show the following.

Claim. For any 𝑧 ∈ 𝐔̃𝚤, set 𝑦 ∶= 𝐓̃′′
𝑖,+1

(𝑧). Then we have 𝑧 = 𝐓̃′
𝑖,−1

(𝑦).
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1382 WANG and ZHANG

Let us prove the claim. The identity (6.1) reads in our setting as 𝑦𝚤 T̃𝐫𝑖
(Υ̃−1

𝑖
) = T̃𝐫𝑖

(Υ̃−1
𝑖
)T̃𝐫𝑖

(𝑧).
Applying T̃ −1

𝐫𝑖
to both sides of this identity, we obtain T̃ −1

𝐫𝑖
(𝑦𝚤)Υ̃−1

𝑖
= Υ̃−1

𝑖
𝑧, which can be rewrit-

ten as 𝑧Υ̃𝑖 = Υ̃𝑖T̃
−1
𝐫𝑖

(𝑦𝚤). By (4.7) and the uniqueness in Theorem 4.7(1), we conclude that 𝑧 =

𝐓̃′
𝑖,−1

(𝑦).
By an entirely similar argument as above (switching the role of 𝐓̃′

𝑖,−1
and 𝐓̃′′

𝑖,+1
) and using the

uniqueness in Theorem 6.1(1), we show that, for any 𝑦1 ∈ 𝐔̃𝚤, we have 𝑦1 = 𝐓̃′′
𝑖,+1

(𝑧1), where 𝑧1 ∶=
𝐓̃′
𝑖,−1

(𝑦1).
Hence, 𝐓̃′

𝑖,−1
and 𝐓̃′′

𝑖,+1
are mutually inverses. As 𝐓̃′

𝑖,−1
is an endomorphism, we see that both

𝐓̃′
𝑖,−1

and 𝐓̃′′
𝑖,+1

are automorphisms of 𝐔̃𝚤.
Recall the anti-involution 𝜎𝚤 on 𝐔̃𝚤 from Proposition 3.12. It remains to prove that 𝐓̃′′

𝑖,+1
=

𝜎𝚤 ◦ 𝐓̃′
𝑖,−1

◦𝜎𝚤. This follows from the identity (6.2), the identity 𝐓̃′′
𝑖,+1

(𝐵𝑖) = (𝜎𝚤 ◦ 𝐓̃′
𝑖,−1

)(𝐵𝑖) from
Proposition 6.3, and 𝐓̃′′

𝑖,+1
(𝐵𝑗) = (𝜎𝚤 ◦ 𝐓̃′

𝑖,−1
)(𝐵𝑗), for 𝑖 ≠ 𝑗 ∈ 𝕀◦,𝜏; the last identity follows by

comparing the rank 2 formulas for 𝐓̃′
𝑖,−1

(𝐵𝑗) in Table 3 and for 𝐓̃′′
𝑖,+1

(𝐵𝑗) in Table 4. □

In particular, Theorem 6.7 above completes the proof of Theorem 4.7 that 𝐓̃′
𝑖,−1

are automor-
phisms of 𝐔̃𝚤. From now on, thanks to Theorem 6.7, we shall denote

𝐓̃𝑖 ∶= 𝐓̃′′
𝑖,+1, 𝐓̃−1

𝑖 ∶= 𝐓̃′
𝑖,−1.

7 A BASIC PROPERTY OF NEW SYMMETRIES

In this section, we establish a basic property that 𝐓̃𝑤, for 𝑤 ∈ 𝑊◦, sends 𝐵𝑖 to 𝐵𝑗 , if 𝑤𝛼𝑖 = 𝛼𝑗; see
Theorem 7.13. This is a generalization of awell-knownproperty of braid group action onChevalley
generators in the setting of quantum groups.
We shall first study the rank 2 cases separately, depending onwhether 𝓁◦(𝒘◦) = 3, 4, or 6. Then

we deal with the general cases.

7.1 Rank 2 cases with 𝓵◦(𝒘◦) = 𝟑

Assume that 𝕀◦,𝜏 = {𝑖, 𝑗} such that 𝓁◦(𝒘◦) = 3; in this case, according to Table 2, we must have
𝜏 = Id, and hence, we identify 𝕀◦ = {𝑖, 𝑗} as well.

Lemma 7.1. We have T̃𝐫𝑖
T̃𝐫𝑗

(𝐵𝑖) = 𝐵𝑗 .

Proof. Noting that 𝓁(𝐫𝑖𝐫𝑗) = 𝓁(𝐫𝑖) + 𝓁(𝐫𝑗), we have T̃𝐫𝑖
T̃𝐫𝑗

= T̃𝐫𝑖𝐫𝑗
. Noting that 𝐫𝑖𝐫𝑗(𝛼𝑖) = 𝛼𝑗, we

have that T̃𝐫𝑖𝐫𝑗
(𝑋𝑖) = 𝑋𝑗 , for 𝑋 = 𝐹, 𝐸 or 𝐾′; cf. [28, 39.2] or [16, Proposition 8.20].

Recall 𝜏 = Id, and 𝐵𝑖 = 𝐹𝑖 + T̃𝑤∙
(𝐸𝑖)𝐾

′
𝑖
. Thanks to (2.14), T̃𝑤∙

commutes with both T̃𝐫𝑖
and T̃𝐫𝑗

.
Therefore, we have

T̃𝐫𝑖
T̃𝐫𝑗

(𝐵𝑖) = T̃𝐫𝑖𝐫𝑗
(𝐹𝑖 + T̃𝑤∙

(𝐸𝑖)𝐾
′
𝑖 ) = 𝐹𝑗 + T̃𝑤∙

(𝐸𝑗)𝐾
′
𝑗 = 𝐵𝑗.

The lemma is proved. □
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Proposition 7.2. We have 𝐓̃−1
𝑖
𝐓̃−1
𝑗
(𝐵𝑖) = 𝐵𝑗; or equivalently, 𝐓̃𝑗𝐓̃𝑖(𝐵𝑗) = 𝐵𝑖 .

Proof. Since 𝐓̃−1
𝑖
and 𝐓̃−1

𝑗
are automorphism of 𝐔̃𝚤, we have 𝐓̃−1

𝑖
𝐓̃−1
𝑗
(𝐵𝑖) − 𝐵𝑗 ∈ 𝐔̃𝚤. Then, we can

write this element in terms of monomial basis of 𝐔̃𝚤 (see Proposition 2.6):

𝐓̃−1
𝑖 𝐓̃−1

𝑗 (𝐵𝑖) − 𝐵𝑗 =
∑
𝐽∈

𝐴𝐽𝐵𝐽, for some 𝐴𝐽 ∈ 𝐔̃+
∙ 𝐔̃

𝚤0. (7.1)

On the other hand, using the intertwining relation (4.7) twice, we have

𝐓̃−1
𝑖 𝐓̃−1

𝑗 (𝐵𝑖) = Υ̃𝑖T̃
−1
𝐫𝑖

(Υ̃𝑗) ⋅ T̃
−1
𝐫𝑖

T̃ −1
𝐫𝑗

(𝐵𝑖) ⋅ T̃
−1
𝐫𝑖

(Υ̃−1
𝑗 )Υ̃−1

𝑖

By Lemma 7.1, we rewrite the above identity as

𝐓̃−1
𝑖 𝐓̃−1

𝑗 (𝐵𝑖) = Υ̃𝑖T̃
−1
𝐫𝑖

(Υ̃𝑗) ⋅ 𝐵𝑗 ⋅ T̃
−1
𝐫𝑖

(Υ̃−1
𝑗 )Υ̃−1

𝑖 . (7.2)

By the equality (7.2), we rewrite (7.1) in the following form:

Υ̃𝑖T̃
−1
𝐫𝑖

(Υ̃𝑗) ⋅ 𝐵𝑗 ⋅ T̃
−1
𝐫𝑖

(Υ̃−1
𝑗 )Υ̃−1

𝑖 − 𝐵𝑗 =
∑
𝐽∈

𝐴𝐽𝐵𝐽. (7.3)

Now we claim 𝐴𝐽𝐵𝐽 = 0, for each 𝐽 ∈  , by comparing the weights in ℤ𝕀. Recall from
Remark 3.10 that Υ̃𝑖 =

∑
𝑚⩾0 Υ̃

𝑚
𝑖
where wt(Υ̃𝑚

𝑖
) = 𝑚(𝛼𝑖 + 𝑤∙𝛼𝜏𝑖) and then weights of T̃ −1

𝐫𝑖
(Υ̃𝑗)

lie in ℕ(𝐫𝑖𝛼𝑗 + 𝐫𝑖𝑤∙𝛼𝜏𝑗). Hence, the weights appearing on LHS (7.3) must belong to the set 𝑄𝑖𝑗 ,
where

𝑄𝑖𝑗 = 𝑄−
𝑖𝑗 ∪ 𝑄+

𝑖𝑗
,

𝑄−
𝑖𝑗 ∶= −𝛼𝑗 + ℕ(𝛼𝑖 + 𝑤∙𝛼𝜏𝑖) + ℕ(𝐫𝑖𝛼𝑗 + 𝐫𝑖𝑤∙𝛼𝜏𝑗),

𝑄+
𝑖𝑗
∶= 𝑤∙(𝛼𝑗) + ℕ(𝛼𝑖 + 𝑤∙𝛼𝜏𝑖) + ℕ(𝐫𝑖𝛼𝑗 + 𝐫𝑖𝑤∙𝛼𝜏𝑗).

On the other hand, note that the weight of the lowest weight component of 𝐴𝐽𝐵𝐽 lies in 𝑄𝐽 ∶=

−wt(𝐽) + ℕ𝕀∙. Then 𝐴𝐽𝐵𝐽 ≠ 0 only if 𝑄𝐽 ∩ 𝑄𝑖𝑗 ≠ ∅. It immediately follows that 𝐴𝐽𝐵𝐽 = 0 unless
wt(𝐽) ∈ 𝛼𝑗 + ℕ𝕀∙. Moreover, when wt(𝐽) ∈ 𝛼𝑗 + ℕ𝕀∙, the only possible element in the intersection
𝑄𝐽 ∩ 𝑄𝑖𝑗 is −𝛼𝑗 .
However, since Υ̃𝑖T̃

−1
𝐫𝑖

(Υ̃𝑗) has constant term 1, the weight (−𝛼𝑗) component for LHS (7.3) is
0. This implies that 𝐴𝐽𝐵𝐽 = 0, for each 𝐽 ∈  , and then the desired identity follows by (7.1). □

Corollary 7.3. We have

Υ̃𝑖T̃
−1
𝐫𝑖

(Υ̃𝑗)𝐵𝑗 = 𝐵𝑗Υ̃𝑖T̃
−1
𝐫𝑖

(Υ̃𝑗). (7.4)

Proof. One reads off from the proof of Proposition 7.2 that 𝐴𝐽𝐵𝐽 = 0, for 𝐽 ∈  , and hence, the
corollary follows from the relation (7.3). □

Corollary 7.4. We have

𝐵𝑖Υ̃𝑗T̃𝐫𝑖
(Υ̃𝑗) = Υ̃𝑗T̃𝐫𝑖

(Υ̃𝑗)𝐵𝑖, (7.5)

𝐵𝜎
𝑗
T̃𝐫𝑖

(Υ̃𝑗)Υ̃𝑖 = T̃𝐫𝑖
(Υ̃𝑗)Υ̃𝑖𝐵

𝜎
𝑗
. (7.6)
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Proof. Switching 𝑖, 𝑗 in (7.4), we obtain

Υ̃𝑗T̃
−1
𝐫𝑗

(Υ̃𝑖)𝐵𝑖 = 𝐵𝑖Υ̃𝑗T̃
−1
𝐫𝑗

(Υ̃𝑖). (7.7)

By Proposition 8.3, we have T̃ −1
𝐫𝑗

(Υ̃𝑖) = T̃𝐫𝑖
(Υ̃𝑗). Hence, (7.7) implies the desired identity (7.5).

Recall from Proposition 3.8 that Υ̃𝑖, Υ̃𝑗 are both fixed by the anti-involution 𝜎. Recall also that
𝜎T̃ −1

𝐫𝑖
𝜎 = T̃𝐫𝑖

. Applying the anti-involution 𝜎 to the identity (7.4), we have proved (7.6). □

7.2 Rank 2 cases with 𝓵◦(𝒘◦) = 𝟒

In this subsection, we assume that 𝕀◦,𝜏 = {𝑖, 𝑗} such that 𝓁◦(𝒘◦) = 4. Let {𝑖, 𝜏𝑖} and {𝑗, 𝜏𝑗} be the
corresponding two distinct 𝜏-orbits of 𝕀◦.

Lemma 7.5. Denote the diagram involution 𝜚 ∶= 𝜏0𝜏∙,𝑖 . Then we have

𝐫𝑗𝐫𝑖𝐫𝑗(𝛼𝑖) = 𝛼𝜚𝑖, and T̃𝐫𝑗
T̃𝐫𝑖

T̃𝐫𝑗
(𝐵𝑖) = 𝐵𝜚𝑖.

(Moreover, a nontrivial 𝜚 can occur only in type AIII, and in this case, 𝜚 = 𝜏.)

Proof. As before, set𝑤0 to be the longest element of theWeyl group𝑊 and𝑤∙,𝑖 = 𝐫𝑖𝑤∙; set 𝜏0 and
𝜏∙,𝑖 to be the diagram automorphisms corresponding to 𝑤0 and 𝑤∙,𝑖 , respectively. In this case, 𝑤0

satisfies the relation 𝑤0 = 𝒘◦𝑤∙ = 𝐫𝑗𝐫𝑖𝐫𝑗𝐫𝑖𝑤∙ = 𝐫𝑗𝐫𝑖𝐫𝑗𝑤∙,𝑖 . Then we have

𝜏0(𝛼𝑖) = −𝑤0(𝛼𝑖) = −𝐫𝑗𝐫𝑖𝐫𝑗𝑤∙,𝑖(𝛼𝑖) = 𝐫𝑗𝐫𝑖𝐫𝑗𝜏∙,𝑖(𝛼𝑖).

Setting 𝜚 ∶= 𝜏0𝜏∙,𝑖 , we have obtained 𝐫𝑗𝐫𝑖𝐫𝑗(𝛼𝑖) = 𝛼𝜚𝑖 . (We thank Stefan Kolb for providing the
above conceptual argument that replaces our earlier case-by-case proof of the existence of 𝜚;
moreover, his argument produces a precise formula for 𝜚.)
In particular, we observe that a nontrivial 𝜚 occurs only in type AIII (for some particular 𝑖), and

in this case, 𝜚 = 𝜏.
Recalling 𝐫𝑖 = 𝐫𝜏𝑖 , we also have 𝐫𝑗𝐫𝑖𝐫𝑗(𝛼𝜏𝑖) = 𝛼𝜚𝜏𝑖 .
We have 𝓁(𝐫𝑗𝐫𝑖𝐫𝑗) = 𝓁(𝐫𝑗) + 𝓁(𝐫𝑖) + 𝓁(𝐫𝑗), by Proposition 2.4. Therefore, it follows from

𝐫𝑗𝐫𝑖𝐫𝑗(𝛼𝑖) = 𝛼𝜚𝑖 that T̃𝐫𝑗
T̃𝐫𝑖

T̃𝐫𝑗
(𝑋𝑖) = 𝑋𝜚𝑖 , for 𝑋 = 𝐹,𝐾′; cf. [28, 39.2] or [16, Proposition 8.20].

Similarly, we have T̃𝐫𝑗
T̃𝐫𝑖

T̃𝐫𝑗
(𝐸𝜏𝑖) = 𝐸𝜚𝜏𝑖 .

Recall 𝐵𝑖 = 𝐹𝑖 + T̃𝑤∙
(𝐸𝜏𝑖)𝐾

′
𝑖
. Thanks to (2.14), T̃𝑤∙

commutes with both T̃𝐫𝑖
and T̃𝐫𝑗

. Therefore,
we have

T̃𝐫𝑗
T̃𝐫𝑖

T̃𝐫𝑗
(𝐵𝑖) = T̃𝐫𝑗𝐫𝑖𝐫𝑗

(𝐹𝑖 + T̃𝑤∙
(𝐸𝜏𝑖)𝐾

′
𝑖 ) = 𝐹𝜚𝑖 + T̃𝑤∙

(𝐸𝜚𝜏𝑖)𝐾
′
𝜚𝑖 = 𝐵𝜚𝑖.

The lemma is proved. □

Proposition 7.6. Retain the notation in Lemma 7.5. Then 𝐓̃−1
𝑗
𝐓̃−1
𝑖
𝐓̃−1
𝑗
(𝐵𝑖) = 𝐵𝜚𝑖; or equivalently,

𝐓̃𝑗𝐓̃𝑖𝐓̃𝑗(𝐵𝑖) = 𝐵𝜚𝑖 .

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12562 by U

N
IV

ER
SITY

 O
F V

IR
G

IN
IA

, W
iley O

nline Library on [10/11/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s­and­conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1385

Proof. Since 𝐓̃−1
𝑖
and 𝐓̃−1

𝑗
are automorphism of 𝐔̃𝚤, we have 𝐓̃−1

𝑗
𝐓̃−1
𝑖
𝐓̃−1
𝑗
(𝐵𝑖) − 𝐵𝜚𝑖 ∈ 𝐔̃𝚤. Then we

can write this element in terms of monomial basis of 𝐔̃𝚤 (see Proposition 2.6):

𝐓̃−1
𝑗 𝐓̃−1

𝑖 𝐓̃−1
𝑗 (𝐵𝑖) − 𝐵𝜚𝑖 =

∑
𝐽∈

𝐴𝐽𝐵𝐽, for some 𝐴𝐽 ∈ 𝐔̃+
∙ 𝐔̃

𝚤0. (7.8)

On the other hand, using the intertwining relation (4.7) of 𝐓̃−1
𝑖
, we have

𝐓̃−1
𝑗 𝐓̃−1

𝑖 𝐓̃−1
𝑗 (𝐵𝑖)

= Υ̃𝑗 T̃ −1
𝐫𝑗

(Υ̃𝑖) T̃
−1
𝐫𝑗

T̃ −1
𝐫𝑖

(Υ̃𝑗) ⋅ T̃
−1
𝐫𝑗

T̃ −1
𝐫𝑖

T̃ −1
𝐫𝑗

(𝐵𝑖) ⋅ T̃
−1
𝐫𝑗

T̃ −1
𝐫𝑖

(Υ̃−1
𝑗 ) T̃ −1

𝐫𝑗
(Υ̃−1

𝑖 ) Υ̃−1
𝑗 .

Since T̃ −1
𝐫𝑗

T̃ −1
𝐫𝑖

T̃ −1
𝐫𝑗

(𝐵𝑖) = 𝐵𝜚𝑖 by Lemma 7.5, we rewrite the above identity as

𝐓̃−1
𝑗 𝐓̃−1

𝑖 𝐓̃−1
𝑗 (𝐵𝑖) = Υ̃𝑗 T̃ −1

𝐫𝑗
(Υ̃𝑖) T̃

−1
𝐫𝑗

T̃ −1
𝐫𝑖

(Υ̃𝑗) ⋅ 𝐵𝜚𝑖 ⋅ T̃
−1
𝐫𝑗

T̃ −1
𝐫𝑖

(Υ̃−1
𝑗 ) T̃ −1

𝐫𝑗
(Υ̃−1

𝑖 ) Υ̃−1
𝑗 . (7.9)

By the identity (7.9), we rewrite (7.8) in the following form:

Υ̃𝑗 T̃ −1
𝐫𝑗

(Υ̃𝑖) T̃
−1
𝐫𝑗

T̃ −1
𝐫𝑖

(Υ̃𝑗) ⋅ 𝐵𝜚𝑖 ⋅ T̃
−1
𝐫𝑗

T̃ −1
𝐫𝑖

(Υ̃−1
𝑗 ) T̃ −1

𝐫𝑗
(Υ̃−1

𝑖 ) Υ̃−1
𝑗 − 𝐵𝜚𝑖 =

∑
𝐽∈

𝐴𝐽𝐵𝐽. (7.10)

By aweight argument entirely similar to the proof of Proposition 7.2, we obtain
∑

𝐽∈ 𝐴𝐽𝐵𝐽 = 0.
Thus, the proposition follows by (7.8). □

Corollary 7.7. We have

𝐵𝜚𝑖Υ̃𝑗 T̃ −1
𝐫𝑗

(Υ̃𝑖) T̃
−1
𝐫𝑗

T̃ −1
𝐫𝑖

(Υ̃𝑗) = Υ̃𝑗 T̃ −1
𝐫𝑗

(Υ̃𝑖) T̃
−1
𝐫𝑗

T̃ −1
𝐫𝑖

(Υ̃𝑗)𝐵𝜚𝑖. (7.11)

Proof. Since
∑

𝐽∈ 𝐴𝐽𝐵𝐽 = 0, as shown in the proof of Proposition 7.6, the corollary follows from
the relation (7.10). □

Corollary 7.8. We have

𝐵𝑖Υ̃𝑗 T̃ −1
𝐫𝑗

(Υ̃𝑖) T̃𝐫𝑖
(Υ̃𝑗) = Υ̃𝑗 T̃ −1

𝐫𝑗
(Υ̃𝑖) T̃𝐫𝑖

(Υ̃𝑗)𝐵𝑖, (7.12)

𝐵𝜎
𝑗
T̃ −1
𝐫𝑗

(Υ̃𝑖) T̃𝐫𝑖
(Υ̃𝑗) Υ̃𝑖 = T̃ −1

𝐫𝑗
(Υ̃𝑖) T̃𝐫𝑖

(Υ̃𝑗) Υ̃𝑖𝐵
𝜎
𝑗
. (7.13)

Proof. We prove (7.12). Noting that 𝜚 equals either Id or 𝜏, we have by Remark 4.8 that 𝜚 commutes
with T̃𝐫𝑖

, T̃𝐫𝑗
, and by Proposition 3.8 that 𝜚 fixes Υ̃𝑖, Υ̃𝑗 . Hence, applying 𝜚 to both sides of (7.11),

we have

𝐵𝑖Υ̃𝑗 T̃ −1
𝐫𝑗

(Υ̃𝑖) T̃
−1
𝐫𝑗

T̃ −1
𝐫𝑖

(Υ̃𝑗) = Υ̃𝑗 T̃ −1
𝐫𝑗

(Υ̃𝑖) T̃
−1
𝐫𝑗

T̃ −1
𝐫𝑖

(Υ̃𝑗)𝐵𝑖. (7.14)

By Proposition 8.3, we have T̃ −1
𝐫𝑗

T̃ −1
𝐫𝑖

(Υ̃𝑗) = T̃𝐫𝑖
(Υ̃𝑗). Hence, the desired relation (7.12) follows by

(7.14).
We next show (7.13). Recall from Proposition 3.8 that Υ̃𝑖, Υ̃𝑗 are both fixed by the anti-involution

𝜎. Recall also that 𝜎T̃ −1
𝐫𝑖

𝜎 = T̃𝐫𝑖
. Switching 𝑖, 𝑗 in (7.12) and then applying 𝜎 to it, we obtain

(7.13). □
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7.3 Rank 2 case with 𝓵◦(𝒘◦) = 𝟔

The rank 2 case with 𝓁◦(𝒘◦) = 6 occurs only in split 𝐺2 type. Let (𝕀 = 𝕀◦, Id) be a Satake diagram
of split type 𝐺2. In this case, the relative Weyl group 𝑊◦ is identified with 𝑊 and 𝐫𝑎 = 𝑠𝑎 for
𝑎 ∈ 𝕀 = 𝕀◦ = {𝑖, 𝑗}. We do not specify which root 𝑖 or 𝑗 is long.
Set 𝑤𝑖 = 𝑠𝑗𝑠𝑖𝑠𝑗𝑠𝑖𝑠𝑗 and T̃𝑤𝑖

= T̃𝑗T̃𝑖T̃𝑗T̃𝑖T̃𝑗 . Then we have 𝑤𝑖(𝛼𝑖) = 𝛼𝑖 .

