
Design Methodology for
Robust, Distributed
Time-Sensitive Applications

Aviral Shrivastava

Arizona State University

Mohammad Khayatian

Vecna Robotics

Bob Iannucci

Google

AbstractÐTime has become an essential aspect of many computing systems where temporal

correctness is as important as functional correctness. Autonomous vehicles, Industry 4.0, and

smart grids are a few examples of time-sensitive systems. As time-sensitive applications

become large, complex, and distributed, traditional methods fall short of achieving the desired

orchestration among components. In this vision paper, we first propose a standard to maintain

an accurate notion of time among all components of the system, i.e., sensors, computing

platforms, and actuators. Then, we propose explicit-time state estimation and closed-loop

control algorithms that can tolerate large delays while achieving reasonable performance, and an

integrated fail-safe mechanism that achieves a high level of robustness when timing failures

happen.

INTRODUCTION Large-scale, distributed, and

time-sensitive applications are becoming the

backbone of human society. Multiple robots

working in sync on a factory floor will opti-

mize production and realize Industry 4.0. Au-

tonomously driven vehicles that communicate

with each other to achieve safer and more efficient

transportation will realize our dreams of smart

transportation. Handling system transients such

as weather events for renewable energy sources

and sudden insertion/removal of micro-generators

will propel us toward a reliable and resilient

Smart Grid. All these important applications have

performance and safety constraints that are inex-

tricably linked to time.

Since some timing constraints are so crucial

for the correct and safe operation of time-sensitive

applications, systems have traditionally been de-

signed in a way to avoid timing constraint fail-

ures. This is typically achieved by carefully craft-

ing the control algorithm, selecting the hardware

and software of the computing components, and

tuning the execution mechanism of the software,

including describing the application as a list of

repeating tasks, specifying the periods, deadlines,

and priorities, mapping and schedule of the tasks,

etc. ± all so that the timing constraints can be

guaranteed to be met by design. However, this

approach does not scale well for large, distributed

time-sensitive applications. As such systems grow

in complexity, the use of commercial off-the-shelf

hardware together with software libraries, lan-

guages, and compilers ±not designed with timing

in mind, makes the system design challenging.

IEEE Internet of Things Magazine Internet of Things Magazine © IEEE 1



Engineering out every possible timing constraint

failure necessitates anticipation of every failure

mode (including soft errors, aging effects, ...) that

could have timing implications ± an impossibly

tall order for practical systems. Rather than fram-

ing the problem this way, we argue that system

designers should embrace the possibility of oc-

casional timing constraint failures and explicitly-

programmed ways to deal with them.

The traditional approach of designing systems

to avoid timing constraint failures has inherent

appeal. It stems from a rather logical desire to

segregate time-based control systems into two

parts: the time part and the control part. When it

can be done, the control part can be time-agnostic.

Sensors can just read values and forward them

along. Computing can happen when data are

available. Actuators can just do their actuation

when commands arrive in blissful ignorance of

time because all of the timekeeping machinery

is somehow above, beside, and around, assuring

that everything remains in a good temporal order.

Indeed there is irony in the fact that time-

sensitive systems execute in a time-agnostic

manner. But freedom from thoughts of time

within the control logic comes at a substantial

implicit cost: the machinery on which it runs

needs to be more-or-less deterministic in its tem-

poral behavior. And as systems grow, the cost of

making them so becomes prohibitive.

Communication latencies and their variation

can be orders of magnitude longer than the

update frequency of state estimation or control

algorithms. Consider the case of autonomous

vehicles sharing a highway ± each one with

its own navigational agenda but all seeking to

maintain safe separation at all times. To do

this, they should exchange position information

periodically, updating state information in their

control algorithms that are adjusting the vehicle’s

trajectory every few milliseconds. Would it be

consequential to a time-agnostic state estimator

if one such exchange was delayed by 100 msec

(not at all atypical in a cellular network)? At

highway speeds (say, 100 kilometers per hour),

the ªsurpriseº delay could correspond to an ag-

gregate misestimation of position in excess of

five meters ± certainly enough to cause concern.

