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1 | INTRODUCTION
1.1 | Background

Braid group symmetries have played an essential role in understanding the structures of Drinfeld-
Jimbo quantum groups U and have found applications in geometric representation theory and
categorification among others. These symmetries were constructed by Lusztig and used in first
constructions of PBW bases and canonical bases in ADE type [26]. They have further been gener-
alized to nonsimply laced types and beyond [27, 28]. Another crucial property is that there exists
a compatible braid group action on integrable U-modules. A systematic exposition on the braid
group actions on quantum groups and their modules forms a significant portion of Lusztig’s book
[28, Ch. 5, Part VI].

Let U = (El-,Fi,Ki,Ki’ | i € 1) be the Drinfeld double quantum group, where Kl-Ki’ are central.
The quantum group U = (E;, F;, K;—'l | i €1) is recovered from U by a central reduction:

U=U/KK -1]i€.

The Drinfeld doubles naturally arise from the Hall algebra construction of Bridgeland [3], and
it is shown in [31] that reflection functors provide braid group actions on the Drinfeld doubles;
see Proposition 2.3. As a straightforward generalization for Lusztig’s symmetries on U [28, 37.2.4],
there are four variants of braid group operators Tl.’,e, Tl.’,’e on U, fore e {#1} and i € I, which are
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RELATIVE BRAID GROUP SYMMETRIES ON :QUANTUM GROUPS 1341

related to each other by conjugations of certain (anti-) involutions [31]; see (2.10):

Ti,,—e =00 Tl{,,+e °0o, Tl{,,—e = 1’0 ° Ti’,,+e ° 1’0’ Ti’,+e o= ¢ ° Tl{,—e ° ¢ (1’1)
Here, 1 is the bar involution and o is an anti-involution on U; see Proposition 2.2.

Associated with any Satake diagram (I =1, Ul,,7), a quantum symmetric pair (U, Uls) was
introduced by Gail Letzter in finite type [22, 23] as a g-deformation of the usual symmetric pair;
here, Ulg is a coideal subalgebra of U depending on parameters ¢ = (§;);¢; - Universal quantum
symmetric pairs (U, U) (of quasi-split type) were formulated in [32], where the parameters are
replaced by suitable central elements in U*, and Ulg is recovered from U* by a central reduction.
(U, U* will be referred to as iquantum groups, and they are called quasi-split if I, = @ and split
if in addition 7 = Id.) Several fundamental constructions on quantum groups, including (quasi)
R-matrix, canonical bases, and Hall algebra realization have been generalized to the setting of
quantum symmetric pairs in recent years; see [5, 7, 8, 32].

Lusztig’s braid group actions on U do not preserve the subalgebra Ulg in general. Kolb-Pellegrini
[20] proposed that there should be relative braid group symmetries on iquantum groups corre-
sponding to the relative (or restricted) Weyl groups for the underlying symmetric pairs. For a class
of iquantum groups of finite type (including all quasi-split types and type AII) with some specific
parameters, formulas for such braid group actions were found and verified loc. cit. via computer
computation. The relative braid group action for type Al appeared earlier in [10] and [33].

There has been some limited progress on relative braid group action on U‘g in the last decade; for
type AIIL, see Dobson [14]. An tHall algebra approach has been developed to realize the universal
quasi-split iquantum groups U* [32]. As a generalization of Ringel’s construction [35], reflection
functors [30, 31] are used to construct relative braid group actions on U* of quasi-split type, where
the braid group operators act on the central elements in U’ nontrivially. For U* or U’g in gen-
eral beyond quasi-split type, no conjectural formulas or conceptual explanations for relative braid
group actions were available.

There are braid group actions on U-modules that are compatible with braid group actions on
quantum groups, cf. [28]. In contrast, no relative braid group action on Ulg—modules has been
known to date. The Hall algebra approach does not help providing any clue on such action at the
module level.

1.2 | Goal

Our goal is to develop a conceptual and general approach to relative braid group actions on
iquantum groups, arising from (universal) quantum symmetric pairs of arbitrary finite type, and
on their modules for the first time. This, in particular, settles the longstanding conjecture of Kolb
and Pellegrini [20] in a constructive manner.

It is crucial for us to work with universal :quantum groups. We shall formulate relative braid
group symmetries ’Tlf’e, ’T‘:’e on U, fore e {+1}and i € l,.r» Which are related to each other via
conjugations by a bar involution ¢! and an anti-involution ¢* on U*; compare (1.1):

T;,—e =a'o Tl{,,+e ° Ul’ TZ—@ = zpl ° rﬁf‘t{,/+e ° lpl’ Tz{,+e = lpl ° T;,—e ° Zpl‘

By central reductions and rescaling automorphisms, these symmetries descend to relative braid

group actions on iquantum groups with parameters U‘g. Moreover, we are able to formulate
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1342 | WANG and ZHANG

compatible relative braid group actions on integrable U-modules. We further establish a num-
ber of basic properties of these new symmetries that are natural i-counterparts of well-known
properties for Lusztig’s braid group symmetries.

1.3 | The basic idea

Various constructions for quantum groups can be regarded as constructions for quantum sym-
metric pairs of diagonal type (U ® U, U), and hence, iquantum groups can be viewed as a vast
generalization of quantum groups. This simple observation can be instrumental on determining
what form a suitable i-generalization should take; for example, this view was applied successfully
in the developments of icanonical bases arising from quantum symmetric pairs in [8] and :Hall
algebras that realize universal iquantum groups [32]; see also the recent development of icrystal
bases by Watanabe [37].
Denote by L' the rank 1 quasi R-matrix associated to i € I, and let L! be its inverse. The
following formula in [28, 37.3.2]
(T, _, ®T; _DAT

V' u) = LIA@)L! (1.2)

provides a relation between braid group actions on U and U ® U; a formula similar to (1.2) via a
different formulation of braid operators appeared in [24] and [17]. A starting point of this paper is
to view a variant of the identity (1.2) as a formula in the setting of (universal) quantum symmetric
pairs of diagonal type (U ® U, U); see §4.4.

Now, let (U, U") be a general universal quantum symmetric pair. Inspired by the relation (1.2),
we aim at formulating a relation between braid group action on the Drinfeld double U and the
desired relative braid group action on the universal iqquantum group U* through conjugations of
rank 1 quasi K-matrices Y;, for i € I..

Quasi K-matrices were originally formulated in [7] as an intertwiner between the embedding
1 Uls — U and a bar-involution conjugated embedding (for parameters ¢ satisfying strong con-
straints); a proof in greater generality was given in [5] under a technical assumption (which was
removed later in [9]). A reformulation by Appel and Vlaar [2] (also see [21]) bypassed a direct
use of the bar maps, allowing more general parameters ¢. In this paper, we upgrade these con-
structions by formulating the quasi K-matrices Y for universal quantum symmetric pairs, and, in
particular, the rank 1 quasi K-matrices S?i, fori e ..

Dobson and Kolb [15] proposed (conjectural) factorizations of quasi K-matrices in finite types
into products of rank 1 quasi K-matrices, analogous to factorizations of quasi R-matrices [17, 24].
In their formulation, a certain scaling twist shows up. In this paper, we upgrade the formulation
of the factorization together with the corresponding scaling twist to quasi K-matrices Y in the
universal setting.

Examples indicate that our basic idea of constructing the desired relative braid group action on
U' via quasi K-matrix and braid group action on U (viewed as a generalization of (1.2)) basically
works — up to a simple twist: it is necessary to use suitably rescaled braid group operators on U.
Remarkably, this scaling turns out to coincide with the aforementioned scaling which appears in
the factorizations of a quasi K-matrix Y. We are able to explore this compatibility to draw strong
consequences on the seemingly unrelated topics: relative braid group actions and the factorization
of quasi K-matrices.
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RELATIVE BRAID GROUP SYMMETRIES ON :QUANTUM GROUPS 1343

1.4 | Main results
1.4.1 | New intertwining properties of quasi K-matrices

We formulate universal quantum symmetric pairs (U, U') associated to arbitrary Satake diagrams
and their basic properties in Section 2.4, following and generalizing the quasi-split setting in [32].
The algebra U’ contains U and U, naturally as subalgebras, where U, is the Drinfeld double
associated to I, and U™ is a Cartan subalgebra generated by Ei = KiK; foriel,.

We recall the recent somewhat technical formulation of a quasi K-matrix Y, for (U, Ulg) from
[2] (cf. [5, 7, 8] for earlier constructions) in Theorem 3.1 and upgrade it to a universal version Y for
(U, U") in Theorem 3.2. It turns out that Y admits a more conceptual and simpler characterization
in terms of the anti-involution ¢ on U as follows.

Theorem A (Theorem 3.6). The quasi K-matrix Y = Z#eN
characterized by YO = 1 and the following intertwining relations:

YK, for Y+ € ﬁ;, is uniquely

Bi? = ?Big (iel), xY =Yx (x e UP0)).

This characterization of Y plays a basic role in producing explicit formulas for relative braid
group actions on U'; see the proof of Theorem 5.5 in §5.4. There is a similar simple characterization
of Y, for UL in terms of the anti-involution o7 on U; see Theorem 3.16. (It is tempting to regard
this as a new definition of Yg.) N B

We use a distinguished scaling automorphism ¥, to define a rescaled bar involution 3, on U
(by twisting the bar involution ¢ on U). By exploring further intertwining properties via Y as in
[19], we establish in Kac-Moody generality a bar involution ¥’ (see Proposition 3.4) and an anti-
involution ¢* (see Proposition 3.12) from ¢, and o, respectively. These (anti-)involutions %' and
¢! were known in some quasi-split cases; see [12].

Denote by ?i, for i € 1,, the quasi K-matrix associated to the rank 1 Satake subdiagram (I, U
{i,7i}, 7).

1.42 | New symmetries ’T‘lf,e, T‘:’e
Associated to a Satake diagram (I =1, U,,7), one has the (absolute) Weyl group W generated
by the simple reflections s;, for i € [, and a finite parabolic subgroup W, = (s; | i € 1,) with the
longest element w,. Given i € [,,, one has a rank 1 Satake subdiagram (1, ; = I, U {i,7i}, 7), and
define r; € W as in (2.14). As r; = r;, it suffices to restrict to r;, for i € I, ; (here [, ; is a set of
fixed representatives of t-orbits on I). The relative Weyl group W° is a subgroup of W generated
byr;, fori € I, ; abstractly, W* is a Weyl group with r; (i € [, ;) as simple reflections [25]; also see
[15, 29, 34].

Let Tl’ / ., and T'[.”_l, fori € 1, be the braid group operators on U [31]; see Proposition 2.3. Let §;’ -
and 9{”_1 be the rescaled version of Tl” 4 and Til,—1 via conjugation by a scaling automorphism

fpgo; see (4.2)-(4.3). As 5}7 1 for j € I, satisfy the braid relations, we can make sense of ZL’) ' for

w € W, and, in particular, zz’ i fori € 1,, as automorphisms of U.
s
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1344 | WANG and ZHANG

Theorem B (Theorem 4.7, Proposition 4.11, Theorem 4.14, Theorem 5.5). Let i € [,,. There exists a
unique automorphism Tlf _, of U' such that the following intertwining relation holds:

T‘:’_l(x)?i = ?iz,—l(x)’ forall x € U 1.3)

. . [~ Tyl . .
More precisely, the action of Tl.H on U' is given as follows:

T ~’ () =&, 0D)(x), and T’ (kj o) = m o forallx € U.,jel..
(2) (B ) - _q (al’w a“)y (Bz' TL)KT ‘[l
3) Theformulasfor T;,—1(Bj) (i#je c,,T) are listed in Table 3.

See (2.15) and (4.15) for notation 7, ; and EM; also see (4.5) and Remark 4.3 for the braid group
operator ? By definition, we have r; = r,;, Y; = Y,;, and ’Pf‘;y_l = ’T"T 1 thus, we only need to
consider T’ ploriel, .

In the same spirit of (1.3) in Theorem B, the identity (1.2) for the Drinfeld double quantum group
U can be reformulated as the intertwining relation (4.8) for quantum symmetric pair (U ® U, U)
of diagonal type.

Another symmetry Tl 41 on U, forie I,, is formulated in Theorem 6.1 that satisfies the

following intertwining relation in (6.1), similar to (1.3):
T, (x) ~7’+1(Y H= ﬂ"H(Y b 9”+1(x) for all x € U

We further define two more symmetries T’ , and T’ ', on U' by conjugating T’ _, and T:’ )
via the involution ¢'; see (6.11). These symmetrles are related to each other as follows compare

[28, Chap. 37].

Theorem C (Theorem 6.7). Let e = +1 and i € I,. The symmetries T, , and T/ are mutual
inverses. Moreover, we have 'T‘: .= olo T‘;’_e ool

Actually, part of the proof of Theorem B (i.e., the invertibility of ’T‘; _,) is completed only when

it is established in Theorem C that 'T‘: and T: ! L, are mutual inverses. This is one main reason

why we have formulated ’T‘;’ " separately in spite of its many similarities with the properties for
’Af‘lf’_l which we already established.

Here is an outline of proofs of Theorems B-C. We first establish the existence of an endomor-
phism ’AId‘lf,_l on U' which satisfies the intertwining relation (1.3), by proving Properties (1)-(3) in
Theorem B one-by-one. Properties (1)—(2) are established uniformly in Proposition 4.11 and The-
orem 4.14. We formulate a structural result in Proposition 5.11 as a main step toward a uniform
proof of the rank 2 formulas in (3) (see Theorem 5.5); Proposition 5.11 is then verified by a type-
by-type computation in the Appendix. In order to prove the invertibility of ’T‘lf,_l, we establish

another endomorphism ’T‘lf’ L on U* which satisfies the intertwining relation (6.1) in Theorem 6.1;
the existence for ’T" ! | is proved by a strategy similar to the one for ’T‘: _,- Finally, we show in Theo-

rem 6.7 that T’ and T’ ', | are mutual inverses by invoking the uniqueness of elements satisfying
an 1ntertw1n1ng relatlon
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The formulas for actions of 'T‘: , and T{ ! L, on generators of U' are mostly new. In quasi-split
types, up to some twistings, we recover the formulas obtained by Hall algebra computation in
[30], and by central reductions to U, we recover formulas obtained by computer computation in

[20].

1.4.3 | A basic property of braid symmetries

The following theorem is a generalization of a well-known basic property of braid group action
on quantum groups; see [28].

Theorem D (See Theorem 7.13). Suppose that wi € 1,, for w € W° and i € l,. Then we have
T, (B)=B

The dependence in the formulation of Theorem 7.13 on reduced expressions w of w can be
removed, once Theorem F on braid relations for T” , Is established. We reduce the proof of
Theorem D to the rank 2 cases. The proofs in rank 2 cases are largely uniform (avoiding type-
by-type computation), based on the counterpart results in quantum group setting, the defining

intertwining property of T 'o.+1> and some weight arguments.

1.4.4 | Factorizations of a quasi K-matrix

It is well known that a quasi R-matrix admits a factorization into a product of rank 1 R-matrices
parametrized by positive roots; see [17, 24]; also cf. [16].

Dobson and Kolb [15] proposed a conjecture on an analogous factorization of a quasi K-matrix
into a product, denoted by ?wo’ of rank 1 factors parametrized by restricted positive roots; see
(8.1) for notation. They established a reduction from a general finite type to the rank 2 Satake
diagrams. In addition, they established the rank 2 cases of split types and type AII/AIII, via a
type-by-type lengthy computation based on several explicit formulas for rank 1 quasi K-matrices
which they computed.

Exploring (the rank 2 cases of) Theorem D and some of its consequences, we provide a uniform
and concise proof that ?wo satisfies the same defining intertwining relations for Y. Then, the
factorization property for arbitrary finite types follows by the uniqueness of Y.

Theorem E (Dobson-Kolb Conjecture Theorem 8.1). The quasi K-matrix Y for U' of finite type
admits a factorization Y = Y

1.4.5 | Relative braid group relations

Recall Lusztig’s symmetries Tlf,e, T! fe on a quantum group U satisfy braid group relations associated
to the (absolute) Weyl group W [28]; see [31] for analogous statements on a Drinfeld double U. We
have the following generalization in the setting of iquantum groups. Denote by Br(W ) the braid
group associated to W°.
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1346 | WANG and ZHANG

Theorem F (Theorem 9.1). Fix e € {+1}. The symmetries 'T‘; , (and respectively, 'T‘;’e )of U, fori e
I, ;> satisfy the relative braid group relations in Br(W°).

With the help of the intertwining relation (1.3), the proof of Theorem F is built on the
braid group relations for ?; (i €1) and the factorization properties of rank 2 quasi K-matrices
established in Theorem E.

It was shown in [8] that Lusztig’s symmetries T} , and T}’ on U, for i € I,, preserve the sub-
algebra U‘ (under some constraints on ¢). We eas1ly upgrade this statement to the universal
quantum symmetrlc pair (U, UY), providing a braid group action of Br(W,) on U’; see Proposi-
tion 4.5. Actually, we obtain four variants of actions of Br(W,) on U* generated by Z’ . Or ,?;’ ; , for
Jj € 1., respectively.

It is further established that the two (“black and white”) braid group actions on U' combine
neatly into an action of a semidirect product Br(W,) X Br(W°) on U".

Theorem G (Theorem 9.3, Corollary 9.7). Let e = +1.

(1) There exists a braid group action of Br(W,) X Br(W°) on U' as automorphisms of algebras
generated by :?\;e (j el.)and ’T‘l(’e (i €1,.).

(2) There exists a braid group action of Br(W,) X Br(W°) on U* as automorphisms of algebras
generated by Z’; (j el.)and T‘Z’e (i €1,.).

Theorem G (or more precisely, its Uls-counterpart in Theorem 9.10; see §1.4.6 below) confirms
an old conjecture of Kolb and Pellegrini [20, Conjecture 1.2] in full generality, and moreover, we
have provided precise formulas for the braid group actions.

1.4.6 | Relative braid group symmetries on U;

By central reductions, the symmetries T’ T’ ! , on the universal iquantum group U, fori €1,
descend naturally to the iquantum group U’ Wlth the distinguished parameter g,. On the other

hand, the symmetries T’ i1 T’ ! , haturally descend to U‘s ; see the commutative diagrams in §9.4.

We then transport the relative brald group symmetries from Ul and Ulg to the iquantum groups
Ul (see Theorems 9.9-9.10), for an arbitrary parameter g, thanks to the isomorphism UL = Ul
glven in Proposition 2.7.

1.4.7 | Relative braid group actions on U-modules

Let i €1,, e = £1, and ¢ be a balanced parameter (see the line below (2.18)). We show that
the symmetries T;,E,T;,’e on the iquantum group Uls (defined by central reductions) satisfy
natural intertwining relations with the usual braid group symmetries on U. These intertwin-
ing properties allow us to formulate automorphisms (denoted again by the same notations
T: ,»T!") on an arbitrary finite-dimensional U-module M of type 1; see (10.12). These operators
on M adm1t favorable properties parallel to those satisfied by Lusztig’s braid group actions on

modules.
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RELATIVE BRAID GROUP SYMMETRIES ON :QUANTUM GROUPS | 1347

Theorem H (Theorem 10.5, Theorem 10.6). Let i €1, and e = +1, and let M be any finite-
dimensional U-module of type 1. The automorphisms T;e,Tg’e on M are compatible with the
corresponding automorphisms on Uls, that is,

/ o / 7 o 1
T, () = T, (T, (), T/,(xv) = T/, ()T, ),

forany x € Uls, U € M. Moreover, the operators Tlf . (respectively, Tlf’e )on M, fori € l,, satisfy the
relative braid group relations in Br(W°).

In this paper, we have assumed that a ground field F is the algebraic closure of Q(q) partly
1

due to uses of rescaling automorphisms, though often it suffices to work with the field @(q2) if
we choose the parameters ¢ suitably. There is a Q(g)-form U’ of U' such that U' = F ®q(q) o U"
see (5.17). The symmetries ’T‘: o ’T‘g’e indeed preserve the Q(q)-subalgebra ,U'; see Proposition 5.9.

Theorems A-G remain valid for o U".

1.5 | Future works and applications

The formulations of the main results (Theorems A-H), up to some reasonable rephrasing, make
sense for universal quantum symmetric pairs of arbitrary Kac-Moody type (cf. [18]), and we con-
jecture they are valid in this great generality. For example, the symmetries ”Iu‘l(’_l, fori € 1,, for U*
of Kac-Moody type will follow once Conjecture 5.13 is confirmed. The main reason on the restric-
tion to finite types in this paper is that we rely on the classification of Satake diagrams to explicitly
compute the rank 2 formulas for Tlf,_l(B ;) and ’T‘:’ 1(B}), which, in particular, verify that they lie
in U". Section 3 is valid in Kac-Moody generality. Steps (1)-(2) in Theorem B (which occupy most
of Section 4) are also valid in the Kac-Moody setting.

Some further developments will be carried out in future works. We shall extend the construc-
tions of relative braid group actions to (universal) iquantum groups of affine type. We plan to use
the new tools developed in this paper to attack the conjectures in [11, 12] on relative braid group
actions on quasi-split universal iquantum groups of Kac-Moody type. We also plan to understand
the relative braid group action on U!-modules more explicitly, and this may serve as a starting
point for a new approach toward relative braid group action on iquantum groups; compare [28].

The relative braid group symmetries of this paper (and their affine generalization) will be used
crucially in the Drinfeld-type presentation of quasi-split affine iquantum groups in an upcoming
work joint with Ming Lu. It is expected that they will continue to play a key role for Drinfeld-type
presentations of general affine iquantum groups.

One may hope that these new braid group symmetries preserve the integral Z[g, g~!]-form on
(modified) iquantum groups in [8, 9]. (This will be highly nontrivial to verify, as the idivided pow-
ers are much more sophisticated than the divided powers.) It will be interesting to develop further
connections among relative braid group actions, PBW bases, and icanonical bases; compare [28].
They may help to stimulate further Khovanov-Lauda-Rouquier (KLR)-type categorification of
iquantum groups as well as tHall algebra realization of iqquantum groups beyond quasi-split type.

Kolb and Yakimov [21] extended the construction of quantum symmetric pairs to the setting
of Nichols algebras of diagonal type. The new intertwining properties of quasi K-matrices and
the relative braid group actions established in this paper seem well suited for generalizations in
this direction.
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1348 | WANG and ZHANG

The notion of relative Coxeter groups, which is valid in a more general setting than symmetric
pairs, admits a geometric interpretation [25, 29]. It will be exciting to realize relative braid group
action in geometric and categorical frameworks, and develop possible connections to the repre-
sentation theory of real groups (cf. [6] and references therein). It will be very interesting to explore
more general braid group actions associated to relative Coxeter groups.

1.6 | Organization

The paper is organized into Sections 2-10 and the Appendix. Below we provide a detailed
description section by section.

In Section 2, we review and set up the basics and notations on quantum groups U and Drinfeld
doubles U, including several (anti-) involutions and a rescaling automorphism ¥, on U. We recall
explicit formulas for braid group actions on U. Associated to a Satake diagram (1 =1, Ul,, 1), we
form a relative Weyl group W° = (r; | i € 1,). Then, we formulate (universal) quantum symmetric
pairs (U, U") and (U, U‘g).

In Section 3, we formulate quasi K-matrix Y in the universal quantum symmetric pair setting,
and establish a new intertwining property via the anti-involution o on U. We establish an anti-
involution ¢* on U' via o and an intertwining property of Y. We formulate a rescaled bar involution
¥, on U, and then establish a bar involution %' on U* via 3, and an intertwining property of Y.
An anti-involution o, on Ulg for an arbitrary parameter ¢ is also established.

