Design Methodology for
Robust, Distributed
Time-Sensitive Applications

Aviral Shrivastava
Arizona State University

Mohammad Khayatian
Vecna Robotics

Bob Iannucci
Google

Abstract—Time has become an essential aspect of many computing systems where temporal
correctness is as important as functional correctness. Autonomous vehicles, Industry 4.0, and
smart grids are a few examples of time-sensitive systems. As time-sensitive applications
become large, complex, and distributed, traditional methods fall short of achieving the desired
orchestration among components. In this vision paper, we first propose a standard to maintain

an accurate notion of time among all components of the system, i.e., sensors, computing
platforms, and actuators. Then, we propose explicit-time state estimation and closed-loop
control algorithms that can tolerate large delays while achieving reasonable performance, and an
integrated fail-safe mechanism that achieves a high level of robustness when timing failures

happen.

Hl INTRODUCTION Large-scale, distributed, and
time-sensitive applications are becoming the
backbone of human society. Multiple robots
working in sync on a factory floor will opti-
mize production and realize Industry 4.0. Au-
tonomously driven vehicles that communicate
with each other to achieve safer and more efficient
transportation will realize our dreams of smart
transportation. Handling system transients such
as weather events for renewable energy sources
and sudden insertion/removal of micro-generators
will propel us toward a reliable and resilient
Smart Grid. All these important applications have
performance and safety constraints that are inex-
tricably linked to time.

Since some timing constraints are so crucial
for the correct and safe operation of time-sensitive

IEEE Internet of Things Magazine

Internet of Things Magazine

applications, systems have traditionally been de-
signed in a way to avoid timing constraint fail-
ures. This is typically achieved by carefully craft-
ing the control algorithm, selecting the hardware
and software of the computing components, and
tuning the execution mechanism of the software,
including describing the application as a list of
repeating tasks, specifying the periods, deadlines,
and priorities, mapping and schedule of the tasks,
etc. — all so that the timing constraints can be
guaranteed to be met by design. However, this
approach does not scale well for large, distributed
time-sensitive applications. As such systems grow
in complexity, the use of commercial off-the-shelf
hardware together with software libraries, lan-
guages, and compilers —not designed with timing
in mind, makes the system design challenging.

© IEEE

Engineering out every possible timing constraint
failure necessitates anticipation of every failure
mode (including soft errors, aging effects, ...) that
could have timing implications — an impossibly
tall order for practical systems. Rather than fram-
ing the problem this way, we argue that system
designers should embrace the possibility of oc-
casional timing constraint failures and explicitly-
programmed ways to deal with them.

The traditional approach of designing systems
to avoid timing constraint failures has inherent
appeal. It stems from a rather logical desire to
segregate time-based control systems into two
parts: the time part and the control part. When it
can be done, the control part can be time-agnostic.
Sensors can just read values and forward them
along. Computing can happen when data are
available. Actuators can just do their actuation
when commands arrive in blissful ignorance of
time because all of the timekeeping machinery
is somehow above, beside, and around, assuring
that everything remains in a good temporal order.
Indeed there is irony in the fact that time-
sensitive systems execute in a time-agnostic
manner. But freedom from thoughts of time
within the control logic comes at a substantial
implicit cost: the machinery on which it runs
needs to be more-or-less deterministic in its tem-
poral behavior. And as systems grow, the cost of
making them so becomes prohibitive.

Communication latencies and their variation
can be orders of magnitude longer than the
update frequency of state estimation or control
algorithms. Consider the case of autonomous
vehicles sharing a highway — each one with
its own navigational agenda but all seeking to
maintain safe separation at all times. To do
this, they should exchange position information
periodically, updating state information in their
control algorithms that are adjusting the vehicle’s
trajectory every few milliseconds. Would it be
consequential to a time-agnostic state estimator
if one such exchange was delayed by 100 msec
(not at all atypical in a cellular network)? At
highway speeds (say, 100 kilometers per hour),
the “surprise” delay could correspond to an ag-
gregate misestimation of position in excess of
five meters — certainly enough to cause concern.
Although new technologies like SGLLC are being
deployed, they have limitations and perhaps we

need to go back and re-consider the validity of
the assumption of separating the time part of this
system from the control part.