Lemma 7.9. We have T̃ −1
𝑤𝑖

(𝐵𝑖) = 𝐵𝑖 .

Proof. Follows by [28, 39.2] and the same type of arguments as for Lemmas 7.1 and 7.5. □

Proposition 7.10. We have 𝐓̃−1
𝑤𝑖
(𝐵𝑖) = 𝐵𝑖; or equivalently, 𝐓̃𝑤𝑖

(𝐵𝑖) = 𝐵𝑖 .

Proof. Since 𝐓̃−1
𝑖
and 𝐓̃−1

𝑗
are automorphism of 𝐔̃𝚤, we have 𝐓̃−1

𝑤𝑖
(𝐵𝑖) − 𝐵𝑖 ∈ 𝐔̃𝚤. Then we can write

this element in terms of monomial basis of 𝐔̃𝚤 (see Proposition 2.6):

𝐓̃−1
𝑤𝑖
(𝐵𝑖) − 𝐵𝑖 =

∑
𝐽∈

𝐴𝐽𝐵𝐽, for some 𝐴𝐽 ∈ 𝐔̃+
∙ 𝐔̃

𝚤0. (7.15)

On the other hand, using the intertwining relation (4.7) of 𝐓̃−1
𝑖
, we have

𝐓̃−1
𝑤𝑖
(𝐵𝑖) = Ω𝑖T̃

−1
𝑤𝑖

(𝐵𝑖)Ω
−1
𝑖 , (7.16)

where

Ω𝑖 = Υ̃𝑗 T̃ −1
𝑗 (Υ̃𝑖) T̃

−1
𝑗 T̃ −1

𝑖 (Υ̃𝑗) T̃
−1
𝑗 T̃ −1

𝑖 T̃ −1
𝑗 (Υ̃𝑖) T̃

−1
𝑗 T̃ −1

𝑖 T̃ −1
𝑗 T̃ −1

𝑖 (Υ̃𝑗). (7.17)

By Lemma 7.9, we rewrite the identity (7.16) as

𝐓̃−1
𝑤𝑖
(𝐵𝑖) = Ω𝑖𝐵𝑖Ω

−1
𝑖 . (7.18)

By the identity (7.18), we rewrite (7.15) in the following form:

Ω𝑖𝐵𝑖Ω
−1
𝑖 − 𝐵𝑖 =

∑
𝐽∈

𝐴𝐽𝐵𝐽. (7.19)

By aweight argument entirely similar to the proof of Proposition 7.2, we obtain
∑

𝐽∈ 𝐴𝐽𝐵𝐽 = 0.
Thus, the proposition follows by (7.15). □

Corollary 7.11. LetΩ𝑖 be as in (7.17). We have

𝐵𝑖Ω𝑖 = Ω𝑖𝐵𝑖. (7.20)

Proof. Since
∑

𝐽∈ 𝐴𝐽𝐵𝐽 = 0, as shown in the proof of Proposition 7.10, the corollary follows from
the formula (7.19). □
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Corollary 7.12. We have the following intertwining relations:

𝐵𝑖Υ̃𝑗T̃𝑠𝑖𝑠𝑗𝑠𝑖𝑠𝑗
(Υ̃𝑖)T̃𝑠𝑖𝑠𝑗𝑠𝑖

(Υ̃𝑗)T̃𝑠𝑖𝑠𝑗
(Υ̃𝑖)T̃𝑖(Υ̃𝑗)

= Υ̃𝑗T̃𝑠𝑖𝑠𝑗𝑠𝑖𝑠𝑗
(Υ̃𝑖)T̃𝑠𝑖𝑠𝑗𝑠𝑖

(Υ̃𝑗)T̃𝑠𝑖𝑠𝑗
(Υ̃𝑖)T̃𝑖(Υ̃𝑗)𝐵𝑖, (7.21)

𝐵𝜎
𝑗
T̃𝑠𝑖𝑠𝑗𝑠𝑖𝑠𝑗

(Υ̃𝑖)T̃𝑠𝑖𝑠𝑗𝑠𝑖
(Υ̃𝑗)T̃𝑠𝑖𝑠𝑗

(Υ̃𝑖)T̃𝑖(Υ̃𝑗)Υ̃𝑖

= T̃𝑠𝑖𝑠𝑗𝑠𝑖𝑠𝑗
(Υ̃𝑖)T̃𝑠𝑖𝑠𝑗𝑠𝑖

(Υ̃𝑗)T̃𝑠𝑖𝑠𝑗
(Υ̃𝑖)T̃𝑖(Υ̃𝑗)Υ̃𝑖𝐵

𝜎
𝑗
. (7.22)

Proof. By Proposition 8.3, we have T̃𝑠𝑗𝑠𝑖𝑠𝑗𝑠𝑖𝑠𝑗
(Υ̃𝑖) = Υ̃𝑖 and T̃𝑠𝑖𝑠𝑗𝑠𝑖𝑠𝑗𝑠𝑖

(Υ̃𝑗) = Υ̃𝑗 . Then we have

Ω𝑖 = Υ̃𝑗T̃𝑠𝑖𝑠𝑗𝑠𝑖𝑠𝑗
(Υ̃𝑖)T̃𝑠𝑖𝑠𝑗𝑠𝑖

(Υ̃𝑗)T̃𝑠𝑖𝑠𝑗
(Υ̃𝑖)T̃𝑖(Υ̃𝑗).

Hence, the desired identity (7.21) follows by (7.20).
We next prove (7.22). Switching 𝑖, 𝑗 in (7.20), we have

𝐵𝑗Ω𝑗 = Ω𝑗𝐵𝑗, (7.23)

where Ω𝑗 is defined by switching 𝑖, 𝑗 in (7.17).
Recall from Proposition 3.8 that Υ̃𝑖, Υ̃𝑗 are both fixed by 𝜎. Then by the definition of Ω𝑗 , we

have

𝜎(Ω𝑗) = T̃𝑠𝑖𝑠𝑗𝑠𝑖𝑠𝑗
(Υ̃𝑖)T̃𝑠𝑖𝑠𝑗𝑠𝑖

(Υ̃𝑗)T̃𝑠𝑖𝑠𝑗
(Υ̃𝑖)T̃𝑖(Υ̃𝑗)Υ̃𝑖.

Hence, applying 𝜎 to (7.23) and then using this formula of 𝜎(Ω𝑗), we obtain (7.22). □

7.4 The general identity 𝐓̃𝒘(𝑩𝒊) = 𝑩𝒘𝒊

Let𝑤 ∈ 𝑊◦. Given a reduced expression𝑤 = 𝐫𝑖1𝐫𝑖2 … 𝐫𝑖𝑘 for𝑤, we shall denote 𝐓̃𝑤 = 𝐓̃𝑖1
𝐓̃𝑖2

… 𝐓̃𝑖𝑘
.

Theorem 7.13. Suppose that𝑤𝑖 ∈ 𝕀◦, for𝑤 ∈ 𝑊◦ and 𝑖 ∈ 𝕀◦. Then 𝐓̃𝑤(𝐵𝑖) = 𝐵𝑤𝑖 , for some reduced
expression 𝑤 of 𝑤.

(Once Theorem 9.1 on braid relation for 𝐓̃𝑖 is proved, we can replace 𝐓̃𝑤 in Theorem 7.13 by 𝐓̃𝑤,
which depends only on 𝑤, not on a reduced expression 𝑤 of 𝑤.)

Proof. The strategy of the proof is modified from a well-known quantum group counterpart, cf.
[16, Lemma 8.20]. We shall reduce the proof to the rank 2 cases which were established earlier
and finish the proof by induction on 𝓁◦(𝑤).
The statement holds for arbitrary rank 2 Satake (sub) diagrams (𝕀∙ ∪ {𝑖, 𝜏𝑖, 𝑗, 𝜏𝑗}, 𝜏). Indeed, in

case when 𝓁(𝒘◦) = 2, the claim is trivial. In case when 𝓁(𝒘◦) = 3, 4 or 6, the claim has been
established in Propositions 7.2, 7.6, and 7.10, respectively.
In general, we use an induction on 𝑙◦(𝑤), for 𝑤 ∈ 𝑊◦, where 𝑙◦ is the length function for the

relative Weyl group 𝑊◦. Recall the simple system {𝛼𝑖|𝑖 ∈ 𝕀◦,𝜏} for the relative root system from
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1388 WANG and ZHANG

(2.16). Since 𝑤𝜃 = 𝜃𝑤 and 𝑤𝑖 ∈ 𝕀◦ by assumption, we have 𝑤(𝛼𝑖) = 𝛼𝑤𝑖 . We denote a positive
(and negative) root in the relative root system by 𝛽 > 0 (and respectively, 𝛽 < 0).
Suppose that 𝑙◦(𝑤) > 0. Then there exists 𝑗 ∈ 𝕀◦,𝜏 such that 𝑤(𝛼𝑗) < 0; clearly 𝑗 ≠ 𝑖 since

𝑤(𝛼𝑖) > 0. Consider theminimal length representatives of𝑊◦ with respect to the rank 2 parabolic
subgroup ⟨𝐫𝑖, 𝐫𝑗⟩.We have a decomposition𝑤 = 𝑤′𝑤′′ in𝑊◦ such that𝑤′(𝛼𝑖) > 0, 𝑤′(𝛼𝑗) > 0 and
𝑤′′ lies in the subgroup ⟨𝐫𝑖, 𝐫𝑗⟩; moreover, 𝑙◦(𝑤) = 𝑙◦(𝑤

′) + 𝑙◦(𝑤
′′). Now𝑤(𝛼𝑖) > 0 and𝑤(𝛼𝑗) < 0

implies that 𝑤′′(𝛼𝑖) > 0 and 𝑤′′(𝛼𝑗) < 0 (since 𝑤′ preserves the signs of the roots 𝑤′′(𝛼𝑖) and
𝑤′′(𝛼𝑗)). It follows that

𝑤′′(𝛼𝑖) > 0, 𝑤′′(𝛼𝑗) < 0, 𝑤′(𝛼𝑖) > 0, 𝑤′(𝛼𝑗) > 0.

(The positive system of the restricted root system is compatible with the positive system of .)
Moreover, since 𝐫𝑠, for any 𝑠 ∈ 𝕀◦, acts on 𝕀∙ as the involution 𝜏∙,𝑠𝜏, we must have 𝑤′(𝛼𝑎) > 0, for
any 𝑎 ∈ 𝕀∙; see also Proposition 4.11.
We show that 𝑤′′𝑖 ∈ 𝕀◦. Since 𝑤′′(𝛼𝑖) > 0 and 𝑤′′(𝛼𝑖) ∈  ∩ (ℤ𝛼𝑖 + ℤ𝛼𝑗 + ℤ𝕀∙), we can write

𝑤′′(𝛼𝑖) ∈  in the following form:

𝑤′′(𝛼𝑖) = 𝑟𝛼𝑖 + 𝑠𝛼𝑗 + 𝛼∙

for some 𝑟, 𝑠 ⩾ 0, 𝛼∙ ∈ ℕ𝕀∙. We consider the following cases.

(1) At least two of 𝑟, 𝑠, 𝛼∙ are nonzero. Then 𝑤′𝑤′′(𝛼𝑖) = 𝑟𝑤′(𝛼𝑖) + 𝑠𝑤′(𝛼𝑗) + 𝑤′(𝛼∙) cannot
be simple for 𝑤′(𝛼𝑖) > 0, 𝑤′(𝛼𝑗) > 0,𝑤′(𝛼∙) > 0; this contradicts that 𝑤(𝛼𝑖) = 𝑤′𝑤′′(𝛼𝑖) is
simple.

(2) 𝑟 = 0, 𝛼∙ = 0, and 𝑠 > 0. Then 𝑠 = 1 and 𝑤′′(𝛼𝑖) = 𝛼𝑗 is simple. A similar argument applying
to the case 𝑠 = 0, 𝛼∙ = 0 and 𝑟 > 0 shows that 𝑤′′(𝛼𝑖) = 𝛼𝑖 is simple.

(3) 𝑟 = 𝑠 = 0, 𝛼∙ ≠ 0. We show that this case cannot occur. Indeed, we have 𝜃𝑤′′(𝛼𝑖) = 𝜃(𝛼∙) =

𝛼∙ = 𝑤′′(𝛼𝑖). Since 𝑤′′𝜃 = 𝜃𝑤′′, the above identity implies that 𝛼𝑖 is fixed by 𝜃, which is
impossible for 𝑖 ∈ 𝕀◦.

Therefore, we have shown𝑤′′𝑖 ∈ 𝕀◦ and𝑤′′(𝛼𝑖) = 𝛼𝑤′′𝑖 . By the rank 2 results in Propositions 7.2
and 7.6, we have 𝐓̃𝑤′′ (𝐵𝑖) = 𝐵𝑤′′𝑖 , for any reduced expression 𝑤′′ of 𝑤′′. Now using the induction
hypothesis, there exists a reduced expression𝑤′ such that𝑤 = 𝑤′ ⋅ 𝑤′′ is a reduced expression for
𝑤 and

𝐓̃𝑤(𝐵𝑖) = 𝐓̃𝑤′𝐓̃𝑤′′ (𝐵𝑖) = 𝐓̃𝑤′(𝐵𝑤′′𝑖) = 𝐵𝑤𝑖.

The theorem is proved. □

8 FACTORIZATION OF QUASI 𝑲-MATRICES

It is conjectured by Dobson and Kolb [15] that quasi 𝐾-matrices admit factorization into products
of rank 1 quasi 𝐾-matrices analogous to the factorization properties of quasi 𝑅-matrices. They
showed that the factorization of quasi 𝐾-matrices for arbitrary finite types reduces to the rank 2
cases. In this section, using (the rank 2 cases of) Theorem 7.13, we provide a uniform proof of the
factorization of quasi 𝐾-matrices for all rank 2 Satake diagrams, hence completing the proof of
Dobson–Kolb conjecture in all finite types.

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12562 by U

N
IV

ER
SITY

 O
F V

IR
G

IN
IA

, W
iley O

nline Library on [10/11/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s­and­conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1389

8.1 Factorization of 𝚼

Let (𝕀 = 𝕀∙ ∪ 𝕀◦, 𝜏) be a Satake diagram of arbitrary finite type. Let𝑤 be any element in the relative
Weyl group𝑊◦ with a reduced expression

𝑤 = 𝐫𝑖1𝐫𝑖2 ⋯ 𝐫𝑖𝑚 ;

here𝑚 = 𝓁◦(𝑤), the length of 𝑤 ∈ 𝑊◦ (not to be confused as the length 𝓁(𝑤) in𝑊).
Following [15] (who worked in the setting of𝐔𝚤

𝝇), we define, for 1 ⩽ 𝑘 ⩽ 𝑚,

Υ̃[𝑘] = T̃𝐫𝑖1
T̃𝐫𝑖2

⋯ T̃𝐫𝑖𝑘−1
(Υ̃𝑖𝑘

),

Υ̃𝑤 = Υ̃[𝑚]Υ̃[𝑚−1]⋯ Υ̃[1].

(8.1)

(In the notation Υ̃[𝑘] above, we have suppressed the dependence on 𝑤.)
The goal of this section is to establish Theorem 8.1, which is a 𝐔̃𝚤-variant of (and implies) [15,

Conjecture 3.22] for 𝐔𝚤
𝝇 with general parameters 𝝇. The restriction on parameters 𝝇 in [15] can be

removed in light of the development in [2, 21], which allows more general parameters in quasi
𝐾-matrices. Recall that𝒘◦ is the longest element in the relative Weyl group𝑊◦.

Theorem 8.1.

(1) For any 𝑤 ∈ 𝑊◦, the partial quasi 𝐾-matrix Υ̃𝑤 is independent of the choice of reduced
expressions of 𝑤 (and hence can be denoted by Υ̃𝑤).

(2) The quasi 𝐾-matrix Υ̃ for 𝐔̃𝚤 of any finite type admits a factorization Υ̃ = Υ̃𝒘◦
.

8.2 Reduction to rank 2

Let us recall some partial results from [15] in this direction (which can be adapted from𝐔𝚤
𝝇 to 𝐔̃

𝚤

without difficulties).

Theorem 8.2 [15, Theorems 3.17 and 3.20]. Theorem 8.1 holds for 𝐔̃𝚤 of a given finite type if it holds
for all its rank 2 Satake subdiagrams.

The arguments for Theorem 8.2 are largely formal once the following crucial result (see [15,
Proposition 3.18]) is in place. We provide a short new proof below. Recall that 𝒘◦ is the longest
element in𝑊◦. Recall also the diagram involution 𝜏0 such that 𝑤0(𝛼𝑖) = −𝛼𝜏0𝛼𝑖 , for all 𝑖, where
𝑤0 is the longest element in𝑊.

Proposition 8.3 [15, Proposition 3.18]. Let 𝒘◦ = 𝐫𝑖1𝐫𝑖2 ⋯ 𝐫𝑖𝑚 be a reduced expression of 𝒘◦. Then
we have T̃𝐫𝑖1

T̃𝐫𝑖2
⋯ T̃𝐫𝑖𝑚−1

(Υ̃𝑖𝑚
) = Υ̃𝜏0𝑖𝑚

.

Proof. We have 𝑤0 = 𝒘◦𝑤∙, and hence, T̃𝑤0
= T̃𝒘◦

T̃𝑤∙
. It follows by Lemma 4.4 that T̃ −1

𝑤0
𝜏̂0 =

T̃ −1
𝑤∙,𝑖𝑚

𝜏̂∙,𝑖𝑚 when acting on 𝐔̃𝕀∙,𝑖𝑚
. Thus,

T̃ −1
𝑤0

𝜏̂0(Υ̃𝑖𝑚
) = T̃ −1

𝑤∙,𝑖𝑚
𝜏̂∙,𝑖𝑚 (Υ̃𝑖𝑚

) = T̃ −1
𝑤∙,𝑖𝑚

(Υ̃𝑖𝑚
),
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1390 WANG and ZHANG

since the quasi 𝐾-matrix Υ̃𝑖𝑚
lies in a completion of 𝐔̃+

𝕀∙,𝑖𝑚
and 𝜏̂∙,𝑖𝑚 (Υ̃𝑖𝑚

) = Υ̃𝑖𝑚
(see Proposi-

tion 3.8). Then, we obtain

T̃ −1
𝑤0

(Υ̃𝜏0𝑖𝑚
) = T̃ −1

𝑤0
𝜏̂0(Υ̃𝑖𝑚

) = T̃ −1
𝑤∙,𝑖𝑚

(Υ̃𝑖𝑚
) = T̃ −1

𝐫𝑖𝑚
T̃ −1
𝑤∙

(Υ̃𝑖𝑚
) = T̃ −1

𝐫𝑖𝑚
(Υ̃𝑖𝑚

),

where the last equality follows by Proposition 4.6. By Proposition 4.6 again, we have

T̃ −1
𝒘◦

(Υ̃𝜏0𝑖𝑚
) = T̃ −1

𝑤0
T̃𝑤∙

(Υ̃𝜏0𝑖𝑚
) = T̃ −1

𝑤0
(Υ̃𝜏0𝑖𝑚

) = T̃ −1
𝐫𝑖𝑚

(Υ̃𝑖𝑚
).

Hence, T̃𝐫𝑖1
T̃𝐫𝑖2

⋯ T̃𝐫𝑖𝑚−1
(Υ̃𝑖𝑚

) = T̃𝒘◦
T̃ −1
𝐫𝑖𝑚

(Υ̃𝑖𝑚
) = T̃𝒘◦

T̃ −1
𝒘◦

(Υ̃𝜏0𝑖𝑚
) = Υ̃𝜏0𝑖𝑚

. □

Remark 8.4. It was verified in [15] that Theorem 8.1 holds in all type A rank 2 and all split rank 2
cases. The long computational proof therein is carried out case-by-case based on several explicit
rank 1 formulas which they also computed.

We note that in the rank 2 setting, the first statement in Theorem 8.1 is nontrivial only when
𝑤 = 𝒘◦, the longest element in𝑊◦. Hence, in the remainder of this section, to prove Theorem 8.1,
we can and shall assume that

(𝕀 = 𝕀∙ ∪ 𝕀◦, 𝜏) is any rank 2 Satake diagram of finite type, and 𝑤 = 𝒘◦.

Moreover, we denote 𝕀◦ = {𝑖, 𝜏𝑖, 𝑗, 𝜏𝑗}.
Let 𝒘◦ = 𝐫𝑖1𝐫𝑖2 ⋯ 𝐫𝑖𝑚 be a reduced expression. Theorem 8.1 in the case for 𝓁◦(𝒘◦) = 2, that is,

𝒘◦ = 𝐫𝑖𝐫𝑗 = 𝐫𝑗𝐫𝑖 , trivially holds. The next proposition reduces the proof of Theorem 8.1 in the
remaining nontrivial cases into verifying its assumption.

Proposition 8.5. Assume that 𝐵𝑝Υ̃𝒘◦
= Υ̃𝒘◦

𝐵𝜎
𝑝 , for 𝑝 = 𝑖, 𝑗. Then, we have Υ̃ = Υ̃𝒘◦

, for any
reduced expression of𝒘◦.

Proof. The identity 𝑥Υ̃𝒘◦
= Υ̃𝒘◦

𝑥, for 𝑥 ∈ 𝐔̃𝚤0𝐔̃∙, holds by (3.4), Proposition 4.11, and (8.1).
Together with the assumption that 𝐵𝑝Υ̃𝒘◦

= Υ̃𝒘◦
𝐵𝜎
𝑝 (𝑝 = 𝑖, 𝑗), we conclude that Υ̃𝒘◦

satisfies
the same intertwining relations in Theorem 3.6 as for Υ̃. Note also that clearly, we have the
constant term (Υ̃𝒘◦

)0 = 1. Therefore, the desired identity Υ̃ = Υ̃𝒘◦
follows by the uniqueness in

Theorem 3.6. □

8.3 Factorizations in rank 2

The verification that 𝐵𝑝Υ̃𝒘◦
= Υ̃𝒘◦

𝐵𝜎
𝑝 in the three cases 𝓁◦(𝒘◦) = 3, 4, or 6, is based on the same

idea, though the notations are a little different. In the subsections below, we shall consider the
three cases separately.