In Section 4, we formulate rescaled braid group symmetries 23 _p forw e W, on U via a rescal-

ing automorphism ¥, . We define T/ __ in terms of an intertwining property involving Y and the

i,—1
rescaled braid group symmetries ;7;‘1 =7 ! _,» see Theorem 4.7. We then formulate additional

symmetries ’T‘; _,and T;’H on U' via conjugations of ’T‘: _, by an anti-involution ¢* and a bar invo-
lution 3'. We obtain explicit formulas for the actions of ’T‘; _,on UU, in Proposition 4.11 and on
B; in Theorem 4.14.

In Section 5, we formulate a general structural result that relates formulas for "f‘f (B

and 9 1(F ); see Proposition 5.11. The explicit formulas for T’ ,(B;) in each rank 2 univer-
sal lquantum group are collected in Table 3. The type-by-type Verlflcatlon of these formulas is
postponed to the Appendix.

In Section 6.1, we formulate another symmetry T’ ! ,on U using a different intertwining prop-
erty. Then we formulate the counterparts of the results in Sections 4-5. We collect all rank 2
formulas for Tf’ ,1(B;) in Table 4, whose proofs similar to the Appendix will be skipped (the detail
can be found in Appendix B in an arXiv version).

We then show that ’T‘L_l and T;’ ., are mutual inverses, completing the proofs that T;,—l and
’T‘:’ 4+, are automorphisms of U'. The property ’T‘;’e =c'o ’T‘Z_e o ¢* follows by inspection from the

explicit formulas for the actions of Tf _, and ’T‘lf’ o

In Section 7, we establish a basic formula T& (B;) =B It fori, j € l,andw € W°such thatwa; =
a;, generalizing a well-known formula in quantum groups. We reduce the proof of the formula to
the rank 2 Satake diagrams. We then provide uniform proofs in the rank 2 cases.

In Section 8, we prove uniformly the factorization property of quasi K-matrices in all rank 2
quantum symmetric pairs, completing the proof of Dobson-Kolb’s conjecture in arbitrary finite
types. This is an application of the formula established in Section 7.
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RELATIVE BRAID GROUP SYMMETRIES ON :QUANTUM GROUPS | 1349

In Section 9, we verify that the symmetries 'T‘;’e, 'T‘{’e satisfy the braid group relations in Br(W°).
Together with the braid group action given by ﬂj’ " ﬂ/ !, for j € 1., we obtain four braid group
actions of Br(W,) X Br(W°) on U'. By taking central reductions and using the isomorphism ¢,
U’ = Ul we construct relative braid group symmetries T’ T/ " on Ul for general parameters g,
conﬁrmlng the main conjecture in [20].

In Section 10, we formulate linear operators Tlf’e, T;fe on any finite-dimensional U-module. We
show that they are compatible with corresponding automorphisms on U, and that they satisfy
the relative braid group relations.

1.7 | Notations

We list the notations that are often used throughout the paper.

> N, Z,Q, C — sets of nonnegative integers, integers, rational, and complex numbers

> R,RY — systems of roots and coroots with simple systems I = {;|i € I} and [TV = {ocl.V li e},
respectively

W, £(-) — the Weyl group and its length function

w,y, To — the longest element in W and its associated diagram involution

Tl’ o T’ ! — braid group symmetries on U

(1= I], U »T) — admissible pairs (aka Satake diagrams)

W., R, — the Weyl group and root system associated to the subdiagram I,

w, — the longest element in W,

W, ; — the parabolic subgroup of W generated by s, fork € 1, ; :=1, U {i, 7i}

w, ;, 7.; — the longest element of W, ; and its associated diagram involution

We,¢,(-) — the relative Weyl group generated by r; := w, ;w,, for i €l,, and its length
function such that #,(r;) = 1

vVvVvVvVvVvVyVvVvVyVvVyVvy

> w, — the longest element in W°

> U, U — quantum group and Drinfeld double

> 7,7, — involutions on U induced by the diagram involutions 7, 7,

> U’ Ul — universal iquantum group and (quantum group with parameter ¢
> Y — qua51 K-matrix for universal quantum symmetric pair (U, U)

B> Gos Sy — tWO distinguished parameters; see (2.21) and (3.8)

> ¥, — arescaling automorphism of U; see (2.7)

> &, — arescaling automorphism of U; see (2.8)

> 7, — acentral reduction from I:J to U; see (2.6)

> 71'; — a central reduction from U' to Ulg; see Proposition 2.8

> ' — a bar involution on U'; see (3.10)

> ¢! — an anti-involution on UY; see (3.24)

> o, — an anti-involution on Ul see (3.26)

> ‘Z ’e ﬁl ! éf — rescaled (via @,) brald group symmetries on U; see (4.2)-(4.3)
> T’ T: ! — braid group symmetries on U

> 97, :7 LT, T 1 _ shorthand notations for 9’41, 9’ T;’H,T’ )

> 7 , 7! " — rescaled braid group symmetries on U see (10.1), (10.7)

ie’
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1350 | WANG and ZHANG

2 | DRINFELD DOUBLES AND QUANTUM SYMMETRIC PAIRS

In this section, we set up notations for quantum groups, Drinfeld doubles, and quantum sym-
metric pairs. We review the relative Weyl and braid groups associated to Satake diagrams. Several
basic properties of (universal) iqquantum groups are presented.

2.1 | Quantum groups and Drinfeld doubles

We set up notations for a quantum group U of finite type and its Drinfeld double U.

Let g be a semisimple Lie algebra over C with a symmetrizable Cartan matrix C = (c;;); je- Let
D = diag(e; | €; € Z,,, i € [)beasymmetrizer, thatis, DC is symmetric, such that ged{e; | i € 1} =
1. Fix a simple system IT = {;|i € [} of g and a set of simple coroots IV = {oclyli € [}. Let R and
RV be the corresponding root and coroot systems. Denote the root lattice by ZI : = @, Za;. Let
(-, -) be the normalized Killing form on Z1 so that the short roots have squared length 2. The Weyl
group W is generated by the simple reflections s; : ZI — ZI,fori € [, suchthats;(«;) = a; — ¢;;0;.
Set w, to be the longest element of W.

Let g be an indeterminate and Q(q) be the field of rational functions in g with coefficients in
Q, the field of rational numbers. Set F to be the algebraic closure of Q(q) and F* :=F \ {0}. We
denote

Denote, forr,m € N,

-
A _ , m| _ [m][m—-1],..[Im—r+1],
A== ve=Tm. 7] - .
We mainly take t = g, q;.

Then U := ﬁq(g) is defined to be the F-algebra generated by El-,Fi,Ki,Ki’ , i €1, where Kl-,Kl.’
are invertible, subject to the following relations: K, Kj. commute with each other, for all i, j € I,

K; - Ki/ Cij —Cij
/ __~Cij / ’ _  Gij ’
KEj=gq, ’EjKl., KiFj=gq, ’FjKl., (2.2)
and the quantum Serre relations, fori # j € 1,
1—c/ 1
X —C;; 1—c;:—S
2 1 [ CU] EYEE, T =0, (23)
5=0 § g;
1—cij 1
—C;; 1—c;:i—
2 D [ s%] FYEF T =0, eX)
5=0 qi

Note that KiKl.’ are central in U, for all i € I.
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RELATIVE BRAID GROUP SYMMETRIES ON :QUANTUM GROUPS 1351

The comultiplication A : U — U ® U is defined as follows:

AE)=E ®1+K ®E, AF)=1®F +F ®K,, 23)
2.5
AK) =K;®K;, AK)=K ®K].

Let U = U,(g) be the Drinfeld-Jimbo quantum group associated to g over F with Chevalley
generators {E;, F;, Kiilli € 1}, whose relations can be obtained from U above by simply replacing
Kl.’ by Kl._l, for all i; that is, one identifies U = I~J/(Kl~Ki’ —1]i e1).Both Uand U admit standard
triangular decompositions, U = U~U°U* and U = U-U°U*; weidentify Ut = Ut = (E, | i €1)
and U~ =U".

For any scalars a = (a;);¢; € F*!, one has a isomorphism

U/(KK —a;|ie)—U
through the central reduction
T, - U— U,

F;~F;, E; ~\/aE, K~ aK, K ~ aK

(2.6)

The canonical identification uses 7, for 1 = {1};¢;.

Proposition 2.1. Let a = (q;);¢; € (F*)'. We have an automorphism ‘T’a on the F-algebra U such
that

1/2

9, K =a’K, K ~a’k], E~a’E, F~F,. 2.7)
We have an automorphism ®, on the F-algebra U such that
®, K~ K, Ewr~al’E, Fwal’F. (2.8)
We have
T, =mo0P,. (2.9)

A Q-linear operator on a F-algebra is antilinear if it sends g — g™, for m € Z.

Proposition 2.2.

(1) There exists an antilinear involution ¥ on U, which fixes E;, F; and swaps K; < Ki’ ,foriel.

(2) There exists an antilinear involution on U, also denoted by ¥, which fixes E;, F; and swaps K; <
K foriel

(3) There exists an anti-involution o on U that fixes E;, F; and swaps K; < K/, fori € 1.

(4) There exists a Chevalley involution w on U that swaps E; and F; and swaps K; < Ki’, foriel

Let U = @,.,, U, be the weight decomposition of U such that E; € ﬁai,Fi € fj—al—’Ki’Ki/ €
U,. Write U} :=0, nT*.
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2.2 | Braid group action on the Drinfeld double U

Lusztig introduced braid group symmetries T{,e, Tlf,’e, fori € 1and e = +1, on a quantum group U
[28, §37.1.3]. Analogous braid group symmetries Tl.”e, T"l”e ,fori € land e = +1, exist on the Drinfeld
double U; see [31, Propositions 6.20-6.21]. (Our notations T i”e, Tlf”e here correspond to Tlf,e, Tlffe
therein.) We recall the formulation of Tl.’” ., below.

Proposition 2.3 [31, Proposition 6.21]. Set r = —c;;. There exist an automorphism T
on U such that

1 foriel,

T/l

VaK)=KK Y, T

IN _ ! ! Cij
1+1(Kj)_KjKi h

T (E)=-FK/ ', T’ (F)=-K!

i,+1 i,+1
r
TaE) = XD B VBEY, L

s=0

T (F) = Z( D¢ FOFFT™, £
s=0

""// . . . .
Moreover, the T 1 fori €1, satisfy the braid relations.

We sometimes use the following conventional short notations:

2 .
T Tl+1’ i . i,—1°

= Til oo Tir‘ S Aut(fj),

where w =s; ---s; is any reduced expression of w € W. Similarly, one defines T, forw € W.

The symmetries Tl’ , and Tl”e , for i €1, satisfy the following identities in U [31] (analogous to
[28,37.2.4] in U):

7/ i
T, _y=00T;, 00,
(2.10)
il add 7/
Ti,—e=¢oTz+e ¢’ 1+e_¢oT 801/).
. a1 P : " .
The automorphism Ti, ., descends to Lusztig's automorphisms Tl.’ L onU:
FI1 gl
ol =T 1)

2.3 | Satake diagrams and relative Weyl/braid groups

Given a subset [, C [, denote by W, the parabolic subgroup of W generated by s;,i € [,. Set w, to
be the longest element of W,. Let R, be the set of roots that lie in the span of «;, i € I,. Similarly,
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RY is the set of coroots that lie in the span of cxl?’, i €1,. Let p, be the half sum of positive roots in
the root system R, and p" be the half sum of positive coroots in R".

An admissible pair (1 =1, Ul,,7) (cf. [4, 18]) consists of a partition 1, U I, of I, and a Dynkin
diagram involution 7 of g (where 7 = 1Id is allowed) such that

(@)) w,(ocj) =—a;; forj e1,,
(2) If j €, and 7j = j, then a;(p}) € Z.

The diagrams associated to admissible pairs are known as Satake diagrams. We shall use the terms
between admissible pairs and Satake diagrams interchangeably. Throughout the paper, we shall
always work with admissible pairs (I = [, U l,, 7). A symmetric pair (g, 0) (of finite type) consists
of a semisimple Lie algebra g and an involution 6 on g; the irreducible symmetric pairs (of finite
type) are classified by Satake diagrams.

Given an admissible pair (I = I, U I, 7), the corresponding involution 6 (acting on the weight
lattice) is recovered as

0=—-w,ort. (2.12)

Set [, , to be a (fixed) set of representatives of 7-orbits in [,. The (real) rank of a Satake diagram is
the cardinality of I, ;. We call a Satake diagram (I' = 1! U1}, 7') a subdiagram of another Satake
diagram (1 =1, U l,,7),if 1! 1,11 C [I,,Tllﬂé = 7|y, and 1! contains all black nodes in | which lie
in the connected components of I} in I, UT..

Given an admissible pair (1 =1, Ul,,7)and i € I, we set

I =1, Ui, T}, (2.13)

Let W, ; be the parabolic subgroup of W generated by s;,i € 1, ;. Let w, ; the longest element of
W, ;. The following constructions are a special case of those by Lusztig [25]; also cf. [15, 29]. Define
r; € W, ; such that

w,; =ruw, (=w,r), where Z(w, ;) = £(x;) + £ (w,). (2.14)

(It follows from the admissible pair requirement that w, ;,r;, and w, commute with each other.)
Then the subgroup of W,

W i=(rli€l,.),

is a Weyl group by itself with its simple reflections identified with {r; | i € [, ;}. Denote by , the
length function of the Coxeter systerm (W*, [, ;) and by w, its longest element.

Proposition 2.4 ([25, Theorem 5.9)). Let wy, w, € W°. Then £(w,w,) = ¢(w,) + ¢ (w,) ifand only
iffo(wlw2) = fo(wl) + fo(wZ)'

Hence, there is no ambiguity to refer to the Coxeter system W° or W when we talk about
reduced expressions of an element w € W° C W. By definition, we have identifications I, ; =

lzi-W.; =W, ;,w,; =w, ,andr; = r;. Denote by 7, ; the diagram involution on [, ; such that

w, (o) = —% ) Vjel.;. (2.15)
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The relative Weyl group associated to the Satake diagram (I =1, U [,, T) can be identified with
We. Let {a;|i €1, .} be the simple system of the relative (or restricted) root system, where q; is
identified with the following element (cf. [15, §2.3]):

a- .= _al (al)’

pi=—— Gel,). (2.16)

Note that o; = a;.
We introduce a subgroup of W

Wl ={weWw|wd=0w.
It is well known that (see, e.g., [15, §2.2])
W, X W° =Ww°.

We shall refer to the braid group associated to the relative Weyl group W° as the relative braid
group and denote it by Br(W°). Accordingly, we denote the braid group associated to W, by
Br(W,).

2.4 | Universal iquantum groups

We set up some basics for the universal quantum symmetric pair (U, U"), following and somewhat
generalizing [32].

Let (1=10,Ul,,7) be a Satake diagram. Define U, to be the subalgebra of U with the set of
Chevalley generators

e ! .
g- '_{EJ’FJ’KJ’KJ |.] € [I-}'

The universal iquantum group associated to the Satake diagram (I = 1, U [, 7) is defined to be the
F-subalgebra of U

U' = (B.k.gli€l,.g€C.)
via the embedding 1 : U' — U, u -~ u, with
BimF,+T, (E)K/, ki»KK., gw—g, foriel, ged. (2.17)

(The notation u' for u € U, for example, B;, is mainly used when we need to apply braid group
operators on U to u'.) By definition, U contains the Drinfeld double U, associated to I, as
a subalgebra.

Let U denote the subalgebra of U' generated by k;, K j- K}, for i €1,,j €1.. The following
lemma is clear.

Lemma 2.5. Ifi = 7i,i € I, then k; is central in U'. If i # i € 1, then k;k.; is central in U,

Following [22] and [18, §6.2], we formulate a monomial basis for U'. Denote B ;=F; forjel.
For a multi-index J = (j;, j,5 .., j,) € 1", we define F; := F; F; -F; End BJ~: =~lesz - Bj .
Let J be a fixed subset of Un>0 1" such that {F,|J € J} forms a basis of U as a U*U%module.
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Proposition 2.6 (cf. [18, Proposition 6.2]). The set {B;|J € J} is a basis of the left (or right) UTU™-
modules U".

2.5 | 1Quantum group U via central reduction

We recall some basics for quantum symmetric pairs (U, Ulg), cf. [18, 22], where the parameter
§ = (5, € P is always assumed to satisfy the following conditions (cf. [22] [18, Section 5.1]):

i = Sris ifri #iand (a;, w,a;;) =0. (2.18)

We call ¢ a balanced parameter, if ¢; = ¢,; for any i € ,. For an arbitrary parameter ¢, we define
an associated balanced parameter ¢¢ such that

§ =65 = /SiSi- (219)

Define U, to be the subalgebra of U with the set of Chevalley generators
. £ s
g- '_{EJ’FjaKJ |]Gﬂ-}‘

The iquantum group associated to the Satake diagram (I = [, U [,, 7) with parameter ¢ is defined
to be the F-subalgebra of U

U;— = <Bi’kj’g | i€ I]o’j € I]\I]o,‘r’g € g->
via the embedding: : Ulg — U with
B~ Fi+gT, (EDK ', kjm KK, Vi€l jel\l,. (2.20)

Note that U* contains U, as a subalgebra. Fori € 1, ., we setk; = 1ifi = riand k; = kT_i1 ifi # 7i.
Similarly, we denote by U™ the subalgebra of U' generated by k;, K o foriel,,jel..

Recall from (2.16) that a; = (o; + w,a;;)/2. Define a distinguished balanced parameter ¢, =
(gi,o)ieﬂo such that
Sio = —q@atw.a)/2 = —q_(ai’ai), fori el,. (2.21)
The parameter ¢, will play a basic role in this paper; also cf. [15].

Letzter [23] and Kolb [18, Proposition 9.2, Theorem 9.7] raised and addressed the question on
when iquantum groups for different parameters are related by Hopf algebra automorphisms of U.
Watanabe [36, Lemma 2.5.1] showed that the iquantum groups for arbitrarily different parame-
ters are all isomorphic (not necessarily by Hopf algebra automorphisms); we recall the following
special case of Watanabe’s result.

Proposition 2.7 [36, Lemma 2.5.1]. For any parameter g, there exists an algebra isomorphism ¢, :

Ulgo g Ulg which SendSBi g \’gi,o(gig‘[i)_l/zBi’Ej g E]’F] = F],K] g Kj7kr = gr_lg.”.kr,l. (S
I, j €1,y €1\,
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1356 WANG and ZHANG

TABLE 1 Rank]1 Satake diagrams and local datum.

Type Satake diagram Sio I;
o

Al 1 Clo = -q* r =5

e —Q0O—o
Ally 12 3 $20 = -q! I =Susn

VRS

o o
AllL, 1 2 S1o=—q" I =55

o—-e -—-- —e—0
ATV, n>2 1 2 n S10 = —q 1/ T =S50
o . N .:.
BII, n> 2 1 2 n S0 = —ql‘1 I =S
o —0—8& - ——el—oe
CII, n>3 1 2 n G20 = _qz_l/z Ty = 58021202
-1
O—se 770\
1 2 .
DIL n>4 n gl,o = _q_l I = S1.p—2n-1nn-2--1
e—e—>e—0O
-1/2

FII 1 2 3 4 S40 =74, / Ty = $432312343231234

It follows that there is an algebra isomorphism
-1 .97 1
¢p 1 UL — UL (2.22)
which sends B; = B,,E; = E;,F; = F;,K; = K, k, = sk, fori€l,, jel,rei\l,,.

We have the following central reduction n; U - Ulg, generalizing [32, Proposition 6.2] in the
quasi-split setting.

Proposition 2.8. There exists a quotient morphism n‘g 3 DL Uls sending

B; » B;, Ej ¢k

; i ke sk (iel,j€l,,),

and 7T;_|f]' = 7y |g, - The kernel ofn'lg is generated by

ki—g (=tii€l), kki—gsy (#tii€l), KK -1 (jel).
Proof. By (2.6), the restriction of 7. on U' sends

B = F; + V gigriTw_(Eri)Ki_l’ ki = £/5iSzikis iel,

K; - K;, E; »Ej, F;j—Fj, jelL.

Since the images generate Uls . (see (2.19) for the definition of §°), 7z, restricts to a surjective homo-
morphism U — U‘ge, and we denote it by 7T;_e. Moreover, we have ker ﬂ;e =kerm.n U'. Since
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ker 7z, is generated by elements K;K! — ¢; for i € I, we conclude that ker 7, is generated by
S i i ¢

ki—g (i=rtii€l), kki—gsq (#tii€l), KK/-1 (eL).

The composition with the isomorphism qbgqb;,l from (2.22), 71'; 1= ¢g¢;loﬂée, defines a surjec-
tive homomorphism U* — U‘g. Finally, it is clear from Proposition 2.7 that ker ﬂ‘g is generated by
the desired elements. O

Remark 2.9. For a balanced parameter g, n; coincides with the restriction of 7o on U'. However,
this is not the case for an unbalanced parameter.

3 | QUASI K-MATRIX AND INTERTWINING PROPERTIES

In this section, we establish the quasi K-matrix Y for the universal quantum symmetric pair
(U, UY), and a new characterization of Y in terms of an anti-involution o. Then using suitable
intertwining properties with the quasi K-matrix, we establish an anti-involution ¢* and a bar invo-
lution ¢ on U* from the anti-involution o and a rescaled bar involution %, on U. We also establish
an anti-involution o, on Ulg for an arbitrary parameter g.

3.1 | Quasi K-matrix

The quasi K-matrix was introduced in [7, §2.3] as the intertwiner between the embedding 1 :
UL — U and its bar-conjugated embedding (where some constraints on ¢ are imposed); this was
expected to be valid for general quantum symmetric pairs early on. A proof for the existence of the
quasi K-matrix was given in [5] in greater generality (modulo a technical assumption, which was
later removed in [9]). Appel-Vlaar [2, Theorem 7.4] reformulated the definition of quasi K-matrix
Yg associated to (U, U‘g) without reference to the bar involution on U’g; this somewhat technical
(see (3.1)) reformulation removes constraints on the parameter ¢ for quasi K-matrix. Recall the
bar involution 3 on U.

Theorem 3.1 (cf. [2]). There exists a unique elementY, = D
and the following identities hold:

© U + 0 _
Nt Yg,forYg € Uu,such thath =1

1

BY. =Y, (Fi + (_l)oci(ZPY)q(oc,-,w.(ocn)+2,0.)S-ﬂ.zp<Tw_ETi)Ki), (3.1)
XY. = Y.x, (3.2)

fori e, and x € UU,. Moreover, Y* = 0 unless 6(u) = —u.

Recall the bar involution 3 on U from Proposition 2.2. The quasi K-matrix Y associated to
(U, U) is defined in a similar way as in Theorem 3.1.
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1358 | WANG and ZHANG

Theorem 3.2. There exists a unique element Y = Y.
following identities hold:

- S0 1 ou
penn YF such thatY° = 1,Y# € U} and the

BY = ?<Fi + (—1)ai(2p'v)q(ai’w'a“+2p')¢(Tw,Eri)Ki>, (3.3)
xY = ¥x, (3.4)
fori €1, and x € U°U,. Moreover, Y* = 0 unless O(u) = —.

Proof. Follows by a rerun of the proof of Theorem 3.1 as in [2] or in [19]. (The strategy of the proof
does not differ substantially from the one given in [7].) O

Remark 3.3. Applying the central reduction 7. in (2.6) to (3.3) gives us

(Fi + V gigriTw,(Eri)Ki_l)ﬂg(?)
= 7Tg(§) (Fi + (—1)“:‘(ZPY)q(“i,w.(“n)"'ZP.)mlp(Tw'(Eri))Ki>’ (3.5)
xﬂg(?) = ﬂs(?)x, (3.6)

for i €1,,x € UYU,. Comparing (3.5) with (3.1), we obtain by the uniqueness of the quasi K-
matrix that (see (2.19) for ¢¢)

ﬂg(?) = Yge. (37)

In particular, 71';(37) =Y, ifand only if ¢ is a balanced parameter.