Although new technologies like 5GLLC are being

deployed, they have limitations and perhaps we

need to go back and re-consider the validity of

the assumption of separating the time part of this

system from the control part.

This article proposes the design and

architecture of an explicit-time distributed

system to support robust execution of distributed

time-sensitive applications. An explicit-time

system consists of three parts: i) Explicit-time

State Estimation and Control Algorithms, ii)

Explicit-time Sensors and Actuators, and iii)

Backup-Routine-based Robust Execution.

EXPLICIT-TIME STATE ESTIMATION State

estimation is at the heart of most Cyber-Physical

Systems (CPS). Kalman filter is a state estimator

that is widely used for sensor fusion, Simul-

taneous Localization and Mapping (SLAM), as

well as signal processing. The goal of the state

estimation problem is to determine the state of

the system ± which may or may not be directly

observable ± using a system model and inaccurate

measurements of the system. The vanilla ver-

sions of the state estimation algorithms, like the

Kalman filter, Luenberger observer, and Particle

filter assume that all the measured values are cap-

tured simultaneously at the same moment and that

the computation and communication times are

negligible. When the sampling period of sensors

is not the same (e.g., an IMU works at 100 Hz but

GPS works at 10 Hz) multi-rate state estimation

algorithms [1] are used. Such approaches still

assume that the sensor readings are perfectly

synchronized and therefore, the actual capture

time of each sample can be ignored. However,

for large-scale, distributed CPS, where sensing,

actuation and computing may be happening on

different nodes that are connected by communi-

cation protocols that may have high and highly

variable latencies, time-agnostic state estimation

algorithms will not be accurate. Imagine the sce-

nario where multiple AVs are broadcasting their

positional information and performing a joint or

distributed state estimation. The packets from a

vehicle may be delayed by even seconds, and

given the fast dynamics of the system (in the

context of the amount of delay), time-unaware

state estimation can become inaccurate. Explicit-

time state estimation takes in the timestamps

at which the measured values were sensed as

well as the inaccuracies in the captured time

2 IEEE Internet of Things Magazine



and value to estimate the state of the system

at an explicit time in the future.

Figure 1. Time-agnostic state estimation approaches

only consider the inaccuracy in the measurement val-

ues (left). Explicit-time state estimation will consider

the errors in the measurement values as well as

the error in the time at which the measurement was

captured.

We explain our idea of the design of an

explicit-time state estimation algorithm based on

the popular Kalman filter algorithm. A unique

aspect of our proposed approach is that while

existing methods only consider the uncertainty in

the measured values (due to sensor noise, ADC

resolution, etc.), we will consider the uncertainty

in the measured values as well as the uncertainty

in the time those measurements were captured at,

which is depicted in Figure 1. In our model, each

sensor reading is a quadruple < z, ez, t, et >

comprising of the measured value (z), the error

in the value ez , the time of measurement, or

the captured timestamp (t) and the error in the

captured timestamp (et). It should be noted that

the measurement times may be inaccurate due

to several reasons including the internal clock

quality, synchronization source, protocol, and the

synchronization frequency of the clock.

We propose to model time explicitly as a part

of the system state i.e., X = [x1;x2; ...;xn; t].
Figure 2 shows that since we have made time

as a part of the state of the system, i.e., X =
[x1;x2; ...;xn; t], the covariance matrix P will

have one more row and column to represent the

covariance of time with respect to the states. In a

distributed system, the measured values from the

different parts of the system may end up being

captured at different times. Previous approaches

wait for all the measurements from the different

parts of the system to arrive before they can

update the system state. In our approach, we

perform the state estimation for each measured

value as it arrives. The idea is to repeatedly

update the state of the system to the time of the

considered measurement value.