8.3.1 Factorization for 𝓁◦(𝑤◦) = 3

In this subsection, we deal with the rank 2 cases for 𝓁◦(𝒘◦) = 3, with the help of Proposition 7.2
and Corollary 7.4.
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RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1391

Assume that 𝕀◦,𝜏 = {𝑖, 𝑗} such that 𝓁◦(𝒘◦) = 3; in this case, only 𝜏 = Id and hence we identify
𝕀◦ = {𝑖, 𝑗} as well. The longest element𝒘◦ of the relative Weyl group has a reduced expression

𝒘◦ = 𝐫𝑖𝐫𝑗𝐫𝑖. (8.2)

By definition (8.1) of Υ̃[𝑘] and Υ̃𝒘◦
, we have

Υ̃𝒘◦
= Υ̃[3]Υ̃[2]Υ̃[1], (8.3)

where by Proposition 8.3, T̃𝐫𝑖
T̃𝐫𝑗

(Υ̃𝑖) = Υ̃𝑗 and T̃𝐫𝑗
T̃𝐫𝑖

(Υ̃𝑗) = Υ̃𝑖 , and hence,

Υ̃[3] = Υ̃𝑗, Υ̃[2] = T̃𝐫𝑖
(Υ̃𝑗), Υ̃[1] = Υ̃𝑖. (8.4)

By Corollary 7.4, we have

𝐵𝑖Υ̃
[3]Υ̃[2] = Υ̃[3]Υ̃[2]𝐵𝑖, (8.5)

𝐵𝜎
𝑗
Υ̃[2]Υ̃[1] = Υ̃[2]Υ̃[1]𝐵𝜎

𝑗
. (8.6)

It follows by Theorem 3.6 that, for 𝑝 = 𝑖, 𝑗,

𝐵𝑝Υ̃𝑝 = Υ̃𝑝𝐵
𝜎
𝑝. (8.7)

Now we show that Υ̃𝒘◦
satisfies the following intertwining relations:

𝐵𝑝Υ̃𝒘◦
= Υ̃𝒘◦

𝐵𝜎
𝑝, (𝑝 = 𝑖, 𝑗).

Indeed, 𝐵𝑖Υ̃𝒘◦
= 𝐵𝑖Υ̃

[3]Υ̃[2]Υ̃[1] = Υ̃[3]Υ̃[2]𝐵𝑖Υ̃
[1] = Υ̃[3]Υ̃[2]Υ̃[1]𝐵𝜎

𝑖
, by (8.3), (8.5), and (8.7). Also,

𝐵𝑗Υ̃𝒘◦
= 𝐵𝑗Υ̃

[3]Υ̃[2]Υ̃[1] = Υ̃[3]𝐵𝜎
𝑗
Υ̃[2]Υ̃[1] = Υ̃[3]Υ̃[2]Υ̃[1]𝐵𝜎

𝑗
, by (8.4), (8.7), and (8.6).

It follows by Proposition 8.5 (whose assumption is verified above), we have Υ̃ = Υ̃𝒘◦
. Using the

other reduced expression for 𝒘◦ amounts to switching notations 𝑖, 𝑗 above. Hence, Υ̃ = Υ̃𝒘◦
is

independent of the choice of a reduced expression for𝒘◦.

8.3.2 Factorization for 𝓁◦(𝑤◦) = 4

In this subsection, we deal with the rank 2 cases for 𝓁◦(𝒘◦) = 4, with the help of Proposition 7.6
and Corollary 7.8.
Assume that 𝕀◦,𝜏 = {𝑖, 𝑗} such that 𝓁◦(𝒘◦) = 4. Let {𝑖, 𝜏𝑖} and {𝑗, 𝜏𝑗} be the corresponding two

distinct 𝜏-orbits of 𝕀◦. The longest element𝒘◦ of the relativeWeyl group has a reduced expression

𝒘◦ = 𝐫𝑖𝐫𝑗𝐫𝑖𝐫𝑗. (8.8)

By definition (8.1) of Υ̃[𝑘] and Υ̃𝒘◦
, we have

Υ̃𝒘◦
= Υ̃[4]Υ̃[3]Υ̃[2]Υ̃[1], (8.9)
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1392 WANG and ZHANG

where by Proposition 8.3, T̃𝐫𝑖
T̃𝐫𝑗

T̃𝐫𝑖
(Υ̃𝑗) = Υ̃𝑗 and T̃𝐫𝑗

T̃𝐫𝑖
T̃𝐫𝑗

(Υ̃𝑖) = Υ̃𝑖 , and hence,

Υ̃[4] = Υ̃𝑗, Υ̃[3] = T̃𝐫𝑖
T̃𝐫𝑗

(Υ̃𝑖) = T̃ −1
𝐫𝑗

(Υ̃𝑖), Υ̃[2] = T̃𝐫𝑖
(Υ̃𝑗), Υ̃[1] = Υ̃𝑖. (8.10)

By Corollary 7.8, we have

𝐵𝑖Υ̃
[4]Υ̃[3]Υ̃[2] = Υ̃[4]Υ̃[3]Υ̃[2]𝐵𝑖, (8.11)

𝐵𝜎
𝑗
Υ̃[3]Υ̃[2]Υ̃[1] = Υ̃[3]Υ̃[2]Υ̃[1]𝐵𝜎

𝑗
. (8.12)

Just as in §8.3.1, using the identities (8.11)–(8.12), we can show that Υ̃𝒘◦
satisfies the fol-

lowing intertwining relations 𝐵𝑝Υ̃𝒘◦
= Υ̃𝒘◦

𝐵𝜎
𝑝, for 𝑝 = 𝑖, 𝑗. It follows by Proposition 8.5 (whose

assumption is verified above), we have Υ̃ = Υ̃𝒘◦
, which is independent of the choice of a reduced

expression for𝒘◦.

8.3.3 Factorization for 𝓁◦(𝑤◦) = 6

The case for 𝓁◦(𝒘◦) = 6 occurs only in split 𝐺2 type. We shall prove this using Proposition 7.10
and Corollary 7.12.
Let (𝕀 = 𝕀◦, 𝜏 = Id) be the Satake diagram of split type 𝐺2. In this case, 𝑊◦ = 𝑊 and 𝐫𝑎 = 𝑠𝑎.

Assume that 𝕀 = {𝑖, 𝑗} such that 𝓁◦(𝒘◦) = 6. The longest element 𝒘◦ of the relative Weyl group
has a reduced expression

𝒘◦ = 𝑠𝑖𝑠𝑗𝑠𝑖𝑠𝑗𝑠𝑖𝑠𝑗. (8.13)

By definition (8.1) of Υ̃[𝑘] and Υ̃𝒘◦
, we have

Υ̃𝒘◦
= Υ̃[6]Υ̃[5]Υ̃[4]Υ̃[3]Υ̃[2]Υ̃[1]. (8.14)

where by Proposition 8.3, T̃𝑠𝑖𝑠𝑗𝑠𝑖𝑠𝑗𝑠𝑖
(Υ̃𝑗) = Υ̃𝑗 , and hence,

Υ̃[6] = Υ̃𝑗, Υ̃[5] = T̃𝑠𝑖𝑠𝑗𝑠𝑖𝑠𝑗
(Υ̃𝑖), Υ̃[4] = T̃𝑠𝑖𝑠𝑗𝑠𝑖

(Υ̃𝑗),

Υ̃[3] = T̃𝑠𝑖𝑠𝑗
(Υ̃𝑖), Υ̃[2] = T̃𝑠𝑖

(Υ̃𝑗), Υ̃[1] = Υ̃𝑖. (8.15)

By Corollary 7.12, we have

𝐵𝑖Υ̃
[6]Υ̃[5]Υ̃[4]Υ̃[3]Υ̃[2] = Υ̃[6]Υ̃[5]Υ̃[4]Υ̃[3]Υ̃[2]𝐵𝑖, (8.16)

𝐵𝜎
𝑗
Υ̃[5]Υ̃[4]Υ̃[3]Υ̃[2]Υ̃[1] = Υ̃[5]Υ̃[4]Υ̃[3]Υ̃[2]Υ̃[1]𝐵𝜎

𝑗
. (8.17)

Just as in §8.3.1, using the identities (8.16)–(8.17), we can show that Υ̃𝒘◦
satisfies the fol-

lowing intertwining relations 𝐵𝑝Υ̃𝒘◦
= Υ̃𝒘◦

𝐵𝜎
𝑝, for 𝑝 = 𝑖, 𝑗. It follows by Proposition 8.5 (whose

assumption is verified above), we have Υ̃ = Υ̃𝒘◦
, which is independent of the choice of a reduced

expression for𝒘◦.
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Remark 8.6. A different and more computational proof of the factorization of the quasi 𝐾-matrix
in split type 𝐺2 was given earlier in Dobson’s thesis [13].

9 RELATIVE BRAID GROUP ACTIONS ON 𝒊QUANTUMGROUPS

In this section, we show that 𝐓̃′
𝑖,𝑒
, 𝐓̃′′

𝑖,𝑒
, where 𝑒 = ±1 and 𝑖 ∈ 𝕀◦,𝜏, satisfy the relative braid group

relations in Br(𝑊◦). An action of Br(𝑊∙)⋊ Br(𝑊◦) on 𝐔̃𝚤 is then established. Moreover, we show
that, by central reductions and isomorphisms among 𝚤quantum groups with different parameters,
the symmetries 𝐓̃′

𝑖,𝑒
, 𝐓̃′′

𝑖,𝑒
on 𝐔̃𝚤 descend to 𝐓′

𝑖,𝑒
, 𝐓′′

𝑖,𝑒
on the 𝚤quantum groups𝐔𝚤

𝝇, inducing relative
braid group actions on𝐔𝚤

𝝇, for an arbitrary parameter 𝝇.

9.1 Braid group relations among 𝐓̃𝒊

For 𝑖 ≠ 𝑗 ∈ 𝕀◦,𝜏, let𝑚𝑖𝑗 be the order of 𝐫𝑖𝐫𝑗 in𝑊◦, with𝑚𝑖𝑗 ∈ {2, 3, 4, 6}. Then the following braid
relation is satisfied in Br(𝑊◦):

𝐫𝑖𝐫𝑗𝐫𝑖 ⋯
⏟⎴⏟⎴⏟

𝑚𝑖𝑗

= 𝐫𝑗𝐫𝑖𝐫𝑗 ⋯
⏟⎴⏟⎴⏟

𝑚𝑖𝑗

. (9.1)

Theorem 9.1. For 𝑖 ≠ 𝑗 ∈ 𝕀◦,𝜏, 𝑒 = ±1, we have

𝐓̃′
𝑖,𝑒𝐓̃

′
𝑗,𝑒𝐓̃

′
𝑖,𝑒 ⋯

⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝑚𝑖𝑗

= 𝐓̃′
𝑗,𝑒𝐓̃

′
𝑖,𝑒𝐓̃

′
𝑗,𝑒 ⋯

⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝑚𝑖𝑗

,

𝐓̃′′
𝑖,𝑒𝐓̃

′′
𝑗,𝑒𝐓̃

′′
𝑖,𝑒 ⋯

⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝑚𝑖𝑗

= 𝐓̃′′
𝑗,𝑒𝐓̃

′′
𝑖,𝑒𝐓̃

′′
𝑗,𝑒 ⋯

⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝑚𝑖𝑗

.
(9.2)

Proof. By Theorem 6.7, 𝐓̃′′
𝑖,+1

is the inverse of 𝐓̃′
𝑖,−1

. Moreover, by definition (6.11), 𝐓̃′
𝑖,+1

, 𝐓̃′′
𝑖,−1

are
conjugations of 𝐓̃′

𝑖,−1
, 𝐓̃′′

𝑖,+1
, respectively. Hence. it suffices to prove the identity (9.2) for 𝐓̃′

𝑖,−1
.

Set𝑚 = 𝑚𝑖𝑗 . Let𝒘◦ = 𝐫𝑖𝐫𝑗𝐫𝑖 ⋯ be a reduced expression of length𝑚. Define𝒘𝑘, for 1 ⩽ 𝑘 ⩽ 𝑚,
to be

𝒘1 = 𝐫𝑖, 𝒘2 = 𝐫𝑖𝐫𝑗, 𝒘3 = 𝐫𝑖𝐫𝑗𝐫𝑖, … , 𝒘𝑚 = 𝒘◦.

Write 𝒘′
◦ for the other reduced expression 𝐫𝑗𝐫𝑖𝐫𝑗 ⋯, and define 𝒘′

𝑘
, for 1 ⩽ 𝑘 ⩽ 𝑚, accordingly.

Let 𝑟 denote the last index in the reduced expression of𝒘◦; that is, 𝑟 = 𝑗 if𝑚 = 2, 4, 6 and 𝑟 = 𝑖 if
𝑚 = 3. Similarly, we define 𝑟′ for𝒘′

◦.
Applying the intertwining property (4.7) for𝑚 times, we obtain the following two identities:

𝐓̃′
𝑖,−1𝐓̃

′
𝑗,−1𝐓̃

′
𝑖,−1⋯ (𝑢)

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
𝑚

⋅Υ̃𝑖 ⋅ T̃
′
𝒘1,−1

(Υ̃𝑗)⋯ T̃ ′
𝒘𝑚−1,−1

(Υ̃𝑟)

= Υ̃𝑖 ⋅ T̃
′
𝒘1,−1

(Υ̃𝑗)⋯ T̃ ′
𝒘𝑚−1,−1

(Υ̃𝑟) ⋅ T̃
′
𝐫𝑖 ,−1

T̃ ′
𝐫𝑗 ,−1

⋯
⏟⎴⎴⎴⏟⎴⎴⎴⏟

𝑚

(𝑢𝚤), (9.3)
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1394 WANG and ZHANG

𝐓̃′
𝑗,−1𝐓̃

′
𝑖,−1𝐓̃

′
𝑗,−1⋯ (𝑢)⋅

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
𝑚

Υ̃𝑗 ⋅ T̃
′
𝒘′
1
,−1

(Υ̃𝑖)⋯ T̃ ′
𝒘′
𝑚−1

,−1
(Υ̃𝑟′ )

= Υ̃𝑗 ⋅ T̃
′
𝒘′
1
,−1

(Υ̃𝑖)⋯ T̃ ′
𝒘′
𝑚−1

,−1
(Υ̃𝑟′ ) ⋅ T̃

′
𝐫𝑗 ,−1

T̃ ′
𝐫𝑖 ,−1

⋯
⏟⎴⎴⎴⏟⎴⎴⎴⏟

𝑚

(𝑢𝚤), (9.4)

for all 𝑢 ∈ 𝐔̃𝚤.
By Proposition 4.2, the T̃ ′

𝑘,−1
’s satisfy braid relations. As 𝓁(𝐫𝑖𝐫𝑗𝐫𝑖 ⋯) = 𝓁(𝒘◦) = 𝓁(𝐫𝑗𝐫𝑖𝐫𝑗 ⋯), we

have

T̃ ′
𝐫𝑖 ,−1

T̃ ′
𝐫𝑗 ,−1

T̃ ′
𝐫𝑖 ,−1

⋯
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

𝑚

= T̃ ′
𝐫𝑗 ,−1

T̃ ′
𝐫𝑖 ,−1

T̃ ′
𝐫𝑗 ,−1

⋯
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

𝑚

. (9.5)

Hence, by a comparison of (9.3)–(9.4), we reduce the proof of the desired identity (9.2) to
showing that

Υ̃𝑖 ⋅ T̃
′
𝒘1,−1

(Υ̃𝑗)⋯ T̃ ′
𝒘𝑚−1,−1

(Υ̃𝑟) = Υ̃𝑗 ⋅ T̃
′
𝒘′
1
,−1

(Υ̃𝑖)⋯ T̃ ′
𝒘′
𝑚−1

,−1
(Υ̃𝑟′ ). (9.6)

By definition (8.1), Υ̃𝒘◦
= T̃𝒘𝑚−1

(Υ̃𝑟)⋯ T̃𝒘1
(Υ̃𝑗)Υ̃𝑖 . Applying 𝜎 to this identity and then using

Proposition 3.8, we obtain

𝜎(Υ̃𝒘◦
) = Υ̃𝑖 ⋅ T̃

′
𝒘1,−1

(Υ̃𝑗)⋯ T̃ ′
𝒘𝑚−1,−1

(Υ̃𝑟). (9.7)

We have a similar formula for 𝜎(Υ̃𝒘′
◦
) as well. It follows by Theorem 8.1 that 𝜎(Υ̃𝒘◦

) = 𝜎(Υ̃𝒘′
◦
).

The identity (9.6) now follows by the formula (9.7) and its𝒘′
◦-counterpart.

This completes the proof of the theorem. □

For 𝑤 ∈ 𝑊◦, take a reduced expression 𝑤 = 𝐫𝑖1𝐫𝑖2 ⋯ 𝐫𝑖𝑘 and define

𝐓̃′
𝑤,𝑒 ∶= 𝐓̃′

𝑖1,𝑒
𝐓̃′
𝑖2,𝑒

⋯ 𝐓̃′
𝑖𝑘,𝑒

, 𝐓̃′
𝑤,𝑒 ∶= 𝐓̃′′

𝑖1,𝑒
𝐓̃′′
𝑖2,𝑒

⋯ 𝐓̃′′
𝑖𝑘,𝑒

. (9.8)

By Theorem 9.1, these are independent of the choice of reduced expressions for 𝑤.

9.2 Action of the braid group 𝐁𝐫(𝑾∙)⋊ 𝐁𝐫(𝑾◦) on 𝐔̃𝒊

We first establish a commutator relation between 𝐓̃′
𝑖,−1

(𝑖 ∈ 𝕀◦) and T̃ −1
𝑗

≡ T̃ ′
𝑗,−1

(𝑗 ∈ 𝕀∙).

Lemma 9.2. We have T̃ −1
𝑗

𝐓̃′
𝑖,−1

(𝑥) = 𝐓̃′
𝑖,−1

T̃ −1
𝜏∙,𝑖𝜏𝑗

(𝑥), for 𝑖 ∈ 𝕀◦,𝜏, 𝑗 ∈ 𝕀∙, and 𝑥 ∈ 𝐔̃𝚤.

Proof. Note that 𝜏(𝑗), 𝜏∙,𝑖(𝑗), 𝜏∙,𝑖𝜏(𝑗) ∈ 𝕀∙, for 𝑗 ∈ 𝕀∙. Since 𝑤∙𝑠𝑗 = 𝑠𝜏𝑗𝑤∙, for 𝑗 ∈ 𝕀∙, and 𝑤∙,𝑖𝑠𝑗 =

𝑠𝜏∙,𝑖𝑗𝑤∙,𝑖 , for 𝑖 ∈ 𝕀◦, we have

𝐫𝑖𝑠𝑗 = 𝑤∙,𝑖𝑤
−1
∙ 𝑠𝑗 = 𝑠𝜏∙,𝑖𝜏𝑗𝑤∙,𝑖𝑤

−1
∙ = 𝑠𝜏∙,𝑖𝜏𝑗𝐫𝑖. (9.9)
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Since 𝓁(𝐫𝑖𝑠𝑗) = 𝓁(𝐫𝑖) + 1, it follows by (9.9) that

T̃𝜏∙,𝑖𝜏(𝑗)
T̃𝐫𝑖

= T̃𝐫𝑖
T̃𝑗. (9.10)

By Proposition 4.6, Υ̃𝑖 is fixed by T̃ −1
𝑗

. Hence, applying T̃ −1
𝑗

to the intertwining relation (4.7) in
Theorem 4.7 and then using (9.10), we obtain, for 𝑥 ∈ 𝐔̃𝚤,

T̃ −1
𝑗 𝐓̃′

𝑖,−1(𝑥)Υ̃𝑖 = Υ̃𝑖T̃
−1
𝑗 T̃ −1

𝐫𝑖
(𝑥)

= Υ̃𝑖T̃
−1
𝐫𝑖

T̃ −1
𝜏∙,𝑖𝜏𝑗

(𝑥) = 𝐓̃′
𝑖,−1T̃

−1
𝜏∙,𝑖𝜏𝑗

(𝑥)Υ̃𝑖, (9.11)

where the last step uses Theorem 4.7 and the fact that T̃ −1
𝜏∙,𝑖𝜏𝑗

(𝑥) ∈ 𝐔̃𝚤 by Proposition 4.5. The
identity (9.11) clearly implies the identity in the lemma. □

Let Br(𝑊∙) and Br(𝑊◦) be the braid groups associated to𝑊∙ and𝑊◦, respectively.

Theorem 9.3. There exists a braid group action of Br(𝑊∙)⋊ Br(𝑊◦) on 𝐔̃𝚤 as automorphisms of
algebras generated by T̃ ′

𝑗,−1
(𝑗 ∈ 𝕀∙) and 𝐓̃′

𝑖,−1
(𝑖 ∈ 𝕀◦,𝜏).

Proof. By Remark 4.8, 𝐓̃′
𝑖,−1

is independent of the choice of representatives in a 𝜏-orbit. The defin-
ing relations of Br(𝑊∙)⋊ Br(𝑊◦) consist of braid relations for Br(𝑊∙), the braid relations for
Br(𝑊◦), and relations (9.9). The braid relations for T̃ ′

𝑗,−1
, 𝑗 ∈ 𝕀∙ are verified in Proposition 4.2.

The braid relations for 𝐓̃′
𝑖,−1

, 𝑖 ∈ 𝕀◦,𝜏 are verified in Theorem 9.1. The commutator relation for
T̃ ′
𝑗,−1

, 𝐓̃′
𝑖,−1

corresponding to (9.9) is verified in Lemma 9.2. □

Remark 9.4. Since 𝐓̃′
𝑖,−1

, 𝐓̃′′
𝑖,+1

are mutually inverses and T̃ ′
𝑗,−1

, T̃ ′′
𝑗,+1

are mutually inverses, there
also exists a braid group action ofBr(𝑊∙)⋊ Br(𝑊◦) on 𝐔̃𝚤 as automorphisms of algebras generated
by T̃ ′′

𝑗,+1
(𝑗 ∈ 𝕀∙) and 𝐓̃′′

𝑖,+1
(𝑖 ∈ 𝕀◦,𝜏).

Recall the remaining two symmetries 𝐓̃′
𝑖,+1

, 𝐓̃′′
𝑖,−1

from (6.11). We shall establish a variant of
Theorem 9.3 for 𝐓̃′

𝑖,𝑒
and T̃ ′

𝑗,𝑒
(and, respectively, 𝐓̃′′

𝑖,𝑒
and T̃ ′′

𝑗,𝑒
).

Let 𝑗 ∈ 𝕀. Recall T̃ ′′
𝑗,+1

and T̃ ′
𝑗,−1

from (4.2)–(4.3). Recalling 𝜓⋆ = Ψ̃𝝇⋆
◦𝜓 from (3.9), we define

T̃ ′′
𝑗,−1 ∶= 𝜓⋆ ◦ T̃ ′′

𝑗,+1 ◦𝜓⋆, T̃ ′
𝑗,+1 ∶= 𝜓⋆ ◦ T̃ ′

𝑗,−1 ◦𝜓⋆. (9.12)

Let 𝝇⋆⋄ ∶= (𝜍𝑗,⋆𝜍𝑗,⋄)𝑗∈𝕀◦ be the parameter obtained as the componentwise product of parame-
ters 𝝇⋄ and 𝝇⋆ from (2.21) and (3.8).