3.2 | Abarinvolution ¢' on U
Introduce a balanced parameter ¢, = (§; 4 )ig), by letting
G = (FDFCPIgEee ) (i e,). (38)

Note that ¢; , are exactly the scalars appearing on the RHS (3.3). We extend ¢, trivially to an
I-tuple, again denoted by ¢, by abuse of notation, by setting

gj,* = 1 (j € I]-)'

Recall the scaling automorphism ‘Tig* from (2.7) and the bar involution ¢ on U from
Proposition 2.2. The composition

Py =Y, o9 (3.9)

is an antilinear involutive automorphism of U.
Let Ad,, be the operator such that Ad,(u) := yuy~! for y invertible.
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Proposition 3.4. There exists a unique antilinear involution ' of U* such that
Y'(B;) = B, P'(x) = P, (%), foriel,,x € U°U.,. (3.10)
Moreover, ' satisfies the following intertwining relation:
P')Y = Yo, (x), forall x € U". (3.11)
(@' is called a bar involution on U'.)

Proof. We follow the same strategy in [19] who established a bar involution on Uls (for suitable ¢)
without using a Serre presentation.
By definition of ¢, , we have, fori € I, x € U°U,,

$.(B) = F + (-1)H G2y (T, B K, (312)
3.12
$.(v) € T°T..

The composition Adg o, is an antilinear homomorphism from U to a completion of U. Then,
the image of U' under Adg o, is a subalgebra generated by

(Adg o9, )(B;), (Adg oy, )(x), fori el,,x € UYU..
By Theorem 3.2 and the identities (3.12), we have, fori € I, x € U°U,,
(Adg o9, )(B;) =B;, (Adg o, )(x) =1, (x). (3.13)

Since each element in (3.13) lies in U, Adg o7, restricts to an antilinear endomorphism on o,
which we shall denote by ¢ : U* — U

By construction, ' satisfies (3.10)—(3.11). Finally, 1! is unique and is an involutive automor-
phism of U" since it satisfies (3.10). O

Proposition 3.5. We have
P, (VY =1. (3.14)

Proof. Applying, to (3.11) results the identity 3, (), (Y) = ¢, (Y)P'(y), for y € U'. We rewrite
this identity as

PO =9 (DO (3.15)

Using (3.12) and Proposition 3.4, the above identity (3.15) implies following relations:

B (D) = (071 (Fy + (~DHCeDgaat2ey (T, B K ), o6
3.16

x¢*(?)_1 = 1/’*(?)_1)6,

fori el,,x € UU,. Hence, 1, (Y)™! satisfies (3.3)-(3.4) as well. Clearly, ¢, (Y)~! has constant
term 1. Thanks to the uniqueness of Y in Theorem 3.2, we have 3, (Y)™' = Y. O
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3.3 | Quasi K-matrix and anti-involution o

We provide a new characterization for Y in terms of the anti-involution o (see Proposition 2.2),
which turns out to be much cleaner than Theorem 3.2. Denote

BY =o(B) =F; + KT, \(E), (3.17)

where the second identity above follows by noting TL‘vl = aTw_a; see (2.10). The following
characterization of a quasi K-matrix Y is valid for U* of arbitrary Kac-Moody type.

Theorem 3.6. There exists a unique element Y = Y
following intertwining relations hold:

- =0 _ 1< —
o Y* such that Y’ =1,Y# € U; and the

BY =YB?, iel),
o o (3.18)
xY =Yx, (x € UY0,).
Moreover, Y* = 0 unless 6(1) = —u.

Proof. We show that the identity (3.18) is equivalent to (3.3), for any fixed i € . Since z/)(Tw_ (E;))
has weight w, o, the identity (3.3) is equivalent to

BY = ¥(F; + (-D*C g K g (T, (Exp) ). (319)
Moreover, by [8, Lemma 4.17] and U* = U™, we have
(—1 g2y T, (Bn)) = T (B,
and hence, the identity (3.19) is equivalent to (3.18) as desired. O
Remark 3.7. By abuse of notation, we denote again by ¢ the anti-involution on U that fixes E;, F;
and sends K; — Kl._1 for i € I. For a balanced parameter ¢, we obtain the intertwining relation
for Ulg, BY, = YgBlF’ (i €1,), by applying the central reduction 7 to (3.18), thanks to (3.7). Here,

B =o(B;) =F; + giKiTL—U}(E,i).
On the other hand, for (not necessarily balanced) parameter g, we have

BY. =Y. (3.20)
Note that the involution 7 induces an involution 7 € Aut(U) that preserves U'. For i € I, the
rank 1 quasi K-matrix
Y, €U (cTY)
is defined to be the quasi K-matrix associated to the rank 1 Satake subdiagram (I, U {i, 7i}, 7); cf.

(2.13). Clearly, we have Y; = Y.

Proposition 3.8. We have o(Y) = Y and 7(Y) = Y, In addition, fori € I, we have
G(?i) = ?i, ?(?i) =Y,

i
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Proof. By applying the anti-involution o to the identities in Theorem 3.6, we have

o(V)B? = B;o(Y), Giel), (3.21)

oY)y = ya(Y), (x € UY0,), (3.22)

where y = o(x) € U U.,. This means that o(Y) satisfies the same characterization in Theorem 3.6
as Y, and hence by uniqueness, we have o(Y) = Y.

Noting that 07 = 7o and T preserves U'U,, then the identity 7(Y) = Y follows by the same type
argument as above.

The identities o(Y;) = Y; and 7(Y;) = Y; are immediate by restricting o and 7 to the Drinfeld
double associated to rank 1 Satake subdiagram (I, ;, 1., 7|;_ l_).

According to the rank 1 Table 1, 7,; = 1 except in type AIV when 7,; coincides with the
restriction of 7 to the rank 1 Satake diagram. In either case, we have ?,,L-(?i) =Y, O

Remark3.9. For balanced parameters g, by taking a central reduction 7, the property 7(Y; .) = Y;
remains valid. However, for unbalanced parameters g, we do not necessarily have T(Yi,g) = Yi,g;
instead, we have 7(Y; () = Y; ., which can be proved by Theorem 3.1. The property Y; . = Y; . is

true, regardless of balanced or unbalanced parameters.

Remark 3.10. Tt follows by Theorem 3.2 that the rank 1 quasi K-matrix Y; has the form Y; =
Zinz0 Yim P01 Yy € Uiy -

3.4 | An anti-involution ¢* on U*
Define K; € U' by

K; = KK’ fori el,.

]
w,dzi o

(3.23)

Lemma 3.11. Leti € [,. We have K; € UY,

Proof. By definition, the element K; is a product of k; = KK € U and an element in UY, and
hence, K; € U, O

Recall the anti-involution o on U from Proposition 2.2.
Proposition 3.12. There exists a unique anti-involution o* of U' such that
o'(B;) = B, o'(x)=o(x), foriel,xeU°U0,. (3.24)
Moreover, ¢ satisfies the following intertwining relation:
' x)Y = Yo(x), forall x € U (3.25)

Proof. Given x € U, an element X € U" (if it exists) such that XY = Yo(x) must be unique due
to the invertibility of Y.
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Claim (*). Suppose that there exist X,y € U* that XY = Yo(x) and Y = Yo(y), for given x,y €
U'. Then we have

yxY = Yo(xy).
Indeed, the Claim holds since yxY = 5Yo(x) = Yo(y)o(x) = Yo(xy).

Observe that o preserves the subalgebra U0, of U'. Hence, by Theorem 3.6, we have a(x)? =
Yo(x), for all x € UU,. By Theorem 3.6 again, we have Bi? = ?O'(Bi), for all i € 1,. Since the
assumption for Claim () holds for a generating set U°U, U {B;|i € 1.} of U’, we conclude by
Claim () that there exists a (unique) X € U* such that XY = Yo(x), for any x € U, and moreover,
sending x — X defines an antiendmorphism of U' (which will be denoted by ¢*).

Clearly, by construction, ¢* satisfies (3.24) and the identity (3.25). Finally, ¢* is an involutive
antiautomorphism of U* since it satisfies (3.24). O

Remark 3.13. The strategy in establishing a bar involution on U‘g without use of a Serre presen-
tations appeared first in [19]. For quasi-split iquantum groups, that is, I, = @, our ' coincides
with the bar involution in [12, Lemma 2.4(a)] (see also [31, Lemma 6.9]). Unlike the proof loc. cit.,
our proofs of Propositions 3.4 and 3.12 do not use a Serre presentation of U'. Hence, the (anti-)
involutions o and ' are valid for U" of arbitrary Kac-Moody type.

3.5 | Ananti-involution o on U

The anti-involution ¢* on U* in Proposition 3.12 can descend to an iquantum group Ulg, only for any

balanced parameter . It turns out that the anti-involution o'z on U* can descend to an iquantum
group Uls’ for an arbitrary parameter g.

Proposition 3.14. Let ¢ be an arbitrary parameter. There exists a unique anti-involution o, of Uls
such that

o.(B;) = B, o.(x)=ot(x), foriel,xeUU,. (3.26)
Moreover, o_ satisfies the following intertwining relation:
o ()Y, = Y.o1(x), forallx € Ulg. (3.27)

Proof. A proof similar to the one for Proposition 3.12 works here, and we outline it.
We claim that, for any x € U’g, there exists X € U’g such that

)?Yg =Y o1(x). (3.28)

As argued in the proof of Proposition 3.12, it suffices to show that (3.28) holds for x in a generating
set {B;|i €1,}U U U, of U.. Indeed, by (3.20), we have B.;Y, = Y.07(B)). For x € UU,, note
that oz(x) € UPU,, and then by Theorem 3.1, we have o7(x)Y, = Y.o7(x). This proves (3.28).
Now sending x — X defines an antiendomorphism o, which satisfies (3.26) and (3.27) by
construction above. Finally, o, is involutive since it satisfies (3.26). O
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Remark 3.15. Our construction of o, generalizes the o, in [9, Proposition 3.13], which is constructed
via bar involutions under certain restrictions on parameters.

Thanks to Proposition 3.14, we have a conceptual formulation of the quasi K-matrix Y, for Ulg
below, which is a variant of Theorem 3.6; compare Theorem 3.1 (see [2]). This new formulation
can also be proved directly.

Theorem 3.16. Let g be an arbitrary parameter. There exists a unique element Y, = pen YH such
thatY° =1,Y+ € ﬁ; and the following intertwining relations hold:

B.;Y = Yor(B), Giel),

xY =Yx, (x e UPU,).

4 | NEWSYMMETRIEST, ONU'

In this section, we define explicitly certain rescaled braid group actions :?J’ _, onaDrinfeld double
U. We then formulate the new symmetries T, | on U, for i € [, via an intertwining property
using the quasi K-matrix Y and a rescaled braid automorphism 5;’ _,; the proof will be completed
in the coming sections. We show that 7/ _ on U preserves the subalgebra U"°U., and that the
Crdl = 0
, and ﬁi,_l on U"U,

are presented. Then, we obtain a compact close rank 1 formula for ’T: _,(By.

actions of T on UU, coincide. Explicit formulas for the action of T’
i p i

1

4.1 | Rescaled braid group action on U

Recall the distinguished parameter g, from (2.21). Extend g, trivially to an [-tuple of scalars (5; , )¢
by setting

Sjo = 1, fOI'j el,. (4.1)

Then, we have the scaling automorphism \TJ% on U by Proposition 2.1. We define symmetries

?Z ", and 97/_1 on U by rescaling T/, | and T]_, in Proposition 2.3 and (2.10) via the rescaling

automorphism ¥_ :
11 . =1 A &
91.,4_1 1= ‘Pgo ol 0¥, , 4.2)
=7 | 1 7
‘71',—1 = ‘I’go of; jo¥,. (4.3)

~

. T T : Cal 7
Since Ti, e Ti’_1 are mutually inverses, ,7[ iy 91.,_

use the shorthand notation

, are also mutually inverses. We shall often

—~

T =" T =7 . (4.4)

i,+1° i i,—1
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1364 | WANG and ZHANG

Remark 4.1. These rescaled symmetries f?\; ~! will play a central role in our construction of sym-
metries on U'; see Theorem 4.7. Our rescaling twist using ‘T’go is compatible with the rescaling
twist in [15, (3.45), Remark 3.16].

We write down the explicit actions for .7; and 514 ~! for later use.

Proposition 4.2. Setr = —c;;, fori, j € 1. The automorphism 9: € Aut(U) defined in (4.2) is given

by

ijs

Cl]/z 1)/2

y(K )= K; K 9(K’) = K'K[” i,

7 -1 = _
T(E;) = _gi,oFiK[/ . J(F) = -K; 1Ei’

,
~ —r/2 _ — . .
TE) =" XD ETEED,  j#i

)
FF)= YO GFIFFE™,  j#iL

s=0
The inverse of ?{(see (4.3)) is given by

lj/2 11/2

TUK)=¢""KK . ?11(1(/)_ K'K|” i,

— B ~ -1
T NE) = =5 K 'F,, T NF)=-EK!",

z’—l(E )= S_—”/2 Z( 1).& —AE(S)E E(V S) j#i,

,
TUF) = Y DGFTIRFY, £
5s=0

Moreover, ;77 fori €1, satisfy the braid group relations.

Hence, we obtain

T, = :ZTZH = :ZT 7 e Aut(U), forwew, (4.5)

by

where w = 5; - s; is any reduced expression. Similarly, we have :-7:; L € Aut(D).

i
Remark 4.3. Let i €1,. The rescaling for .7~ 7*1 is trivial, thanks to ¢, i =1; that is, F, =T, In
particular, ﬂw_ =T, . Moreover, T, (E,;) = ﬂw.(Eﬂ) =T, (E;)in U* = U*;cf. the formula for
B; in (2.17).

Let 7, be the diagram automorphism associated to the longest element w,, of the Weyl group
W. The following fact is well known (up to the rescaling via g, ); cf. for example, [18, Lemma 3.4].
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RELATIVE BRAID GROUP SYMMETRIES ON :QUANTUM GROUPS 1365

Lemma 4.4. We have, for j € 1,

Ty (Fj) = —K_'E

Toj ToJ?

o _ -1
ng(Ej) - _gj,oF K

ToJ " 1oj

Z—1 — -1 Z—1 — -1
ywo (EJ) = _gj,oKTUijoj’ ywo (FJ) - _Efofooj '

4.2 | Symmetries ﬁ;’; pforjel

Itis known [8] that Lusztig’s operators T;.’il, T;’ L on U, for j € 1., restrict to automorphisms of Uls
(where the ¢ satisfies certain constraints); moreover, these operators fix Y. In this subsection, we
formulate analogous statements for the universal quantum symmetric pair (U, U') while skipping
the identical proofs.

Recall the automorphisms T{’ ., on the Drinfeld double U, for i € I, from Proposition 2.3, and

recall Remark 4.3.

Proposition 4.5 (cf. [8, Theorem 4.2]). Let j € 1,. The automorphism Z’ L= T;’ L on U restricts

to an automorphism of U'. Moreover, the action of fj’ﬂrl on B; (i €1,) is given by
,
ﬁjfﬁrl(Bi) = Z(—l)sq;Fj.s)BiFj.r_s), forr = —c;;. (4.6)
5s=0

Proposition 4.6 (cf. [8, Proposition 4.13]). Let j € 1,. Then z’ ') =Y, and Z’ ') =Y, for
iel,.

4.3 | Characterization of T,

Let (U, U") be the quantum symmetric pair associated to an arbitrary Satake diagram (1 =1, U
I,,7). Recall that ?i, fori € 1, are the quasi K-matrix associated to the rank 1 Satake subdiagram
(. u{i,7i} 7ly ugicp)- Recall r; € W from (2.14) and "2?,—1 € Aut(U) from (4.5) whose definition
uses (4.2). We now formulate our first main result. l

Theorem 4.7. Leti € 1,.
(1) Forany x € U, there is a unique element % € U such that £Y; = ?i‘?r: e}

(2) The map x ~ % is an automorphism of the algebra U', denoted by ’T‘: Y

Therefore, we have
T Y, =Y.7 (Y, for all x € U". (4.7)

Proof. A complete proof of this theorem requires the developments in the coming Sections 4-6.1.
Let us outline the main steps below.

For a given x € U, the element % € U' satisfying the identity in (1) is clearly unique (if it exists)
since Y; is invertible.
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1366 | WANG and ZHANG

The explicit formulas of % associated to generators x of U, for each of (ranks 1 and 2) Satake
diagrams, are given in the forthcoming Sections 4-5. The formulas therein show manifestly that
% € U see Proposition 4.11 on UYU.,, Theorem 4.14 for rank 1, and Theorem 5.5 for rank 2.

Assume that %,y € U satisfy (1), for x,y € U%; that is, fc?i = ?ii:,_l(x‘), and y/?i =
?iz ,_l(yl). Then it follows readily that xy € U' satisfies the identity in (1) for xy; that is,
fcj}?i = ?iz ’_1((xy)l). Hence, we have obtained a well-defined endomorphism "f‘;,_l on U’ that
sends x — X.

To complete the proof of the theorem, it remains to show that Tl{,—l is surjective. To this end,
we introduce and study in depth a variant of Tl{,—p a second endomorphism T:’ L on U' in Sec-
tion 6.1. The bijectivity of T/ _, follows by Theorem 6.7 that shows that T, | and T/, | are mutual
inverses. O

Remark 4.8. By Proposition 3.8 and the definition (2.14) of r;,, we have Y; = Y and hence

T/ =T/, _,.Thus, we maylabel T/ by, instead ofI,.

ri» Xy = X

1

In this and later sections, we shall construct four variants of symmetries of U (denoted by T‘;e
’T{fe) via (4.7) and three additional intertwining relations and the rescaled braid group symmetries
?;; L1 ?;: ’ L, of U'. We choose to start with the (simplest) intertwining relation (4.7) for zj _
From now on, following (4.4), we often write

1

Tt=7

’
r; r;,—1

<grzcyll

i r;,+1°

4.4 | Quantum symmetric pairs of diagonal type

Recall from Proposition 2.2 the Chevalley involution w and the comultiplication A (2.5) on U.
Denote ‘”Llf’ =(w® 1)Llf’~ for i €1, where Llf’ ,iel is~ the Eank 1 quasi R-matrix for U (same as
for U); see [28]. We regard U as a coideal subalgebra of U ® U via the embedding “A := (w ® 1)A,
and then, (U ® U, U) is a universal quantum symmetric pair of diagonal type; cf. [8, Remark 4.10].
In this way, the rank 1 quasi K-matrices for quantum symmetric pairs of diagonal type are given
by “L{’.

In this subsection, we shall reformulate the identity [28, 37.3.2] (= (1.2)) as an intertwining
relation in the framework of quantum symmetric pairs of diagonal type.

Proposition 4.9. For the quantum symmetric pair of diagonal type (U ® U, U), the following
intertwining relation holds:

°AT]_weL! =°L'(7", ® 7 )“Mw), Vuel. (4.8)

i,—1 i
Proof. Recall from [28, 37.2.4] that
aall aaldd
wo Ti,—l ow = Ti,—l' 4.9

The identity (1.2) for U admits an identical version for U. Applying w ® 1 to this identity, we
obtain

“NT,_w)“L =“L/ (T ®T, ) “Aw), vu e U. (4.10)
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RELATIVE BRAID GROUP SYMMETRIES ON :QUANTUM GROUPS 1367

To prove (4.8), it suffices to prove the following identity:
(Zj’_ . ® ?;_1) “Aw=T]_, ®T;_)“Aw), Vuel. (4.11)
Clearly, it suffices to prove (4.11) when u is the generator of U. We have the following formulas:

‘”A(Ej)sz®1+K;.®E~, “’A(Fj)=1®Fj+Ej®K§,
(4.12)
w _ 4 w N !
AK)) =K ®K;, AKK)=K;®K.

Recall 5]7 = ff’;)l T},_lff’go from (4.3). By Lemma 9.5 and noting that ¢, , = ¢, in our case, the
twisting for 97 ' | is opposite to the one on Z’ _,» thatis, 97 L= @‘%TZ.{ _1‘?;}. By Proposition 2.1,
we see that the RHS of each formula in (4.12) is fixed by ff‘;)l ® . . The formulas for Tl” It
given in Proposition 2.3, and the formulas for T'L.”_l, Tl.’”_l can be obtained from there by suitable
twisting; using these formulas, we observe that (T;’ ., ® T;,—l) “A(u) is fixed by ¥, ® lTJ;)l for
u= Ej,FJ-,KJ-,K;.. Hence, for u = Ej,FJ-,Kj,KJ’.,j el,

il =7 — (T F-1\(7 7 -1 o @
(yj,,—l ® yjt—l) ‘A = (¥, ® v )(Tj‘f—l ® T},—l)(q’so ® ¥, )" Aw)
= (T';.j_l ® T;.,_l) “A(u),
which implies the desired identity (4.11). O

In this way, the intertwining relation (4.8) (reformulated from (4.10) via (4.9)) can be viewed as
a variant of the intertwining relation (4.7) in the setting of quantum symmetric pair (U ® U, U),
where the coideal subalgebra is identified with the image of the embedding “A : U - U ® U.

4.5 | Actionof T, onU"U,

We formulate ’T{ _l(x), foriel,x e U0, in this subsection. We will show that :7:_1 preserves
both U™ and U,; hence, by Theorem 3.6, the element T‘: () = zfl(x) satisfies (4.7) for x €
0°0.. ’ l
Recall that the diagram involution associated to w, ; is denoted by 7, ;. By definition of admis-
sible pairs, the diagram involution associated to w, is 7|; . Both 7, ; and 7 induce (commuting)
involutive automorphisms, denoted by 7, ; and 7, on U..
We first calculated ffl(x) for x € U,. By applying Lemma 4.4 twice, we obtain
TGl — ola _ 1541 .
T, T(x) = ﬂw-‘ir,yi(x) =7, Zi 7. (x);
note that the second identity above holds since %‘1 = %—1 :?:‘1 by (2.14). Hence, we have 7(x) =

T1%. (x), which implies that

Tl (x)=%.,0%x)€U.,,  forallxeT.. (4.13)
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1368 | WANG and ZHANG

We next formulate the actions of :?:—1 on U, fori € I,. Recall ¢, from (2.21) and (4.1), and @go
from Proposition 2.1. Denote

Ei,o = fI}g_ol(Ei) = g:olKlK./” (S fjlo. (414)
Note that Ejo = Ej = K;K! , for j € 1,. We shall denote
: j

ko =[]k et”  fori= ) ma; €z (4.15)

i€l iel
Lemma 4.10. Let w € W be such that wt = tw. Then %,_I(Ej’o) = Ewaj,o, forjel..
Proof. By Proposition 2.3, we have
T, (k) =T (KK = Ko Kl = Kua Kl = K-

By (4.14)-(4.15), we have ky, = P!(k;), for 1 € ZI. By (42) and (4.5), we have 7 | =
‘1";1 o T‘:U _10@%, and hence,

yul,,_l(kj,o) = (q};}l o Tzv,—l)(kj) = IINI;}(kwocj) = kwocj,O'
The lemma is proved. O
In particular, setting w =r; (i € I,) in Lemma 4.10 gives us
z;l(Ej,o) = Ericxj,v

Summarizing the above discussion, we have obtained the following.