When a new measurement [zk, tk] is received,

the discretized system model (f ) ± how the

system state evolves with time ± is re-computed

based on ∆t = tk−tk−1. Similarly, the derivative

of the system model F is also recomputed. Then,

the predicted system state X and its covariance

matrix P are updated based on f and F . Next,

the prediction error (ỹ) is computed and the

Kalman gain (K) is calculated using updated

(Rk). Rk is the expected covariance matrix of the

measurement noise. Since each measurement has

uncertainty in the captured value and time, (Rk)

can be updated based on the reported uncertainty

of the measured values (ez) and time (et). This

way, if a measurement is coming from a node

with an inaccurate clock, the update step takes

into account the inaccuracy in the time (et).

Finally, the state of the system (including the time

at which the state is estimated) (X̂) and its covari-

ance P are updated based on the prediction error

(ỹ) and the Kalman gain (K). This process is

repeated at the arrival of every new measurement

in the order of their timestamps.

The foremost advantage of explicit-time state

estimation is that it severs the false conflation

between the time at which the measurement was

taken and the time at which the measurement

arrives at the estimator and the state is updated.

And this results in accurate state estimation. We

implemented a simple version of an explicit-

time Kalman filter to estimate the position

and orientation of a vehicle in 2 dimensions

by sensing its position from a GPS (Global

Positioning System) sensor at 2 Hz and its

heading from an IMU (Inertial Measurement

Unit) at 100 Hz. The inaccuracy in GPS values

is about ±10%, and in the IMU values, about

±5%, and the inaccuracy in both the timestamps

is less than ±0.1s. Figure 3 shows that the

explicit-time Kalman filter (orange) can estimate

the vehicle position (blue) much better than the

traditional implementation (yellow). Just like the

Kalman filer, other state estimation algorithms,

including the Particle filter, Luenberger observer,

and different flavors of the Kalman filter such

as EKF, UKF, etc. can also be made explicit-time.

EXPLICIT-TIME CONTROL ALGORITHMS

May/June 3



Figure 2. Outline of the Explicit-time Kalman filter. Parts highlighted in red show the proposed modifica-

tions/extensions.

Figure 3. Explicit-time Kalman filter can more accu-

rately estimate the state of the system compared to

traditional Time-agnostic Kalman filter(Orange).

Figure 4. The Smith predictor (Orange) is not able

to track the reference when the delay is variable.

However, Explict-time Smith Predictor can track it

pretty accurately (blue).

Since delays have a more dramatic effect on

the quality of control algorithms, more research

has been done on the stability of control sys-

tems with sensor-to-actuator delay [2]. Hierar-

chical architectures such as Distributed Control

Systems (DCS) and Supervisory Control and

Data Acquisition (SCADA) are commonly used

in the industry where the fast control loops

are implemented locally and only the super-

visory control inputs (such as a reference set

point) are affected by network delay. When

the delay is constant and known, control algo-

rithms like Smith predictor [3], Model Predic-

tive Control (MPC), and delay compensated Pro-

portional±Integral±Derivative (PID) control can

be used to compensate for the delay and pro-

vide high-performance control. However, for dis-

tributed CPS with variable delays, these ap-

proaches are unable to provide good-quality con-

trol. Figure 4 shows the response time of a

Smith predictor when the delay is assumed to be

500 ms but actually it varies randomly between

[100, 500] ms. The reference input is a step

function changing from 10 to 9 at t = 0.5s. The

orange curve shows that the Smith predictor con-

trol algorithm cannot properly track the desired

reference. There is some work on developing

control algorithms for systems with variable time

delay [4]. However, the controller design and

stability analysis of such systems becomes very

complex and results in a conservative design. This

is mainly because the stability proof should be

provided for all the allowed values of time delays.

Figure 5. Explicit-time Smith Predictor can compen-

sate for the sensing-to-actuation delay since it ex-

plicitly knows the sensing time and determines the

actuation time. The modifications are highlighted in

red.

4 IEEE Internet of Things Magazine



In Explicit-time control algorithm the actua-

tion can be scheduled to be applied at a certain

specific time. The explicit-time control algorithm

can benefit from the knowledge of actuation time,

and achieve better performance. Additionally, the

controller design and safety proofs of the explicit-

time control algorithms can be simplified, if the

upper bound on the sensing-to-actuation latency

can be fixed to a constant.