Lemma 9.5. The T̃ ′′
𝑗,−1

, T̃ ′
𝑗,+1

are related to 𝑇′′
𝑗,−1

, 𝑇′
𝑗,+1

via a rescaling automorphism:

T̃ ′′
𝑗,−1 = Ψ̃𝝇⋆⋄

𝑇′′
𝑗,−1Ψ̃

−1
𝝇⋆⋄

, T̃ ′
𝑗,+1 = Ψ̃𝝇⋆⋄

𝑇′
𝑗,+1Ψ̃

−1
𝝇⋆⋄

.

Proof. Recall T̃ ′′
𝑗,+1

= Ψ̃−1
𝝇⋄

◦𝑇′′
𝑗,+1

◦ Ψ̃𝝇⋄
and T̃ ′

𝑗,−1
= Ψ̃−1

𝝇⋄
◦𝑇′

𝑗,−1
◦ Ψ̃𝝇⋄

from (4.2)–(4.3).
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1396 WANG and ZHANG

Recall from (2.10) that 𝑇′′
𝑖,−1

= 𝜓 ◦𝑇′′
𝑖,+1

◦𝜓 and 𝑇′
𝑖,+1

= 𝜓 ◦𝑇′
𝑖,−1

◦𝜓. Then, we have

T̃ ′′
𝑗,−1 = 𝜓⋆ ◦ T̃ ′′

𝑗,+1 ◦𝜓⋆

= Ψ̃𝝇⋆
𝜓 ◦ Ψ̃−1

𝝇⋄
𝑇′′
𝑗,+1Ψ̃𝝇⋄

◦ Ψ̃𝝇⋆
𝜓 = Ψ̃𝝇⋆⋄

𝑇′′
𝑗,−1Ψ̃

−1
𝝇⋆⋄

,

where we used 𝜓 ◦ Ψ̃−1
𝝇⋄

= Ψ̃𝝇⋄
◦𝜓. The proof for the other formula is similar. □

By Proposition 4.5, the automorphisms T̃ ′′
𝑗,+1

, T̃ ′
𝑗,−1

for 𝑗 ∈ 𝕀∙ restrict to automorphisms on 𝐔̃𝚤.

Lemma 9.6. The automorphisms T̃ ′′
𝑗,𝑒
, T̃ ′

𝑗,𝑒
, for 𝑗 ∈ 𝕀∙ and 𝑒 = ±1, restrict to automorphisms on

𝐔̃𝚤. Moreover, the following identities hold:

T̃ ′′
𝑗,−1 ∶= 𝜓𝚤 ◦ T̃ ′′

𝑗,+1 ◦𝜓
𝚤, T̃ ′

𝑗,+1 ∶= 𝜓𝚤 ◦ T̃ ′
𝑗,−1 ◦𝜓

𝚤. (9.13)

Proof. As T̃𝑗 ≡ T̃ ′′
𝑗,+1

restricts to an automorphism on 𝐔̃𝚤 by Proposition 4.5, it suffices to prove
(9.13).
By Proposition 3.4, we have 𝜓⋆ = AdΥ̃−1◦𝜓𝚤 when acting on 𝐔̃𝚤. By Proposition 4.6, AdΥ̃−1 com-

mutes with T̃𝑗 . By Proposition 3.5, we have 𝜓⋆ ◦AdΥ̃−1 = AdΥ̃◦𝜓⋆. Using these properties and
(9.12), we have, for 𝑥 ∈ 𝐔̃𝚤,

T̃ ′′
𝑗,−1(𝑥) = 𝜓⋆ ◦ T̃ ′′

𝑗,+1 ◦𝜓⋆(𝑥) = 𝜓⋆ ◦ T̃ ′′
𝑗,+1 ◦AdΥ̃−1◦𝜓𝚤(𝑥)

= 𝜓⋆ ◦AdΥ̃−1◦T̃ ′′
𝑗,+1 ◦𝜓

𝚤(𝑥) = AdΥ̃◦𝜓⋆ ◦ T̃ ′′
𝑗,+1 ◦𝜓

𝚤(𝑥) = 𝜓𝚤 ◦ T̃ ′′
𝑗,+1 ◦𝜓

𝚤(𝑥),

where the last equality uses (3.18).
The proof of the other formula for T̃ ′

𝑗,+1
is similar and hence skipped. □

The next result follows from (6.11), Theorem 9.3, Remark 9.4, and Lemma 9.6.

Corollary 9.7. Let 𝑒 = ±1.

(1) There exists a braid group action of Br(𝑊∙)⋊ Br(𝑊◦) on 𝐔̃𝚤 as automorphisms of algebras
generated by T̃ ′

𝑗,𝑒
(𝑗 ∈ 𝕀∙) and 𝐓̃′

𝑖,𝑒
(𝑖 ∈ 𝕀◦,𝜏).

(2) There exists a braid group action of Br(𝑊∙)⋊ Br(𝑊◦) on 𝐔̃𝚤 as automorphisms of algebras
generated by T̃ ′′

𝑗,𝑒
(𝑗 ∈ 𝕀∙) and 𝐓̃′′

𝑖,𝑒
(𝑖 ∈ 𝕀◦,𝜏).

9.3 Intertwining properties of 𝐓̃′
𝒊,+𝟏

, 𝐓̃′′
𝒊,−𝟏

The automorphisms 𝐓̃′
𝑖,+1

, 𝐓̃′′
𝑖,−1

on 𝐔̃𝚤 also satisfy intertwining relations similar to those satisfied
by 𝐓̃′

𝑖,−1
in (4.7) and 𝐓̃′′

𝑖,+1
in (6.1). These relations on 𝐔̃𝚤 will descend to 𝐔𝚤

𝝇 (see Proposi-
tion 10.2) and will then be used to define the relative braid operators on module level (see
Definition 10.4).
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Proposition 9.8. The automorphisms 𝐓̃′
𝑖,+1

, 𝐓̃′′
𝑖,−1

satisfy the following intertwining relations:

𝐓̃′
𝑖,+1(𝑥)T̃

′
𝐫𝑖 ,+1

(Υ̃−1
𝑖 ) = T̃ ′

𝐫𝑖 ,+1
(Υ̃−1

𝑖 )T̃ ′
𝐫𝑖 ,+1

(𝑥), (9.14)

𝐓̃′′
𝑖,−1(𝑥)Υ̃𝑖 = Υ̃𝑖T̃

′′
𝐫𝑖 ,−1

(𝑥). (9.15)

Proof. We prove the first identity (9.14); the second identity (9.15) can be derived from the first
one by noting that 𝐓̃′

𝑖,+1
, 𝐓̃′′

𝑖,−1
are inverses and T̃ ′

𝐫𝑖 ,+1
, T̃ ′′

𝐫𝑖 ,−1
are inverses.

We claim the following identity holds:

𝐓̃′
𝑖,+1(𝑥) ⋅ Υ̃𝜓⋆(Υ̃𝑖)T̃

′
𝐫𝑖 ,+1

(Υ̃−1) = Υ̃𝜓⋆(Υ̃𝑖)T̃
′
𝐫𝑖 ,+1

(Υ̃−1) ⋅ T̃ ′
𝐫𝑖 ,+1

(𝑥). (9.16)

Let us prove (9.16). Recall from (6.11) that 𝐓̃′
𝑖,+1

= 𝜓𝚤𝐓̃′
𝑖,−1

𝜓𝚤 and from (3.11) that Υ̃−1𝜓𝚤(𝑢)Υ̃ =

𝜓⋆(𝑢). Hence,

Υ̃−1𝐓̃′
𝑖,+1(𝑥)Υ̃ = Υ̃−1𝜓𝚤(𝐓̃′

𝑖,−1(𝜓
𝚤𝑥))Υ̃ = 𝜓⋆(𝐓̃

′
𝑖,−1(𝜓

𝚤𝑥)).

By (4.7), Υ̃−1
𝑖
𝐓̃′
𝑖,−1

(𝜓𝚤𝑥)Υ̃𝑖 = T̃ ′
𝐫𝑖 ,−1

(𝜓𝚤𝑥). Hence,

𝜓⋆(Υ̃𝑖)
−1Υ̃−1𝐓̃′

𝑖,+1(𝑥)Υ̃𝜓⋆(Υ̃𝑖) = 𝜓⋆(T̃
′
𝐫𝑖 ,−1

(𝜓𝚤(𝑥))).

This allows us to write (9.16) as an equivalent identity

𝜓⋆(T̃
′
𝐫𝑖 ,−1

(𝜓𝚤(𝑥)))T̃ ′
𝐫𝑖 ,+1

(Υ̃−1) = T̃ ′
𝐫𝑖 ,+1

(Υ̃−1)T̃ ′
𝐫𝑖 ,+1

(𝑥). (9.17)

Recalling by (9.12) that T̃ ′
𝐫𝑖 ,+1

= 𝜓⋆T̃ ′
𝐫𝑖 ,−1

𝜓⋆, we reduce the proof of (9.17) to verifying that
𝜓𝚤(𝑥)𝜓⋆(Υ̃)

−1 = 𝜓⋆(Υ̃)
−1𝜓⋆(𝑥), which by Proposition 3.5 is equivalent to 𝜓𝚤(𝑥)Υ̃ = Υ̃𝜓⋆(𝑥). This

last identity holds by (3.11). Therefore, (9.16) is proved.
Observe that if we define Υ̃[𝑤] by replacing T̃𝐫𝑖

≡ T̃ ′′
𝐫𝑖 ,+1

in the definition (8.1) of Υ̃𝑤 by T̃ ′
𝐫𝑖 ,+1

,
then we still have a factorization Υ̃ = Υ̃[𝒘◦]

, for any reduced expression of𝒘◦. Below we shall use
this version of factorization.
Let 𝒘′

◦ be a reduced expression of 𝒘◦ starting with 𝐫𝑖 , and 𝒘′′
◦ (= 𝑤0𝒘

′
◦𝑤0) be a reduced

expression of𝒘◦ ending with 𝐫𝜏0𝑖 . It follows by definition that

Υ̃ = Υ̃[𝒘′
◦]
= T̃ ′

𝐫𝑖 ,+1
(Υ̃[𝐫𝑖𝒘

′
◦]
)Υ̃𝑖 . (9.18)

Since𝑤0𝐫𝜏0𝑖 = 𝐫𝑖𝑤0 and𝑤0 = 𝒘◦𝑤∙, we have𝒘◦𝐫𝜏0𝑖 = 𝐫𝑖𝒘◦. By definition and Proposition 8.3, we
obtain

Υ̃ = Υ̃[𝒘′′
◦ ]

= Υ̃𝑖Υ̃[𝒘◦𝐫𝜏0𝑖]
= Υ̃𝑖Υ̃[𝐫𝑖𝒘◦]

. (9.19)

Now, using (9.18)–(9.19), we can simplify a key component appearing in (9.16) as follows:

Υ̃𝜓⋆(Υ̃𝑖)T̃
′
𝐫𝑖 ,+1

(Υ̃−1) = Υ̃Υ̃−1
𝑖 T̃ ′

𝐫𝑖 ,+1
(Υ̃−1)

= T̃ ′
𝐫𝑖 ,+1

(Υ̃[𝐫𝑖𝒘◦]
Υ̃−1) = T̃ ′

𝐫𝑖 ,+1
(Υ̃−1

𝑖 ).

Hence, the identity (9.14) follows from (9.16). □
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1398 WANG and ZHANG

9.4 Braid group action on𝐔𝒊
𝝇

Recall from (2.20) the 𝚤quantum group 𝐔𝚤
𝝇 with parameter 𝝇 satisfying (2.18) (à la Letzter), and

recall a central reduction 𝜋𝚤
𝝇 ∶ 𝐔̃𝚤 → 𝐔𝚤

𝝇 from Proposition 2.8.
We first construct the braid group action on 𝐔𝚤

𝝇⋄
for the distinguished parameter 𝝇⋄ (2.21). By

the definition (4.14) of 𝑘𝑗,⋄ and Proposition 2.8, the kernel ker 𝜋𝚤
𝝇⋄
is generated by

𝑘𝑗,⋄ − 1 (𝜏𝑗 = 𝑗 ∈ 𝕀◦), 𝑘𝑗,⋄𝑘𝜏𝑗,⋄ − 1 (𝜏𝑗 ≠ 𝑗 ∈ 𝕀◦), 𝐾𝑗𝐾
′
𝑗 − 1 (𝑗 ∈ 𝕀∙).

In addition, by Proposition 4.11, we have 𝐓̃′′
𝑖,+1

(𝑘𝑗,⋄) = 𝑘𝐫𝑖𝛼𝑗,⋄. Hence, the kernel of 𝜋𝝇⋄
is preserved

by 𝐓̃′′
𝑖,+1

. Therefore, 𝐓̃′′
𝑖,+1

induces a automorphism𝐓′′
𝑖,+1;𝝇⋄

on𝐔𝚤
𝝇⋄
such that the following diagram

commutes:

It follows from Theorem 9.1 that 𝐓′′
𝑖,+1;𝝇⋄

satisfy the braid relations. By definition, T̃𝑗 (𝑗 ∈ 𝕀∙)
descends to Lusztig’s automorphism 𝑇𝑗 under the central reduction 𝜋𝚤

𝝇⋄
. It then follows by The-

orem 9.3 and Remark 9.4 that there exists an action of the braid group Br(𝑊∙)⋊ Br(𝑊◦) on 𝐔𝚤
𝝇⋄

generated by 𝑇𝑗, 𝐓′′
𝑖,+1;𝝇⋄

, for 𝑗 ∈ 𝕀∙, 𝑖 ∈ 𝕀◦,𝜏.
We now consider the symmetries on𝐔𝚤

𝝇, for an arbitrary parameter 𝝇 satisfying (2.18).
Via the isomorphism 𝜙𝝇 ∶ 𝐔𝚤

𝝇⋄
→ 𝐔𝚤

𝝇 constructed in Proposition 2.7, we transport the relative
braid group action on 𝐔𝚤

𝝇⋄
to a relative braid group action on 𝐔𝚤

𝝇. More precisely, there exist
automorphisms 𝐓′′

𝑖,+1;𝝇
on𝐔𝚤

𝝇 such that the following diagram commutes:

Our convention here and below is that we suppress the dependence on a general
parameter 𝝇 for the symmetries 𝐓′′

𝑖,+1
(and 𝐓′

𝑖,−1
, 𝐓′′

𝑖,−1
, and 𝐓′

𝑖,+1
below) on𝐔𝚤

𝝇.
In addition,𝑇𝑗 commuteswith𝜙𝝇 for 𝑗 ∈ 𝕀∙. Summarizingwe have obtained the following braid

group action on𝐔𝚤
𝝇 (from Theorem 9.1, Theorem 9.3, and Remark 9.4).

Theorem 9.9. For an arbitrary parameter 𝝇 satisfying (2.18), there exists a braid group
action of Br(𝑊∙)⋊ Br(𝑊◦) on 𝐔𝚤

𝝇 as automorphisms of algebras generated by 𝑇𝑗 (𝑗 ∈ 𝕀∙) and
𝐓′′
𝑖,+1

(𝑖 ∈ 𝕀◦,𝜏).

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12562 by U

N
IV

ER
SITY

 O
F V

IR
G

IN
IA

, W
iley O

nline Library on [10/11/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s­and­conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1399

We next construct 𝐓′
𝑖,+1

on 𝐔𝚤
𝝇 for general parameters 𝝇. By a similar argument as in §4.5, we

have 𝐓̃′
𝑖,+1

= T̃ ′
𝐫𝑖 ,+1

on 𝐔̃𝚤0 and both are given by

𝜍𝑗,⋆⋄𝑘𝑗 ↦ 𝜍𝐫𝑖𝛼𝑗,⋆⋄𝑘𝐫𝑖𝛼𝑗 . (9.20)

Denote the parameter 𝝇⋆⋄ ∶= (𝝇𝑗,⋆⋄)𝑗∈𝕀◦ . Then by (9.20), 𝐓̃
′
𝑖,+1

preserves the kernel of 𝜋𝚤
𝝇⋆⋄
, and

hence, it induces an automorphism𝐓′
𝑖,+1;𝝇⋆⋄

on𝐔𝚤
𝝇⋆⋄

such that the following diagram commutes:

On the other hand, by Lemma 9.5, T̃ ′
𝑗,+1

descends to Lusztig’s automorphism 𝑇′
𝑗,+1

under the
central reduction 𝜋𝚤

𝝇⋆⋄
. Hence, by Corollary 9.7, there exits an action of the braid group Br(𝑊∙)⋊

Br(𝑊◦) on𝐔𝚤
𝝇⋆⋄

generated by 𝑇′
𝑗,+1

(𝑗 ∈ 𝕀∙) and 𝐓′
𝑖,+1;𝝇⋆⋄

(𝑖 ∈ 𝕀◦,𝜏).
Now, for an arbitrary parameter 𝝇, we can use the isomorphism 𝜙𝝇𝜙

−1
𝝇⋆⋄

to translate this action
on𝐔𝚤

𝝇⋆⋄
to an action on𝐔𝚤

𝝇, that is, there exists automorphisms 𝐓
′
𝑖,+1

on𝐔𝚤
𝝇 such that

𝐓′
𝑖,+1◦𝜙𝝇𝜙

−1
𝝇⋆⋄

= 𝜙𝝇𝜙
−1
𝝇⋆⋄

◦𝐓′
𝑖,+1;𝝇⋆⋄

.

In addition, T̃ ′
𝑗,+1

commutes with 𝜙𝝇𝜙
−1
𝝇⋆⋄
.

Similarly, we can formulate the automorphisms 𝐓′
𝑖,−1

, 𝐓′′
𝑖,−1

on 𝐔𝚤
𝝇, which are inverses to

𝐓′′
𝑖,+1

, 𝐓′
𝑖,+1

; the detail is skipped. Summarizing, we have established the following theorem,which
was conjectured in [20, Conjecture 1.2].

Theorem 9.10. Let 𝑒 = ±1, and 𝝇 be an arbitrary parameter satisfying (2.18).

(1) There exists a braid group action of Br(𝑊∙)⋊ Br(𝑊◦) on 𝐔𝚤
𝝇 as automorphisms of algebras

generated by 𝑇′
𝑗,𝑒

(𝑗 ∈ 𝕀∙) and 𝐓′
𝑖,𝑒

(𝑖 ∈ 𝕀◦,𝜏).
(2) There exists a braid group action of Br(𝑊∙)⋊ Br(𝑊◦) on 𝐔𝚤

𝝇 as automorphisms of algebras
generated by 𝑇′′

𝑗,𝑒
(𝑗 ∈ 𝕀∙) and 𝐓′′

𝑖,𝑒
(𝑖 ∈ 𝕀◦,𝜏).

10 RELATIVE BRAID GROUP ACTIONS ON𝐔-MODULES

Let (𝕀 = 𝕀∙ ∪ 𝕀◦, 𝜏) be a Satake diagram of arbitrary type and (𝐔,𝐔𝝇) be the associated quan-
tum symmetric pair. We set 𝝇 to be a balanced parameter throughout this section. Based on the
intertwining properties of 𝐓′

𝑖,𝑒
, 𝐓′′

𝑖,𝑒
on 𝐔𝚤

𝝇, we formulate the compatible action of corresponding
operators on an arbitrary finite-dimensional𝐔-module𝑀. We then show that these operators on
𝑀 satisfy relative braid group relations.
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1400 WANG and ZHANG

10.1 Intertwining relations on𝐔𝒊
𝝇

Recall that the symmetries𝐓′
𝑖,𝑒
and𝐓′′

𝑖,𝑒
on𝐔𝚤

𝝇, for 𝑒 = ±1, were defined in §9.4. In this subsection,
we formulate the intertwining properties of these symmetries.
Recall 𝜙𝝇 from Proposition 2.7. Since 𝝇 is a balanced parameter, 𝜙𝝇 is the restriction of Φ𝝇⋄𝝇

,
where 𝝇⋄𝝇 is defined by componentwisemultiplicationwith 𝝇⋄ = (𝜍𝑗,⋄)𝑗∈𝕀◦ ; cf. also Proposition 2.7.
Define

T ′′
𝑖,+1;𝝇 ∶= Φ𝝇⋄𝝇

𝑇′′
𝑖,+1Φ

−1
𝝇⋄𝝇

, T ′
𝑖,−1;𝝇 ∶= Φ𝝇⋄𝝇

𝑇′
𝑖,−1Φ

−1
𝝇⋄𝝇

. (10.1)

Proposition 10.1. Let 𝝇 be a balanced parameter. The automorphisms𝐓′
𝑖,−1

and𝐓′′
𝑖,+1

on𝐔𝚤
𝝇 satisfy

the following intertwining relations:

𝐓′
𝑖,−1(𝑥)Υ𝑖,𝝇 = Υ𝑖,𝝇T

′
𝐫𝑖 ,−1;𝝇

(𝑥), (10.2)

𝐓′′
𝑖,+1(𝑥)T

′′
𝐫𝑖 ,+1;𝝇

(Υ−1
𝑖,𝝇 ) = T ′′

𝐫𝑖 ,+1;𝝇
(Υ−1

𝑖,𝝇 )T
′′
𝐫𝑖 ,+1;𝝇

(𝑥), (10.3)

for 𝑥 ∈ 𝐔𝚤
𝝇.

Proof. By Theorems 4.7 and 6.1, we have, for any 𝑥 ∈ 𝐔̃𝚤,

𝐓̃′
𝑖,−1(𝑥) Υ̃𝑖 = Υ̃𝑖 T̃ ′

𝐫𝑖 ,−1
(𝑥),

𝐓̃′′
𝑖,+1(𝑥) T̃𝐫𝑖

(Υ̃−1
𝑖 ) = T̃𝐫𝑖

(Υ̃−1
𝑖 ) T̃ ′′

𝐫𝑖 ,+1
(𝑥).

(10.4)

Let 𝑇′
𝑖,𝑒
, 𝑇′′

𝑖,𝑒
be Lusztig’s automorphisms on𝐔. Recall the central reduction 𝜋𝝇⋄

∶ 𝐔̃ → 𝐔 from
(2.6). By (2.9) (with 𝐚 = 𝝇⋄) and (2.11), we have

𝜋𝝇⋄
◦T̃ ′′

𝑖,+1 = 𝑇′′
𝑖,+1 ◦𝜋𝝇⋄

, 𝜋𝝇⋄
◦T̃ ′

𝑖,−1 = 𝑇′
𝑖,−1 ◦𝜋𝝇⋄

.