Proposition 4.11. Let i €1,. There exists element T‘;_l(x) = 2f1(x), which satisfies the

intertwining relation (4.7), for x € U*U,. More explicitly, we have

T W)= ;0Dw), foruel, (4.16)
Tl{,—l(kj,o) = kriocj,o’ fOVj el,. (4.17)

: T
4.6 | Integrality of T, ,

The formula (4.16) clearly preserves the Lusztig integral Z[g, g~ ]-form on U,. We shall explain
below that our braid group action is also integral on the Cartan part, even though the definition
(4.14) of k; , may involve q'/2.

Lemma 4.12. We have
= -
Tia k) = Sy Ko (4.18)

where gr_,-;t,-—a,-,o e 7[q,q '), foralli,j €1..
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RELATIVE BRAID GROUP SYMMETRIES ON :QUANTUM GROUPS | 1369

in (4.14)-(4. 15)
It remains to show that gr a—aye € Z[q,q']. Recall from the definition (2 21), we have g ,

Proof. Formula (4.18) follows from (4.17) by unraveling the notation k. o0 k,

I'OL<>

—q?/?,forall j €1,
For j =i, since r;(o;) = —a; + «, for some «, € ZI,, we have

~ o 2
T, _ (k) = 7 Keya-

where giz’o € q7. The integrality for T;,_I(Eﬁ) can be then obtained by applying 7 to the
above formula.

For j # i,7i, we only need to consider the case ¢; , = —q~"/“. In this case, by (2.21), «; is a short
root. Moreover, due to the classification of Satake diagrams and the correspondlng restricted root

systems [1], we have i ; = —2 or 0. It remains to consider the nontrivial case (_’ l)) =-2.1t

follows thatr;a; — a; = 2a;, whichimpliesr,a; € a; + ka; + la; + Z1,, forsomek,l > 0,k + 1 =

2.8inCe §; 4 = Grion the formula (4.18) is unraveled as the following integral formula ’T‘l’ _1(Ej) =

_2~
gi,o kriacz'

Therefore, the integrality of (4.18) holds in all cases. O

~1/2

4.7 | A uniform formula for ’T‘: _1(Bi)

In this subsection, we introduce a uniform method to calculate T/ _ (B;). Note that T; = T,; and

this takes care of T’ L(B:))- To that end, without loss of generahty we can restrict ourselves to a
Satake diagram (I = 1, U I,,7) of real rank 1; that is, I, = {i, 7i} for some i € I,.

Recall the diagram involution 7, ; associated to the longest element w, ; in the Weyl group
Wi ugirip- By definition of admissible pairs, the diagram involution associated to w, is 7. Observe
that 7, ;i € {i, ri}, by Table 1 on rank 1 Satake diagrams.

Recall K;, K,; € U from (3.23).

Lemma 4.13. We have

l(B ) _ _q—(a W C(n) (Bo

‘L"['l

K ;1iﬂ, (4.19)

where BY is given in (3.17).

Proof. Recall from (2.21) and (4.1) thatg; , = —q~@atw.a)/2 fori e, and Sjo=11forjel.
By (2.14), we have %_i = f?: % By Lemma 4.4, we compute

T8 =7, <F +7, (Eﬂ)K{)

=7, 7 (F + T, (E, )K;)

Te (T T+ T B0 7 T (K)D)

w,

5‘2 (_i:v__l(ET.,iiK‘/F:ili) — q_(ai,ai+w.ari)KT__,li‘[iFT,yiTi z—l(K;—lll))

w,
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1370 WANG and ZHANG

=-% <§TU_.1(ET-,1'I-)KT.J‘TII + q_(ai’w'ari)FT.,ni) T, nﬁ (K, ) !

w,

_ q_(a . ocn)yw (K‘r - w__l(Ef.,ii) +FT.J11’)IC—1

T, Tl

=—q —(a;,w ocﬂ) (Ba )]C—

T‘L’l TTl

This proves the lemma. [

Theorem 4.14. Leti € 1. There exists a unique element’f‘; B e U* which satisfies the following
intertwining relation (see (4.7))

T, ,(B)Y; =Y. 7, '®B).
More explicitly, we have

_(B) = —q . %Ww (B (4.20)

T. Tl) T, ;i

Y;. By Proposi-

Tfll

)= T2 (B, )Y} By Lemma 3.1, we have

Proof. Recall 7, ;7i € {i, 7i}; see Table 1. By Theorem 3.6, we have S?l-Bf =B
tion 4.6, we have 7, (Y;) = Y;, and hence Y;.7 o (BY

‘L"L'l

K i € U%, and hence, K;, i commutes w1th Y,. Putting these together with (4.19), we have
—q @D F2 (B K L= T \(B). (4.21)

It follows by Proposition 4.5 that —g~(®-w. (@) 772 T, (B, ﬂ)K,‘_

TTl

—gq~ @) 72 7; (B, n)IC_ , we have proved the theorem. ([l

€ U'. Hence, setting Tlf’_l(Bi) =

5 | RANK2FORMULASFORT _(B))

Let (1 =1, Ul,, ) be arank 2 irreducible Satake diagram. Fix i, j € I, such thati # j, such that
I, = {i, i, j,7j} A complete list of formulas for Tl{,—l(B ;) is formulated in Table 3 (listed after
§10.3). We show that the formulas for ’Tl{’_l(B ;) in Table 3 satisfy the intertwining relation (4.7);
see Theorem 5.5. Together with the formulas in the previous section, we have established the

existence of an endomorphism Tlf’_l on U’ satisfying (4.7).

51 | Some commutator relations with Y

For w € W, let U[w] be the well-known subalgebra of Ut spanned by PBW basis elements gen-
erated by certain g-root vectors so that U*[w,] = U™; see [16, 8.24]. As we identify Ut = U+, we
denote by U*[w] the subalgebra of U* corresponding to U*[w]. The next lemma is valid for all
Satake diagrams.
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RELATIVE BRAID GROUP SYMMETRIES ON :QUANTUM GROUPS 1371

Lemma 5.1. Fori # j €|, ;, we have

FY = YiF), (5.1)
TN To k) =¥, T (7B K)). 52)
Proof. Write Y; = I Y, where Y, , € ﬁfn(aﬁw.%). By [8, Proposition 4.5], we have Y, ,, €

U™ [r;], for m > 0. Since the simple reflection s ; does not appear in any reduced expression of r;,
F; commutes with any element in U*[r,]; in particular, F ; commutes with Y,. This proves the
identity (5.1).

By Proposition 3.8, Y is fixed by 7,; (which is equal to either Id or 7). Hence, by Lemma 4.4
and the fact thatY; , € U* we have

m(e;+w,ag)’

91’0-,1' (?i,m) = yw,’i?-,i(?i,m) (S fj_ K,_m

—m(a;+w, o) atw,. o’
or equivalently,

Fi=7, (YK eU- (53)

a;t+w,a;; —m(o;+w,.az;)’

B :m(acl-+w,cx,i)
bra of U™ generated by F;, F,;, F,,r € [,; clearly, E, j commutes with any of these elements, and
hence, we have by (5.3) that [E.;, F'] = 0. For each m, we compute

Since w,a,; = a;; + X, a,a, for some a, € N, the eigenspace U lies in the subalge-

B 7. 6. T (T
- [ET 7 (K, P

oci+w,(o¢,i)]

— qm(w,rxj,ai+w,ocﬂ)ETj F%. (K; )K/—m _ qm(arj,cci+w.otri)7:‘ETj % (K; )K/—m

a;+w,q; a;+tWw,q;

= ¢t F] - T, (KK =0,

o +w,q;

Hence, we obtain an identity
;7 K- Ty (W) =, (W) By T, (KD). (5.4)

The desired identity (5.2) now follows by applying 9:__1%- to (5.4). Indeed, we have
9:;1%. %.,i(?i) = J2(Y) =Y, since %_)i =% 9. = 7, 7 by 214) and 7, (Y)) =Y, by
Proposition 4.6. Also, we clearly have 93 (K;.) = K; O

5.2 | Motivating examples: Types BI, DI, DIII,

We provide examples in this subsection to motivate how we obtain the general rank 2 formulas
’T‘lf,_l(B ;) in Theorem 5.5 below. The three examples are of types BI, (n = 3), DI, (n > 5), DIII,,
and they will be treated uniformly.

The Satake diagrams of these types are listed below. For each type, we define elements ¢; € W,
for j € 1. following each diagram; these notations ¢; allow a uniform proof of Lemma 5.2 thanks
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1372 | WANG and ZHANG

to the properties (5.5) below.

o o e - — = - e : L]
1 2 3 n-1 n
Bl,,n>3
ta =Sg° Sy Sas (3<ax<n)

n-1

oO—O0—»» - - - - —

1 2 3 n-2
n
DI,n>5
ta = Sa---n—zsn—lsnsn—z---a’ (3 S a S n-— 2)’ tn—l = tn = Sn—lsn'
3
1 2
4
DIIL,

t3 = t4 = S3S4.
Note that, for each of the three types, we always have
r, = S,155,, £(ry) =£(t;) + 2, B, =F, + E/K]. (5.5)

Recall the notation B from (3.17).
Lemma 5.2. We have
T = [T BB~ 7 (KK, (56)
2
Proof. By Lemma A.1, [BS, F 1]q2 =|[F,,F 1]qZ’ and RHS (5.6) is simplified as follows:

| 7. B 1BS. il | = | T B F i,
=1

V)

= | Zp.(Fy), [Fa, F1lg, ] + [EZ%,(KZ)’ [Fz’F1]q2]q
- - 42 2

= | 7, (F)).[Fy. Fy],, ) +q,F, T, (KK, (5.7)

2

On the other hand, by a direct computation using (5.5) and Proposition 4.2, we have

Z;I(Fl) = %_19[3_1([1:2,1:1]%)

= [z_ly\t;—l(Fz), [anF1]q2]
Cb)

= | 1P P, (58)

Ch)

The desired formula (5.6) follows from (5.7)—(5.8) by noting that %_(Fz) = % (Fy). O
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Note that q; = g, in all three types.

Lemma 5.3. We have

%—1(1511({) = ?w. (B,), [Bz,ElK{]qz]q2 - q,E K] fw. (KK, (5.9)
Proof. We shall establish the identity (5.9) by applying the operator > := ﬂ’; %O to (5.6)
as follows.

Recall K; € UY from (3.23). By (4.19) and noting (a,, w,a.,) = 0in each of the three types, we
have z;l(Bg) = —?LZ (BYK, !, or equivalently,

T (BYK, = =T (BS). (5.10)

By Lemma 4.4, we have %O(Bg )= % ,(B7). Hence, applying '% to both sides of (5.10), we
obtain '

B, 7, (K = -7, 7, (B) =T Ty (BY). (5.11)

Moreover, by Lemma 4.4, we have a(F;) = =K 'E, = —q,°E\ K] El_l. Note also that > commutes
with both % and '?rz . Hence, by applying > to (5.6) and then using (5.11), we have

T BKDTLE = | T B T, (00, B T, 00, BRI, |
— E K k1T, 3(Ky). (5.12)
For weight reason, (5.12) is simplified as
T EKDTLE = 0| 70, B, BB, | T (007 (kR
(5.13)

— E K k! 5;2 (kK

w,ay—ay"

By definition (3.23), we have K, = EZK{U «,—a,> in addition, by (4.13), K], o
also have 7, L,(K,) = q,7%K; . Hence, (5.13) is further simplified as

is fixed by ;.- We

—a

T EKD T, () = | T, (By), [By, EiK] ] qz]q Ry 7 (kR
2
~ QEKK, (o) Kok 7 (k)R (5.14)

Finally, by Lemma 4.10, we have % (El_ D= El_ 1% (k,)k;, and then, the identity (5.14) can be
transformed into an equivalent form (5.9). O

Proposition 5.4. The following element

T, B = | 7B (BB, |~ .87, (k) €T (515)
2

satisfies the intertwining relation T;,_1(31)?2 = ?2'2;_ '(B)) (i.e, (4.7), fori = 2,x = By).
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1374 WANG and ZHANG

TABLE 2 Rank 2 Satake diagrams.

SP Satake diagrams RS Satake diagrams RS
o) vo) O —e O —8 - - —el——e
Al 1 2 A,  CII, 1 2 3 4 5 n  BC,
oL——o0 ° O——e<L—o0
CIL, 1 2 C, CII, 1 2 3 4 C,
o . o o o)
ofz=——o 1 2 l3 4 5
G, 1 2 G, EIV 6 A,
e T T
O——O0—o. ——————>e oO——Oo0—oO0
BI, 1 2 3 n B, Al 1 2 3 @,
/\
o—o0—» — - - — /\
DI 1 2 3 < B, Al 1 2 7 hnZ1 n BC
n 2 n 2

4>

3 o0 T
<>—<>< 1 2 3

1 2 4

DIII, C, DIIL 5 BC,

m
O——o (] o———O
~—o0 o 1 2 ls 4 5
All, 1 2 3 4 5 A, EIII 6 BC,

RS, relative root system; SP, symmetric pair.

Proof. The intertwining relation follows by the following computation:
Y, 22—1(33)?2—1
- ?z<§rz—1(F1) + ?rz—l(ElK{)ﬁ;l

(DG 1, p ol L,
= Y7, '(FDY; + I, (B K
(56 = ([~ —~ - =
= Y2<[9w.(Bg ), [BU,Fl]qz]qz -q,F1 7, (Kz)K;)Y2 1y o '(E\K})
O [ = =
a2 [yw_(Bz), [BZ,Fl]qz]q — q.F, 7, (KK, + T (EyK))
2
(5.9) [

7o BBy Py, | = a:F T (KK,
2

+ [%-(32)’ [B2’E1Ki]q2]q - ‘J2E1K1%_(K2)K£
2

= [% (B,), [32’31]q2]q - ‘1231%, (Kz)Kg = T;,_l(Bl),
2

where the equality (*) follows from Theorem 3.6 and Lemma 5.1. O
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5.3 | Formulation for ’T‘: (B

Theorem 5.5. The elements 'T‘: By e U listed in Table 3 satisfy the following intertwining
relation (see (4.7)):

T_ B =Y.7 _(B). (5.16)
We clarify a few points regarding Table 3 in the following remarks.

Remark 5.6. Recall that 37 (s € 1,) restrict to automorphisms on U* by Proposition 4.5; hence, the
use of .7, (s € 1,) in the formulas of ’f‘; _1(B j) is legitimate; see (4.6).

Remark 5.7. Let p be a diagram involution on the underlying Dynkin diagram (p is not necessarily
equal to 7). By the intertwining relation (4.7), the formula of T‘; ; —1(BP J-) can be obtained from

T, (B;)via
T:ai,—l(Bpj) = P<T§,—1(Bj))'

In particular, when p = 7, we have T: ,(Bj) = ?(’T‘; _,(B;)) by Remark 4.8. Accordingly, only one
formt;la of ’T‘; i,—l(B ;) and Tg,_l(B j)isincluded in the table; see types Alls, EIV, and all types with
T # Id.

Remark 5.8. The formulas of T’ ,(B;) only depend on the subdiagram generated by nodes i, 7i, j
and the component of black nodes Wthh is connected to either i or 7i. For example, the formula
for T’2’_1(B4) in type DIII; is formally identical to the formula for Tz,_1(B4) in type AIL;. (Note
that such a subdiagram may not be a Satake subdiagram as the vertex 7j is not included.)
Recall that U is defined over an extension field F of Q(q). Denote
oU' := Q(q)-subalgebra of U generated by B, k;, x fori € 1,,x € C.. (5.17)

Proposition 5.9. The symmetries ’T‘: _, (i €1,) preserve the Q(q)-algebra o U

Proof. This follows by the formula for T’ , acting on the Cartan part in Proposition 4.11 (see
Lemma 4.12), the rank 1 formulas in (4. 20) and the rank 2 formulas in Table 3. O

Remark 5.10. It would cause no difficulty if we have replaced U* (over F) by @ﬁ’ over Q(q) through-

~ 1
out the paper. We need to work with U over Q(q2) in several places. The results for U’g will be

valid over Q(q), while some results over Ulg, for ¢ over Q(q), are valid over @(q%).

5.4 | Proof of Theorem 5.5

Proposition 5.11. Let i,j €[, be such that j & {i,ti}. Then there exists a noncommutative
polynomial Rl-j(xl-, X;isYi» Vzir 23 G.), which is linear in z, such that
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¢)) 91;1(@ =R;;(B,B%,K;, K, Fj;G.):; N
@ T N(F, (B K)) = Rij(Bi, By, Ky, Koy, 7, (E DK CL).

Remark 5.12. In case ti = i, the polynomials R; j depend only on x;,y;,z and g~ In this case, it is
understood in Proposition 5.11 that R; j(xl-, Xzis Vi Vi Z5 Q~,) is replaced by R; j(xi, Yi- Z; C.) (which
is linear in z), and R;(B/, B, K;, K., F; G.) is replaced by R;;j(BY,K;, Fj; G.), and so on.

The proof of Proposition 5.11 will be carried out through type-by-type computation in
the Appendix.
We define

SR R(B;, B, K}, K, ;,B;;G.)  ifi#7i.

Clearly, we have T‘{ By e U'; see Table 3.
The polynomials R;; in all types can be read off from Table 3. For instance, in type All; it reads
as follows:

Rij(x,y, z; 6) = [[x,Fs], Z]q'

In order to read R; | off from Table 3, one first needs to unravel :7:), for w € W, appearing in those
formulas in terms oij,Fj,Kj,K},j el,.

Proof of Theorem 5.5. We start with a general comment. Originally, we computed the explicit
formulas in Table 3 type by type; see §5.2 for examples in types BI, DI, and DIII,. In the process, we
observed that parts of the arguments can be streamlined a uniform formulation in Proposition 5.11,
even though its proof requires quite some computations. We hope that this uniform formulation
helps to conceptualize the structures of the formulas for ?;l__l(B i)

We now prove Theorem 5.5 using Proposition 5.11. Recall by Theorem 3.6 that ?iBf?i_l =B,
and Y;xY;! = x for x € U"T..

For definiteness, let us assume that i # 7i. (The case when i = 7i is similar using the interpre-
tation of notation in Remark 5.12.) By Lemma 5.1, Proposition 5.11, and definition of ’Af‘lf’_l(B j) in
(5.18), we have

V.70 B) =T )+ T (B K]
=V Fp+ T (T, (B )T,
=Y,R,;(B?,B%, Ki, K1, F;G.) + R;j(Bi, B, Kj, Ko, %'(ETJ)K};G,)%
= R;j(B;, B, lci!]Cri»Fj;a.)?i + R;;j(B;, By, Ky, Ko %_(ETJ)K;';G-)?i
= R;;(B;, B, K1, Ky, Bj; COY; = T, (B)Y,,

where the second last step follows form the linearity of R;; in its fifth component. This proves the
desired identity (5.16), whence the theorem. O

Conjecture 5.13. For U' of Kac-Moody type, Proposition 5.11 remains valid.
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Assume Conjecture 5.13 holds. Then 'T‘{ —1(B j) € U defined in (5.18) satisfies the intertwining

. ~, . =
relation (5.16), and hence, T, _, is a symmetry of U’ of Kac-Moody type.

-1

5.5 | A comparison with earlier results

We compare our formulas with some special cases obtained in the literature.

By choosing a reduced expression of w,, we can write out the formula (4.20) explicitly for rank
1 Satake diagrams in Table 1. We list some explicit formulas of T’ ,(B;) and compare them with
braid group actions obtained earlier in [14, 20, 30]. (The index i is spe01f1ed in each case.) In some
rank 2 cases, our formulas differ from those in [30] and they can be matched by some twisting. As
noted in [30, Remark 7.4], the formulas for braid operators in [20] may involve \/5 and are related
to those in [30] by some other twisting.

551 | Type Al
We shall label the single white node in rank 1 type Al by 1. In this case, the formula (4.20) reads
as follows:

T)_,(B) = —q °B,K]' = —q Bk} (5.19)
Note also that¢; , = —q~2. Applying the central reduction n; to (5.19), we have Tl_i(Bl) =B, €

Ulg . Our formula (5.19) of ’T’l _,(By) coincides with the formula Ti_l(Bl-) in [30, Lemma 5.1]. Our
formulation of T1_<1>(Bl) coincides with the formula ‘['i_l(Bl-) given in [20, (3.1)] for (U, U; )

55.2 | Type All,

The rank 1 Satake diagram of type AlIl is given by

. O- Py

1 2 3

By Table 1, r, = $,13,, and the formula (4.20) reads as follows:
le,_l(Bz) =—-q(q—q")’ [[Bz’Fs]q,F1]qE3E1E2_1

+(q - q_l)([Bz’Fs]quEs + [Bz,F1]qK3E1)Ez_1 - ‘1232K3K1A’€2—1

553 | Type AIll,,

The AIII,; Satake diagram is given by

In this case, the formula (4.20) reads as ’Af"l (B =-B,K) = —BZE; 1
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554 | Type Alll,,

The rank 1 ATV Satake diagram is given by

T
1 2 n—1 n

In this case, the formula (4.20) reads as T/L,l(BO = —q%_ (B! [Tia, K;_l.

Remark 5.14. For type AIV, Dobson [14, Theorem 3.4] obtained a different automorphism 7; on
U_ such that T77'(B) = qB.k, K  _, - Here, w;arethe fundamental weights and k; is denoted
by L; loc. cit.

5.5.5 | Split type

The formulas of T’ ,(B;) in the split types Al,, CI,, and G, are identical to the braid group
operators obtalned usmg the 1Hall algebra approach, cf. [30, Lemma 5.1].

5.5.6 | Formulas on U‘g

Applying central reductions and isomorphisms ¢, : U‘ =] U’ (see §9.4 below) to our formulas,
we recover various formulas obtained for U‘ in [20] in spht types and type AIl.

6 | NEW SYMMETRIES "F;'ﬂ ON U!

In this section, we introduce new symmetries ’T‘:’ L, on U4, fori € I,, via a new intertwining prop-
erty using the quasi K-matrix, and establish explicit formulas of ’T‘:’ ., acting on the generators
of U". Then, we show that T | and T/, are mutual inverses. (This in particular completes the
proof of Theorem 4.7 that T‘:’_l is an automorphism.)

6.1 | Characterization of T‘;’H

We formulate ’T‘lf’ ', below, as a variant of ’T: _, introduced in Theorem 4.7.

Theorem 6.1. Leti € 1.
(1) Forany x € U, there is a unique element x"' € U" such that x"' :7:, ¥hH= Z (37;1)9: (x).
(2) The map x = x"' defines an automorphism of the algebra U', denoted by Tlf’ o

The strategy of proving Theorem 6.1 is largely parallel to that of Theorem 4.7 given in the previ-
ous sections. We shall prove Theorem 6.1(1) and a weaker version of Part (2) that x — x’’ defines
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an endomorphism ’T‘;’ ., of the algebra U', by combining Proposition 6.2, Proposition 6.3, and
Theorem 6.6. Finally, we show that ’T‘;’ ., is an automorphism of U' in Theorem 6.7.
Hence, ’Tlf’ ., satisfies the following intertwining relation:

T, 07 =77 ), foralxeT. (6.1)

6.2 | Action of 'T‘;’H on U°U,
Just as for Proposition 4.11, we can prove the following.

Proposition 6.2. Leti € I,. For each x € UU,, there is a unique element 'T‘;’ +1(x) € U0, such
that the intertwining relation ’T;’H(x)?:(?i_l) = Z(?i_l)Z(x) holds; see (6.1). More explicitly,

Tlf,’ﬂ(u) = (2., 0 D), ’T‘l{”H(Ej,o) = Ky 00 forueU,andjel,.