We explain explicit-time control algorithms

using the Smith predictor. Consider a system

as depicted in Figure 5. G(s) is the plant and

C(s) is the controller. The sensor delay and

actuator delay are δ1 and δ2, respectively. Figure 5

shows our modifications to the Smith predictor

to make it explicit-time. In explicit-time Smith

predictor, the controller sets the actuation time

and therefore, is aware of the sensing-to-actuation

delay (δ1+δ2 = tA−tS) and can compensate for

it. The error signal (e) is generated based on the

predicted output (ŷ) and the reference signal (xr).

If the model mismatch (∆m = G(s)− Ĝ(s)) is

small, the signal ym cancels the delayed output

(y) and with a proper controller, the output can

accurately track the reference input.

The time-aware nature of explicit-time

Controller will allow it to naturally adapt

to the inherently variable computation and

communication delays of distributed systems.

The blue curve in Figure 4 shows the output

response of our approach, and it is clear that

our approach can follow the reference much

better. If the actuation time is set to be later

than the worst-case delivery time to the actuator,

then the sensing-to-actuation delay can be

made constant and that makes the controller

design and stability analysis much simpler as

compared to existing approaches. This is mainly

because tighter bounds can be considered for the

Lyapunov functions to show that its derivative is

negative-definite.

EXPLICIT-TIME SENSORS, ACTUATORS,

AND NETWORKS Ignoring the sensing, compu-

tation, networking, and actuation times in DCS

can cause performance degradation [5]. As a

reference, [6] discusses the network impact on

the performance of DCS. Our proposed explicit-

time architecture requires the sensors to provide

a timestamp along with the value they sense,

and actuators have a mechanism to deliver the

actuation at the scheduled timestamp (within the

specified tolerance).

Currently, only a few sensors have such ca-

pability. For example, the Velodyne VLS-128

LIDAR has a GPS inside the LIDAR to provide

timestamps with the point cloud readings. We

are not aware of actuators that are capable of

scheduled actuation. Depending on the design and

modifyability of the sensors and actuators, they

can be made explicit-time to varying levels of

timing accuracy.

Some sensors and actuators have a

microprocessor and therefore an internal clock

inside them, and their firmware is modifiable.

Either their clocks are already synchronized to

an external clock source, e.g., Global Positioning

System (GPS). If not, they can be made to

synchronize with the clock of the CPS node that

it is connected to. For actuators, the firmware

of the actuators can be modified so that they

set up an internal interrupt to fire at the desired

actuation time to perform the actuation. Some

other sensors and actuators have an internal

processor/microcontroller, but their firmware

cannot be modified. Most existing sensors and

actuators fall into this category. The best way to

capture the sensing time in these kinds of sensors

is to capture the timestamp at the CPS node the

sensor is connected to. The best way to control

the actuation time on these kinds of actuators

is to manage the timing and actuation from the

CPS node that the actuator is connected to. The

driver software for the actuator can be modified

so that actuation commands can be sent to the

actuator on time. Finally, many analog sensors

and actuators have a simple structure and do not

even have an internal processor. These sensors

and actuators are usually directly connected

to the pins of a CPS node. The value sensing

is done through the ADC (Analog to digital

converter), and the actuation is done through

PWM (Pulse Width Modulation). For these

sensors and actuators, the sensing/actuation time

should be controlled by the CPS node directly.

As mentioned in the previous section, the

controller computes an actuation value to be de-

livered by the actuator at the specified timestamp.

Since the timestamp should be set to a later

May/June 5



time to account for computation and actuation

times and more importantly network delay, the

controller’s performance may be low for a regu-

lar network. Time-Sensitive Network (TSN) [7],

on the other hand, provides deterministic delays

through traffic shaping. As a result, the controller

will set the actuation timestamps as tight as pos-

sible to achieve higher performances. Although

(Network TIme Protocol) NTP is widely used for

clock synchronization, components of a TSN use

Precision Time Protocol (PTP) [8] to achieve sub-

microseconds clock synchronization.

BACKUP ROUTINE BASED ROBUST EXE-

CUTION Failure of timing constraints is an un-

avoidable concern in the design of time-sensitive

systems, and different solutions have been sug-

gested at various levels of CPS design abstraction.