Hence, 𝜋𝚤
𝝇⋄
◦ 𝐓̃′′

𝑖,+1
= 𝐓′′

𝑖,+1;𝝇⋄
◦𝜋𝚤

𝝇⋄
. Since the parameter 𝝇⋄ is balanced, 𝜋𝚤

𝝇⋄
is the restriction of 𝜋𝝇⋄

to𝐔𝚤
𝝇⋄
. Applying 𝜋𝝇⋄

to the intertwining relations (10.4), we obtain, for any 𝑥 ∈ 𝐔𝚤
𝝇⋄
,

𝐓′
𝑖,−1;𝝇⋄

(𝑥) Υ𝑖,𝝇⋄
= Υ𝑖,𝝇⋄

𝑇′
𝐫𝑖 ,−1

(𝑥),

𝐓′′
𝑖,+1;𝝇⋄

(𝑥) 𝑇′′
𝐫𝑖 ,+1

(Υ−1
𝑖,𝝇⋄

) = 𝑇′′
𝐫𝑖 ,+1

(Υ−1
𝑖,𝝇⋄

) 𝑇′′
𝐫𝑖 ,+1

(𝑥).
(10.5)

Recall 𝜙𝝇 from Proposition 2.7. As we have seen in §9.4, we have 𝜙𝝇◦𝐓
′′
𝑖,+1;𝝇⋄

= 𝐓′′
𝑖,+1

◦𝜙𝝇,
and 𝜙𝝇◦𝐓

′
𝑖,−1;𝝇⋄

= 𝐓′
𝑖,−1

◦𝜙𝝇. Therefore, applying 𝜙𝝇 to the identities (10.5) gives us the desired
intertwining relations in the proposition. □

We next formulate intertwining relations for the other two automorphisms 𝐓′
𝑖,+1

and 𝐓′′
𝑖,−1

.
Recall the central reductions𝜋𝝇 ∶ 𝐔̃ → 𝐔 from (2.6) and𝜋𝚤

𝝇 ∶ 𝐔̃𝚤 → 𝐔𝚤
𝝇 fromProposition 2.8. By

Lemma9.5, we have𝜋𝝇⋆⋄
◦ T̃ ′

𝑖,+1
= 𝑇′

𝑖,+1
◦𝜋𝝇⋆⋄

and𝜋𝚤
𝝇⋆⋄

◦ 𝐓̃′
𝑖,+1

= 𝐓′
𝑖,+1;𝝇⋆⋄

◦𝜋𝚤
𝝇⋆⋄
. Since the param-

eter 𝝇⋆⋄ is balanced, 𝜋𝚤
𝝇⋆⋄

is the restriction of 𝜋𝝇⋆⋄
to 𝐔̃𝚤. Applying 𝜋𝝇⋆⋄

to (9.14)–(9.15), we have,
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for any 𝑥 ∈ 𝐔𝚤
𝝇⋆⋄
,

𝐓′
𝑖,+1;𝝇⋆⋄

(𝑥) 𝑇′
𝐫𝑖 ,+1

(Υ−1
𝑖,𝝇⋆⋄

) = 𝑇′
𝐫𝑖 ,+1

(Υ−1
𝑖,𝝇⋆⋄

) 𝑇′
𝐫𝑖 ,+1

(𝑥),

𝐓′′
𝑖,−1;𝝇⋆⋄

(𝑥)Υ𝑖,𝝇⋆⋄
= Υ𝑖,𝝇⋆⋄

𝑇′′
𝐫𝑖 ,−1

(𝑥).
(10.6)

Since 𝝇 is a balanced parameter, by the proof of Proposition 2.7, 𝜙𝝇𝜙−1𝝇⋆⋄
is the restriction of

Φ
𝝇
−1
⋆⋄𝝇

= Φ𝝇⋆⋄𝝇
. Define

T ′′
𝑖,−1;𝝇 ∶= Φ𝝇⋆⋄𝝇

𝑇′′
𝑖,−1Φ

−1
𝝇⋆⋄𝝇

, T ′
𝑖,+1;𝝇 ∶= Φ𝝇⋆⋄𝝇

𝑇′
𝑖,+1Φ

−1
𝝇⋆⋄𝝇

. (10.7)

Applying 𝜙𝝇𝜙−1𝝇⋆⋄
to (10.6), we have established the following.

Proposition 10.2. Let 𝝇 be a balanced parameter. The automorphisms 𝐓′
𝑖,+1;𝝇

and 𝐓′′
𝑖,−1;𝝇

on 𝐔𝚤
𝝇

satisfy the following intertwining relations, for all 𝑥 ∈ 𝐔𝚤
𝝇:

𝐓′
𝑖,+1(𝑥) T ′

𝐫𝑖 ,+1;𝝇
(Υ−1

𝑖,𝝇 ) = T ′
𝐫𝑖 ,+1;𝝇

(Υ−1
𝑖,𝝇 ) T ′

𝐫𝑖 ,+1;𝝇
(𝑥),

𝐓′′
𝑖,−1(𝑥)Υ𝑖,𝝇 = Υ𝑖,𝝇T

′′
𝐫𝑖 ,−1;𝝇

(𝑥).

10.2 Compatible actions of 𝐓′
𝒊,𝒆
, 𝐓′′

𝒊,𝒆
on𝐔-modules

Denote by 𝐸(𝑛)
𝑖

, 𝐹
(𝑛)
𝑖

the divided powers
𝐸𝑛
𝑖

[𝑛]𝑖 !
,

𝐹𝑛
𝑖

[𝑛]𝑖 !
in𝐔, for 𝑛 ∈ ℕ.

Let  be the category of finite-dimensional 𝐔-modules of type 1. By definition, 𝑀 ∈  has a
weight space decomposition (with respect a fixed 𝑖 ∈ 𝕀)

𝑀 =
⨁
𝑛∈ℤ

𝑀𝑛, 𝑀𝑛 = {𝑣 ∈ 𝑀|𝐾𝑖𝑣 = 𝑞𝑛
𝑖
𝑣}.

Following [28], we define linear operators 𝑇′
𝑖,𝑒
, 𝑇′′

𝑖,𝑒
, 𝑒 = ±1 on𝑀 by

𝑇′
𝑖,𝑒(𝑣) =

∑
𝑎,𝑏,𝑐⩾0;

𝑎−𝑏+𝑐=𝑚

(−1)𝑏𝑞𝑒(𝑏−𝑎𝑐)
𝑖

𝐹(𝑎)
𝑖

𝐸(𝑏)
𝑖
𝐹(𝑐)
𝑖
𝑣, 𝑣 ∈ 𝑀𝑚, (10.8)

𝑇′′
𝑖,𝑒(𝑣) =

∑
𝑎,𝑏,𝑐⩾0;

−𝑎+𝑏−𝑐=𝑚

(−1)𝑏𝑞𝑒(𝑏−𝑎𝑐)
𝑖

𝐸(𝑎)
𝑖

𝐹(𝑏)
𝑖
𝐸(𝑐)
𝑖
𝑣, 𝑣 ∈ 𝑀𝑚. (10.9)

Proposition 10.3 [28, 39.4.3]. Let𝑀 ∈  . Then, for any 𝑢 ∈ 𝐔, 𝑣 ∈ 𝑀, 𝑒 = ±1, we have

𝑇′
𝑖,𝑒(𝑢𝑣) = 𝑇′

𝑖,𝑒(𝑢)𝑇
′
𝑖,𝑒(𝑣), 𝑇′′

𝑖,𝑒(𝑢𝑣) = 𝑇′′
𝑖,𝑒(𝑢)𝑇

′′
𝑖,𝑒(𝑣). (10.10)

RecallT ′
𝑖,𝑒;𝝇

,T ′′
𝑖,𝑒;𝝇

are merely rescalings of 𝑇′
𝑖,𝑒
, 𝑇′′

𝑖,𝑒
defined in (10.1) and (10.7). Applying exactly

the same rescalings to the operators on modules (10.8)–(10.9), we obtain operators T ′
𝑖,𝑒;𝝇

,T ′′
𝑖,𝑒;𝝇

on
𝑀 that satisfy

T ′
𝑖,𝑒;𝝇(𝑢𝑣) = T ′

𝑖,𝑒;𝝇(𝑢)T
′
𝑖,𝑒;𝝇(𝑣), T ′′

𝑖,𝑒;𝝇(𝑢𝑣) = T ′′
𝑖,𝑒;𝝇(𝑢)T

′′
𝑖,𝑒;𝝇(𝑣). (10.11)

for any 𝑢 ∈ 𝐔, 𝑣 ∈ 𝑀.
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1402 WANG and ZHANG

We regard the𝐔-module𝑀 as a𝐔𝚤-module by restriction.

Definition 10.4. Define linear operators 𝐓′
𝑖,𝑒
, 𝐓′′

𝑖,𝑒
on𝑀, for 𝑖 ∈ 𝕀◦ and 𝑒 = ±1, by

𝐓′
𝑖,−1(𝑣) ∶= Υ𝑖,𝝇T

′
𝐫𝑖 ,−1;𝝇

(𝑣),

𝐓′′
𝑖,+1(𝑣) ∶= T ′′

𝐫𝑖 ,+1;𝝇
(Υ−1

𝑖,𝝇 )T
′′
𝐫𝑖 ,+1;𝝇

(𝑣),

𝐓′
𝑖,+1(𝑣) ∶= T ′

𝐫𝑖 ,+1;𝝇
(Υ−1

𝑖,𝝇 )T
′
𝐫𝑖 ,+1;𝝇

(𝑣),

𝐓′′
𝑖,−1(𝑣) ∶= Υ𝑖,𝝇T

′′
𝐫𝑖 ,−1;𝝇

(𝑣),

(10.12)

for any 𝑣 ∈ 𝑀.
(In these notations, we have suppressed the dependence on 𝝇 on these operators.)

The automorphisms 𝐓′
𝑖,𝑒
, 𝐓′′

𝑖,𝑒
on𝑀 in (10.12) are compatible with the corresponding automor-

phisms on𝐔𝚤
𝝇.

Theorem 10.5. Let𝑀 ∈  , 𝑖 ∈ 𝕀◦ and 𝑒 = ±1. Then we have

𝐓′
𝑖,𝑒(𝑥𝑣) = 𝐓′

𝑖,𝑒(𝑥)𝐓
′
𝑖,𝑒(𝑣), 𝐓′′

𝑖,𝑒(𝑥𝑣) = 𝐓′′
𝑖,𝑒(𝑥)𝐓

′′
𝑖,𝑒(𝑣), (10.13)

for any 𝑥 ∈ 𝐔𝚤
𝝇, 𝑣 ∈ 𝑀.

Proof. We prove the identity for 𝐓′
𝑖,−1

; the proofs for the remaining ones are similar. In the proof,
we omit the subindex 𝝇 for Υ𝑖,𝝇 and T ′

𝐫𝑖 ,−1;𝝇
as there is no confusion.

Since T ′
𝐫𝑖 ,−1

(𝑥𝑣) = T ′
𝐫𝑖 ,−1

(𝑥)T ′
𝐫𝑖 ,−1

(𝑣), we have

Υ𝑖T
′
𝐫𝑖 ,−1

(𝑥𝑣) =
(
Υ𝑖T

′
𝐫𝑖 ,−1

(𝑥)Υ−1
𝑖

)
Υ𝑖T

′
𝐫𝑖 ,−1

(𝑣). (10.14)

By Proposition 10.1, we have Υ𝑖T𝐫𝑖 ,−1
(𝑥)Υ−1

𝑖
= 𝐓′

𝑖,−1
(𝑥). Hence, using the definition (10.12), the

identity (10.14) implies that 𝐓′
𝑖,−1

(𝑥𝑣) = 𝐓′
𝑖,−1

(𝑥)𝐓′
𝑖,−1

(𝑣) as desired. □

10.3 Relative braid relations on𝐔-modules

Let𝑚𝑖𝑗 denotes the order of 𝐫𝑖𝐫𝑗 in𝑊◦.

Theorem 10.6. Let𝑀 ∈  . Then the relative braid relations hold for the linear operators𝐓′
𝑖,𝑒
(and,

respectively, 𝐓′′
𝑖,𝑒
) on𝑀; that is, for any 𝑖 ≠ 𝑗 ∈ 𝕀◦,𝜏 and for any 𝑣 ∈ 𝑀, we have

𝐓′
𝑖,𝑒𝐓

′
𝑗,𝑒𝐓

′
𝑖,𝑒 ⋯

⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝑚𝑖𝑗

(𝑣) = 𝐓′
𝑗,𝑒𝐓

′
𝑖,𝑒𝐓

′
𝑗,𝑒 ⋯

⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝑚𝑖𝑗

(𝑣), (10.15)

𝐓′′
𝑖,𝑒𝐓

′′
𝑗,𝑒𝐓

′′
𝑖,𝑒 ⋯

⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝑚𝑖𝑗

(𝑣) = 𝐓′′
𝑗,𝑒𝐓

′′
𝑖,𝑒𝐓

′′
𝑗,𝑒 ⋯

⏟⎴⎴⎴⏟⎴⎴⎴⏟
𝑚𝑖𝑗

(𝑣). (10.16)
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TABLE 3 Rank 2 formulas for 𝐓̃′
𝑖,−1

(𝐵𝑗) (𝑖 ≠ 𝑗 ∈ 𝕀◦,𝜏).

Rank 2 Satake diagrams Formulas for 𝐓̃′
𝒊,−𝟏

(𝑩𝒋)
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1404 WANG and ZHANG

TABLE 4 Rank 2 formulas for 𝐓̃′′
𝑖,+1

(𝐵𝑗) (𝑖 ≠ 𝑗 ∈ 𝕀◦,𝜏).

Rank 2 Satake diagrams Formulas for 𝐓̃′′
𝒊,+𝟏

(𝑩𝒋)
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Proof. We prove the first identity for 𝑒 = −1 ; the proofs for the remaining ones are similar
and skipped.
Set 𝑚 = 𝑚𝑖𝑗 . We keep the notations 𝒘◦, 𝒘

′
◦, 𝒘𝑘,𝒘

′
𝑘
for 1 ⩽ 𝑘 ⩽ 𝑚 from the proof of Theo-

rem 9.1. We shall write T −1
𝐫𝑖

for T ′
𝐫𝑖 ,−1,𝝇

and omit the subindex 𝝇 for Υ𝑖,𝝇 in the proof, since there
is no confusion.
By definition (10.12), for any 𝑣 ∈ 𝑀, we have

𝐓′
𝑖,−1𝐓

′
𝑗,−1𝐓

′
𝑖,−1⋯

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝑚

(𝑣) = (Υ𝑖T
−1
𝒘1

Υ𝑗T
−1
𝒘2

Υ𝑖 ⋯)T −1
𝐫𝑖

T −1
𝐫𝑗

T −1
𝐫𝑖

⋯
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

𝑚

(𝑣). (10.17)

By taking a central reduction to (9.7), the first factor on RHS (10.17) is 𝜎(Υ𝒘◦
). Hence, we have

𝐓′
𝑖,−1𝐓

′
𝑗,−1𝐓

′
𝑖,−1⋯

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝑚

(𝑣) = 𝜎(Υ𝒘◦
)T −1

𝐫𝑖
T −1
𝐫𝑗

T −1
𝐫𝑖

⋯
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

𝑚

(𝑣). (10.18)

Similarly, by switching 𝑖, 𝑗 in (10.18), we obtain

𝐓′
𝑗,−1𝐓

′
𝑖,−1𝐓

′
𝑗,−1⋯

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝑚

(𝑣) = 𝜎(Υ𝒘′
◦
)T −1

𝐫𝑗
T −1
𝐫𝑖

T −1
𝐫𝑗

⋯
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

𝑚

(𝑣). (10.19)

Applying a central reduction to Theorem8.1, we haveΥ𝒘◦
= Υ𝒘′

◦
. SinceT𝑖 are defined by rescaling

𝑇′′
𝑖,+1

in (10.1), they satisfy the braid relations. Hence, we have

T −1
𝐫𝑖

T −1
𝐫𝑗

T −1
𝐫𝑖

⋯
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

𝑚

(𝑣) = T −1
𝐫𝑗

T −1
𝐫𝑖

T −1
𝐫𝑗

⋯
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

𝑚

(𝑣). (10.20)

Combining (10.18)–(10.20), we have proved the first identity for 𝑒 = −1. □

APPENDIX: PROOFS OF PROPOSITION 5.11 AND TABLE 3

In this appendix, we shall provide constructive proofs for Proposition 5.11 and verify the rank 2
formulas for 𝐓̃′

𝑖,−1
(𝐵𝑗) in Table 3. The proofs are based on type-by-type computations in 𝐔̃ for each

rank 2 Satake diagram. Along the way, we will also specify a reduced expression for 𝐫𝑖 in𝑊.

A.1 Some preparatory lemmas

Denote the 𝑡-commutator

[𝐶, 𝐷]𝑡 = 𝐶𝐷 − 𝑡𝐷𝐶,

for various 𝑞-powers 𝑡. Let (𝕀 = 𝕀∙ ∪ 𝕀◦, 𝜏) be an arbitrary Satake diagram. Recall that 𝐵𝑖 = 𝐹𝑖 +

T̃𝑤∙
(𝐸𝜏𝑖)𝐾

′
𝑖
and 𝐵𝜎

𝑖
= 𝐹𝑖 + 𝐾𝑖T̃

−1
𝑤∙

(𝐸𝜏𝑖).

Lemma A.1. Suppose that 𝑖, 𝑗 ∈ 𝕀◦ such that 𝑗 ∉ {𝑖, 𝜏𝑖}. Then we have

[𝐵𝜎
𝑖
, 𝐹𝑗]𝑞−(𝛼𝑖 ,𝛼𝑗) = [𝐹𝑖, 𝐹𝑗]𝑞−(𝛼𝑖 ,𝛼𝑗) , (A.1)

[𝐵𝑖, T̃𝑤∙
(𝐸𝜏𝑗)𝐾

′
𝑗]𝑞−(𝛼𝑖 ,𝛼𝑗) = 𝑞−(𝛼𝑖,𝑤∙(𝛼𝜏𝑗))T̃𝑤∙

(
[𝐸𝜏𝑖, 𝐸𝜏𝑗]𝑞−(𝛼𝑖 ,𝛼𝑗)

)
𝐾′
𝑖𝐾

′
𝑗. (A.2)
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1406 WANG and ZHANG

Proof. Follows by a simple computation and using the identity [𝐸𝑘, 𝐹𝑗] = 0, for 𝑘 ≠ 𝑗. □

Introduce the following operator (see Lemma 4.4 for some of the notations)

∍ ∶= T̃𝑤0
T̃𝑤∙

𝜏̂0𝜏̂. (A.3)

We shall formulate several basic properties for ∍ below. A systematic use of ∍ throughout the
Appendices will allow us to reduce the proofs of many challenging identities to easier ones.

Lemma A.2. We have

∍(𝐵𝜎
𝑖
) = −𝑞−(𝛼𝑖,𝛼𝑖)𝐵𝑖T̃𝑤∙

(−1
𝜏𝑖 ), (A.4)

∍(𝐹𝑗) = −𝑞−2𝑗 T̃𝑤∙
(𝐸𝜏𝑗)𝐾

′
𝑗T̃𝑤∙

(−1
𝜏𝑗 ). (A.5)

Proof. We rewrite the identity (4.19) as follows:

𝐵𝑖T̃𝐫𝑖
(𝜏∙,𝑖𝜏𝑖

) = −𝑞−(𝛼𝑖,𝑤∙𝛼𝜏𝑖)T̃𝑤∙
T̃𝑤∙,𝑖

(𝐵𝜎
𝜏∙,𝑖𝜏𝑖

)

= −𝑞−(𝛼𝑖,𝑤∙𝛼𝜏𝑖)T̃𝑤∙
T̃𝑤0

(𝐵𝜎
𝜏0𝜏𝑖

) = −𝑞−(𝛼𝑖,𝑤∙𝛼𝜏𝑖)∍(𝐵𝜎
𝑖
). (A.6)

Since T̃𝐫𝑖
(𝜏∙,𝑖𝜏𝑖

) = T̃𝑤∙
T̃𝑤∙,𝑖

(𝜏∙,𝑖𝜏𝑖
) = 𝜍2

𝑖,⋄T̃𝑤∙
(−1

𝜏𝑖
), the formula (A.4) follows from (A.6).

By Lemma 4.4, we have ∍(𝐹𝑗) = −𝐾−1
𝑤∙(𝜏𝑗)

T̃𝑤∙
(𝐸𝜏𝑗) = −𝑞−2

𝑗
T̃𝑤∙

(𝐸𝜏𝑗)𝐾
′
𝑗
T̃𝑤∙

(−1
𝜏𝑗
). This proves

(A.5). □

Lemma A.3. The operator ∍ commutes with T̃𝐫𝑖
, T̃𝑗 , for 𝑖 ∈ 𝕀◦, 𝑗 ∈ 𝕀∙.

Proof. Since 𝑤0𝑠𝑘 = 𝑠𝜏0𝑘𝑤0, for 𝑘 ∈ 𝕀, we have T̃𝑤0
T̃ −1
𝑘

= T̃𝑤0𝑠𝑘
= T̃𝑠𝜏0𝑘𝑤0

= T̃ −1
𝜏0𝑘

T̃𝑤0
. Hence,

T̃𝑤0
T̃𝑘 = T̃𝜏0𝑘

T̃𝑤0
for any 𝑘 ∈ 𝕀. Therefore, T̃𝑤0

𝜏̂0 commutes with T̃𝑘 (𝑘 ∈ 𝕀) and thus commutes
with T̃𝐫𝑖

, T̃𝑗 , for 𝑖 ∈ 𝕀◦, 𝑗 ∈ 𝕀∙.
Similarly, one can show that T̃𝑤∙

𝜏̂ commutes with T̃𝑗 , for 𝑗 ∈ 𝕀∙. Hence, by definition (A.3), the
operator ∍ commutes with T̃𝑗 for 𝑗 ∈ 𝕀∙.
On the other hand, by definition (2.14), T̃𝐫𝑖

, for 𝑖 ∈ 𝕀◦, commutes with both T̃𝑤∙
and 𝜏̂. Hence,

∍ also commutes with T̃𝐫𝑖
. □

A.2 Split types of rank 2

Consider rank 2 split Satake diagrams (𝕀 = 𝕀◦ = {𝑖, 𝑗}, Id). In this case, we have 𝐫𝑖 = 𝑠𝑖, 𝐵
𝜎
𝑖
= 𝐹𝑖 +

𝐾𝑖𝐸𝑖 .

A.2.1 𝑐𝑖𝑗 = −1

In this case, in line with the first line of Table 3, Proposition 5.11 is reformulated and proved as
follows.
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RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1407

Lemma A.4. We have

T̃ −1
𝑖 (𝐹𝑗) = [𝐵𝜎

𝑖
, 𝐹𝑗]𝑞𝑖 , T̃ −1

𝑖 (𝐸𝑗𝐾
′
𝑗) = [𝐵𝑖, 𝐸𝑗𝐾

′
𝑗]𝑞𝑖 . (A.7)

Proof. Follows immediately by Lemma A.1 and the definition of T̃𝑖 . □

A.2.2 𝑐𝑖𝑗 = −2

In this case, the rank 2 Satake diagram is given by

and in line with Table 3, Proposition 5.11 can be reformulated and proved as follows.