It follows by Propositions 4.11 and 6.2 that ’T‘l’ P T‘lf’ .-and 97#1 coincide on U°U, . In particular,
we have

T/ (x)=(c'oT]_, 00")(x), for x € U"U.. (6.2)

6.3 | Rank 1 formula for T‘;’H(Bi)

We shall establish a uniform formula for T/’ (B;), fori € I, a counterpart of Theorem 4.14. Recall
the anti-involution ¢* of U* from Proposition 3.12.

Proposition 6.3. Let i € 1,. There exists a unique element T‘lf’ (B € U' which satisfies the
following intertwining relation (see (6.1))

T ,(B) 'Z(?i)_l = %(?i)_l «Z(Bi)- (6.3)
More explicitly, we have
'Tl{,,+1(Bi) = —q_(ai,ai)%—-Z(B,"i,i)%_(ICT__L.). (6.4)
In particular, we have ’T‘;’H(Bi) =(c'o ’T; _1)(31.),

Proof. By Theorem 3.6 (applied to the rank 1 setting), we have B, Y, = ?iBiU , which can be rewritten
as

7 D7 (B)) = 7 (B 7, (Y. (65)
Hence, by comparing (6.3) and (6.5) and then applying (2.10), we obtain that

T, (B) = 7,(B)) = (00 i:_l)(Bi)- (6.6)
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We now convert the formula (6.6) to the desired formula (6.4) for T’ (B ), which particu-
larly shows that Tl., "B € U'. To that end, note that o(K:, o) = T, (ICT i), by Proposition 2.2
and definition (3.23) of K;. Applying o to the identity f;l(Bi) = —q @w "‘ﬂ) (B;’ DK ;1_n. in
(4.19) and using (6.6), we have established the formula (6.4) for 'T‘:’ 1 (B

It remains to show that T: ! LB)=(d'o ’T‘lf’_l)(Bi). Recall (6%)? = 1. Indeed, we have

T,,8)% (00 7 )B)

() =
= (oo Ad§;1 OT;,_l)(Bi)

@
(D (a’ oTlf’_l)(Bl-),

where (*) follows by Theorem 4.14, and () follows by applying (3.25) to the rank 1 Satake
subdiagram associated with i. O

6.4 | Rank 2 formulas for 'T;’H(B )

The following lemma is a reformulation of Lemma 5.1.

Lemma 6.4. We have

D Z(F ;) commutes with Z )
@) 7, (B, K/ commutes with A}

Introduce a shorthand notation
= 7, (T ). 6.7)
We reformulate the intertwining relation (5.16) as
B-7,(Y) =7, B, (6.8)

Proposition 6.5. Let i # j €1, be such that j & {i,ti}. Then there exists a noncommutative
polynomial P; j(xl-, Xiis Vi> Yeis Z5 C. ), which is linear in z, such that

(1) Z(F)) = Pyy(B;, By, ki ey Fj3 GL),

@) 7(Zy (K = Py(B,, By o, Koiy 7, (B, K3 G

The proof of Proposition 6.5 is carried out through a type-by-type computation similar to the
Appendix (the detail can be found in Appendix B in an arXiv version).
We set
=37 .
T/, ,(B)) := P;;(B;, B, ki, k., B}; G.). (6.9)

Ti»

Clearly, we have T’ ' (B) € U
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Theorem 6.6. Let i # j€l,,. The elements 'T‘;’ 1(B)) listed in Table 4 satisfy the following
intertwining relation (see (6.1)):

T, BNZT) = 7, (W) 7, (B)). (6.10)
Proof. Recall B; = F; + 7, (E; K. By Lemma 6.4, (6.8), and (6.9), we have

T )™ 7, B 7, (Y)

= ZO (7 + 7 T X)) ) 7@

S AN AT ACORSCACOREA AR AEAD
= P;;(B;, B, k;, En-,Fj; G.)+ P;;(B;, By, ki ke, %.(Ej)K;‘;QN-)
= P,(B;, B, ki, ky1, B3 C.)

= Tl{,,+1(Bj)’

where the linearity of the polynomial P;; with respect to the fifth variable is used in the last step.
This proves the desired intertwining property (6.10) and whence the theorem. O

6.5 | T andT’ asinverses
Le iL,—e

Recall the automorphisms T‘; € Aut(U") by Theorem 4.7. Recalling the bar involution %' on U*
from Proposition 3.4, we define two more automorphisms T;’_l, ’T‘: 1 € Aut(U) via
T;,’—l =1¢lo T:,’H oy, T :=t¢'o T;’_l ot (6.11)

Recall that Lusztig’s symmetries T/, and T/'_ are mutually inverses, for i € I,e = £1; see [28,

37.1.2]. They in addition satisfy the relation Tl.’ 3
1-analog of Lusztig’s symmetries.

— T . .
=00 Tl.’+1 o o; see (2.10). We prove the following

Theorem 6.7. T‘{e and ’f‘;’_e are mutually inverse automorphisms on U, for e = +1,i € 1,.
Moreover, we have

A =97
T, = clo T, o o' (6.12)

) !/ — T/ T/ — T/ 3 .
Proof. By definition (6.11), T | =¢'T ¥ andT; | =9¢'T,_ ¢" Hence,it suffices to show that
T/ T/ :
T, | and T, are mutual~ly 1nverfes. ~

We already knew that Tl( _, + U — U is an injective endomorphism. Let us now prove that

this endomorphism ’T{ _, is surjective. More precisely, we shall show the following.

Claim. Foranyz € U',sety :=T/, (z). Thenwehavez =T, | (»).
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1382 | WANG and ZHANG

Let us prove the claim. The identity (6.1) reads in our setting as y* f?: (S?i_l) = :7:1 (?i_l):?:i (2).
Applying :7:‘1 to both sides of this identity, we obtain Zi‘l(yl)i‘l = Yz, which can be rewrit-
ten as zY; = Y, fﬁl(y’). By (4.7) and the uniqueness in Theorem 4.7(1), we conclude that z =
T,

By an entirely similar argument as above (switching the role of ’T‘: _,and ’T;’ +1) and using the
uniqueness in Theorem 6.1(1), we show that, forany y, € U, we have V= ’T‘;’ . (z,), wherez, :=
Tl{’,l()ﬁ)-

Hence, ’T‘: .
T/ . and T”_, are automorphisms of U'.

i,—1 i,+1

and ’T‘;’ ., are mutually inverses. As 'T‘: __ is an endomorphism, we see that both

1

Recall the anti-involution ¢* on U’ from Proposition 3.12. It remains to prove that ’T‘;’ =
ot o’f‘; _, oc'. This follows from the identity (6.2), the identity ’T‘;’ B = (' o’f‘; _)(By) from
Proposition 6.3, and T‘;f+1(Bj) = (Elo’ﬁf‘lf’_l)(Bj), fori#je E),,; the last identity follows by
comparing the rank 2 formulas for T, _(B;) in Table 3 and for T’ .,(B;) in Table 4. O

In particular, Theorem 6.7 above completes the proof of Theorem 4.7 that ’T‘; _, are automor-

phisms of U'. From now on, thanks to Theorem 6.7, we shall denote

T . 7 1 . _ v/
T, =T/, T':=T_,.

7 | A BASIC PROPERTY OF NEW SYMMETRIES

In this section, we establish a basic property that Tﬂ’ for w € W°, sends B; to B It ifwa; =«a 3 see
Theorem 7.13. This is a generalization of a well-known property of braid group action on Chevalley
generators in the setting of quantum groups.

We shall first study the rank 2 cases separately, depending on whether 7, (w,) = 3, 4, or 6. Then
we deal with the general cases.

7.1 | Rank2caseswith? (w, )=3

Assume that I, ; = {i, j} such that #,(w,) = 3; in this case, according to Table 2, we must have
7 = Id, and hence, we identify I, = {i, j} as well.

Lemma 7.1. We have %%(Ei) = B;.
Proof. Noting that f(rirj) =7(r)+ f(rj), we have ‘?r:?;, = ‘?r:rj‘ Noting that rirj(oci) =aj, we

have that zri (X;) =X, forX = F,E or K'; cf. [28, 39.2] or [16, Proposition 8.20].

Recallt =1d,and B; = F; + % (E)K!. Thanks to (2.14), :7:; commutes with both Z and i; .
Therefore, we have

Z%(Bi) = er(Fi + 7, (EDKD) = Fj + 7, (E)K| = B;.

The lemma is proved. O
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Proposition 7.2. We have T;lT;l(Bi) = Bj; or equivalently, T‘jT‘i(Bj) =B,

Proof. Since T ! and ’T‘;l are automorphism of U*, we have ’T‘i_l’fjfl(Bi) — B; € U'. Then, we can

write this element in terms of monomial basis of U* (see Proposition 2.6):

T,'T;'(B)—B; = ), A/B,, for some A; € UFTY. (7.1)
JjeJ
On the other hand, using the intertwining relation (4.7) twice, we have

T8 =Y%7 ') 7, 7 B) - 7Y

By Lemma 7.1, we rewrite the above identity as

Tfo@g:i@j%ﬁnyéjwﬁﬂi4. (7.2)
By the equality (7.2), we rewrite (7.1) in the following form:
Y7 ) -B - Z N Y - By = ) ABy (7.3)
JjeJ

Now we claim A;B; =0, for each J € J, by comparing the weights in Z[. Recall from
Remark 3.10 that ¥; = 3, ., Y where wi(Y"") = m(x; + w.a,;) and then weights of .7, (Y))
lie in N(r;e; + r;w, a7 ;). Hence, the weights appearing on LHS (7.3) must belong to the set Q;;,
where

Qi =Q;uQy,
0

;o= + N + w.ay) + N(ra; + rw.aqp),

Q{; r=w, (o) + N + w.ay) + N(ro + rw, o).

On the other hand, note that the weight of the lowest weight component of A;B; liesin Q; :=
—wt(J) + NI,. Then A;B; # 0 only if Q; N Q;; # @. It immediately follows that A;B; = 0 unless
wt(J) € a ; + NI.. Moreover, when wt(J) € a ; + NI, the only possible element in the intersection
Q;NQ;jis—aj.

However, since ?i :?:__1(? j) has constant term 1, the weight (—«a j) component for LHS (7.3) is
0. This implies that A;B; = 0, for each J € J, and then the desired identity follows by (7.1). [

Corollary 7.3. We have

Proof. One reads off from the proof of Proposition 7.2 that A;B; = 0, for J € J, and hence, the
corollary follows from the relation (7.3). O

Corollary 7.4. We have

BY; 7, (Y) =Y,;7.(Y)B, (7.5)
B 7, (¥ )Y; = Z, (Y DY,BS. (7.6)
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1384 | WANG and ZHANG

Proof. Switching i, j in (7.4), we obtain
Y ijl(?i)Bi = Bi?ji;_l(?i)- (7.7)

By Proposition 8.3, we have 9 1(Y )= 9 (Y ). Hence, (7.7) implies the desired identity (7.5).

Recall from Proposition 3.8 that Y.Y; ; are both fixed by the anti-involution ¢. Recall also that
°’<7r,. lg = ‘%[' Applying the anti-involution o to the identity (7.4), we have proved (7.6). O

7.2 | Rank2caseswith? (w,) =4

In this subsection, we assume that I, ; = {i, j} such that 7 ,(w,) = 4. Let {i, i} and {j, 7 j} be the
corresponding two distinct 7-orbits of [,

Lemma 7.5. Denote the diagram involution ¢ := 7,7, ;. Then we have

rrrj(oc)—oc and szi;(Bi)=Bgi-

(Moreover, a nontrivial ¢ can occur only in type AIIl, and in this case, ¢ = 7.)

Proof. As before, set w, to be the longest element of the Weyl group W and w, ; = r;w.; set 7, and
7.; to be the diagram automorphisms corresponding to w, and w, ;, respectively. In this case, w,
satisfies the relation w, = w,w, = r;r;r;r;w, = r;r;r;w, ;. Then we have

7o) = —wy(e;) = —rjrirjw,,i(oci) = rjrirjr,,i(ai).
Setting ¢ := 7,7, ;, we have obtained r;r;r;(«;) = a,;. (We thank Stefan Kolb for providing the
above conceptual argument that replaces our earller case-by-case proof of the existence of ¢;
moreover, his argument produces a precise formula for ¢.)

In particular, we observe that a nontrivial ¢ occurs only in type AIII (for some particular i), and
in this case, ¢ = 7.

Recallingr; = r;;, we also have r;rir;(a;;) = gy

We have £(r;r; r]) =£(x)+7 (r )+ £(x;), by Proposition 2.4. Therefore, it follows from

rrr;(o;) = a that 9 9 9 (X) X,;, for X = F,K’; cf. [28, 39.2] or [16, Proposition 8.20].
Slmllarly, we have ﬂrj ﬂri ,Zj (En) =

Recall B; = F; + %_(Eﬂ)Kl.’ . Thanksto (2.14), % commutes with both Z and Z . Therefore,
we have '

ol

T2, 0 T (B) = Ty e (Fi + Ty (E)K]) = Foy + T, (DK}, = By
The lemma is proved. O

; or equivalently,

Proposition 7.6. Retain the notation in Lemma 7.5. Then T‘;l’f;l’ffl(Bi) = B,;;
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Proof. Since T;! and 'T‘j are automorphism of U, we have T T, 1T '(B;) - B,; € U'. Then we

can write this element in terms of monomial basis of U' (see Prop051t10n 2.6):

’T‘;l’f‘;l'f‘;l(Bi) -B, = 2 A;By, for some A, € UFUY. (7.8)
jeg

On the other hand, using the intertwining relation (4.7) of T;l, we have

T}Tli“i—li‘;l(Bi)

= 1(Y)y EACOREA 19 (B - 9 "N 1)3 EHY
Since zfli;lzfl(&) = B,; by Lemma 7.5, we rewrite the above identity as
A—1R—17—1 _Y TN Gl e 1 G151y G151y -1
By the identity (7.9), we rewrite (7.8) in the following form:

T 1T -1 1T -1 =171\ -15-1\v-1 -
Y, 7 W) T T ) By T T O N ETNY ~ B = Y AL (700)
JeJ

By a weight argument entirely similar to the proof of Proposition 7.2, we obtain ;. ; A;B; = 0.
Thus, the proposition follows by (7.8). [l

Corollary 7.7. We have

B,Y; 2}-1(?1.) 2]_—12{—1@]) =Y, ?rj—l(i) ij—lz—l(?j)Bg,i. (7.11)

Proof. Since Y’ ; A;B; = 0, as shown in the proof of Proposition 7.6, the corollary follows from
the relation (7.10). O

Corollary 7.8. We have

BY, ?j- COEACOERT ?rj—l(?i) 7. (Y))B;, (7.12)
A COFACONER A COFATHN 3 (7.13)

Proof We prove (7.12). Noting that ¢ equals either Id or 7, we have by Remark 4.8 that ¢ commutes
with ﬂ 9 and by Proposition 3.8 that ¢ fixes Y; Y Hence, applying ¢ to both sides of (7.11),
we have

BY; 7, j(ﬁ?)ﬂj {1(37])=?jaﬁfjl(?i)ffj@:jl(?j)3i- (7.14)

By Proposition 8.3, we have ?;j‘ 1 ?;i‘l(? j) = ?;l 6% j). Hence, the desired relation (7.12) follows by
(7.14).

We next show (7.13). Recall from Proposition 3.8 that S?l-, Y j are both fixed by the anti-involution
o. Recall also that 0:7:‘10 = f?: . Switching i, j in (7.12) and then applying o to it, we obtain
(7.13). O
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7.3 | Rank2casewith? (w)=6

The rank 2 case with Z,(w,) = 6 occurs only in split G, type. Let (I = [ ,Id) be a Satake diagram
of split type G,. In this case, the relative Weyl group W° is identified with W and r, = s, for
ael=I, ={i,j} Wedonot spec1fy which root i or j is long.

Setw—sjssss andy 99999 Thenwehavew(oc)—a

Lemma 7.9. We have 7 '(B;) = B;

Proof. Follows by [28, 39.2] and the same type of arguments as for Lemmas 7.1 and 7.5. O
Proposition 7.10. We have T_'(B;) = B;; or equivalently, T, (B;) = B

Proof. Since T;* and T‘;l are automorphism of U*, we have T_!(B;) — B; € U'. Then we can write
this element in terms of monomial basis of U* (see Propositio?l 2.6):

1(B )—B; = Z A;Bj, for some A; € UTUY. (7.15)
JeJg

On the other hand, using the intertwining relation (4.7) of T‘i_l, we have
T, (B) =97, (B)Q ", (7.16)
where

0=Y, 7@ TN T T T T T

[ A CH NN CAY)
By Lemma 7.9, we rewrite the identity (7.16) as
T;}(Bi) = QB0 (7.18)

By the identity (7.18), we rewrite (7.15) in the following form:

Q:B,Q;' —B; = ) A;B,. (7.19)
JeJ

By a weight argument entirely similar to the proof of Proposition 7.2, we obtain ), 7A;B;=0.
Thus, the proposition follows by (7.15). O

Corollary 7.11. Let Q; be as in (7.17). We have
BiQi = QiBi‘ (720)

Proof. Since Y, ; A;B; = 0, as shown in the proof of Proposition 7.10, the corollary follows from
the formula (7.19). O

d 'S €T0T XFFTO9TT

[11°01/10p/w00"Kafin"

ssdpy) suonipuo) pue swid L Ayl 995 “[£207/11/01] uo A1eiqi auruo LM ‘VINIDYUIA 40 ALISYIAINN £q 79571 swid/g

Kot

5UDY] sUOWIWIOY) 2ANEAI) d[qeardde 3y Aq POWIIAOS AIE SIDILE V() 95N JO SO 10} AIBIQIT HUIUQ) AD[1AY UO



RELATIVE BRAID GROUP SYMMETRIES ON :QUANTUM GROUPS 1387

Corollary 7.12. We have the following intertwining relations:

B Y 5;Sj8;S; (Y) N si(?j)zsj(?i)%?j)

Y 5i8j ss(Y)%ss(Y )%S(Y)y(Y )Bp (7.21)

Bj‘?sisjsisj(?i)fgsisjsi (i)%lsj(?l)«?(?,)\?l

= %isjsisj (Yi)zisjsi(Yj)zisj(Yi)%(Yj)YiBj- (7.22)

(Y) =Y, and T (Y )= Y Then we have

515/ i j

Proof. By Proposition 8.3, we have :7? s

51858
Q Y '7?8 SS (Y) ;S Sl(?./)jg:sj(?l)egf\;(?.})

Hence, the desired identity (7.21) follows by (7.20).
We next prove (7.22). Switching i, j in (7.20), we have

where Q; is defined by switching i, j in (7.17).
Recall from Proposition 3.8 that Y;,Y ; are both fixed by o. Then by the definition of Q;, we
have

U(Q ) ss 8i8; (Y) 8i8;S; (Y ) (?l)'i(?j)?l

Hence, applying o to (7.23) and then using this formula of 6(Q;), we obtain (7.22). O

7.4 | The general identity T, (B;) = B

Letw € W*°. Given areduced expression w = r; r; ...r; forw, we shall denote T, = Til’f‘iz Tik.
Theorem 7.13. Suppose that wi € I, forw € W° and i € I,. Then T ,(B;) = B, for some reduced
expression w of w.

(Once Theorem 9.1 on braid relation for T, is proved, we can replace T,, in Theorem 7.13 by T,
which depends only on w, not on a reduced expression w of w.)

Proof. The strategy of the proof is modified from a well-known quantum group counterpart, cf.
[16, Lemma 8.20]. We shall reduce the proof to the rank 2 cases which were established earlier
and finish the proof by induction on Z,(w).

The statement holds for arbitrary rank 2 Satake (sub) diagrams (1, U {i, 7i, j, 7 j}, 7). Indeed, in
case when Z(w,) = 2, the claim is trivial. In case when Z(w,) = 3,4 or 6, the claim has been
established in Propositions 7.2, 7.6, and 7.10, respectively.

In general, we use an induction on [,(w), for w € W°, where [, is the length function for the
relative Weyl group W°. Recall the simple system {a;|i € I, .} for the relative root system from
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1388 | WANG and ZHANG

(2.16). Since wo = 6w and wi € [, by assumption, we have w(a;) = «,,;. We denote a positive
(and negative) root in the relative root system by § > 0 (and respectively, 8 < 0).

Suppose that [,(w) > 0. Then there exists j € I, . such that w(a;) <0; clearly j # i since
w(e;) > 0. Consider the minimal length representatives of W*° with respect to the rank 2 parabolic
subgroup (r;, r;). We have a decomposition w = w'w"” in W° such that w'(a;) > 0,w'(a;) > 0and
w' lies in the subgroup (r;, r;); moreover, [,(w) = I,(w') + L,(w""). Now w(a;) > 0 and w(a;) < 0
implies that w”(e;) > 0 and w”(e;) < 0 (since w’ preserves the signs of the roots w” (;) and
w”(a;)). It follows that

w”(a;) > 0, w’(a;) <0, w'(a;) > 0, w'(a;) > 0.

(The positive system of the restricted root system is compatible with the positive system of R.)
Moreover, since ry, for any s € I, acts on I, as the involution 7, (7, we must have w'(a,) > 0, for
any a € l,; see also Proposition 4.11.

We show that w”i € I,,. Since w”(e;) > 0 and w”(a;) € R N (Za; + Za; + Z1,), we can write
w'”(a;) € R in the following form:

w’(a;) = ra; +sa; + a,

for some r,s > 0,a, € NI,. We consider the following cases.

(1) At least two of r,s,a, are nonzero. Then w'w”(e;) = rw'(a;) + sw'(et;) + w'(a,) cannot
be simple for w'(e;) > 0,w’(a;) > 0,w’(a.) > 0; this contradicts that w(x;) = w'w”(«;) is
simple.

(2) r=0,a, =0,and s > 0. Thens = 1 and w'(a;) = a; is simple. A similar argument applying
to the case s = 0, ¢, = 0 and r > 0 shows that w”/(a;) = «; is simple.

(3) r =5 =0,a, # 0. We show that this case cannot occur. Indeed, we have Sw’ (¢;) = 6(ct,) =
a, = w'(a;). Since w”6 = 6w’, the above identity implies that ¢; is fixed by 6, which is
impossible fori € [.

Therefore, we have shown w’’i € 1, and w”(«;) = a,,;. By the rank 2 results in Propositions 7.2
and 7.6, we have T, (B;) = B,,n;, for any reduced expression w’’ of w”. Now using the induction
hypothesis, there exists a reduced expression w’ such that w = w’ - w’ is a reduced expression for
w and

TE(BL) = Tw_/;f‘w_//(Bl) = Tw_’(Bw”i) = Bwi'

The theorem is proved. O

8 | FACTORIZATION OF QUASI K-MATRICES

It is conjectured by Dobson and Kolb [15] that quasi K-matrices admit factorization into products
of rank 1 quasi K-matrices analogous to the factorization properties of quasi R-matrices. They
showed that the factorization of quasi K-matrices for arbitrary finite types reduces to the rank 2
cases. In this section, using (the rank 2 cases of) Theorem 7.13, we provide a uniform proof of the
factorization of quasi K-matrices for all rank 2 Satake diagrams, hence completing the proof of
Dobson-Kolb conjecture in all finite types.

d 'S €T0T XFFTO9TT

sdny wouy

Z11101/10p/woo Ko ianAl

:sdny) suonIpuoy) pue suld L Yy 23S “[€Z0Z/11/01] U0 A1eiqr dUIUQ AL “VINIOUIA 0 ALISYTAINN 4q 29T swildy

Kot

5UDY] sUOWIWIOY) 2ANEAI) d[qeardde 3y Aq POWIIAOS AIE SIDILE V() 95N JO SO 10} AIBIQIT HUIUQ) AD[1AY UO



RELATIVE BRAID GROUP SYMMETRIES ON :QUANTUM GROUPS 1389

8.1 | Factorization of Y

Let (I =1, Ul,,7)be a Satake diagram of arbitrary finite type. Let w be any element in the relative
Weyl group W° with a reduced expression

W=1rr, 5,

here m = ¢, (w), the length of w € W* (not to be confused as the length #(w) in W).
Following [15] (who worked in the setting of Ulg), we define, for1 < k < m,

i1~ Ty T (Yik )’ 1)
Y,

Flmlgim=11 .. g1

(In the notation Y!¥! above, we have suppressed the dependence on w.)