At the runtime level, Medhat et. al proposed to

monitor the end-to-end timing constraints [9], and

on failure, the event can be logged, the user can

be warned about the event, or the program just

terminated. At the task scheduling level, various

approaches for budget replenishment have been

proposed where the scheduler decides to abort

(kill the task for the current iteration and not

generate an output), ignore (continue and eventu-

ally generate the output), or queue (which is the

default when timing failures are not considered)

an overrun execution. A more complicated way

to handle timing failure is to continuously adjust

the period of tasks based on the best-case and

worst-case delays that have been observed till the

current moment. However, providing safety guar-

antees for such approaches is hard and a rare long

execution time can make the design very conser-

vative. In the control systems domain, researchers

have developed adaptive control approaches that

work for variable time-delay systems by updating

the parameters of the controller. However, the

controller design and stability analysis of such

controllers does not account for the exceeded time

delays and timing failure.

The main idea of Backup Routine-based exe-

cution is to design a CPS such that it will meet

the timing constraints ªmost of the timeº, but if

the timing constraint is not going to be met, a

ªbackup routineº will be fired up in time to keep

the system in a safe state[10]. This approach does

result in a conservative design that is developed

based on the worst-case timing and at the same

time guarantees safety by relying on a fail-safe

backup routine that is triggered on time. Since the

designed system may switch between ªnormalº

and ªbackupº modes, system safety and stability

should be verified similar to switched and hybrid

systems.

One of the most important safety-critical tim-

ing constraints in an AV is that the delay from the

sensing (using cameras, LiDAR, or RADAR) to

applying the brake (if needed) should be less than

a maximum value. If this timing constraint is not

going to be met, a simple backup routine is to ap-

ply the ªbrakeº before the deadline expires. This

early execution of the backup routine ± before

the deadline expires ± will in some cases result in

false positives ± i.e., executing the backup routine

even though the timing constraint was actually

going to be met. However, even with that, the

backup routine mechanism will ensure system

safety, and therefore convert a safety requirement

(meeting the timing constraint) into an optimiza-

tion metric ± The safety of the system now

actually depends on making sure that the backup

routine completes in time. This can be achieved

since the backup routine can be really small, fast,

and local, and it can even be permanently cached

so as to make its execution really fast. This way

executing the backup routine will only require

a small fraction of the original deadline, and

thereby reduce the rate of false-positive firings

of the backup routine. It should be noted that the

AV will stop if its velocity is less than 2 m/s.

As mentioned, the main advantage of the

backup routine-based execution mechanism is

that it makes the original timing constraint a

performance issue and not a correctness issue.

The correctness is dependent on the timely ex-

ecution of the backup routines. This flexibility

gives system designers freedom to explore var-

ious methods for continuously adapt the system

execution to optimize system performance while

ensuring safety, e.g., operating the system at

lower performance when timing constraints are

met with a small margin or violated, and then

shift back towards operating at a higher perfor-

mance point when timing constraints are met

with large margins. Consider an AV (Autonomous

Vehicle) that can safely operate at 16 m/s. This

requires the sensing-to-actuation latency to be

less than 200 ms. Figure 6 shows the relationship

6 IEEE Internet of Things Magazine



Safe Operating 

Zone

Unsafe

Operating

Zone

Delay (s)

R
ef

er
en

ce
 V

el
o

ci
ty

 (
m

/s
)

Timing Failure: 

Looser 

Deadline

Recovery: 

Increase Ref 

Velocity 

Timing Failure: 

Decrease Ref 

Velocity 

Recovery: 

Tighter 

Deadline

Nominal 

Operating Point

Figure 6. Backup routine-based execution method

enables CPS designers to optimize system perfor-

mance while meeting the safety requirements. As

sensor-to-actuation delay increases, the system can

adapt itself and reduce the maximum or reference

velocity (black vertical arrows), and when it is met

again, the system can go back to operating at a higher

maximum velocity (blue vertical arrows).

between the maximum velocity of an AV and its

sensing-to-actuation delay requirement. The red

area (top right) shows unsafe operating points

and the green area (bottom left) shows the safe

operating points. The AV was supposed to drive

at 16 m/s and suppose a timing failure happens.