Lemma A.5. We have

T̃ −1
𝑖 (𝐹𝑗) =

1

[2]𝑖

[
𝐵𝜎
𝑖
, [𝐵𝜎

𝑖
, 𝐹𝑗]𝑞2

𝑖

]
− 𝑞2𝑖 𝐹𝑗𝐾𝑖𝐾

′
𝑖 , (A.8)

T̃ −1
𝑖 (𝐸𝑗𝐾

′
𝑗) =

1

[2]𝑖

[
𝐵𝑖, [𝐵𝑖, 𝐸𝑗𝐾

′
𝑗]𝑞2𝑖

]
− 𝑞2𝑖 𝐸𝑗𝐾

′
𝑗𝐾𝑖𝐾

′
𝑖 . (A.9)

Proof. We prove the formula (A.8). By Lemma A.1, we have [𝐵𝜎
𝑖
, 𝐹𝑗]𝑞2

𝑖
= [𝐹𝑖, 𝐹𝑗]𝑞2

𝑖
. By Propo-

sition 4.2, we have T̃ −1
𝑖

(𝐹𝑗) =
1

[2]𝑖
[𝐹𝑖, [𝐹𝑖, 𝐹𝑗]𝑞2

𝑖
]. Now we compute the first term on RHS (A.8)

using Lemma A.1 as follows:[
𝐵𝜎
𝑖
, [𝐵𝜎

𝑖
, 𝐹𝑗]𝑞2

𝑖

]
=
[
𝐵𝜎
𝑖
, [𝐹𝑖, 𝐹𝑗]𝑞2

𝑖

]
=
[
𝐹𝑖, [𝐹𝑖, 𝐹𝑗]𝑞2

𝑖

]
+
[
𝐾𝑖𝐸𝑖, [𝐹𝑖, 𝐹𝑗]𝑞2

𝑖

]
= [2]𝑖T̃

−1
𝑖 (𝐹𝑗) + 𝐾𝑖[

𝐾𝑖 − 𝐾′
𝑖

𝑞𝑖 − 𝑞−1
𝑖

, 𝐹𝑗]𝑞2
𝑖

= [2]𝑖T̃
−1
𝑖 (𝐹𝑗) + 𝑞2𝑖 [2]𝑖𝐹𝑗𝐾𝑖𝐾

′
𝑖 .

Hence, the formula (A.8) holds.
We next prove the formula (A.9). In this case, we read (A.3) as ∍ = T̃𝑤0

, and note that𝑖 = 𝑘𝑖 .
By Lemma A.3, ∍ it commutes with T̃ −1

𝑖
. Applying this operator ∍ to the formula (A.8) and then

using (A.4)–(A.5), we obtain

T̃ −1
𝑖 (𝐸𝑗𝐾

′
𝑗)T̃

−1
𝑖 (𝑘−1𝑗 ) =

𝑞−4
𝑖

[2]𝑖

[
𝐵𝑖𝑘

−1
𝑖 , [𝐵𝑖𝑘

−1
𝑖 , 𝐸𝑗𝐾

′
𝑗𝑘

−1
𝑗 ]𝑞2

𝑖

]
− 𝑞2𝑖 𝐸𝑗𝐾

′
𝑗𝑘

−1
𝑗 T̃𝑤0

(𝑘𝑖). (A.10)

Recall that our symmetries T̃𝑗 are defined in §4.1 by normalizing a variant of Lusztig’s symmetries
T̃ ′′
𝑗,+1

. In this case, we have T̃𝑤0
(𝑘𝑖) = 𝑞−4

𝑖
𝑘−1
𝑖
and T̃ −1

𝑖
(𝑘−1

𝑗
) = 𝑞−4

𝑖
𝑘−1
𝑗
𝑘−2
𝑖
. Hence, since 𝑘𝑖, 𝑘𝑗 are

central, (A.10) is simplified as the following formula:

T̃ −1
𝑖 (𝐸𝑗𝐾

′
𝑗)𝑘

−1
𝑗 𝑘−2𝑖 =

(
1

[2]𝑖

[
𝐵𝑖, [𝐵𝑖, 𝐸𝑗𝐾

′
𝑗]𝑞2𝑖

]
− 𝑞2𝑖 𝐸𝑗𝐾

′
𝑗𝐾𝑖𝐾

′
𝑖

)
𝑘−1𝑗 𝑘−2𝑖 , (A.11)

which clearly implies the formula (A.9). □
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1408 WANG and ZHANG

A.2.3 𝑐𝑖𝑗 = −3

Consider the Satake diagram of split type 𝐺2

In this case, we have 𝑞𝑖 = 𝑞 and 𝑞𝑗 = 𝑞3.

Lemma A.6. We have [
𝐾𝑖𝐸𝑖, [𝐹𝑖, 𝐹𝑗]𝑞3

]
𝑞
= 𝑞3[3]𝐹𝑗𝐾𝑖𝐾

′
𝑖 , (A.12)[

𝐾𝑖𝐸𝑖,
[
𝐹𝑖, [𝐹𝑖, 𝐹𝑗]𝑞3

]
𝑞

]
𝑞−1

= 𝑞(1 + [3])[𝐵𝜎
𝑖
, 𝐹𝑗]𝑞3𝐾𝑖𝐾

′
𝑖 . (A.13)

Proof. The first identity (A.12) is derived as follows:

LHS(𝐴.12) = 𝐾𝑖

[
𝐸𝑖, [𝐹𝑖, 𝐹𝑗]𝑞3

]
= 𝐾𝑖[

𝐾𝑖 − 𝐾−1
𝑖

𝑞 − 𝑞−1
, 𝐹𝑗]𝑞3 = 𝑞3[3]𝐾𝑖𝐾

′
𝑖 𝐹𝑗 = RHS(𝐴.12).

We next compute

LHS(𝐴.13) = 𝐾𝑖

[
𝐸𝑖,

[
𝐹𝑖, [𝐹𝑖, 𝐹𝑗]𝑞3

]
𝑞

]
= 𝐾𝑖

[
𝐾𝑖 − 𝐾−1

𝑖

𝑞 − 𝑞−1
, [𝐹𝑖, 𝐹𝑗]𝑞3

]
𝑞

+ 𝐾𝑖

[
𝐹𝑖, [

𝐾𝑖 − 𝐾′
𝑖

𝑞 − 𝑞−1
, 𝐹𝑗]𝑞3

]
𝑞

= 𝑞𝐾𝑖𝐾
′
𝑖 [𝐹𝑖, 𝐹𝑗]𝑞3 + 𝑞3[3]𝐾𝑖

[
𝐹𝑖, 𝐾

′
𝑖 𝐹𝑗

]
𝑞

= (𝑞 + 𝑞[3])[𝐹𝑖, 𝐹𝑗]𝑞3𝐾𝑖𝐾
′
𝑖

= (𝑞 + 𝑞[3])[𝐵𝜎
𝑖
, 𝐹𝑗]𝑞3𝐾𝑖𝐾

′
𝑖 ,

where the last equality follows from Lemma A.1. This proves (A.13). □

In line with Table 3, Proposition 5.11 can be reformulated and proved as follows.

Lemma A.7. We have

T̃ −1
𝑖 (𝐹𝑗) =

1

[3]!

[
𝐵𝜎
𝑖
,
[
𝐵𝜎
𝑖
, [𝐵𝜎

𝑖
, 𝐹𝑗]𝑞3

]
𝑞

]
𝑞−1

−
1

[3]!

(
𝑞(1 + [3])[𝐵𝜎

𝑖
, 𝐹𝑗]𝑞3 + 𝑞3[3][𝐵𝜎

𝑖
, 𝐹𝑗]𝑞−1

)
𝑘𝑖. (A.14)

Proof. By Proposition 4.2, T̃ −1
𝑖

(𝐹𝑗) =
1

[3]!
[𝐹𝑖, [𝐹𝑖, [𝐹𝑖, 𝐹𝑗]𝑞3]𝑞]𝑞−1 . By Lemma A.1, we have

[𝐵𝜎
𝑖
, 𝐹𝑗]𝑞3 = [𝐹𝑖, 𝐹𝑗]𝑞3 . Then we have[
𝐵𝜎
𝑖
,
[
𝐵𝜎
𝑖
, [𝐵𝜎

𝑖
, 𝐹𝑗]𝑞3

]
𝑞

]
𝑞−1

=
[
𝐵𝜎
𝑖
,
[
𝐹𝑖, [𝐹𝑖, 𝐹𝑗]𝑞3

]
𝑞

]
𝑞−1

+
[
𝐵𝜎
𝑖
,
[
𝐾𝑖𝐸𝑖, [𝐹𝑖, 𝐹𝑗]𝑞3

]
𝑞

]
𝑞−1

. (A.15)
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Using Lemma A.6, we rewrite RHS (A.15) as[
𝐹𝑖,

[
𝐹𝑖, [𝐹𝑖, 𝐹𝑗]𝑞3

]
𝑞

]
𝑞−1

+
[
𝐾𝑖𝐸𝑖,

[
𝐹𝑖, [𝐹𝑖, 𝐹𝑗]𝑞3

]
𝑞

]
𝑞−1

+ 𝑞3[3][𝐵𝜎
𝑖
, 𝐹𝑗]𝑞−1𝐾𝑖𝐾

′
𝑖

= [3]!T̃ −1
𝑖 (𝐹𝑗) + 𝑞(1 + [3])[𝐵𝜎

𝑖
, 𝐹𝑗]𝑞3𝐾𝑖𝐾

′
𝑖 + 𝑞3[3][𝐵𝜎

𝑖
, 𝐹𝑗]𝑞−1𝐾𝑖𝐾

′
𝑖 . (A.16)

Now the desired formula (A.14) follows from (A.15)–(A.16). □

Lemma A.8. We have

T̃ −1
𝑖 (𝐸𝑗𝐾

′
𝑗) =

1

[3]!

[
𝐵𝑖,

[
𝐵𝑖, [𝐵𝑖, 𝐸𝑗𝐾

′
𝑗]𝑞3

]
𝑞

]
𝑞−1

−
1

[3]!

(
𝑞(1 + [3])[𝐵𝑖, 𝐸𝑗𝐾

′
𝑗]𝑞3 − 𝑞3[3][𝐵𝑖, 𝐸𝑗𝐾

′
𝑗]𝑞−1

)
𝑘𝑖. (A.17)

Proof. In this case,𝑖 = 𝑘𝑖 and𝑗 = 𝑘𝑗 are central. By (A.4)–(A.5), we have

∍(𝐹𝑗) = −𝑞−2𝑗 𝐸𝑗𝐾
′
𝑗𝑘

−1
𝑗 , ∍(𝐵𝜎

𝑖
) = −𝑞−2𝐵𝑖𝑘

−1
𝑖 . (A.18)

Recall from Lemma A.3 that ∍ commutes with T̃𝑖 . Applying ∍ to (A.14) and then using (A.18),
we have

T̃ −1
𝑖 (𝐸𝑗𝐾

′
𝑗)T̃

−1
𝑖 (𝑘−1𝑗 )

= −𝑞−6
1

[3]!

[
𝐵𝑖,

[
𝐵𝑖, [𝐵𝑖, 𝐸𝑗𝐾

′
𝑗]𝑞3

]
𝑞

]
𝑞−1

𝑘−1𝑗 𝑘−3
𝑖

(A.19)

+ 𝑞−2
1

[3]!

(
𝑞(1 + [3])[𝐵𝜎

𝑖
, 𝐸𝑗𝐾

′
𝑗]𝑞3 − 𝑞3[3][𝐵𝜎

𝑖
, 𝐸𝑗𝐾

′
𝑗]𝑞−1

)
∍(𝑘𝑖)𝑘

−1
𝑗 𝑘−1𝑖 .

Since 𝑠𝑖(𝛼𝑗) = 𝛼𝑗 + 3𝛼𝑖 , by Proposition 4.2, we have T̃ −1
𝑖

(𝑘−1
𝑗
) = −𝑞−6𝑘−1

𝑗
𝑘−3
𝑖
. Note also that

∍(𝑘𝑖) = 𝑞−4𝑘−1
𝑖
. Hence, (A.19) implies the desired formula (A.17). □

A.3 Type AII

Consider the rank 2 Satake diagram of type AII5

In this case, Proposition 5.11 is reformulated and proved as follows.

Lemma A.9. We have

T̃ −1
𝐫4

(𝐹2) = [T̃3(𝐵
𝜎
4 ), 𝐹2]𝑞,

T̃ −1
𝐫4

(
T̃𝑤∙

(𝐸2)𝐾
′
2

)
= [T̃3(𝐵4), T̃𝑤∙

(𝐸2)𝐾
′
2]𝑞.
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1410 WANG and ZHANG

Proof. The first formula follows by T̃ −1
𝐫4

= T̃ −1
4354

, Proposition 4.2, and the formula (A.1).
We prove the second formula. By (A.4)–(A.5), we have

∍(𝐹2) = −𝑞−2T̃𝑤∙
(𝐸2)𝐾

′
2T̃𝑤∙

(−1
2 ), ∍(𝐵𝜎

4 ) = −𝑞−2𝐵4T̃𝑤∙
(−1

4 ). (A.20)

Recall fromLemmaA.3 that the operator ∍ in (A.3) commuteswith T̃3, T̃𝐫4
. Applying the operator

∍ to both sides of the first formula and then using (A.20), we have

T̃ −1
𝐫4

(
T̃𝑤∙

(𝐸2)𝐾
′
2

)
T̃𝑤∙,4

(−1
2 ) = −𝑞−2[T̃3(𝐵4)T̃5(

−1
4 ), T̃𝑤∙

(𝐸2)𝐾
′
2T̃𝑤∙

(−1
2 )]𝑞. (A.21)

For a weight reason, we have

T̃5(
−1
4 )T̃𝑤∙

(𝐸2)𝐾
′
2 = 𝑞T̃𝑤∙

(𝐸2)𝐾
′
2T̃5(

−1
4 ),

T̃𝑤∙
(−1

2 )T̃3(𝐵4) = 𝑞T̃3(𝐵4)T̃𝑤∙
(−1

2 ).

Using these two identities, we simplify (A.21) as

T̃ −1
𝐫4

(
T̃𝑤∙

(𝐸2)𝐾
′
2

)
T̃𝑤∙,4

(−1
2 ) = −𝑞−1[T̃3(𝐵4), T̃𝑤∙

(𝐸2)𝐾
′
2]𝑞T̃5(

−1
4 )T̃𝑤∙

(−1
2 ). (A.22)

Finally, by Proposition 4.2, we have T̃𝑤∙,4
(2) = −𝑞T̃5(4)T̃𝑤∙

(2). Hence, (A.22) implies the
second desired formula. □

A.4 Type CII𝑛, 𝑛 ⩾ 5

Consider the rank 2 Satake diagram of type CII𝑛, for 𝑛 ⩾ 5:

Note that 𝑞2 = 𝑞4 = 𝑞. The notation 4⋯𝑛⋯ 4 (with the localminima/maxima indicated) denotes
a sequence 4 5⋯𝑛 − 1 𝑛 𝑛 − 1⋯ 5 4, and we denote 𝑠4⋯𝑛⋯4 = 𝑠4⋯ 𝑠𝑛 ⋯ 𝑠4.
In this case, Proposition 5.11 is reformulated and proved as Lemmas A.10–A.11 below.

Lemma A.10. We have

T̃ −1
𝐫4

(𝐹2) =
[
[T̃5⋯𝑛⋯5(𝐵

𝜎
4 ), T̃3(𝐵

𝜎
4 )]𝑞, 𝐹2

]
𝑞
− 𝑞T̃ −2

3 (𝐹2)T̃3(𝐾
′
4)T̃5⋯𝑛⋯5(𝐾4). (A.23)

Proof. Since 𝑠5⋯𝑛⋯5𝑠4𝑠5⋯𝑛⋯5(𝛼4) = 𝛼4, we have T̃ −1
4

T̃ −1
5⋯𝑛⋯5(𝐹4) = T̃5⋯𝑛⋯5(𝐹4). Then

T̃ −1
𝐫4

(𝐹2) = T̃ −1
4⋯𝑛⋯4[𝐹3, 𝐹2]𝑞 =

[
T̃ −1
4 T̃ −1

5⋯𝑛⋯5([𝐹4, 𝐹3]𝑞), 𝐹2

]
𝑞

=

[[
T̃5⋯𝑛⋯5(𝐹4), [𝐹4, 𝐹3]𝑞

]
𝑞
, 𝐹2

]
𝑞

.
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On the other hand, we compute RHS (A.23) as follows. First, note that

[𝐾4T̃
−1
𝑤∙

(𝐸4), 𝐹3]𝑞 = 𝑞−1T̃ −1
5⋯𝑛⋯5(𝐸4)𝐾3𝐾4,

and hence, [
[𝐾4T̃𝑤∙

(𝐸4), 𝐹3]𝑞, 𝐹2

]
𝑞
= [T̃ −1

5⋯𝑛⋯5(𝐸4), 𝐹2]𝐾3𝐾4 = 0.

Thus, we have[
[T̃5⋯𝑛⋯5(𝐵

𝜎
4 ), T̃3(𝐵

𝜎
4 )]𝑞, 𝐹2

]
𝑞

=

[[
T̃5⋯𝑛⋯5(𝐵

𝜎
4 ), [𝐵

𝜎
4 , 𝐹3]𝑞

]
𝑞
, 𝐹2

]
𝑞

=

[[
T̃5⋯𝑛⋯5(𝐵

𝜎
4 ), [𝐹4, 𝐹3]𝑞

]
𝑞
, 𝐹2

]
𝑞

=

[[
T̃5⋯𝑛⋯5(𝐹4), [𝐹4, 𝐹3]𝑞

]
𝑞
, 𝐹2

]
𝑞

+

[[
T̃5⋯𝑛⋯5(𝐾4)T̃

−1
3 (𝐸4), [𝐹4, 𝐹3]𝑞

]
𝑞
, 𝐹2

]
𝑞

= T̃ −1
𝐫4

(𝐹2) + 𝑞
[[

T̃ −1
3 (𝐸4), [𝐹4, 𝐹3]𝑞

]
, 𝐹2

]
𝑞
T̃5⋯𝑛⋯5(𝐾4)

= T̃ −1
𝐫4

(𝐹2) + 𝑞
[
[T̃ −1

3 (𝐹3), 𝐹3], 𝐹2

]
𝑞2

T̃3(𝐾
′
4)T̃5⋯𝑛⋯5(𝐾4)

= T̃ −1
𝐫4

(𝐹2) + 𝑞T̃ −2
3 (𝐹2)T̃3(𝐾

′
4)T̃5⋯𝑛⋯5(𝐾4),

as desired. This proves the formula (A.23). □

Lemma A.11. We have

T̃ −1
𝐫4

(T̃𝑤∙
(𝐸2)𝐾

′
2) =

[
[T̃5⋯𝑛⋯5(𝐵4), T̃3(𝐵4)]𝑞, T̃𝑤∙

(𝐸2)𝐾
′
2

]
𝑞

− 𝑞T̃ −2
3

(
T̃𝑤∙

(𝐸2)𝐾
′
2

)
T̃3(𝐾

′
4)T̃5⋯𝑛⋯5(𝐾4). (A.24)

Proof. By Lemma A.3, the operator ∍ in (A.3) commutes with T̃3, T̃5⋯𝑛⋯5, T̃𝐫4
. Applying ∍ to

(A.23) and then using (A.4)–(A.5), we obtain

T̃ −1
𝐫4

(T̃𝑤∙
(𝐸2)𝐾

′
2)T̃𝑤∙,4

(−1
2 )

= 𝑞−4
[
[T̃5⋯𝑛⋯5(𝐵4)T̃3(

−1
4 ), T̃3(𝐵4)T̃5⋯𝑛⋯5(

−1
4 )]𝑞, T̃𝑤∙

(𝐸2)𝐾
′
2T̃𝑤∙

(−1
2 )

]
𝑞

− 𝑞T̃ −2
3

(
T̃𝑤∙

(𝐸2)𝐾
′
2

)
T̃𝑤∙

(−1
2 )∍(T̃3(𝐾

′
4)T̃5⋯𝑛⋯5(𝐾4)). (A.25)
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1412 WANG and ZHANG

Recalling 𝑐𝑘𝑖 from (3.23), we have

4𝐵4 = 𝑞−3𝐵44,

T̃𝑤∙
(2)T̃5⋯𝑛⋯5(𝐵4)T̃3(𝐵4) = T̃5⋯𝑛⋯5(𝐵4)T̃3(𝐵4)T̃𝑤∙

(2),

∍(T̃3(𝐾
′
4)T̃5⋯𝑛⋯5(𝐾4)) = 𝑞−1T̃5⋯𝑛⋯5(

−1
4 )T̃3(

−1
4 )T̃3(𝐾

′
4)T̃5⋯𝑛⋯5(𝐾4).

Using these formulas, we simplify (A.25) as

T̃ −1
𝐫4

(T̃𝑤∙
(𝐸2)𝐾

′
2)T̃𝑤∙,4

(−1
2 )

= 𝑞−1
[
[T̃5⋯𝑛⋯5(𝐵4), T̃3(𝐵4)]𝑞, T̃𝑤∙

(𝐸2)𝐾
′
2

]
𝑞
T̃3(

−1
4 )T̃5⋯𝑛⋯5(

−1
4 )T̃𝑤∙

(−1
2 )

− T̃ −2
3

(
T̃𝑤∙

(𝐸2)𝐾
′
2

)
T̃3(𝐾

′
4)T̃5⋯𝑛⋯5(𝐾4)T̃5⋯𝑛⋯5(

−1
4 )T̃3(

−1
4 )T̃𝑤∙

(−1
2 ). (A.26)

Finally, by (3.23), we have T̃𝑤∙,4
(2) = 𝑞T̃3(4)T̃5⋯𝑛⋯5(4)T̃𝑤∙

(2). Therefore, the formula
(A.24) follows from (A.26). □

A.5 Type CII4
Consider the rank 2 Satake diagram of type CII4:

In this case, Proposition 5.11 is reformulated and proved as Lemmas A.12–A.13 below.

Lemma A.12. We have

T̃ −1
𝐫4

(𝐹2) =
[
[𝐵𝜎

4 , 𝐹3]𝑞4 , 𝐹2

]
𝑞3
, (A.27)

T̃ −1
𝐫2

(𝐹4) =
[
T̃3(𝐵

𝜎
2 ), [T̃3(𝐵

𝜎
2 ), 𝐹4]𝑞23

]
− (𝑞3 − 𝑞−13 )[𝐹3, 𝐹4]𝑞2

3
𝐸1𝐾2𝐾

′
2𝐾3. (A.28)

Proof. The first formula (A.27) follows by a direct computation.
We prove (A.28). We have

T̃ −1
𝐫2

(𝐹4) =
[
T̃ −1
2 (𝐹3), [T̃

−1
2 (𝐹3), 𝐹4]𝑞2

3

]
=
[
T̃3(𝐹2), [T̃3(𝐹2), 𝐹4]𝑞2

3

]
.

Hence, recalling that 𝐵𝜎
2
= 𝐹2 + 𝐾2T̃

−1
13

(𝐸2), we have[
T̃3(𝐵

𝜎
2 ), [T̃3(𝐵

𝜎
2 ), 𝐹4]𝑞23

]
=
[
T̃3(𝐵

𝜎
2 ), [T̃3(𝐹2), 𝐹4]𝑞2

3

]
=
[
T̃3(𝐹2), [T̃3(𝐹2), 𝐹4]𝑞2

3

]
+
[
𝐾2𝐾3T̃

−1
1 (𝐸2), [T̃3(𝐹2), 𝐹4]𝑞2

3

]
= T̃ −1

𝐫2
(𝐹4) +

[
[T̃ −1

1 (𝐸2), T̃3(𝐹2)], 𝐹4

]
𝑞2
3

𝐾2𝐾3

= T̃ −1
𝐫2

(𝐹4) + (𝑞3 − 𝑞−13 )[𝐹3, 𝐹4]𝑞2
3
𝐸1𝐾2𝐾

′
2𝐾3.