The goal of this section is to establish Theorem 8.1, which is a U'-variant of (and implies) [15,
Conjecture 3.22] for U‘g with general parameters g. The restriction on parameters ¢ in [15] can be
removed in light of the development in [2, 21], which allows more general parameters in quasi
K-matrices. Recall that w, is the longest element in the relative Weyl group W°.

Theorem 8.1.

(1) For any w € W°, the partial quasi K-matrix ?w is independent of the choice of reduced

expressions of w (and hence can be denoted by Y ).
(2) The quasi K-matrix Y for U of any finite type admits a factorization Y = ?wo'

8.2 | Reduction to rank 2

Let us recall some partial results from [15] in this direction (which can be adapted from Uls to U
without difficulties).

Theorem 8.2 [15, Theorems 3.17 and 3.20]. Theorem 8.1 holds for U of a given finite type if it holds
for all its rank 2 Satake subdiagrams.

The arguments for Theorem 8.2 are largely formal once the following crucial result (see [15,
Proposition 3.18]) is in place. We provide a short new proof below. Recall that w, is the longest
element in W°. Recall also the diagram involution 7, such that wy(a;) = —a, ., for all i, where
wy is the longest element in W.

Proposition 8.3 [15, Proposition 3.18]. Let w, =1, r; - ¥; be a reduced expression of w,. Then
wehave 7, T, 7, (Y, )=Y,, .
Bl 5] Im—1 m m

Proof. We have w, = w,w,, and hence, %0 = % % It follows by Lemma 4.4 that %‘01?0 =

-1 7., whenactingon U, . Thus,
w lm “im

“im

Tt @) =70 2, @) =701 (),
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since the quasi K-matrix ?im lies in a completion of fjr» and 7, l-m(?im) = ?im (see Proposi-
wim ’

tion 3.8). Then, we obtain
g1y — 1 -1 1 Ty
Tl @)= 7050 )= 7, @)=7"71,)= 7',
where the last equality follows by Proposition 4.6. By Proposition 4.6 again, we have
1(YT I ) - 19 (Yr [ ) w_ol(?roim) = 'Z;l(?lm)

Hence, 7, 7, 7, =237, 7 1(Y V=T 7Ty ) =Y

iy Im—1 m w,

Tolp, D
Remark 8.4. Tt was verified in [15] that Theorem 8.1 holds in all type A rank 2 and all split rank 2
cases. The long computational proof therein is carried out case-by-case based on several explicit
rank 1 formulas which they also computed.

We note that in the rank 2 setting, the first statement in Theorem 8.1 is nontrivial only when
w = w,, the longest element in W°. Hence, in the remainder of this section, to prove Theorem 8.1,
we can and shall assume that

(1=1, Ul,,7)is any rank 2 Satake diagram of finite type, and w = w,.

Moreover, we denote [, = {i, 7i, j, 7 j}.
Letw, =1;1; - rl-m be a reduced expression. Theorem 8.1 in the case for Z,(w,) = 2, that is,
w, =rr; = rjrl, trivially holds. The next proposition reduces the proof of Theorem 8.1 in the

remaining nontrivial cases into verifying its assumption.

Proposition 8.5. Assume that Bp?wo = ?woB;‘), for p =i, j. Then, we have Y = ?wo’ for any
reduced expression of w,,.

Proof. The identity x?wo = ?wox, for x € UU,, holds by (3.4), Proposition 4.11, and (8.1).
Together with the assumption that Bp?wo = ?woB; (p =1,j), we conclude that ?wo satisfies

the same intertwining relations in Theorem 3.6 as for Y. Note also that clearly, we have the
constant term (Y,, )° = 1. Therefore, the desired identity ¥ = Y, follows by the uniqueness in

Theorem 3.6. O
8.3 | Factorizations in rank 2
The verification that B, Y = Y Bg in the three cases Z,(w,) = 3,4, or 6, is based on the same

idea, though the notatlons are a little different. In the subsections below, we shall consider the
three cases separately.

8.3.1 | Factorization for 7 (w, ) =3

In this subsection, we deal with the rank 2 cases for Z,(w,) = 3, with the help of Proposition 7.2
and Corollary 7.4.
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Assume that [, . = {i, j} such that #,(w,) = 3; in this case, only 7 = Id and hence we identify
I, = {i, j} as well. The longest element w, of the relative Weyl group has a reduced expression

w, =I;r;t;. (8.2)

By definition (8.1) of YI¥! and ?wo’ we have
Y, =YBRIyREyll (83)

w,

where by Proposition 8.3, Zi}(?i) = S?J and ‘?rd, 9;(?}) = Y and hence,

Y=y, Y¥=7@q) Y=7. (8.4)
By Corollary 7.4, we have
BYBIYR = yBIglp 85)
oy 21511 = Fl2I§lllge
BjY YH =YHY Bj. (8.6)
It follows by Theorem 3.6 that, for p = i, j,
B,Y, = YpB;. (8.7)

Now we show that ?wo satisfies the following intertwining relations:

B,Y,, = ?woBg, (p=1i,j).
Indeed, BY,, = BYPITITI = FEIFLIB T = FEIFEITIRS, by (5.3), (8.5), and (3.7). Also,
B;Y,, = B;YPIYPIYI = YBIgey Iyl = YRIYRIYIIBY, by (8.4), (8.7), and (8.6).

It follows by Proposition 8.5 (Whose assumption is verlfled above), we have Y = Y, _- Using the
other reduced expression for w, amounts to switching notations i, j above. Hence, Y on is
independent of the choice of a reduced expression for w,.

8.3.2 | Factorization for 7 (w,) = 4

In this subsection, we deal with the rank 2 cases for Z,(w,) = 4, with the help of Proposition 7.6
and Corollary 7.8.

Assume that [, . = {i, j} such that 7 (w,) = 4. Let {i, i} and {j, 7 j} be the corresponding two
distinct r-orbits of [,. The longest element w, of the relative Weyl group has a reduced expression

w, = LI LT (8.8)

By definition (8.1) of YI¥I and ?wo’ we have

¥ = yHgBIgRIgh, (8.9)
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1392 | WANG and ZHANG

where by Proposition 8.3, :?V f?: _ :7? 4% )= and 9 ﬂ T (Y )= Yi, and hence,
YW=y, W=771)=7"T. W=71) =Y. @0
By Corollary 7.8, we have

BYMIFIITE - gl @11)

BeYIIFIIgh] = laIglaighipe, (812)

Just as in §8.3.1, using the identities (8.11)-(8.12), we can show that on satisfies the fol-
lowing intertwining relations B p?wo = ?wOB;, for p =i, j. It follows by Proposition 8.5 (whose
assumption is verified above), we have Y = on, which is independent of the choice of a reduced
expression for w,.

8.3.3 | Factorization for 7 (w,) = 6

The case for ¢ ,(w,) = 6 occurs only in split G, type. We shall prove this using Proposition 7.10
and Corollary 7.12.

Let (I =1,,7 = Id) be the Satake diagram of split type G,. In this case, W° = W and r, = s,,.
Assume that | = {i, j} such that #,(w,) = 6. The longest element w, of the relative Weyl group
has a reduced expression

W, = 5;8;5;8;8;S;. (8.13)
By definition (8.1) of YI¥I and on, we have

3, = YOEIgHUFEIgRIF, (8.14)
where by Proposition 8.3, 7 518585 (Y )=Y j» and hence,

Y=y, ¥bl= ss 58 (Y) Y = yNSiSjSi(?j)’

It
=7, 5 (YD, Yo =703, Y=Y, (8.15)

By Corollary 7.12, we have
B, YOIYDIFISEIYER = YlOIgbIFIUTEITRB,, (8.16)
B;?[S]?MJ?B]Y[ZJY[I] - ?[5]3?[4]?[3]?[2]?[1]3?. (8.17)

Just as in §8.3.1, using the identities (8.16)—-(8.17), we can show that ?wo satisfies the fol-
lowing intertwining relations Bpﬁ?wo = ?woBg, for p =1, j. It follows by Proposition 8.5 (whose
assumption is verified above), we have Y = Y,, , which is independent of the choice of a reduced
expression for w,. ’
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Remark 8.6. A different and more computational proof of the factorization of the quasi K-matrix
in split type G, was given earlier in Dobson’s thesis [13].

9 | RELATIVE BRAID GROUP ACTIONS ON :QUANTUM GROUPS

In this section, we show that ’T‘: o Tlf’e, where e = +1 and i € 1, ., satisfy the relative braid group

0,72
relations in Br(W°). An action of Br(W,) X Br(W°) on U' is then established. Moreover, we show
that, by central reductions and isomorphisms among :quantum groups with different parameters,

the symmetries T’ T’ ' on U* descend to T/ ,, T/ on the iquantum groups U, inducing relative

braid group actlons on Ul for an arbitrary parameter S.

9.1 | Braid group relations among T,

Fori# jel,,,let m; be the order of Ir; in W°, with m;; € {2,3,4, 6}. Then the following braid
relation is satisfied in Br(W°):

1‘11']1‘1 e = r]rlr] LR LN (9.1)
ij mj
Theorem 9.1. Fori # j € I, ,e = £1, we have
AT A A
i,eTj,eTi,e = Tj,eTi,eTj,e 2
my; m;;
(9.2)
IR R _ IR
Ti,eTj,eTi,e = Tj,eTi,eTj,e :
m; my;

/! : : T/ T/ T/
Proof. By Theorem 6.7, T; i1 18 the inverse of T; _,. Moreover, by definition (6.11), T/ T Tl.,_1 are

conjugations O ~. , respec ively. Hence. it suffices to prove the identi . orlr. ..
jugati fT; T{’H pectively. H t suffices to p the identity (9.2) f T;_l

Set m = m;;. Let w, = r;xr;r; -+ be a reduced expression of length m. Define wy, for 1 <k <m,
to be

w, =r, wW,=Lr;, W;=Krr

jLio ey

Write w for the other reduced expression 1915 TRt , and define wf{, for 1 < k < m, accordingly.
Letr denote the last index in the reduced expression of w,; thatis,r = jif m = 2,4,6 andr =i if
m = 3. Similarly, we define r’ for w’.

Applying the intertwining property (4.7) for m times, we obtain the following two identities:

TQ’_IT;., T wY-7 _1(Y) ) _1(Y)
m
=Y Ty D70 )T T e, (93)
h_/

m
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1394 WANG and ZHANG

o G . o =
T; 1Ti 1T3 _p @)Y yu/)’l’_l(Yl) - yw:nil Y,
m
= ~] Z{J/l,—l(Yl) o Z,’fn_ (Yr’) : z’_lz’—l "'(ul)a (94)
| S —
m
for all u € U
By Proposition 4.2, the Z{’ _1’s satisfy braid relations. As £(r;x;r; ---) = £(w,) = £(x;x;¥; ), We
have
AN AN _
‘Z‘l—,—l‘z'j, T = yrj, T —195.,_1' 9.5)
m m

Hence, by a comparison of (9.3)-(9.4), we reduce the proof of the desired identity (9.2) to
showing that

Vi Ty DTy (=Y, 9’ L@ 9’m LG (9.6)
By definition (8.1), Y,, = %m_l(?r) Z] (Y;)Y;. Applying ¢ to this identity and then using
Proposition 3.8, we obtain

oY) =Y 7, ((¥)- LY. (9.7)

wm 1

We have a similar formula for o(Y,,) as well. It follows by Theorem 8.1 that o(Y,, ) = o(Y, ).
The identity (9.6) now follows by the formula (9.7) and its w/ -counterpart.
This completes the proof of the theorem. O

For w € W*, take a reduced expression w = r; r; ---r; and define

¥ =¥ 7 .7 T =T F .7 (9.8)

w,e inetiye ij,e’ w,e ineTige i.e’

By Theorem 9.1, these are independent of the choice of reduced expressions for w.

9.2 | Action of the braid group Br(W,) < Br(W°) on U

We first establish a commutator relation between 'T‘; i (i el,)and 9}._1 = 9;’ . (G et,).
Lemma 9.2. We have Z‘l'f‘;_l(x) = T‘: _1Z_FTj(x),fori €l j€l,andx € U.

Proof. Note that 7(j), 7. ;(j),7.,;7(j) €I, for j € I.. Since w.s; = s;;w,, for j €1,, and w, ;5; =
S;.,jW., fori € I, we have

_ -1 _ -1_
riS; =W, WS = Sy W, W =S T 9.9
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Since Z(x;s;) = £(r;) + 1, it follows by (9.9) that

7y = 77 (9.10)

rae
By Proposition 4.6, Y; is fixed by 2_1' Hence, applying Z._l to the intertwining relation (4.7) in
Theorem 4.7 and then using (9.10), we obtain, for x € U,

T =% 7w

_ < -1 —1 _m/
V77w =T,

~ -
; _191,,1.71'(3‘)5{1’ (9.11)
where the last step uses Theorem 4.7 and the fact that f?: ‘_lfj(x) e U' by Proposition 4.5. The
identity (9.11) clearly implies the identity in the lemma. ' 1

Let Br(W,) and Br(W°) be the braid groups associated to W, and W°, respectively.

Theorem 9.3. There exists a braid group action of Br(W,) X Br(W°) on U* as automorphisms of
algebras generated by 7/, (j € 1.) and T  (€l,,)

Proof. By Remark 4.8, T’ , isindependent of the choice of representatives in a 7-orbit. The defin-
ing relations of Br(W, ) X Br(W°) consist of braid relations for Br(W,), the braid relations for
Br(W°), and relations (9.9). The braid relations for ‘7]{—1’ j €1, are verified in Proposition 4.2.
The braid relations for T’ Y

ﬂj 1 Tlf _1 corresponding to (9.9) is verified in Lemma 9.2. 1

i €1, are verified in Theorem 9.1. The commutator relation for

Remark 9.4. Since T‘: o T‘;’ ., are mutually inverses and 9}7 Y ?;’ ', are mutually inverses, there
also exists a braid group action of Br(W,) X Br(W°) on U' as automorphisms of algebras generated

Z’ﬁrl (en)andT, (€l,,)

Recall the remaining two symmetries Tl 1 T;’_l from (6.11). We shall establish a variant of
Theorem 9.3 for T and 77 (and, respectively, T and .77").
ie j.e ie Jj.e
Let j € 1. Recall 9}’ ', and 9}’ _, from (4.2)~(4.3). Recalling 1, = ‘?S* o from (3.9), we define
=0 T oY, T, =Y, 0T _ oy, (9.12)

J+1

Let 6, 1= (S} «Sjo)je, be the parameter obtained as the componentwise product of parame-
ters ¢, and ¢, from (2.21) and (3.8).

Lemma 9.5. The ﬂj’ ! 9] 7! 4 arerelated to T}’ o T;. .1 Via a rescaling automorphism:

Sl i — o ] —
tz’ - lps*oTJ _1111;*0 g] - lps*o TJ +1lpg*o

Cal nlld 7] gt —-1sT 7]
Proof. Recall ﬂj ) ‘Pg T] oY% and Z’_l =¥ o Tj’_1 oW from (4.2)-(4.3).
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1396 | WANG and ZHANG

Tl — Tl 4
Recall from (2.10) that Ti,_1 =tpo Ti ot and Tl =Yoo T 1 ©%. Then, we have

_ W T-157" & ol —
—‘Pg*z,DO‘P T ‘I’ olps*lp lps*oT]—lng*o

where we used 3 o lII = . 0. The proof for the other formula is similar. [l

By Proposition 4.5, the automorphisms .7 TV 91.’ _, for j €1, restrict to automorphisms on U

j+1’
Lemma 9.6. The automorphisms ?;’é s ’?j/e’ for j €1, and e = %1, restrict to automorphisms on
U'. Moreover, the following identities hold:

=7 > . =7

91.!’_1 =9'o 07" oy, T! .=¢lo,7._loi,bl. (9.13)

Ji+1 Ji+1 Js

Proof. As ﬁ ﬂ T | Testricts to an automorphism on U* by Proposition 4.5, it suffices to prove
(9.13).

By Proposition 3.4, we have ¢, = Adg-10%' when acting on U'. By Proposition 4.6, Adg-, com-
mutes with ;. By Propgsition 3.5, we have ¥, o Adg-1 = Adgoi,. Using these properties and
(9.12), we have, for x € U',

'?;,—l(x) =¢*02;10¢*(X) ‘(,b* J+10Ad lol,bl(X)

=9, 0Ady 1077, oY (x) = Adyop, 0 T, o(x) = P 0 T o Pi(x),

where the last equality uses (3.18).
The proof of the other formula for ﬁj’ 4 is similar and hence skipped. O

The next result follows from (6.11), Theorem 9.3, Remark 9.4, and Lemma 9.6.

Corollary 9.7. Lete = +1.

(1) There exists a braid group action of Br(W,) X Br(W°) on U as automorphisms of algebras
generated by 9]’6 (j el.)and T;,e (ie€l,.)

(2) There exists a braid group action of Br(W,) X Br(W°) on U' as automorphisms of algebras
generated by ﬁj’é (jel)and T/ (i€l,,)

9.3 | Intertwining properties of T. ,T”
i,+1 i,—1

The automorphisms T’ L1 T’ ! ,on U also satisfy intertwining relations similar to those satisfied
by T’ _, in (47) and T” in (6 1). These relations on U’ will descend to U, (see Proposi-
tion 10 2) and will then be used to define the relative braid operators on module level (see

Definition 10.4).
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Proposition 9.8. The automorphisms T’ Tz{,,—1 satisfy the following intertwining relations:

i+1°
T,,07 & H=7 "7 ), (9.14)
T (Y, =Y, 7_ (x). (9.15)

Proof. We prove the first identity (9.14); the second identity (9.15) can be derived from the first

one by noting that T’ L1 T;’ are inverses and .7 77 ﬁ T | are inverses.

We claim the following identity holds:

D

T, 0 - Y. A H =YW 7 ,, -7, (0. (9.16)

Let us prove (9.16). Recall from (6.11) that ’T{ = wli‘; _, %" and from (3.11) that Y19 )Y =
1, (u). Hence,

YO'T ()Y = Y '9!(T,_, @)Y = 9, (T, _, @"x)).
By (4.7), ?i‘l’f‘lf,_l(zp‘x)?i = :Zf’_l(z,blx). Hence,

Y (V)Y 09, (T) = (7] ().
This allows us to write (9.16) as an equivalent identity
NEA 1@ (X)))f' L h=7 (Y 1)9' 4100 (9.17)

Recalling by (9.12) that 27 = 1/)*27 _ 1%, we reduce the proof of (9.17) to verifying that
PP, (V)1 =9, (Y) 19, (x), which by Proposition 3.5 is equivalent to {'(x)Y = Y9, (x). This
last identity holds by (3.11). Therefore, (9.16) is proved

Observe that if we define Y[w] by replacing 9 9 T , in the definition (8.1) of Y, by 7. 7! 1
then we still have a factorization Y = Y[wo , for any reduced expression of w,. Below we shall use
this version of factorization.

Let w/ be a reduced expression of w, starting with r;, and w/'(= wyw’ w,) be a reduced
expression of w, ending with r_ ;. It follows by definition that

? = ?lwu = Z:,+1(eriwu)?i' (918)

Since wyr; ; = r;w, and w, = w,w., we have w.r, ; = r;w,. By definition and Proposition 8.3, we
obtain

? = Yv[w;’] = ?i?[worrot] Yv ?[r w ] (919)

Now, using (9.18)-(9.19), we can simplify a key component appearing in (9.16) as follows:
Y. 7 @ H=Y%"7 @
AN -1\ _ -1
= yri,+1(er,-woJY )= ‘Z‘i,+1(Yi )-

Hence, the identity (9.14) follows from (9.16). O
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9.4 | Braid group action on U;

Recall from (2.20) the iquantum group Uls with parameter ¢ satisfying (2.18) (4 la Letzter), and
recall a central reduction n‘é 3 UL U’g from Proposition 2.8.
We first construct the braid group action on U‘g for the distinguished parameter g, (2.21). By

the definition (4.14) of k - and Proposition 2.8, the kernel ker n; is generated by

kj,o -1 (T.] = ] € Uo)7 k k‘[]o 1 (T.] ?é] € ”0)7 KJK; -1 (.] € I]-)-

J,o
In addition, by Proposition 4.11, we have T” (k jo) = ke, aj0° Hence, the kernel of 7z, _is preserved

by T/, .. Therefore, 'T‘: ' _inducesa automorphlsm T/ on Ulg such that the followmg diagram

i+1° i,+15,
commutes:
i
Ti,+1
U > U
7t Tt
So So

/"
L+155,

< IT
> U

It follows from Theorem 9.1 that T’ ! g, satisfy the braid relations. By definition, 9; (jel)

descends to Lusztig’s automorphism T under the central reduction ng It then follows by The-
orem 9.3 and Remark 9.4 that there ex1sts an action of the braid group Br(W,) X Br(W*°) on U’

generated by T, T:’H .. Jorjel,,iel,,.

We now consider the symmetries on Uls for an arbitrary parameter ¢ satisfying (2.18).
Via the isomorphism ¢ : Ul - Ulg constructed in Proposition 2.7, we transport the relative

braid group action on Ul to a “relative braid group action on U‘ More precisely, there exist

automorphisms T/’

415 O U‘ such that the following diagram commutes

7
L Tl +1:6, "
U, > U,
¥s P;
/!
U Tl +1 U
S Y

Our convention here and below is that we suppress the dependence on a general
parameter ¢ for the symmetries Tf’ ., (and T;,—p Tl{,,—r and Tlf’ .1 below) on U_.

In addition, T; commutes with ¢ for j € .. Summarizing we have obtained the following braid
group action on Uls (from Theorem 9.1, Theorem 9.3, and Remark 9.4).

Theorem 9.9. For an arbitrary parameter ¢ satisfying (2.18), there exists a braid group
action of Br(W,) X Br(W°) on Ul as automorphisms of algebras generated by T; (j € 1.) and

/!
Tl 1 (i€l,,)
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‘We next construct Tl{ 4 on Ulg for general parameters ¢. By a similar argument as in §4.5, we
have T, | 0= 7! . on UY and both are given by

gj,*okj groc *okroc (9-20)

i

Denote the parameter ., := (§; +o)ja, - Then by (9.20), 'T‘: ., breserves the kernel of 7, and

;*0

hence, it induces an automorphism T; g, o0 U‘E such that the following diagram commutes:
i) 1Dk o *o
o~
Tin
Ut > U
v/ t
g*o , g*(}
1 Ti’+1;5_'*o 1
U > UL
g*(} g*(}

On the other hand, by Lemma 9.5, 97 41 descends to Lusztig’s automorphism T;. 41 under the
central reduction n'sl_ . Hence, by Corollary 9.7, there exits an action of the braid group Br(W,)

*O
o / : / :
Br(W°) on UlE*o generated by Tj,+1 (jel,)and Ti,+1;§*¢ (iel,,).