The backup routine can then reduce the maximum

velocity of the AV by 20% and adjust the sensing-

to-actuation timing requirement to 12.8 m/s. After

the execution of the backup routine, the delay

requirement is relaxed, and the AV can still safely

operate, albeit at a lower performance level. If

the delay becomes greater than 600 ms, another

backup routine can be executed, reducing the

maximum speed of AV to 10.2 m/s, and setting

the sensor-to-actuator timing requirement to be

less than 950 ms. When the end-to-end delay

returns back to normal (200 ms), the AV can re-

adjust its operating point and drive at its nominal

velocity (16 m/s). If the delay is beyond the

acceptable tolerance of the AV (1.6 s), the fail-

safe backup routine (applying full brake) can be

executed.

This backup routine-based execution

mechanism can become the central point

for tackling several robustness issues of the CPS.

This is because a lot of other system failures

also show up as timing failures. For example,

if a sensor goes bad and stops working, then

that manifests itself as a timing failure at the

controller that is supposed to use the sensed

value. Diagnosis and recovery (startup of a

backup sensor) in such scenarios can be done as

a part of backup routines.

FUTURE RESEARCH DIRECTIONS Control-

theoretic Aspects: Just like the Smith

predictor, explicit-time versions of MPC, delay-

compensated PID, state feedback control, etc. can

be developed. Their stability can be proved using

Lyapunov-Krasovskii and Lyapunov-Razumikhin

methods. In these approaches, a positive definite

energy (Lyapunov) function can be considered

and with the help of time-invariant functions, it

should be possible to show that the derivative of

this function is negative definite.

Technological Realizability: One challenge

related to the proposed Kalman filter is a deter-

mination of covariance matrices (Rk and Qk).

Researchers have proposed techniques to over-

come this challenge [11]. Another challenge asso-

ciated with the explicit-time Kalman filter is that

more computation is needed since the algorithm

computes the inverse of the matrix S with every

received measurement. However, the good news

is that the computation overhead is not too much

since the sensor model h and its derivative are

sparse (they only consider one measurement at

a time) matrices and there is scope for further

reducing the computation overhead. In addition,

the state estimation for samples that end up being

captured at times that are very close to each

other can be performed in the same iteration. As

another challenge, it may not be possible to de-

termine strict ordering among the measurements

since the timestamps of the sensed values can

be inaccurate (e.g., due to the limits of clock

synchronization). Those measurements may be

good candidates to club together for a single-

shot update. As a suggestion, the sensitivity of

the sensed values can be used as a metric to

determine how much we can delay the update

for a sensed value or combine its update with

the later ones, or just drop them. In networked

systems, it is even possible that the sensed values

may arrive at the compute node in a different

order than the one in which the measurements

were taken. Clearly, we will need a buffer in

front of the compute node to store and reorder

May/June 7



the measurement values. However, if that is not

possible (for example because one packet was

delayed a lot), several solutions are possible,

including, just ignoring the incoming value if it

is within a small margin of the expected value at

its timestamp. If the measurement is coming too

late, then rollback to a previous state, and then

recompute from there is a possibility. It may be

possible to develop analytical solutions to apply

the effects of the late-coming value without doing

the rollback ± if that happens often.

Platform-related Constraints: An important

issue in non-explicit-time sensors and actuators

is that there is always a bias in the captured

timestamp (i.e., the captured timestamp is

always late), and in the actuation time (i.e.,

the actuation time is always later than the time

when the system node applied the actuation) that

is not compensated for. This is because of the

intervening microcontroller inside the sensor or

actuator that takes a non-zero time to provide the

sensed value or perform the actuation. Research

is needed to develop ways to estimate these

systematic biases and compensate for them. The

good news is that this systematic bias should

have low variation and therefore it should be

possible to estimate it using existing time delay

estimation methods [12].