Thus, (A.28) is proved. □
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Lemma A.13. We have

T̃ −1
𝐫4

(
T̃𝑤∙

(𝐸2)𝐾
′
2

)
=

[
[𝐵4, 𝐹3]𝑞4 , T̃𝑤∙

(𝐸2)𝐾
′
2

]
𝑞3
, (A.29)

T̃ −1
𝐫2

(
T̃𝑤∙

(𝐸4)𝐾
′
4

)
=

[
T̃3(𝐵2), [T̃3(𝐵2), T̃𝑤∙

(𝐸4)𝐾
′
4]𝑞23

]
−(𝑞3 − 𝑞−13 )[𝐹3, T̃𝑤∙

(𝐸4)𝐾
′
4]𝑞23

𝐸1𝐾2𝐾
′
2𝐾3. (A.30)

Proof. We shall prove the formula (A.30) only, and skip a similar proof for (A.29).
By Lemma A.3, the operator ∍ defined in (A.3) commutes with T̃3, T̃𝐫2

. Applying ∍ to the
identity (A.28) and then using (A.4)–(A.5), we have

T̃ −1
𝐫2

(
T̃𝑤∙

(𝐸4)𝐾
′
4

)
T̃𝑤∙,2

(−1
4 )

= 𝑞−42

[
T̃3(𝐵2)T̃1(

−1
2 ), [T̃3(𝐵2)T̃1(

−1
2 ), T̃𝑤∙

(𝐸4)𝐾
′
4T̃𝑤∙

(−1
4 )]𝑞2

3

]
− (𝑞3 − 𝑞−13 )𝑞−43 [𝐹3𝐾3𝐾

′−1
3 , T̃𝑤∙

(𝐸4)𝐾
′
4T̃𝑤∙

(−1
4 )]𝑞2

3
𝐸1𝐾

−1
1 𝐾′

1∍(𝐾2𝐾
′
2𝐾3). (A.31)

For a weight reason, we have

T̃1(
−1
2 )T̃𝑤∙

(𝐸4) = 𝑞23T̃𝑤∙
(𝐸4)T̃1(

−1
2 ),

T̃𝑤∙
(−1

4 )T̃3(𝐵2) = 𝑞23T̃3(𝐵2)T̃𝑤∙
(−1

4 ),

T̃1(
−1
2 )T̃3(𝐵2)T̃𝑤∙

(𝐸4) = T̃3(𝐵2)T̃𝑤∙
(𝐸4)T̃1(

−1
2 ),

T̃1(
−1
2 )T̃𝑤∙

(−1
4 )T̃3(𝐵2) = T̃3(𝐵2)T̃1(

−1
2 )T̃𝑤∙

(−1
4 ).

We also have ∍(𝐾2𝐾
′
2
𝐾3) = 𝑞−2

2
T̃𝑤∙

(𝐾2𝐾
′
2
)−1𝐾3. Hence, (A.31) is simplified as

T̃ −1
𝐫2

(
T̃𝑤∙

(𝐸4)𝐾
′
4

)
T̃𝑤∙,2

(−1
4 )

= 𝑞−22

[
T̃3(𝐵2), [T̃3(𝐵2), T̃𝑤∙

(𝐸4)𝐾
′
4]𝑞23

]
T̃𝑤∙

(−1
4 )T̃1(

−1
2 )2

− (𝑞3 − 𝑞−13 )𝑞−22 [𝐹3, T̃𝑤∙
(𝐸4)𝐾

′
4]𝑞23

𝐸1𝐾2𝐾
′
2𝐾3T̃𝑤∙

(−1
4 )T̃1(

−1
2 )2. (A.32)

By the definition of 𝑖 in (3.23), we have T̃𝑤∙,2
(−1

4
) = 𝑞−2

2
T̃𝑤∙

(−1
4
)T̃1(

−1
2
)2. Thus, (A.32)

implies the desired formula (A.30). □

A.6 Type EIV

Consider the rank 2 Satake diagram of type EIV:

In this case, Proposition 5.11 is reformulated and proved as Lemma A.14 below.
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1414 WANG and ZHANG

Lemma A.14.

T̃ −1
𝐫1

(𝐹5) =
[
T̃4T̃3T̃2(𝐵

𝜎
1 ), 𝐹5

]
𝑞
, (A.33)

T̃ −1
𝐫1

(
T̃𝑤∙

(𝐸5)𝐾
′
5

)
=
[
T̃4T̃3T̃2(𝐵1), T̃𝑤∙

(𝐸5)𝐾
′
5

]
𝑞
. (A.34)

Proof. We prove the formula (A.33). Indeed, we have

T̃ −1
𝐫1

(𝐹5) = T̃ −1
1 T̃ −1

2 T̃ −1
3 [𝐹4, 𝐹5]𝑞 = [T̃ −1

1 T̃ −1
2 T̃ −1

3 (𝐹4), 𝐹5]𝑞

= [T̃4T̃3T̃2(𝐹1), 𝐹5]𝑞 = [T̃4T̃3T̃2(𝐵
𝜎
1 ), 𝐹5]𝑞.

We next prove the formula (A.34). Recall from Lemma A.3 that T̃𝑗 , for 𝑗 ∈ 𝕀∙, commutes with
∍ in (A.3). Applying ∍ to the formula (A.33) and then using (A.4)–(A.5), we have

T̃ −1
𝐫1

(
T̃𝑤∙

(𝐸5)𝐾
′
5

)
T̃𝑤∙,1

(−1
5 )

= −𝑞−2
[
T̃432(𝐵1)T̃632(

−1
1 ), T̃𝑤∙

(𝐸5)𝐾
′
5T̃𝑤∙

(−1
5 )

]
𝑞
. (A.35)

By a weight consideration, we have

T̃𝑤∙
(−1

5 )T̃432(𝐵1) = 𝑞T̃432(𝐵1)T̃𝑤∙
(−1

5 ),

T̃632(
−1
1 )T̃𝑤∙

(𝐸5) = 𝑞T̃𝑤∙
(𝐸5)T̃632(

−1
1 ).

Hence, using these two identities, (A.35) is simplified as

T̃ −1
𝐫1

(
T̃𝑤∙

(𝐸5)𝐾
′
5

)
T̃𝑤∙,1

(−1
5 )

= −𝑞−1
[
T̃432(𝐵1), T̃𝑤∙

(𝐸5)𝐾
′
5

]
𝑞
T̃632(

−1
1 )T̃𝑤∙

(−1
5 ). (A.36)

Finally, by the definition (3.23) of 𝑖 , T̃𝑤∙,1
(−1

5 ) = −𝑞−1T̃632(
−1
1
)T̃𝑤∙

(−1
5 ). Then, (A.36)

implies the desired formula (A.34). □

A.7 Type AIII3
Consider the rank 2 Satake diagram of type AIII3:

In this case, Proposition 5.11 is reformulated and proved as the following lemma.
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Lemma A.15. We have

T̃ −1
𝐫1

(𝐹2) =
[
𝐵𝜎
3 , [𝐵

𝜎
1 , 𝐹2]𝑞

]
𝑞
− 𝑞𝐹2𝐾3𝐾

′
1, (A.37)

T̃ −1
𝐫1

(𝐸2𝐾
′
2) =

[
𝐵3, [𝐵1, 𝐸2𝐾

′
2]𝑞

]
𝑞
− 𝑞𝐸2𝐾

′
2𝐾3𝐾

′
1. (A.38)

Proof. By Lemma A.1, we have [𝐵𝜎
1
, 𝐹2]𝑞 = [𝐹1, 𝐹2]𝑞. Then, the first term on the RHS of (A.37) is

computed as follows:[
𝐵𝜎
3 , [𝐵

𝜎
1 , 𝐹2]𝑞

]
𝑞
=
[
𝐾3𝐸1, [𝐹1, 𝐹2]𝑞

]
𝑞
+
[
𝐹3, [𝐹1, 𝐹2]𝑞

]
𝑞

= 𝑞[[𝐸1, 𝐹1], 𝐹2]𝑞𝐾3 +
[
𝐹3, [𝐹1, 𝐹2]𝑞

]
𝑞

= 𝑞[
𝐾1 − 𝐾′

1

𝑞 − 𝑞−1
, 𝐹2]𝑞𝐾3 +

[
𝐹3, [𝐹1, 𝐹2]𝑞

]
𝑞

= 𝑞𝐹2𝐾3𝐾
′
1 +

[
𝐹3, [𝐹1, 𝐹2]𝑞

]
𝑞

= T̃ −1
13 (𝐹2) + 𝑞𝐹2𝐾3𝐾

′
1.

This proves the formula (A.37).
We next prove (A.38). In this case, 𝜏0 = 𝜏 ≠ Id, 𝜏∙,1 = Id, and we simplify ∍ in (A.3) as ∍ = T̃𝑤0

.
We also have𝑖 = 𝑘𝑖 for 𝑖 = 1, 2, 3. Applying the operator ∍ = T̃𝑤0

to the identity (A.37) and then
using (A.4)–(A.5), we have

T̃ −1
𝐫1

(𝐸2𝐾
′
2)T̃𝐫1

(𝑘−12 ) = 𝑞−4
[
𝐵3𝑘

−1
1 , [𝐵1𝑘

−1
3 , 𝐸2𝐾

′
2𝑘

−1
2 ]𝑞

]
𝑞
− 𝑞𝐸2𝐾

′
2𝑘

−1
2 ∍(𝐾3𝐾

′
1). (A.39)

We have ∍(𝐾3𝐾
′
1
) = 𝑞−2𝑘−1

1
𝑘−1
3
𝐾3𝐾

′
1
. Note also that 𝑘2 is central and 𝑘3, 𝑘1 commute with 𝐸2.

Hence, (A.39) can be rewritten as

T̃ −1
𝐫1

(𝐸2𝐾
′
2)T̃𝐫1

(𝑘−12 ) = 𝑞−2
[
𝐵3, [𝐵1, 𝐸2𝐾

′
2]𝑞

]
𝑞
𝑘−11 𝑘−13 𝑘−12

− 𝑞−1𝐸2𝐾
′
2𝑘

−1
2 𝑘−11 𝑘−13 𝐾3𝐾

′
1. (A.40)

Finally, since 𝐫1(𝛼2) = 𝛼2 + 𝛼1 + 𝛼3, we have T̃𝐫1
(𝑘−1

2
) = 𝑞−2𝑘−1

2
𝑘−1
1
𝑘−1
3
. Therefore, the desired

formula (A.38) follows from (A.40). □

A.8 Type AIII𝑛, 𝑛 ⩾ 4

Consider the rank 2 Satake diagram of type AIII𝑛, 𝑛 ⩾ 4:

We first have a simple observation.
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1416 WANG and ZHANG

Lemma A.16. For any 3 ⩽ 𝑠 ⩽ 𝑛 − 2, T̃2⋯𝑛−2(𝐹𝑛−1) is fixed by T̃𝑠.

Proof. Recall from Proposition 4.2 that T̃𝑠 satisfies the braid relation. Then we have

T̃𝑠T̃2⋯𝑛−2(𝐹𝑛−1) = T̃2⋯𝑠−2T̃𝑠T̃𝑠−1T̃𝑠T̃𝑠+1⋯𝑛−2(𝐹𝑛−1)

= T̃2⋯𝑠−2T̃𝑠−1T̃𝑠T̃𝑠−1T̃𝑠+1⋯𝑛−2(𝐹𝑛−1)

= T̃2⋯𝑠−2T̃𝑠−1T̃𝑠T̃𝑠+1⋯𝑛−2T̃𝑠−1(𝐹𝑛−1)

= T̃2⋯𝑠−2T̃𝑠−1T̃𝑠T̃𝑠+1⋯𝑛−2(𝐹𝑛−1) = T̃2⋯𝑛−2(𝐹𝑛−1).

Hence, T̃2⋯𝑛−2(𝐹𝑛−1) is fixed by T̃𝑠 for 3 ⩽ 𝑠 ⩽ 𝑛 − 2. □

In this case, Proposition 5.11 is reformulated and proved as Lemmas A.17–A.18 below.

Lemma A.17. We have

T̃ −1
𝐫1

(𝐹2) = [𝐵𝜎
1 , 𝐹2]𝑞, (A.41)

T̃ −1
𝐫2

(𝐹1) =
[
T̃𝑤∙

(𝐵𝜎
𝑛−1), [𝐵

𝜎
2 , 𝐹1]𝑞

]
𝑞
− 𝐹1𝐾

′
2𝐾𝑤∙(𝛼𝑛−1)

. (A.42)

Proof. The formula (A.41) follows from Lemma A.1.
We prove (A.42). By a direct computation, we have

T̃ −1
𝐫2

(𝐹1) =
[
T̃ −1
2⋯𝑛−1⋯3(𝐹2), [𝐹2, 𝐹1]𝑞

]
𝑞

=
[
T̃ −1
2⋯𝑛−2T̃2⋯𝑛−2(𝐹𝑛−1), [𝐹2, 𝐹1]𝑞

]
𝑞

=
[
T̃3⋯𝑛−2(𝐹𝑛−1), [𝐹2, 𝐹1]𝑞

]
𝑞

=
[
T̃𝑤∙

(𝐹𝑛−1), [𝐹2, 𝐹1]𝑞

]
𝑞
,

where the last equality follows by applying LemmaA.16 andnoting that𝑤∙(𝛼𝑛−1) = 𝑠3⋯𝑛−2(𝛼𝑛−1).
Recalling that 𝐵𝜎

𝑛−1
= 𝐹𝑛−1 + 𝐾𝑛−1T̃

−1
𝑤∙

(𝐸2), we compute the RHS of (A.42) as follows:[
T̃𝑤∙

(𝐵𝜎
𝑛−1), [𝐵

𝜎
2 , 𝐹1]𝑞

]
𝑞
=
[
T̃𝑤∙

(𝐵𝜎
𝑛−1), [𝐹2, 𝐹1]𝑞

]
𝑞

=
[
T̃𝑤∙

(𝐹𝑛−1), [𝐹2, 𝐹1]𝑞

]
𝑞
+
[
T̃𝑤∙

(𝐾𝑛−1)𝐸2, [𝐹2, 𝐹1]𝑞

]
𝑞

= T̃ −1
𝐫2

(𝐹1) +
[
𝐸2, [𝐹2, 𝐹1]𝑞

]
T̃𝑤∙

(𝐾𝑛−1)

= T̃ −1
𝐫2

(𝐹1) + 𝐹1𝐾
′
2𝐾𝑤∙(𝛼𝑛−1)

.

This proves the formula (A.42). □
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Lemma A.18. We have

T̃ −1
𝐫1

(
T̃𝑤∙

(𝐸𝑛−1)𝐾
′
2

)
= [𝐵1, T̃𝑤∙

(𝐸𝑛−1)𝐾
′
2]𝑞, (A.43)

T̃ −1
𝐫2

(𝐸𝑛𝐾
′
1) =

[
T̃𝑤∙

(𝐵𝑛−1), [𝐵2, 𝐸𝑛𝐾
′
1]𝑞

]
𝑞
− 𝐸𝑛𝐾

′
1𝐾

′
2𝐾𝑤∙(𝛼𝑛−1)

. (A.44)

Proof. Note that T̃𝐫1
= T̃1T̃𝑛 commutes with T̃𝑤∙

. Hence, we have

T̃ −1
𝐫1

(
T̃𝑤∙

(𝐸𝑛−1)𝐾
′
2

)
= 𝜍

−1∕2

1,⋄ T̃𝑤∙
T̃ −1
𝐫1

(𝐸𝑛−1)𝐾
′
2𝐾

′
1

= 𝜍−11,⋄T̃𝑤∙

(
[𝐸𝑛−1𝐸𝑛]𝑞−1

)
𝐾′
2𝐾

′
1

= T̃𝑤∙
[𝐸𝑛, 𝐸𝑛−1]𝑞𝐾

′
2𝐾

′
1

= [𝐵1, T̃𝑤∙
(𝐸𝑛−1)𝐾

′
2]𝑞,

where the last step follows from Lemma A.1. Hence, we have proved (A.43).
We next prove (A.44). In this case, 𝜏0 = 𝜏, T̃𝑤∙

(𝑛) = 𝑛 = 𝑘𝑛, and we simplify ∍ in (A.3) as
∍ = T̃𝑤∙

T̃𝑤0
. Applying ∍ to (A.42) and then using (A.4)–(A.5), we have

T̃ −1
𝐫2

(𝐸𝑛𝐾
′
1)T̃𝑤∙,2

(𝑘−1𝑛 )

= 𝑞−4
[
T̃𝑤∙

(𝐵𝑛−1)
−1
2 , [𝐵2T̃𝑤∙

(−1
𝑛−1), 𝐸𝑛𝐾

′
1𝑘

−1
𝑛 ]𝑞

]
𝑞

− 𝐸𝑛𝐾
′
1𝑘

−1
𝑛 ∍(𝐾′

2𝐾𝑤∙(𝛼𝑛−1)
). (A.45)

For a weight reason, we have

T̃𝑤∙
(−1

𝑛−1)𝐸𝑛 = 𝑞𝐸𝑛T̃𝑤∙
(𝑘−1𝑛−1),

𝑘−1𝑛 𝐵2 = 𝑞𝐵2𝑘
−1
𝑛 ,

−1
2 𝐵2𝐸𝑛 = 𝑞2𝐵2𝐸𝑛

−1
2 ,

𝑘−1𝑛 T̃𝑤∙
(−1

𝑛−1)T̃𝑤∙
(𝐵𝑛−1) = 𝑞2T̃𝑤∙

(𝐵𝑛−1)𝑘
−1
𝑛 T̃𝑤∙

(−1
𝑛−1).

In addition, by (3.23), we have ∍(𝐾′
2
𝐾𝑤∙𝛼𝑛−1

) = 𝑞−1T̃𝑤∙
(−1

𝑛−1
)−1

2
𝐾′
2
𝐾𝑤∙𝛼𝑛−1

. Using these formu-
las, we rewrite (A.45) as

T̃ −1
𝐫2

(𝐸𝑛𝐾
′
1)T̃𝑤∙,2

(𝑘−1𝑛 ) = 𝑞−1
[
T̃𝑤∙

(𝐵𝑛−1), [𝐵2, 𝐸𝑛𝐾
′
1]𝑞

]
𝑞
𝑘−1𝑛 T̃𝑤∙

(−1
𝑛−1)

−1
2

− 𝑞−1𝐸𝑛𝐾
′
1𝑘

−1
𝑛 T̃𝑤∙

(−1
𝑛−1)

−1
2 𝐾′

2𝐾𝑤∙𝛼𝑛−1
. (A.46)

Finally, we have T̃𝑤∙,2
(𝑘−1𝑛 ) = 𝑞−1𝑘−1𝑛 T̃𝑤∙

(−1
𝑛−1

)−1
2
. Then the formula (A.44) follows from

(A.46). □
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1418 WANG and ZHANG

A.9 Type DIII5
Consider the rank 2 Satake diagram of type DIII5:

In this case, Proposition 5.11 is reformulated and proved as Lemmas A.19–A.20 below.

Lemma A.19. We have

T̃ −1
𝐫2

(𝐹4) = [T̃3(𝐵
𝜎
2 ), 𝐹4]𝑞, (A.47)

T̃ −1
𝐫4

(𝐹2) =
[
𝐵𝜎
4 , [T̃3(𝐵

𝜎
5 ), 𝐹2]𝑞

]
𝑞
− T̃ −2

3 (𝐹2)𝐾4𝐾
′
5𝐾

′
3. (A.48)

Proof. The proof for (A.47) is similar to that of Lemma A.9, and thus omitted.
We prove (A.48). By a direct computation, we have

T̃ −1
𝐫4

(𝐹2) =
[[
𝐹4, [𝐹5, 𝐹3]𝑞

]
𝑞
, 𝐹2

]
𝑞
=
[
𝐹4, [T̃3(𝐹5), 𝐹2]𝑞

]
𝑞
.

Note that 𝐵𝜎
5 = 𝐹5 + 𝐾5T̃

−1
3

(𝐸4). Since [T̃3(𝐾5)𝐸4, 𝐹2]𝑞 = 𝑞[𝐸4, 𝐹2]𝐾3𝐾5 = 0, we have
[T̃3(𝐵

𝜎
5 ), 𝐹2]𝑞 = [T̃3(𝐹5), 𝐹2]𝑞. We now compute the first term of RHS (A.48) as[

𝐵𝜎
4 , [T̃3(𝐵

𝜎
5 ), 𝐹2]𝑞

]
𝑞
=
[
𝐵𝜎
4 , [T̃3(𝐹5), 𝐹2]𝑞

]
𝑞

=
[
𝐹4, [T̃3(𝐹5), 𝐹2]𝑞

]
𝑞
+
[
𝐾4T̃

−1
3 (𝐸4), [T̃3(𝐹5), 𝐹2]𝑞

]
𝑞

= T̃ −1
𝐫4

(𝐹2) + 𝐾4

[
T̃ −1
3 (𝐸4), [T̃3(𝐹5), 𝐹2]𝑞

]
= T̃ −1

𝐫4
(𝐹2) − 𝑞−1

[
[𝐸3, 𝐹3]𝑞2 , 𝐹2

]
𝑞
𝐾4𝐾

′
5

= T̃ −1
𝐫4

(𝐹2) + T̃ −2
3 (𝐹2)𝐾4𝐾

′
5𝐾

′
3.

This proves (A.48). □

Lemma A.20. We have

T̃ −1
𝐫2

(T̃𝑤∙
(𝐸5)𝐾

′
4) = [T̃3(𝐵2), T̃𝑤∙

(𝐸5)𝐾
′
4]𝑞, (A.49)

T̃ −1
𝐫4

(T̃𝑤∙
(𝐸2)𝐾

′
2) =

[
𝐵4, [T̃3(𝐵5), T̃𝑤∙

(𝐸2)𝐾
′
2]𝑞

]
𝑞
− T̃ −2

3 (T̃𝑤∙
(𝐸2)𝐾

′
2)𝐾4𝐾

′
5𝐾

′
3. (A.50)

Proof. We prove (A.50). The proof for (A.49) is easier and hence omitted.
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By Lemma A.3, the operator ∍ defined in (A.3) commutes with T̃3, T̃𝐫4
. Applying ∍ to (A.48)

and using (A.4)–(A.5), we have

T̃ −1
𝐫4

(T̃𝑤∙
(𝐸2)𝐾

′
2)T̃𝑤∙,4

(−1
2 )

= 𝑞−4
[
𝐵4T̃3(

−1
5 ), [T̃3(𝐵5)

−1
4 , T̃𝑤∙

(𝐸2)𝐾
′
2T̃𝑤∙

(−1
2 )]𝑞

]
𝑞

− T̃ −2
3 (T̃𝑤∙

(𝐸2)𝐾
′
2)T̃𝑤∙

(−1
2 )∍(𝐾4𝐾

′
5𝐾

′
3). (A.51)

For a weight reason, we have

−1
4 T̃𝑤∙

(𝐸2) = 𝑞T̃𝑤∙
(𝐸2)

−1
4 ,

T̃𝑤∙
(−1

2 )T̃3(𝐵5) = 𝑞T̃3(𝐵5)T̃𝑤∙
(−1

2 ),

T̃3(
−1
5 )T̃3(𝐵5)T̃𝑤∙

(𝐸2) = 𝑞2T̃3(𝐵5)T̃𝑤∙
(𝐸2)T̃3(

−1
5 ),

−1
4 T̃𝑤∙

(−1
2 )𝐵4 = 𝑞2𝐵4

−1
4 T̃𝑤∙

(−1
2 ).