Now, for an arbitrary parameter ¢, we can use the isomorphism ¢§¢§_ ! to translate this action
*o

on UL to an action on Ulg, that is, there exists automorphisms Tlf 4 on U’g such that

g*o
l+1°¢§¢‘ = ¢§¢_ l+1 Sxo

In addition, :Z’ ., commutes with qbgc,bg_*l

Similarly, we can formulate the auti)morphisms Tz{,—l’Tz{,/—l on Ulg, which are inverses to
T: ! 1 T D ; the detail is skipped. Summarizing, we have established the following theorem, which
was conJectured in [20, Conjecture 1.2].

Theorem 9.10. Let e = +1, and ¢ be an arbitrary parameter satisfying (2.18).

(1) There exists a braid group action of Br(W,) X Br(W°) on Ulg as automorphisms of algebras
generated by T}’e (jel.)and T;’e (iel,.)

(2) There exists a braid group action of Br(W,) X Br(W*°) on U‘g as automorphisms of algebras
generated by T;.fe (jel,)and T;fe (i€l

10 | RELATIVE BRAID GROUP ACTIONS ON U-MODULES

Let (I =1, Ul,,7) be a Satake diagram of arbitrary type and (U,U,) be the associated quan-
tum symmetric pair. We set ¢ to be a balanced parameter throughout this section. Based on the
intertwining properties of T/ , T/’ on U, we formulate the compatible action of corresponding
operators on an arbitrary f1n1te dlmensmnal U-module M. We then show that these operators on
M satisfy relative braid group relations.
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1400 | WANG and ZHANG

10.1 | Intertwining relations on U;

Recall that the symmetries Tlf ,and Tlf/e on U’g, for e = +1, were defined in §9.4. In this subsection,
we formulate the intertwining properties of these symmetries.

Recall ¢g from Proposition 2.7. Since ¢ is a balanced parameter, ¢, is the restriction of @;
where g, ¢ is defined by componentwise multiplication withs, = (5; j.)jel,; cf. also Proposition 2.7.
Define

4 _ 1" —1 / — / -1
Z+1,§ : (I)SOSTI +1¢)§0§’ Z,—l;g : (I)gong - CI)Eog. (101)
Proposition 10.1. Let ¢ be a balanced parameter. The automorphisms T;’_l and T:’ Lon U‘; satisfy
the following intertwining relations:

Tf’_l(x)Yiyg =Y ‘Z':,—l; g(x), (10.2)

ig

T” 1(x)ﬂ” (Y 1)— T (YT 1)9”+1§(x) (10.3)

+15¢ r;,+1¢

forx € U’g.
Proof. By Theorems 4.7 and 6.1, we have, for any x € U,
T 0¥ =Y 7 ),

(10.4)
T, 7 = 7,07 7], (0.

Let T’ ,T!" be Lusztig’s automorphisms on U. Recall the central reduction 7 : : U = U from
(2.6). By (2 9) (with a = ¢,) and (2.11), we have

ol " o 7
70T i =T 07, w0 =T, o7,
Hence, 77, Tf ‘=Tl ’+1 . ° 7, . Since the parameter g, is balanced, 7 is the restriction of 77

to Ulg - Applying 7. to the 1ntertw1n1ng relations (10.4), we obtain, for any x € Ul

! 1 S'o(x) Yi,go = Yi,go T;'i,—l(x)’

(10.5)
/! /! 1N _ 17 1
Ty, (%) T, 1(Y ) T, (Y so) T 1100
Recall ¢ from Proposition 2.7. As we have seen in §9.4, we have gbgoT:’H’g = T:’H o,
and ¢s°Tl{,—1;go = T{,_1 o ¢.. Therefore, applying ¢, to the identities (10.5) gives us the desired
intertwining relations in the proposition. [l

We next formulate intertwining relations for the other two automorphisms T; | and T},
Recall the central reductions 7z : : U = Ufrom (2.6)and nl ) DL U‘g from Proposition 2.8. By
/)

o ! _ 1 N — 1 1 -
.0 ‘2+1 =T, omg,, and m. o T ., Ti,+1;§*o o . Since the param

I3

eter g, is balanced, 7.  is the restriction of g, to U Applying 7, to (9.14)—(9.15), we have,

Sxo

Lemma 9.5, we have 7=
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RELATIVE BRAID GROUP SYMMETRIES ON :QUANTUM GROUPS 1401

forany x € UL ,
Sx

©

/ ’ -1\ _ -1 ’
Tis+1;§*<> (X) Tri’+1(Yi’§*o) N Tri’+1 (Yi7§*<>) Tri’+1 (x)’
(10.6)

T _ (x)Yz: =Y

o

i’_l;E*o LSxo i’g*oTl‘[,—l (x)

Since ¢ is a balanced parameter, by the proof of Proposition 2.7, ¢»gqb§_ 1 is the restriction of
*o

d__, =®&_ _. Define
SioS SxoS

" . 7 -1 ’ . ’ -1
Timrs = P Ti1 P, o0 Tt = P (Ti P o (10.7)

Applying ¢>g¢§‘*10 to (10.6), we have established the following.

Proposition 10.2. Let ¢ be a balanced parameter. The automorphisms Tlf +
satisfy the following intertwining relations, for all x € Ulg:

/! 1
L and Ti,—l;g on Ug

/ / -1y _ o/ -1 ’
Ti,+1(x) 'Z‘ +1;g(Yi,g) - 'Z‘i,+1;g(Yi,g) 'yri,+1;g(x)’

ir

Tl{f—l(x)Yi’s = Yi,syr:,’—l;s(x )-

10.2 | Compatible actions of T , T on U-modules

E* FI
Denote by El.("), Fl.(") the divided powers W, [n_ﬁ' inU, forn € N.

Let F be the category of finite-dimensional U-modules of type 1. By definition, M € F has a
weight space decomposition (with respect a fixed i € I)

Mz@Mn, M, ={v € M|K;v = g;'v}.

nez

Following [28], we define linear operators T/ ,T! ;e = +1 on M by
ie’> e

T,W= Y (g " FYEYF,  vewm,, (10.8)
a,b,c0;
a—b+c=m

' = Y (g EYFYED,  veM,. (10.9)
a,b,c=0;
—a+b—c=m

Proposition 10.3 [28, 39.4.3]. Let M € F. Then, foranyu € U,v € M, e = +1, we have

/ _ ' " _ "
T] (o) = T/ T/ ,),  T/,(uv) = T/, @)/, (). (10.10)

Recall 7' , 7" aremerelyrescalingsof T/ , T/’ defined in (10.1) and (10.7). Applying exactly

ie;s” e
the same rescalings to the operators on modules (10.8)-(10.9), we obtain operators Z.’e,g, ‘Z,e’g on
M that satisfy

! _ o
‘Z,e;g(uv) - ‘Z,e;g

OFA

" _ o
i,e;g(v)’ ‘Z,e;g(uv) - ‘Z,e;g

(u) (7//

i,es

(V). (10.11)

foranyu € U,v € M.
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1402 | WANG and ZHANG

We regard the U-module M as a U'-module by restriction.
Definition 10.4. Define linear operators Tlf e,T;’e onM,fori €1, and e = 1, by
/ . /
Ti’_l(U) T Yi,g ‘Z‘i,—l;g(v)’

7 e ot —1\ ot
T W) =T (VG ODT (0

(10.12)
/ [ / -1 /
T (V) = 'Z‘i,+l;g(Yi,g )'Z'i,+l;g(v)’
T;,’_l (v) := Yi,g 'yr:f—l;g(v)’
for any v € M.
(In these notations, we have suppressed the dependence on ¢ on these operators.)

The automorphisms Tlf " Tlf’e on M in (10.12) are compatible with the corresponding automor-
phisms on Ulg.

Theorem 10.5. Let M € F,i € 1, and e = +1. Then we have
/ o / 7 o 1
Ti,e(xv) = Ti,e(x)Ti,e(v), Ti,e(xv) = Ti,e(x)Ti’e(v), (10.13)
forany x € Ulg, vVEM.

Proof. We prove the identity for Tlf _, > the proofs for the remaining ones are similar. In the proof,

we omit the subindex ¢ for Y; . and .7/ 1 38 there is no confusion.
’ L5

Since f?r:’_l(xv) = Z:’_l(x)?r:’_l(v), we have

Y7, ) = (Y7, Y g, @), (10.14)
By Proposition 10.1, we have Y; ﬁrl_,_l(x)Yl._1 = Tlf _,(x). Hence, using the definition (10.12), the
identity (10.14) implies that T; _ (xv) = T} _,(x)T;_,(v) as desired. O
10.3 | Relative braid relations on U-modules

Let m;; denotes the order of r;r; in W°.

Theorem 10.6. Let M € F. Then the relative braid relations hold for the linear operators Tlf , (and,
respectively, Tlf’e) on M; thatis, forany i # j € |, . and for any v € M, we have

TR R o o o
T, T, T, () =T, T T (), (10.15)
S~—————— ~———

m;j m;;j
/! ! /! _ /! /! !
T/, T T/, - (0) = T/ T/, T - (0). (10.16)
S~———— ~———

m; .

ij m;:

tj
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RELATIVE BRAID GROUP SYMMETRIES ON :QUANTUM GROUPS 1403

TABLE 3

Rank 2 Satake diagrams
oO———0

Al 1 S
o<L——o0

CI, T -

G, oF——o

77,7.:>.
1 2 3 g ops3 M

oO—0—e - ——

DI,,n>5

DIII,

Al

O —9o O 8 el ——0°¢

1 2 3 4 5 n
CIl,,n>5

Alll,,,n > 4
4
DIIl; e——o0— > T
1 2 3
5

EIll o . 3
1 2

Rank 2 formulas for 'T‘lf By G£jEl,,).

Formulas for 'T‘i By

T’L_l(Bz) = [B1,Bz]q
T (B,) = —|[By,[By,B,].2| — ¢?B,K
1’_1( b)) = 2l [ 1 [B1 z]qf] g1 52/
q1
T’l _1(32) = ﬁ[Bl, [Bl’[BliBZ]if’] ]
, ! qlg
. —
—ﬁ(q(l + [3D[B1. B,1gs + ¢*[31[B1. By 11 ) Ky

T;,_1(31) = [% (By), [32,31]%]% — 4B, % (K3)
le,_l(BO = [<%_(Bz)’ [B29Bl]q]q - qu<%_(K2)

le,_l(Bl) = [%,(32), [BZ’Bl]q]q - qu%,(Kz)
T, ,(B,) = [ 7(B,). B,

TZ,_l(Bz) = [[%unms(BU: %(34)](12’32] o

T;’_l(BZ) = [[B4’F3]q4’32] s
T,27_1(34) = [i(Bz), [%(B2)3B4]q§]

—(qs — g3 )IF3, Byl By T3 (KK
T, 1(Bs) = [Z. 557, Bs],

T,L_l(Bz) = [33, [BI’BZ]q]q —qB, K5

Tll,_l(Bz) = [B1’Bz]q

Ty (B1) = [ 70 (Buor), [Ba Bily| = B17%, ()

T,Z,—I(B‘l) = [:7\5‘:(32)’34](1

T:L_l(Bz) = [34, [c%(Bs):Bz]q]q - =§;_2(Bz)lc4

T, ,(B) = [ 75(Bo). Bil,

Tll,_l(B6) = [5(35): [9;2(31)’36]q]

—~ —_ q
_%;;23(36)=Z(K5)

d 'S €T0T XFFTO9TT

Z1L101/10p/wooKopiavA

tsdpy) suonIpuo) pue suid ], ayy 938 “[€20z/11/01] uo Aeiqr auiuo LM ‘VINIDUIA 40 ALISYIAINN £q 29T 1 swdy

Kot

5UDY] sUOWIWIOY) 2ANEAI) d[qeardde 3y Aq POWIIAOS AIE SIDILE V() 95N JO SO 10} AIBIQIT HUIUQ) AD[1AY UO



1404 WANG and ZHANG

TABLE 4 Rank 2 formulas for T By (i #j€El,,)

i,+1

Rank 2 Satake diagrams Formulas for ’T‘;’H(B D
Al 1: 2: T,{,H(Bz) = [BZ,Bl]q

=0 _ 1 2
c, o9 Tl @)= o (B2, Bilgz, B1| — q3B>K:

T -

T1,+1(B2) - [3],! [[[BZ’Bl]qfaBl]qlaBl]ql_]

1 ~
G, oF—9 — o (@ + [31D[B2, Bilg: + @i[31[By, Bilg )k
oO—0—-o —————>e ~ —~
1 2 3 g ops3 " T, 1(B) = [[B1, Byly,, 70 (Bo)] | — 2Bk
[ ——,d ~
b2 T, ,.(B)) = [[B1. Boly, 75 (By)] | — aBiK,

DIII, - .
T, 1(B)) = [[B1, B,lg, 7, (Bo)] | — qB1K
Al 1775754 5 T, ,,(B) = [B,, 75 "By,
e - Ty 1(B2) = [B2, [ 751 (Ba), 7, s(Bu)lg]
CIL,,n > 5 ~q2 THBy) T(Ky)
T (B) = (B[P B,
T;,,+1(B4) = [[34, z_l(Bz)]qg, <Z_1(Bz)]
CIl, +— o0 —ee—0 _ _
Y1 . 3 4 —(qs — g5 )[Bs, F3]2E K
EIV o—————=2° _ —_
I 2 6 l3 4 5 T} ,,(Bs) = [Bs. 2_12_1%_1(31)](1
T -,
All; 9% T) 1(B2) = [[B2, Bilg, B3] — qBK
/\A
O A/.,,_,,.\; ro) T‘,1,,+1(B2) = [BZ7Bl]q
1 2 3 n-1 n ~ —~
AIHn, n>4 T;,,_H(Bl) = [[Bl’BZ]q’ yw,l(Bn—l)]q - ]CZBI
T/, (B,) = [Bs, 7. \(B
DIIIS . <.> . 2,+1( 4) [ 45 /3 ( 2)]q
P23y T} 1(B2) = (B2 77 '(B3)ly Bu]  — 477 (B) Z5(KC)
. T;t+1(31) = [By, %_1=?3_1(B6)]q

/_\ T -1 - G-
T} 1(Be) = [[Bs, 7.7, (B, 7' (Bs)]
2

6J>3 403 _q%2323(36)§§;w_ (Ky)
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RELATIVE BRAID GROUP SYMMETRIES ON :QUANTUM GROUPS | 1405

Proof. We prove the first identity for e = —1 ; the proofs for the remaining ones are similar
and skipped.

Set m = m; o We keep the notations wo,wg , Wy, w;{ for 1 < k < m from the proof of Theo-
rem 9.1. We shall write 9{1 for 7 : ’ and omit the subindex ¢ for Y; . in the proof, since there
is no confusion.

By definition (10.12), for any v € M, we have

-1g

T; ng Y VI ~(v)=(Yiyujllez;zlYi~~~)z;12;12;1m(u). (10.17)
~— S~—————
m m

By taking a central reduction to (9.7), the first factor on RHS (10.17) is o(Y,,_). Hence, we have

T, T, T, =@ =0(Yy) T 19 LT (o). (10.18)
m m

Similarly, by switching i, j in (10.18), we obtain

T’ T 1T; '(U)=U(ng)<7r;1<7{l<7r;1 (V). (10.19)
%—/ | S —
m m

Applying a central reduction to Theorem 8.1, we have Y,,, =Y, . Since .7] are defined by rescaling
T, | in (10.1), they satisfy the braid relations. Hence, we have

g ﬂrj‘l Tt =g g 7 ) (10.20)
—_—— h,_/
m m
Combining (10.18)—(10.20), we have proved the first identity for e = —1. O

APPENDIX: PROOFS OF PROPOSITION 5.11 AND TABLE 3

In this appendix, we shall provide constructive proofs for Proposition 5.11 and verify the rank 2
formulas for T’ ,(B;) in Table 3. The proofs are based on type-by-type computations in U for each
rank 2 Satake d1agram Along the way, we will also specify a reduced expression for r; in W.

A.1 | Some preparatory lemmas
Denote the t-commutator

[C,D], = CD —tDC,

for various g-powers t. Let (I =1, Ul,,7) be an arbitrary Satake diagram. Recall that B, = F; +
9w.(ETl')Kil and Bla = Fi + Kiyw_'l(E.”').

Lemma A.1. Suppose thati, j € I, such that j & {i, ti}. Then we have
[Ba F; ] —(ai,aj) = [FiaFj]q—(ori,aj), (Al)

it

(B,, %.(E‘L’j)K;‘]q—(aiv“j) — q—(oci,w.(ocrj))%' ([EH,ET ] —(“iv“j)>Ki,K§' (A2)
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1406 | WANG and ZHANG

Proof. Follows by a simple computation and using the identity [Ey, F;] = 0, for k # j. O

Introduce the following operator (see Lemma 4.4 for some of the notations)
3=, T ToT. (A.3)

We shall formulate several basic properties for > below. A systematic use of > throughout the
Appendices will allow us to reduce the proofs of many challenging identities to easier ones.

Lemma A.2. We have
5(BY) = —q~“*)B, 7, (K7}, (A4)
2(F)) = =457 7, (EcK} 7, (KD, (A5)
Proof. We rewrite the identity (4.19) as follows:

Biz(lcr.,,-‘[i) = _q—(oc,-,w.ocfi)%. ‘?L/U.’i(Bo— )

T, ;Ti

— _q—(ai,w_ocﬂ)%' %O(B‘?Ori) — _q—(ai,W.an)s(Bl?)_ (A.6)
Since Z K, i) = % %l (Kr, i) = gio%.(lcr‘il), the formula (A.4) follows from (A.6).
By Lemma 4.4, we have 3(F;) = _K;,l(rj)%-(ETj) = —qJ._ZZ. (E”-)K;. % (]CT_J.l). This proves

(A.5). O

Lemma A.3. The operator > commutes with z, §j4,fori el,,jel..

Proof. Since wsy = s; xWy, for k € I, we have 7, 7' = .7, =77, Hence,
0

o 7 . 05Kk i%rokwo
Ty Tk = Tz ok T, for any k € 1. Therefore, 7, T, commutes with .7 (k € 1) and thus commutes
with ﬁri,ﬂj,fori el,,jel..

Similarly, one can show that ﬁw_?commutes with ﬁj, for j € I,. Hence, by definition (A.3), the
operator > commutes with .7; for j € I..

On the other hand, by definition (2.14), ﬂrl_, fori € 1,, commutes with both .7, and 7. Hence,

> also commutes with Z . O

A2 | Split types of rank 2
Consider rank 2 split Satake diagrams (I = [, = {i, j}, Id). In this case, we haver; = 5;, BY = F; +
A21 | ¢;=-1

In this case, in line with the first line of Table 3, Proposition 5.11 is reformulated and proved as
follows.
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RELATIVE BRAID GROUP SYMMETRIES ON :QUANTUM GROUPS 1407

Lemma A.4. We have

TNF) =B F)l,. T \E K)) = [Bi, E;K' ], (A.7)

L
Proof. Follows immediately by Lemma A.1 and the definition of ?; O

A22 | ¢;=-2
In this case, the rank 2 Satake diagram is given by
oOL——— O
i J
and in line with Table 3, Proposition 5.11 can be reformulated and proved as follows.

Lemma A.5. We have

~ 1

TE) = [2—]i[Bf,[Bf,Fj]qiz] — *F KK, (A8)
—1 I\ _ 1 ! !
TUEK) = [Z—L[Bi,[B EJKj]q] g2E;K'KK]. (A.9)

Proof. We prove the formula (A.8). By Lemma A.1, we have [B], F,] P = [Fi, Fjl 42+ By Propo-
sition 4.2, we have ?T -I(F j) = ﬁ[Fi, [F;,F j] q;]. Now we compute the first term on RHS (A.8)
using Lemma A.1 as follows:

|B. B2 F )l | = [ B2,

-K/
= [2]i§?—1(Fj) + Ki[l_—q_ll,Fj]in

i i
= [2]ic7i_1(Fj) + q;z[z]iFjKiK[,'
Hence, the formula (A.8) holds.

We next prove the formula (A.9). In this case, we read (A.3) as > = %0, and note that K; = Ei.

By Lemma A.3, > it commutes with Z ~1. Applying this operator > to the formula (A.8) and then
using (A.4)-(A.5), we obtain

—4
—_ —_ q; - - _
—1 —1/7,—1\ —1 -1 2
T, (EJ»K;)Z (k; )_[;—L[Biki ,[Bik; ,EjK}k ] ] E]K; ] wo(ki)' (A.10)

Recall that our symmetries ? are defined in §4 1by normalizing a variant of Lusztig’s symmetries

9 |- In this case, we have 9 (k) = ~land 9 1(k D= _4k 1k . Hence, since k;, kj are
central (A.10) is simplified as the followmg forrnula

- N—-17-2 _ 1 ! 2 ! 1 \13,—-17,-2
TN ERDE K = ([Z—]i[Bi,[Bi,EjKj]qiz] —ql.EjKjKiKi>kj k2, (A1)

which clearly implies the formula (A.9). [l

d 'S '€T0T XFFTO9FT

ssdpy) suonpuo) pue swid L Ay 39S “[£207/11/01] uo A1eiqr autuo LM ‘VINIOUIA 40 ALISYTAINN £q 79$T 1 SWd/Z[ [ 1°01/10p/wod Kd[iaL”

Kot

5UDY] sUOWIWIOY) 2ANEAI) d[qeardde 3y Aq POWIIAOS AIE SIDILE V() 95N JO SO 10} AIBIQIT HUIUQ) AD[1AY UO



1408 | WANG and ZHANG

A23 | ¢;=-3

Consider the Satake diagram of split type G,

oF—2°
1 J
In this case, we have q; = g and q; = q>.
Lemma A.6. We have
KB [F Flg| = ¢°[31F KK, (A12)
[KiE [ 1FFls], ] = a0+ 13DIB Fl KK (A13)

Proof. The first identity (A.12) is derived as follows:

-1

K, —K;
LHS(A.12) = K;|E,, [F;, Fjl ] = K, [—q_ll,F-]qz = ¢’[3]KK/F; = RHS(A.12).

We next compute

LHS(A.13)=Ki[Ei, [Fi, [F F i) ]

AL TP Y
=K, |——L[F,F. +K |F,,[——L,F,] »
i q_q it jlg \ i i q_q_l jlq ,

= qKiK[F;, Fjlgs + ¢ [B1K, [F, KIF)]
=@+ Q[s])[Fi,Fj]q3KiKi/
(q + Q[?’])[Bl > ]]q3KK

where the last equality follows from Lemma A.1. This proves (A.13). O
In line with Table 3, Proposition 5.11 can be reformulated and proved as follows.