Timely execution of backup routines: The

most straightforward approach to execute the

backup routine at the right time will be to set up

a timer at the start event of the timing constraint

and fire it at the right time (before the deadline

of the timing constraint) so that the system safety

can be ensured. However, one challenge associ-

ated with using timers for firing up the backup

routines is that many platforms have a limited

number of hardware timers while an application

may have multiple timing constraints. To address

this issue, the concept of virtual timers can be

used to accommodate multiple timing constraints

using a single hardware timer. A virtual timer is

basically the combination of a hardware timer and

a software queue of backup routines in sorted

order by their firing times. The timer always

verifies and fires the backup routine at the head

of the queue, and removes them after that. In

case of repeating timing constraints, the backup

routine just moves to the back of the queue at

its right place (by firing time). Since the firing

of backup routines on time is safety-critical, they

can be pre-cached and will have a high priority

for execution. They can also be executed on

a separate and dedicated processor so that the

WCET of the backup routines can be computed

more accurately. Also, although rarely, there can

be cases when multiple timing constraints fail at

the same time or are very close to each other so

that the execution of the corresponding backup

routines overlap each other. In such cases, the

maximum block time for a backup routine ±

by other backup routines± should be taken into

account which can be done by assigning a priority

value to each backup routine and performing

an analysis similar to the WCRT (Worst Case

Response Time) analysis [13].

Determining safe backup routines: Given a

backup routine and a ªfiring timeº, it should be

possible to test/check if the backup routine can

keep the system in a safe state by modeling the

physics of the system with differential equations

and software using a state machine. From a

high-level perspective, the software part of the

proposed architecture operates in two modes:

1) normal operation, where no timing violations

happen, and 2) backup mode when a timing

failure happens. In the CPS domain, such systems

are commonly modeled as switched systems and

more commonly hybrid systems. A few tools such

as Breach [14] and Flow* [15] can determine the

set of the state that a hybrid system may reach in

the future and verify if it reaches a set of unsafe

states.

Security: Networked systems are prone to

cyber attacks such as spoofing and Denial of

Service (DoS). An attacker can change the sensed

timestamp or commanded actuation timestamp or

prevent the actuator from receiving the actuation

command and timestamp. As a result, sensors,

computation nodes, and actuators should have a

mechanism to encode/decode the data that is sent

over the network and be able to detect spoofed

packets. In addition, spoofing can happen if the

components of the system (e.g. Phase Measure-

ment Unit or PMU) synchronize its clock via

GPS. However, GPS with a precise internal clock

can detect considerable GPS spoofing and have

deterministic time accuracy.

CONCLUSION In this vision paper, we study

8 IEEE Internet of Things Magazine



the challenges of meeting timing constraints

in complex, large-scale, and distributed time-

sensitive applications. We propose a set of stan-

dards to build explicit-time sensors and actuators

as a prerequisite to perform explicit-time state

estimation and closed-loop control. Our explicit-

time state estimation and control algorithms can

tolerate large and variable delays while achieving

high performance. Finally, we introduce an in-

tegrated fail-safe mechanism that kicks in when

timing constraints are not met. Our fail-safe

mechanism ensures the safety of the system when

timing failures happen.

ACKNOWLEDGEMENT This material is based

upon work supported by the National Sci-

ence Foundation under Grants No. 1646235 and

1645578.

REFERENCES

1. Yan Liang, Tongwen Chen, and Quan Pan. Multi-

rate optimal state estimation. International Journal of

Control, 82(11):2059±2076, 2009.

2. Emilia Fridman. Tutorial on lyapunov-based methods

for time-delay systems. European Journal of Control,

20(6):271±283, 2014.

3. Chien-Liang Lai and Pau-Lo Hsu. Design the remote

control system with the time-delay estimator and the

adaptive smith predictor. IEEE Transactions on Indus-

trial Informatics, 6(1):73±80, 2009.

4. Wenlong Zhang, Masayoshi Tomizuka, Peng Wu, Yi-

Hung Wei, Quan Leng, Song Han, and Aloysius K Mok.