We also have ∍(𝐾4𝐾
′
5𝐾

′
3
) = 𝑞−1T̃3(

−1
5 )−1

4
𝐾4𝐾

′
5𝐾

′
3
. Hence, (A.51) is written as

T̃ −1
𝐫4

(T̃𝑤∙
(𝐸2)𝐾

′
2)T̃𝑤∙,4

(−1
2 )

= 𝑞−1
[
𝐵4, [T̃3(𝐵5), T̃𝑤∙

(𝐸2)𝐾
′
2]𝑞

]
𝑞
T̃𝑤∙

(−1
2 )T̃3(

−1
5 )−1

4

− 𝑞−1T̃ −2
3 (T̃𝑤∙

(𝐸2)𝐾
′
2)𝐾4𝐾

′
5𝐾

′
3T̃𝑤∙

(−1
2 )T̃3(

−1
5 )−1

4 . (A.52)

Finally, by definition of𝑖 (3.23), we have T̃𝑤∙,4
(−1

2
) = 𝑞−1T̃𝑤∙

(−1
2
)T̃3(

−1
5 )−1

4
. Thus, (A.52)

implies (A.50). □

A.10 Type EIII

Consider the rank 2 Satake diagram of type EIII:

In this case, Proposition 5.11 is reformulated and proved as Lemmas A.21–A.22 below.

Lemma A.21. We have

T̃ −1
𝐫6

(𝐹1) = [T̃23(𝐵
𝜎
6 ), 𝐹1]𝑞, (A.53)

T̃ −1
𝐫1

(𝐹6) =
[
T̃4(𝐵

𝜎
5 ), [T̃32(𝐵

𝜎
1 ), 𝐹6]𝑞

]
𝑞
− T̃ −1

32323(𝐹6)𝐾
′
1𝐾

′
2𝐾

′
3𝐾4𝐾5. (A.54)
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1420 WANG and ZHANG

Proof. We have

T̃ −1
𝐫6

(𝐹1) = T̃ −1
632 (𝐹1) = [T̃ −1

63 (𝐹2), 𝐹1]𝑞 = [T̃23(𝐹6), 𝐹1]𝑞 = [T̃23(𝐵
𝜎
6 ), 𝐹1]𝑞.

Hence, (A.53) follows.
We next prove (A.54). We have

T̃ −1
𝐫1

(𝐹6) = T̃ −1
1⋯5⋯3(𝐹6) = T̃ −1

123 [T̃
−1
454 (𝐹3), 𝐹6]𝑞 = T̃ −1

123 [T̃34(𝐹5), 𝐹6]𝑞

=
[
T̃4(𝐹5), [T̃

−1
12 (𝐹3), 𝐹6]𝑞

]
𝑞
=
[
T̃4(𝐹5), [T̃32(𝐹1), 𝐹6]𝑞

]
𝑞
. (A.55)

Recall that 𝐵𝜎
1
= 𝐹1 + 𝐾1T̃

−1
𝑤∙

(𝐸5). Hence,

[T̃32(𝐵
𝜎
1 ), 𝐹6]𝑞 = [T̃32(𝐹1), 𝐹6]𝑞 + [𝐾123T̃3T̃

−1
434 (𝐸5), 𝐹6]𝑞

= [T̃32(𝐹1), 𝐹6]𝑞 + 𝐾123[T̃
−1
4 (𝐸5), 𝐹6] = [T̃32(𝐹1), 𝐹6]𝑞. (A.56)

On the other hand, we have

T̃ −1
32323(𝐹6) = T̃ −1

323 [T̃
−1
2 (𝐹3), 𝐹6]𝑞 = T̃ −1

323 [T̃3(𝐹2), 𝐹6]𝑞

= −[T̃ −1
3 (𝐸2𝐾

′−1
2 ), T̃ −1

232 (𝐹6)]𝑞

= −𝑞−1[T̃ −1
3 (𝐸2), T̃

−1
23 (𝐹6)]𝑞2𝐾

′−1
2 𝐾′−1

3

= −𝑞−1
[
T̃ −1
3 (𝐸2), [T̃

−1
2 (𝐹3), 𝐹6]𝑞

]
𝑞2
𝐾′−1
2 𝐾′−1

3

= −𝑞−1
[
[T̃ −1

3 (𝐸2), T̃
−1
2 (𝐹3)]𝑞2 , 𝐹6

]
𝑞
𝐾′−1
2 𝐾′−1

3 . (A.57)

We now rewrite RHS (A.54) as follows:[
T̃4(𝐵

𝜎
5 ), [T̃32(𝐵

𝜎
1 ), 𝐹6]𝑞

]
𝑞

(𝐴.56)
=

[
T̃4(𝐵

𝜎
5 ), [T̃32(𝐹1), 𝐹6]𝑞

]
𝑞

=
[
T̃4(𝐹5), [T̃32(𝐹1), 𝐹6]𝑞

]
𝑞
+
[
𝐾4𝐾5T̃

−1
232 (𝐸1), [T̃32(𝐹1), 𝐹6]𝑞

]
𝑞

(𝐴.55)
= T̃ −1

𝐫1
(𝐹6) + 𝐾4𝐾5

[
T̃ −1
32 (𝐸1), [T̃32(𝐹1), 𝐹6]𝑞

]
= T̃ −1

𝐫1
(𝐹6) − 𝑞−1

[
[T̃ −1

3 (𝐸2), T̃3(𝐹2)]𝑞2 , 𝐹6

]
𝑞
𝐾′
1𝐾4𝐾5

(𝐴.57)
= T̃ −1

𝐫1
(𝐹6) + T̃ −1

32323(𝐹6)𝐾
′
1𝐾

′
2𝐾

′
3𝐾4𝐾5.

Therefore, the formula (A.54) follows. □
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Lemma A.22. We have

T̃ −1
𝐫6

(
T̃𝑤∙

(𝐸5)𝐾
′
1

)
= [T̃23(𝐵6), T̃𝑤∙

(𝐸5)𝐾
′
1]𝑞, (A.58)

T̃ −1
𝐫1

(
T̃𝑤∙

(𝐸6)𝐾
′
6

)
=
[
T̃4(𝐵5), [T̃32(𝐵1), T̃𝑤∙

(𝐸6)𝐾
′
6]𝑞

]
𝑞

− T̃ −1
32323

(
T̃𝑤∙

(𝐸6)𝐾
′
6

)
𝐾′
1𝐾

′
2𝐾

′
3𝐾4𝐾5. (A.59)

Proof. Recall from Lemma A.3 that the operator ∍ defined in (A.3) commutes with each of the
automorphisms T̃4, T̃32, T̃23, T̃𝐫1

, T̃𝐫6
.

We first prove the formula (A.58). Applying ∍ to (A.53) and then using (A.4)–(A.5), we obtain

T̃ −1
𝐫6

(
T̃𝑤∙

(𝐸5)𝐾
′
1

)
T̃𝑤∙,6

(−1
5 )

= −𝑞−2[T̃23(𝐵6)T̃432(
−1
6 ), T̃𝑤∙

(𝐸5)𝐾
′
1T̃𝑤∙

(−1
5 )]𝑞

= −𝑞−1[T̃23(𝐵6), T̃𝑤∙
(𝐸5)𝐾

′
1]𝑞T̃432(

−1
6 )T̃𝑤∙

(−1
5 ), (A.60)

where the last equality follows by a weight consideration. On the other hand, we have
T̃𝑤∙,6

(−1
5 ) = −𝑞−1T̃432(

−1
6
)T̃𝑤∙

(−1
5 ). Thus, the formula (A.58) follows from (A.60).

We next prove the formula (A.59). Applying ∍ in the identity (A.3) to (A.54) and using (A.4)–
(A.5), we obtain

T̃ −1
𝐫1

(
T̃𝑤∙

(𝐸6)𝐾
′
6

)
T̃𝑤∙,1

(−1
6 )

= 𝑞−4
[
T̃4(𝐵5)T̃4T̃𝑤∙

(−1
1 ), [T̃32(𝐵1)T̃32T̃𝑤∙

(−1
5 ), T̃𝑤∙

(𝐸6)𝐾
′
6T̃𝑤∙

(−1
6 )]𝑞

]
𝑞

− T̃ −1
32323

(
T̃𝑤∙

(𝐸6)𝐾
′
6

)
T̃𝑤∙

(−1
6 )∍(𝐾′

1𝐾
′
2𝐾

′
3𝐾4𝐾5). (A.61)

Note that T̃4T̃𝑤∙
(−1

1
) = T̃32(𝐾

−1
1
)T̃4(𝐾

′
5)
−1 and T̃32T̃𝑤∙

(−1
5 ) = T̃4(𝐾

−1
5 )T̃32(𝐾

′
1
)−1. We also

note that 𝐾′
1
𝐾′
2
𝐾′
3
𝐾4𝐾5 = T̃32(𝐾

′
1
)T̃4(𝐾5) and then ∍(𝐾′

1
𝐾′
2
𝐾′
3
𝐾4𝐾5) = 𝑞−1T̃4(𝐾

′
5)
−1T̃32(𝐾

−1
1
).

Hence, (A.61) can be rewritten as

T̃ −1
𝐫1

(
T̃𝑤∙

(𝐸6)𝐾
′
6

)
T̃𝑤∙,1

(−1
6 )

= 𝑞−4
[
T̃4(𝐵5)T̃32(𝐾

−1
1 )T̃4(𝐾

′
5)
−1, [T̃32(𝐵1𝐾

′−1
1 )T̃4(𝐾

−1
5 ), T̃𝑤∙

(𝐸6)𝐾
′
6T̃𝑤∙

(−1
6 )]𝑞

]
𝑞

− 𝑞−1T̃ −1
32323

(
T̃𝑤∙

(𝐸6)𝐾
′
6

)
T̃𝑤∙

(−1
6 )T̃4(𝐾

′
5)
−1T̃32(𝐾

−1
1 ). (A.62)

For a weight reason, we have

T̃4(𝐾
−1
5 )T̃32(𝐾

′
1)
−1T̃𝑤∙

(𝐸6) = 𝑞T̃𝑤∙
(𝐸6)T̃4(𝐾

−1
5 )T̃32(𝐾

′
1)
−1,

T̃𝑤∙
(−1

6 )T̃32(𝐵1) = 𝑞T̃32(𝐵1)T̃𝑤∙
(−1

6 ),

T̃32(𝐾1)T̃4(𝐾
′
5)[T̃32(𝐵1), T̃𝑤∙

(𝐸6)𝐾
′
6]𝑞 = 𝑞−2[T̃32(𝐵1), T̃𝑤∙

(𝐸6)𝐾
′
6]𝑞T̃32(𝐾1)T̃4(𝐾

′
5),

T̃4(𝐾
−1
5 )T̃32(𝐾

′
1)
−1T̃𝑤∙

(−1
6 )T̃4(𝐵5) = 𝑞2T̃4(𝐵5)T̃4(𝐾

−1
5 )T̃32(𝐾

′
1)
−1T̃𝑤∙

(−1
6 ).
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Using the above four identities, we rewrite (A.62) as

T̃ −1
𝐫1

(
T̃𝑤∙

(𝐸6)𝐾
′
6

)
T̃𝑤∙,1

(−1
6 )

= 𝑞−1
[
T̃4(𝐵5), [T̃32(𝐵1), T̃𝑤∙

(𝐸6)𝐾
′
6]𝑞

]
𝑞
T̃𝑤∙

(−1
6 )T̃32(𝐾1𝐾

′
1)
−1T̃4(𝐾5𝐾

′
5)
−1

− 𝑞−1T̃ −1
32323

(
T̃𝑤∙

(𝐸6)𝐾
′
6

)
𝐾′
1𝐾

′
2𝐾

′
3𝐾4𝐾5T̃𝑤∙

(−1
6 )T̃32(𝐾1𝐾

′
1)
−1T̃4(𝐾5𝐾

′
5)
−1. (A.63)

Moreover, we have T̃𝑤∙,1
(−1

6
) = 𝑞−1T̃𝑤∙

(−1
6
)T̃32(𝐾1𝐾

′
1
)−1T̃4(𝐾5𝐾

′
5)
−1. Thus, (A.63) implies the

desired formula (A.59). □

ACKNOWLEDGMENTS
We thank Stefan Kolb and Ming Lu for helpful comments and suggestions. We thank an anony-
mous referee for a careful reading and helpful comments. WW is partially supported by the NSF
grant DMS-2001351. WZ is supported by a GSAS fellowship at University of Virginia and WW’s
NSF Graduate Research Assistantship.

JOURNAL INFORMATION
The Proceedings of the LondonMathematical Society is wholly owned andmanaged by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

REFERENCES
1. S. Araki,On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City

Univ. 13 (1962), 1–34.
2. A. Appel and B. Vlaar, Universal 𝑘-matrices for quantum Kac-Moody algebras, Represent. Theory 26 (2022),

764–824.
3. T. Bridgeland, Quantum groups via Hall algebras of complexes, Ann. Math. 177 (2013), 739–759.
4. V. Back-Valente, N. Bardy-Panse, H. Ben Messaoud, and G. Rousseau, Formes presque-déployées des algèbres

de Kac-Moody: classification et racines relatives, J. Algebra 171 (1995), 43–96.
5. M. Balagovic and S. Kolb, Universal 𝐾-matrix for quantum symmetric pairs, J. Reine Angew. Math. 747 (2019),

299–353.
6. R. Bezrukavnikov and K. Vilonen, Koszul duality for quasi-split real groups, Invent. Math. 226 (2021), 139–193.
7. H. Bao and W. Wang, A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs,

Asterisque 402 (2018), vii+134pp. arXiv: 1310.0103
8. H. Bao and W. Wang, Canonical bases arising from quantum symmetric pairs, Inventiones Math. 213 (2018),

1099–1177.
9. H. Bao and W. Wang, Canonical bases arising from quantum symmetric pairs of Kac-Moody type, Compositio

Math. 157 (2021), 1507–1537.
10. L. Chekhov, Teichmüller theory of bordered surfaces, SIGMA Symmetry Integrability Geom. Methods Appl. 3

(2007), Paper 066, 37 pp.
11. X. Chen, M. Lu, and W. Wang, Serre-Lusztig relations for 𝚤quantum groups, Commun. Math. Phys. 382 (2021),

1015–1059.
12. X. Chen, M. Lu, andW.Wang, Serre-Lusztig relations for 𝚤quantum groups III, J. Pure Appl. Algebra 227 (2023),

no. 4, Paper No. 107253.
13. L. Dobson, Braid group actions and quasi 𝐾-matrices for quantum symmetric pairs, Ph.D. thesis, School of

Mathematics, Statistics and Physics, Newcastle University, 2019.

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12562 by U

N
IV

ER
SITY

 O
F V

IR
G

IN
IA

, W
iley O

nline Library on [10/11/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s­and­conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



RELATIVE BRAID GROUP SYMMETRIES ON 𝚤QUANTUM GROUPS 1423

14. L. Dobson, Braid group actions for quantum symmetric pairs of type AIII/AIV, J. Algebra 564 (2020), 151–198.
15. L. Dobson and S. Kolb, Factorisation of quasi 𝐾-matrices for quantum symmetric pairs, Selecta Math. (N.S.) 25

(2019), 63.
16. J. C. Jantzen, Lectures on quantum groups, Grad. Studies in Math., vol. 6, Amer. Math. Soc., Providence, RI,

1996.
17. A.N.Kirillov andN.Reshetikhin, 𝑞-Weyl groupandamultiplicative formula for universal𝑅-matrices, Commun.

Math. Phys. 134 (1990), 421–431.
18. S. Kolb, Quantum symmetric Kac-Moody pairs, Adv. Math. 267 (2014), 395–469.
19. S. Kolb, The bar involution for quantum symmetric pairs – hidden in plain sight, Hypergeometry, Integrability

and Lie theory, Contemp. Math., vol. 780, Amer. Math. Soc., Providence, RI, 2022, pp. 69–77.
20. S. Kolb and J. Pellegrini, Braid group actions on coideal subalgebras of quantized enveloping algebras, J. Algebra

336 (2011), 395–416.
21. S. Kolb andM. Yakimov, Symmetric pairs for Nichols algebras of diagonal type via star products, Adv. Math. 365

(2020), 107042, 69 pp.
22. G. Letzter, Symmetric pairs for quantized enveloping algebras, J. Algebra 220 (1999), 729–767.
23. G. Letzter, Coideal subalgebras and quantum symmetric pairs, New directions in Hopf algebras (Cambridge),

MSRI publications, vol. 43, Cambridge University Press, Cambridge, 2002, pp. 117–166.
24. S. Levendorskii and Y. Soibelman, Some applications of the quantum Weyl groups, J. Geom. Phys. 7 (1990),

241–254.
25. G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 28 (1976), 101–159.
26. G. Lusztig, Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra, J. Amer.

Math. Soc. 3 (1990), 257–296.
27. G. Lusztig, Quantum groups at roots of 1, Geom. Dedicata 35 (1990), 89–114.
28. G. Lusztig, Introduction to quantum groups, Modern Birkhäuser Classics, Reprint of the 1993 Edition,

Birkhäuser, Boston, 2010.
29. G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Series, vol. 18, Amer. Math. Soc.,

Providence, RI, 2003; for an enhanced version, see arXiv:0208154v2
30. M. Lu and W. Wang, Hall algebras and quantum symmetric pairs II: reflection functors, Commun. Math. Phys.

381 (2021), 799–855.
31. M. Lu and W. Wang, Braid group symmetries on quasi-split 𝚤quantum groups via 𝚤Hall algebras, Selecta Math.

28 (2022), 84.
32. M. Lu andW.Wang,Hall algebras and quantum symmetric pairs I: foundations, Proc. Lond. Math. Soc. (3) 124

(2022), 1–82.
33. A. Molev and E. Ragoucy, Symmetries and invariants of twisted quantum algebras and associated Poisson

algebras, Rev. Math. Phys. 20 (2008), 173–198.
34. A. Onishchik and E. Vinberg, Lie groups and algebraic groups, Springer Series in SovietMathematics, Springer,

Berlin, 1990.
35. C. M. Ringel, PBW-bases of quantum groups, J. Reine Angrew. Math. 470 (1996), 51–88.
36. H. Watanabe, Classical weight modules over 𝚤quantum groups, J. Algebra 578 (2021), 241–302.
37. H. Watanabe, Crystal bases of modified 𝚤quantum groups of certain quasi-split types, arXiv: 2110.07177

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12562 by U

N
IV

ER
SITY

 O
F V

IR
G

IN
IA

, W
iley O

nline Library on [10/11/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s­and­conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License


	An intrinsic approach to relative braid group symmetries on quantum groups
	Abstract
	1 | INTRODUCTION
	1.1 | Background
	1.2 | Goal
	1.3 | The basic idea
	1.4 | Main results
	1.4.1 | New intertwining properties of quasi -matrices
	1.4.2 | New symmetries 
	1.4.3 | A basic property of braid symmetries
	1.4.4 | Factorizations of a quasi -matrix
	1.4.5 | Relative braid group relations
	1.4.6 | Relative braid group symmetries on 
	1.4.7 | Relative braid group actions on -modules

	1.5 | Future works and applications
	1.6 | Organization
	1.7 | Notations

	2 | DRINFELD DOUBLES AND QUANTUM SYMMETRIC PAIRS
	2.1 | Quantum groups and Drinfeld doubles
	2.2 | Braid group action on the Drinfeld double 
	2.3 | Satake diagrams and relative Weyl/braid groups
	2.4 | Universal quantum groups
	2.5 | Quantum group via central reduction

	3 | QUASI -MATRIX AND INTERTWINING PROPERTIES
	3.1 | Quasi -matrix
	3.2 | A bar involution on 
	3.3 | Quasi -matrix and anti-involution 
	3.4 | An anti-involution on 
	3.5 | An anti-involution on 

	4 | NEW SYMMETRIES ON 
	4.1 | Rescaled braid group action on 
	4.2 | Symmetries , for 
	4.3 | Characterization of 
	4.4 | Quantum symmetric pairs of diagonal type
	4.5 | Action of on 
	4.6 | Integrality of 
	4.7 | A uniform formula for 

	5 | RANK 2 FORMULAS FOR 
	5.1 | Some commutator relations with 
	5.2 | Motivating examples: Types BI, DI, DIII
	5.3 | Formulation for 
	5.4 | Proof of Theorem 5.5
	5.5 | A comparison with earlier results
	5.5.1 | Type AI
	5.5.2 | Type AII
	5.5.3 | Type AIII
	5.5.4 | Type AIII
	5.5.5 | Split type
	5.5.6 | Formulas on 


	6 | NEW SYMMETRIES ON 
	6.1 | Characterization of 
	6.2 | Action of on 
	6.3 | Rank 1 formula for 
	6.4 | Rank 2 formulas for 
	6.5 | and as inverses

	7 | A BASIC PROPERTY OF NEW SYMMETRIES
	7.1 | Rank 2 cases with 
	7.2 | Rank 2 cases with 
	7.3 | Rank 2 case with 
	7.4 | The general identity 

	8 | FACTORIZATION OF QUASI -MATRICES
	8.1 | Factorization of 
	8.2 | Reduction to rank 2
	8.3 | Factorizations in rank 2
	8.3.1 | Factorization for 
	8.3.2 | Factorization for 
	8.3.3 | Factorization for 


	9 | RELATIVE BRAID GROUP ACTIONS ON QUANTUM GROUPS
	9.1 | Braid group relations among 
	9.2 | Action of the braid group on 
	9.3 | Intertwining properties of 
	9.4 | Braid group action on 

	10 | RELATIVE BRAID GROUP ACTIONS ON -MODULES
	10.1 | Intertwining relations on 
	10.2 | Compatible actions of on -modules
	10.3 | Relative braid relations on -modules

	APPENDIX: PROOFS OF PROPOSITION 5.11 AND TABLE 3
	A.1 | Some preparatory lemmas
	A.2 | Split types of rank 2
	A.2.1 | 
	A.2.2 | 
	A.2.3 | 

	A.3 | Type AII
	A.4 | Type CII, 
	A.5 | Type CII
	A.6 | Type EIV
	A.7 | Type AIII
	A.8 | Type AIII
	A.9 | Type DIII
	A.10 | Type EIII

	ACKNOWLEDGMENTS
	JOURNAL INFORMATION
	REFERENCES