Lemma A.7. We have
-1
T F) = [B B, ’Fj]q3]q]q_1

T (q(1+[3])[ 7, Flgs + @[3][BY, F il k. (A14)
Proof. By Proposition 4.2, 9 1(F )= %[Fi,[Fi,[Fi,Fj]qS]q]q—l. By Lemma A.l, we have

[BY,F;lgs = [F; 3. Then we have

i’ J]q

[Bgf, [B°, [B;’,Fj]qg]q]q_l = [Bf, [F., [Fl.,Fj]q;]q]q_1 + [Bf, [KiEi,[Fi,Fj]qg]q]q_l. (A15)
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RELATIVE BRAID GROUP SYMMETRIES ON :QUANTUM GROUPS 1409

Using Lemma A.6, we rewrite RHS (A.15) as

[Fi [Fi’ [Fi, Fj]qS]q]q—l + [KiEi7 [Fi7 [FifFj]q3]q:|q_l + q3[3][Blo—aFj]q’lKlKl,

= [3)\71(F)) + q(1 + [3D)[BY, F;12K.K] + ¢*[3][B, F ;1,1 KK]. (A.16)
Now the desired formula (A.14) follows from (A.15)-(A.16). O

Lemma A.8. We have

0 ,
TEKD = o [Bi, [Bi,[Bi,EjKj]q3]q] .
- ﬁ(q(l + [3])[Bi’EjK;-]q3 - q3[3][Bi7EjK;]q*1>Ei- (A_17)

Proof. In this case, K; = Ei and K; = Ej are central. By (A.4)—(A.5), we have

s(F)) = —q;°E;K’k;",  3(B)) = —q°Bik; . (A.18)

—~

Recall from Lemma A.3 that > commutes with .7;. Applying > to (A.14) and then using (A.18),
we have

-1 N =171
T EKD TG
e ) IB. E.X' T—17-3
=—q [3]'[319 [Bl’[Bl’EJKj]qs]q]q_lkj k[ (A19)
51 ’ X . NN
+q ﬁ(Q(l+[3])[Bi,EjK;-]q3—q [3][Bl.,EjK;.]q,1)3(ki)kj K

Since s;(at;) = a; + 3a;, by Proposition 4.2, we have f_l(ﬁ;l) = —q_6Ej_1Ei_3. Note also that
a(Ei) = q“‘Ei_l. Hence, (A.19) implies the desired formula (A.17). O

A3 | TypeAll
Consider the rank 2 Satake diagram of type AIl;

e O—8o — 00—
1 2 3 4 5

Ty = 5453555,
In this case, Proposition 5.11 is reformulated and proved as follows.
Lemma A.9. We have
T M(Fy) = [ 5B, Pl

;7:4—1 (%,(EZ)K;) = [Z4(B,), %.(Ez)KQ]q-
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1410 | WANG and ZHANG

. > 1 P
Proof. The first formula follows by 9m ! 9435 ,» Proposition 4.2, and the formula (A.1).

We prove the second formula. By (A.4)-(A.5), we have
2(F) = =477, (B)K, 7, (K51, 3(B)) = =B, 7, (K. (A-20)

Recall from Lemma A.3 that the operator > in (A.3) commutes with f?\; , ?r; . Applying the operator
5 to both sides of the first formula and then using (A.20), we have

T (70 BIKS ) T, 051 = —q LT BO T, Ty (BIKS 7 OS] (A2D)
For a weight reason, we have
T Ty (EK = 97, (E)KL TS,
T (KN T(B) =  73(B) 7, (K.
Using these two identities, we simplify (A.21) as

To N (TR ) T (1) = =q  UT(B), T (BIK), T DT, 05D, (A22)

Finally, by Proposition 4.2, we have %_4(1@) = —qi(lq)%_(lcz). Hence, (A.22) implies the
second desired formula. ’ O

A4 | TypeCIIl,,n>>5
Consider the rank 2 Satake diagram of type CII,,, for n > 5:

O —e¢ — O0—8— - — - — 0 L———0
1 2 3 4 5 n-1 n
-1 -1/2
G20 =4, C40 = —q,

Ty = 84..n...48384...5.. .4+
Note that g, = g, = q. The notation 4 --- n --- 4 (with the local minima/maxima indicated) denotes
asequence45---n—1nn—1--54,and we denote s,...,,..q =S4 = S, *** S4-
In this case, Proposition 5.11 is reformulated and proved as Lemmas A.10-A.11 below.

Lemma A.10. We have

T F) = [T sBD, Z(Bg)]q,Fz]q ~ 47, X F) KD T 5(K). (A23)
Proof. Since ss...,...584Ss...n...5(2s) = oy, we have 7, ' 7L (F,) = J;..,..5(F,). Then

1244_1(1:2) = ...n...4[F3’F2]q [ 5...,,...5( [Fas F31), Fz]

[[z...n...s(n) [Fs. F3] ]q,Fz] :
q
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1411

On the other hand, we compute RHS (A.23) as follows. First, note that
[K4'§;_.1(E4)aF3]q =q! T (E)K3Ky,

5.....-5

and hence,

[[K4%_(E4),F3]q,Fz]q =71, J(E),F,]K;K, =0.
Thus, we have

(1758, TED o],

= ([F DB E

= ZHS(BZT)’ [F4’F3]q]q’F2
L 49

= :%-An-uS(le)’ [F4,F3]q]q’F2 + Hiunms(KOz_l(EA,)’ [F4’F3]q]q’F2]

lq q

_ §r’4—1(F2) n q[[z_l(E“)’ [F4,F3]q],Fz]q%--n---S(IQ)
= ?;4_1(172) + q[[%_l(Fﬂ’FS]’FZ]qz '?;(K‘,*)’?S'"”"'S(K“)

as desired. This proves the formula (A.23).

Lemma A.11. We have
Te T DK = (1 FsBi), TiBgs T (BK q

=475 70 EK}) KD T 5K

Proof. By Lemma A.3, the operator > in (A.3) commutes with ?; 9;”5 9;4 . Applying > to

(A.23) and then using (A.4)-(A.5), we obtain
TN Ty EDKD T, (K51

— 07, 7. ()KL ) 70 02T KD T 5K D)

(A.24)

(A.25)
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1412 | WANG and ZHANG

Recalling ck; from (3.23), we have
KB, = q*B,K,,
T K3) T sBYT(By) = Ts..op..5s(B) T5(B1) Ty, (K),
3(T5K) Tepes &) = G Ty s (KD T TR T o5 (Koy).
Using these formulas, we simplify (A.25) as

2‘;1<%_<E2>K;>%.,4<lcgl>
- Z‘Z(%_(EZ)K;)i(K;)%..n...5(K4)ﬁg...n...s(ngl)?;(ngl)%_(lcgl). (A.26)

Finally, by (3.23), we have %_4(1@) = q7(K) 7. ,.n,..5(1C4)§:U' (K,). Therefore, the formula
(A.24) follows from (A.26). ' O

A5 | TypeCIl,
Consider the rank 2 Satake diagram of type CII,:

o O0—eoL&——o0
1 2 3 4
1‘4 = S4S3S4, 1‘2 = S2SIS3S2.

In this case, Proposition 5.11 is reformulated and proved as Lemmas A.12-A.13 below.
Lemma A.12. We have
To(Fy) = [BS Fily, P R (A27)
3
T = [FBDATB. Filp] - (@ - G F F B GKK,. (A28)

Proof. The first formula (A.27) follows by a direct computation.
We prove (A.28). We have

T = | ET EDFilg] = [FEDITE.F ).
Hence, recalling that B = F, + Kzﬁ—l(Ez), we have
| 2B, (758, Fil | = | 5B I TFo). Ful,g
= [FEDITEDF 2| + [KK T B ITED, Filg
= T E) + L7 @) T F KoK,

= 9;;1(F4) + (q3 - q;l)[F39F4]q§E1K2K£K3.

Thus, (A.28) is proved. O
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RELATIVE BRAID GROUP SYMMETRIES ON :QUANTUM GROUPS 1413

Lemma A.13. We have

T (e EDK) = B Faly, T (EDES) (A29)

TN T BIKy) = | 7B 1558, Ty (EDKS) |

—(q5 — g3 DIFs, T, (EPK,] 2E KKK, (A.30)

Proof. We shall prove the formula (A.30) only, and skip a similar proof for (A.29).
By Lemma A.3, the operator > defined in (A.3) commutes with .73, 7, . Applying > to the
identity (A.28) and then using (A.4)—(A.5), we have

T 7. BIKY) Z ()
= | ZB) AU BT (001, T (KL T ()
— (@3 = 443 FKK T, (BOKL T, (R E KK a(KKGKS). (A3D)
For a weight reason, we have
FUNT, (By) = ¢ Ty (BT (KT,
T (KN T(By) = ¢ T5(By) Ty, (K1),
TN T(B) T, (Ey) = Ti(B) T, (BT,
TN Ty (Y T5(B,) = T5(By) (5 T (K.
We also have 3(K,K)K3) = q5 2 % (K,K’)7'K;. Hence, (A.31) is simplified as
T 7. BIK}) T )
= 4;*| ZB) T8, T, (BIKL) 2| T 0D TS
— (43 = 459, °[F3, 70, (BOK N EKOKOK 7, O DA (A32)

By the definition of K; in (3.23), we have %'Z(ICZI) =q, 2%. (K;l)i(lcz‘l)z. Thus, (A.32)
implies the desired formula (A.30). ' O

A.6 | Type EIV
Consider the rank 2 Satake diagram of type EIV:

1‘1 = Sl SZS3S4S6S3S2S1.

In this case, Proposition 5.11 is reformulated and proved as Lemma A.14 below.
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1414 | WANG and ZHANG

Lemma A.14.
21—1(F5) = [i%%(Bf),Fs]q, (A.33)
9";‘1(%_(155)1{;) = [i%%@l), %_(ES)K;L. (A.34)

Proof. We prove the formula (A.33). Indeed, we have
TN F) = T T T, Fslg = 17, ' 7, 7, MRy, Fsl
= (T RT(F ). Fs)y = (7,75 75(B)). Fsl.

We next prove the formula (A.34). Recall from Lemma A.3 that Z , for j € 1,, commutes with
5 in (A.3). Applying > to the formula (A.33) and then using (A.4)-(A.5), we have

T (7. BKL) T2, 05D
= 72| ToaB) Tona ). Ty KL T, (1) (A39)
By a weight consideration, we have

%_ (lcgl)j;sz(Bﬂ = qZ32(Bl)§L;. e3h,

<g.r\-lé?ﬂ(lc]_l)ﬁw.(E‘S) = q%. (Es)y::g(lcl_l)
Hence, using these two identities, (A.35) is simplified as
TN T BIKE) Ty (5T
=7 | 7B ?w.(Es)Ké]q%z(lcl‘l)%,(ngl). (A36)

Finally, by the definition (3.23) of K, ;7:,.1(]C5_1) = —q—1%32(ﬁ;1)%_(ﬁgl). Then, (A.36)
implies the desired formula (A.34). ’ O

A7 | Type AIll,
Consider the rank 2 Satake diagram of type AIIl;:

T
.
oO—o0—oO0
1 2 3
— — -1 — -2
Clo =S30=—"4q G20 = —4
1‘1 = SlS3, 1'2 = S2.

In this case, Proposition 5.11 is reformulated and proved as the following lemma.
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Lemma A.15. We have

T H(F,) = [BS.[B]. Faly] , — qF2KaK], (A37)
T ((B:K) = [Bs, [B1, E,K) | — 4K KK (A38)

Proof. By Lemma A.1, we have [B],F,], = [Fy,F,],. Then, the first term on the RHS of (A.37) is
computed as follows:

[BS. [BY, Faly] = [KsEy, [F1, Folg] + [Fa [F1L Folg]
= q[[E;, F1], F,] K5 + [F, [Fl,FZ]q]q
K, - K|
PEr=S
= qF,K:K] + |F3, [Fl,Fz]q]q

=4 Fz] K; + [F3’[F1’F2]q]q

= 7;'(F,) + qF,K:K].

This proves the formula (A.37).

We next prove (A.38). In this case, 7, = 7 # Id, 7, ; = Id, and we simplify 3 in (A.3) as > = %0.
We also have K; = k; for i = 1,2, 3. Applying the operator > = %0 to the identity (A.37) and then
using (A.4)-(A.5), we have

1(EZK’)y (1) = g *[Bsk; %, [B,k; !, EK Dk 1]q] — qE,K )k, 3(K5K). (A.39)

We have 3(K;K!) = g2k 'k 'K3K!. Note also that k, is central and ks, k; commute with E,.
Hence, (A.39) can be rewritten as

T {BK)D T (k5 = 72 B, [By EbKS | KRG
—q_lEzK’k 1k 1k 'K:K]. (A.40)

Finally, since r;(a,) = a, + a; + a3, we have Z (k;1) = q2k; 'k 'k L. Therefore, the desired
formula (A.38) follows from (A.40). O

A8 | TypeAlll,,n>4

Consider the rank 2 Satake diagram of type AIIl,, n > 4:

o— o0« ___ [, S

1 2 3 n-2 n-1 n

— — -1 — — -1/2

SlLo =Sne=—q  $20=Sn10=—q "7
1‘1 = Slsn, 1'2 = SZ"'Sn_l "‘Sz.

We first have a simple observation.
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Lemma A.16. Forany3<s<n—2, 7. o (F 1)lsﬁxedbyﬂ

Proof. Recall from Proposition 4.2 that §sl satisfies the braid relation. Then we have

Z

T Tn2Fn1) = Ty s BT 1 Ty T o (F)
= D52 T 1 BTy Tgrna(Fpy)
=%--s—2§ 1§; s+1-n— 23 1(Fn 1)
= D52 T 1 T Tptn2Fret) = Topn(Fpy).

Hence, 7., ,(F,_,)isfixed by 7, for3<s<n—2. O

In this case, Proposition 5.11 is reformulated and proved as Lemmas A.17-A.18 below.

Lemma A.17. We have

irdl_l(FZ) = [BU’FZ]LP (A41)
Zz_l(Fl) - [‘%.(BU s B3, Fy ] FlK’Kw.(oc,,_l)' (A.42)

Proof. The formula (A.41) follows from Lemma A.1.
We prove (A.42). By a direct computation, we have

o

T E) = | Tk s, [Fz,Fl]q]q

= %_ _2%...n_2(Fn_1)» [Fz’Fl]q]q
= 7%--n—2(Fn—1), [FZ’Fl]q]q

= :%_(Fn—l)’ [FZ’Fl]q] J

where the last equality follows by applying Lemma A.16 and noting that w Ja,_1) = 83 0(0t, 1)
Recalling that B] | =F, ; +K, 19 (E,), we compute the RHS of (A.42) as follows:

AN EACR N
= |:<7~U_),(Fn—1)9 [FzyFl]q]q + [%,(Kn—l)EZ’ [Fz’Fl]q]q
= TN E) + [En[Fo F1lg) 7o (K,y)

= 7, '(F) + FIKK

w.(an_l)'

This proves the formula (A.42). O
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Lemma A.18. We have
z:1<%-(En—l)K;) = [By, %.(En—l)K;]q’ (A.43)

(A.44)

w.(anfl)'

T EK)) = [%_(Bn_l), [BZ,EnK;]q]q - E, KKK

Proof. Note that ?{1 =7 % commutes with % Hence, we have

T (T BuKy) =6,V 7, T B, DKK,
1 .

—3'1 y ([ n— lEn]q—l)KéK{
= %,[En’ n— 1]qK2K{

=[By, % (En—l)K;]q’

where the last step follows from Lemma A.1. Hence, we have proved (A.43).
We next prove (A.44). In this case, 7, = 7, 7, (K,) = K, = k,,, and we simplify > in (A.3) as
5= Z) %0. Applying > to (A.42) and then using (A.4)-(A.5), we have
T N EKD T, (k)
= ¢ | 70, (B DK B T 01 B

— B Kk, 5(K5K o ) (A.45)

nln

For a weight reason, we have

Ty (K1 E, = qE, 7, (k'),
k. 'B, =qB)k ',
K;'B,E, = ¢°B,E, K",
k' 0 (1) T (Busy) = 4 T, (By_ DK, Ty (K1),

In addition, by (3.23), we have 3(K1K,, ) =q "7, (K;! JK'K/K,
las, we rewrite (A.45) as

w.a,_, - Using these formu-

Zz_l(E”Ki)%"z(Erjl) —q! [%.(Bn—l)’ [Bz,EnK{]q]qE#%_(lcil)jcgl

- q'E, K|k T, (K1 KKK, (A.46)

Kk zwoc1

Finally, we have %_Z(Eg D= q‘ll;; 1%_ (1)Kt Then the formula (A.44) follows from
(A.46). ’ O
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A9 | Type DIII;
Consider the rank 2 Satake diagram of type DIIIs:

- o0 4> T
1 2 3
5
1

S20 =—q C40 = G50 = —q
1'2 = S2S1S3S2, 1‘4 = S4SSS3S4S5.

-1/2
b

In this case, Proposition 5.11 is reformulated and proved as Lemmas A.19-A.20 below.

Lemma A.19. We have

Ty \(Fy) = [ Z5(BS). Faly, (A47)
T ) = [BLIZBF | = T FIK KK, (A4

Proof. The proof for (A.47) is similar to that of Lemma A.9, and thus omitted.
We prove (A.48). By a direct computation, we have

T ) = [[FulFs Fily)  Fa| = [FulZ5E.Faly|

Note that B =Fs+Ks7, '(E,). Since [Z;(K5)E,F,l,=qlE,.F,]K;Ks=0, we have
[%(Bg), Fly= [%(FS), F,],- We now compute the first term of RHS (A.48) as

BLIZBD. R, = B 17, Bl
ol GO N I LA CANEXCAN AN
= TP + K| T (B 155 (F9), Pl |
=7 \F)—-q" (B3, F3lg2. Fs] KiK.
= 7, \(Fy) + 7, *(F)KKIK,.
This proves (A.48). O

Lemma A.20. We have

TN (T (EK]) = [5(B,), T (B)K) ), (A.49)
T (T (B)KY) = [ B [ 75(Bs), %.(Ez)Ké]q]q AT EKOKKK, (A5

Proof. We prove (A.50). The proof for (A.49) is easier and hence omitted.
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By Lemma A.3, the operator > defined in (A.3) commutes with :ZJ, :7;; . Applying > to (A.48)
and using (A.4)—(A.5), we have

TN T (BKY T, (51
= a7 B T3 [ Z5(BK Y T (KL T, (g |
— T ATy (BDKY Ty (I )2(K KK, (A.51)

For a weight reason, we have

K17, (B) =97, (B)K,,
T (K3 T(Bs) = q.75(B5) Ty, (K051,
T T5(Bs) Ty, (Ey) = 2 T5(Bs) Ty (Ex) T5(K5Y),

K1 T, (5B, = 4Bk 7, (5.

We also have 3(K,K'K}) = q~! %(n;l)lcglK4K;K;. Hence, (A.51) is written as

T N Zy (BDKD Ty, (5
= 47! [, 17589, T (EIKS), | T 00T ks
— 4" T (T, (EDKDKKIKL Ty, (KD Z(KHE ™ (A52)

Finally, by definition of K; (3.23), we have 7, (K1) = q'.7,, (K;).Z5(]s )KL Thus, (A.52)
implies (A.50). ’ O

A.10 | Type EIII
Consider the rank 2 Satake diagram of type EIII:

6
— — -1/2 — -1
S0 =S50 = =4 % Go=—¢
ry =258 +8-"8, Tg = 56535284835

W, = 535,54535284 = §254535,5453-
In this case, Proposition 5.11 is reformulated and proved as Lemmas A.21-A.22 below.
Lemma A.21. We have

T M (Fy) = [F5(BY), Filg, (A.53)

Zfl(Fﬁ) = [%(Bg)’ [%Z(BT)’FG]q . '7?;3123(F6)K1K;K;K4K5~ (A.54)

d 'S '€T0T XFFTO9FT

ssdpy) suonpuo) pue swid L Ay 39S “[£207/11/01] uo A1eiqr autuo LM ‘VINIOUIA 40 ALISYTAINN £q 79$T 1 SWd/Z[ [ 1°01/10p/wod Kd[iaL”

Kot

5UDY] sUOWIWIOY) 2ANEAI) d[qeardde 3y Aq POWIIAOS AIE SIDILE V() 95N JO SO 10} AIBIQIT HUIUQ) AD[1AY UO



1420 | WANG and ZHANG

Proof. We have
TN F) = Ty (Fy) = 17,1 (F)), Filg = [ 53(Fe), Fuly = [ 753(BY), Fi .

Hence, (A.53) follows.
We next prove (A.54). We have

1(F6) 1...5...3(F6) 123[ 454(F3) FG] 223 [‘934(F5) F6]
= [ 70175 ®) Foly | = | T 170 Foly | (A53)
Recall that BY = F; + K, %fl(Es). Hence,
[ Z2(B)). Foly = [ T5(F1), Fely + K13 737,34 (Es). Fel
= [%Z(Fl)’qu +K153[.7, (Bs), Fg] = [5;2(F1)aF6]q- (A.56)
On the other hand, we have
32323(F6) 323[ 7, \(Fs), Fely = 9323[93(1:2) Felg
_[9 I(EZK, 1) 232(F6)]
= —q7'[7; (B, T3 (Fo)l oKy 'Ky
=-q7'| 7B, [ﬁg—l(Fs),Fﬁ]q]qu;—lKg—l
= g7 177 B, 7 (Bl Fo KSKE (A7)
We now rewrite RHS (A.54) as follows:

ECAEACARE

R ECNEAOEAR]

= [%(Fs) [332(1:1) F¢l ] [K4KS 232(E1) [932(1:1) F¢l ]q

(A.55) ~ — .
= g;l1(F6)+K4K5[,7321(El),[zz(Fl),Fé]q]

= 7~ a7 |17 B, T ) KIKiKs

(AS57) = ~
=" 7 Y(Fg) + Ti3303(FoK| K, KK K.

Therefore, the formula (A.54) follows. O
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Lemma A.22. We have
§;6_1<%.(E5)K1> = [Z53(Bs), 7 (E)K 1y, (A.58)

T (T BKs) = [ 731708, T (BRG],

- ‘?;53123 (%.(Ea)Ké)K{K£K§K4K5- (A.59)

Proof. Recall from Lemma A.3 that the operator > defined in (A.3) commutes with each of the
automorphisms .7, 73;, 3, Z s Ty -
We first prove the formula (A.58). Applying > to (A.53) and then using (A.4)-(A.5), we obtain

TN (T BK}) 7y (05D
= —q [ T53(Be) Tana (KT, T, (ESK, T, (KD,

= —q [ T53(Bs). Ty (E9K |1y Tasa (K H T, (K51, (A.60)

where the last equality follows by a weight consideration. On the other hand, we have
T, K51 = =q7' T3 (KD 7, (K51). Thus, the formula (A.58) follows from (A.60).

We next prove the formula (A.59). Applying > in the identity (A.3) to (A.54) and using (A.4)-
(A.5), we obtain

To (T BOKY) T, 0D

= 4| TB) 7.7, ()N T B T 7 (K51, T (BOK T, (DN,

= Tt (T (BOKY) T2, (53 (KKK KK ). (A.61)

Note that i%_(lcl‘l) = %Z(Kl‘l)i(Kg)‘l and ?;2%_0@_1) = j;(KS‘])%Z(K{)‘l. We also

note that K/K!K'K,Ks = 75,(K!)7,(Ks) and then >(K/K'K!K,Ks) = g~ Z(KL) ' Top(K]H).

Hence, (A.61) can be rewritten as
To (T BOKY) T, G0
= 47| T Tk TKY ™ I T B K DTS, T, BOK T (R

=07 Ty (7. BOKL) T G D TR Tk, (A.62)

For a weight reason, we have
TR T (K Ty (Be) = a7, (Ee) Ty(KH) T (K,
T (K T5(B,) = 473, (B) T, (K,
T K) TR Tr(By). Ty (EQK L, = q [ T0s(By). Ty (E)K L, TinK) TA(KL),

TUK D TH®D T, (KHT(Bs) = 2 T4(Bs) Tu(K:H) Ton(K)D) LT, (Y.
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Using the above four identities, we rewrite (A.62) as
To (T, BOKY) T, U0
= a7 [ 2(Bo). [ 7By, %,(E@Kg]q]q%, (K Ty (K 1K) TH(KKL) ™

= 07 T (T (KL K KIK K 1K T, (05D (K, KD T T (K KD ™ (A.63)
Moreover, we have % ) (x,H=q" % (1C6‘1)§;2(K1K{)‘1 i(KSK;)‘l. Thus, (A.63) implies the
desired formula (A.59). O
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