A double disturbance observer design for compensation

of unknown time delay in a wireless motion control

system. IEEE Transactions on Control Systems Tech-

nology, 26(2):675±683, 2017.

5. JK Yook, DM Tilbury, and NR Soparkar. A design

methodology for distributed control systems to optimize

performance in the presence of time delays. In Pro-

ceedings of the 2000 American Control Conference.

ACC (IEEE Cat. No. 00CH36334), volume 3, pages

1959±1964. IEEE, 2000.

6. Feng-Li Lian, James Moyne, and Dawn Tilbury. Network

design consideration for distributed control systems.

IEEE Transactions on Control Systems Technology,

10(2):297±307, 2002.

7. Norman Finn. Introduction to time-sensitive networking.

IEEE Communications Standards Magazine, 2(2):22±

28, 2018.

8. Juha Kannisto, Timo Vanhatupa, M Hannikainen, and

TD Hamalainen. Software and hardware prototypes of

the ieee 1588 precision time protocol on wireless lan.

In 2005 14th IEEE Workshop on Local & Metropolitan

Area Networks, pages 6±pp. IEEE, 2005.

9. Ramy Medhat, Borzoo Bonakdarpour, Deepak Kumar,

and Sebastian Fischmeister. Runtime monitoring of

cyber-physical systems under timing and memory con-

straints. ACM Transactions on Embedded Computing

Systems (TECS), 14(4):1±29, 2015.

10. Mohammad Khayatian, Mohammadreza Mehrabian,

Edward Andert, Reese Grimsley, Kyle Liang, Yi Hu,

Ian McCormack, Carlee Joe-Wong, Jonathan Aldrich,

Bob Iannucci, et al. Plan b-design methodology for

cyber-physical systems robust to timing failures. ACM

Transactions on Cyber-Physical Systems, 2022.

11. Yulong Huang, Yonggang Zhang, Zhemin Wu, Ning Li,

and Jonathon Chambers. A novel adaptive kalman

filter with inaccurate process and measurement noise

covariance matrices. IEEE Transactions on Automatic

Control, 63(2):594±601, 2017.

12. Li Chunmao and Xiao Jian. Adaptive delay estimation

and control of networked control systems. In 2006

International Symposium on Communications and Infor-

mation Technologies, pages 707±710. IEEE, 2006.

13. Reinder J Bril, Johan J Lukkien, and Wim FJ Verhaegh.

Worst-case response time analysis of real-time tasks

under fixed-priority scheduling with deferred preemption

revisited. In 19th Euromicro Conference on Real-Time

Systems (ECRTS’07), pages 269±279. IEEE, 2007.

14. Alexandre DonzÂe. Breach, a toolbox for verification

and parameter synthesis of hybrid systems. In Inter-

national Conference on Computer Aided Verification,

pages 167±170. Springer, 2010.

15. Xin Chen, Erika ÂAbrahÂam, and Sriram Sankara-

narayanan. Flow*: An analyzer for non-linear hybrid

systems. In International Conference on Computer

Aided Verification, pages 258±263. Springer, 2013.

Aviral Shrivastava is a

full Professor in the School of

Computing and AI at Arizona

State University, where he

established and heads the

Make Programming Simple

Lab (https://labs.engineering.asu.edu/mps-lab/).

He completed his Ph.D. in Information and

Computer Science and from the University of

California, Irvine, and bachelor’s in Computer

Science and Engineering from IIT Delhi..

May/June 9



Mohammad Khayatian is a

Senior Robotics Software Engi-

neer at Vecna Robotics, work-

ing on autonomous mobile robots

for wearhouses. He received his

Ph.D. in Computer Engineering from the Arizona

State University and his M.Sc. and B.Sc. in

Electrical Engineering - Control Systems from

Shiraz University.

Bob Iannucci is a Distin-

guished Engineer at Google. Be-

fore this he was a Distinguished

Service Professor at Carnegie

Mellon University, and Senior VP

and CTO at Nokia. He recieved

his Ph.D. from MIT in Electrical Engineering and

Computer Science.

10 IEEE Internet of Things Magazine


	REFERENCES