This article proposes the design and
architecture of an explicit-time distributed
system to support robust execution of distributed
time-sensitive applications. An explicit-time
system consists of three parts: i) Explicit-time
State Estimation and Control Algorithms, ii)
Explicit-time Sensors and Actuators, and iii)
Backup-Routine-based Robust Execution.

B EXPLICIT-TIME STATE ESTIMATION State
estimation is at the heart of most Cyber-Physical
Systems (CPS). Kalman filter is a state estimator
that is widely used for sensor fusion, Simul-
taneous Localization and Mapping (SLAM), as
well as signal processing. The goal of the state
estimation problem is to determine the state of
the system — which may or may not be directly
observable — using a system model and inaccurate
measurements of the system. The vanilla ver-
sions of the state estimation algorithms, like the
Kalman filter, Luenberger observer, and Particle
filter assume that all the measured values are cap-
tured simultaneously at the same moment and that
the computation and communication times are
negligible. When the sampling period of sensors
is not the same (e.g., an IMU works at 100 Hz but
GPS works at 10 Hz) multi-rate state estimation
algorithms [1] are used. Such approaches still
assume that the sensor readings are perfectly
synchronized and therefore, the actual capture
time of each sample can be ignored. However,
for large-scale, distributed CPS, where sensing,
actuation and computing may be happening on
different nodes that are connected by communi-
cation protocols that may have high and highly
variable latencies, time-agnostic state estimation
algorithms will not be accurate. Imagine the sce-
nario where multiple AVs are broadcasting their
positional information and performing a joint or
distributed state estimation. The packets from a
vehicle may be delayed by even seconds, and
given the fast dynamics of the system (in the
context of the amount of delay), time-unaware
state estimation can become inaccurate. Explicit-
time state estimation takes in the timestamps
at which the measured values were sensed as
well as the inaccuracies in the captured time

IEEE Internet of Things Magazine

and value to estimate the state of the system
at an explicit time in the future.

Probability
. contours
SN

Probability
Time

_—.
) ;
o~
1
1
|
I
ot
e
J//‘
N - e
VN _~
joig

Figure 1. Time-agnostic state estimation approaches
only consider the inaccuracy in the measurement val-
ues (left). Explicit-time state estimation will consider
the errors in the measurement values as well as
the error in the time at which the measurement was
captured.

We explain our idea of the design of an
explicit-time state estimation algorithm based on
the popular Kalman filter algorithm. A unique
aspect of our proposed approach is that while
existing methods only consider the uncertainty in
the measured values (due to sensor noise, ADC
resolution, etc.), we will consider the uncertainty
in the measured values as well as the uncertainty
in the time those measurements were captured at,
which is depicted in Figure 1. In our model, each
sensor reading is a quadruple < z,e,,t,e; >
comprising of the measured value (z), the error
in the value e, the time of measurement, or
the captured timestamp (¢) and the error in the
captured timestamp (e;). It should be noted that
the measurement times may be inaccurate due
to several reasons including the internal clock
quality, synchronization source, protocol, and the
synchronization frequency of the clock.

We propose to model time explicitly as a part
of the system state i.e., X = [z1;Za;...; Tp;t].
Figure 2 shows that since we have made time
as a part of the state of the system, i.e., X =
[€1; Ta;...; Tp; t], the covariance matrix P will
have one more row and column to represent the
covariance of time with respect to the states. In a
distributed system, the measured values from the
different parts of the system may end up being
captured at different times. Previous approaches
wait for all the measurements from the different
parts of the system to arrive before they can
update the system state. In our approach, we
perform the state estimation for each measured
value as it arrives. The idea is to repeatedly

May/June

update the state of the system to the time of the
considered measurement value.

When a new measurement [z, t;] is received,
the discretized system model (f) — how the
system state evolves with time — is re-computed
based on At = t;, —t;_;. Similarly, the derivative
of the system model F' is also recomputed. Then,
the predicted system state X and its covariance
matrix P are updated based on f and F'. Next,
the prediction error (y) is computed and the
Kalman gain (K) is calculated using updated
(Ry). Ry, is the expected covariance matrix of the
measurement noise. Since each measurement has
uncertainty in the captured value and time, (R})
can be updated based on the reported uncertainty
of the measured values (e,) and time (e;). This
way, if a measurement is coming from a node
with an inaccurate clock, the update step takes
into account the inaccuracy in the time (e;).
Finally, the state of the system (including the time
at which the state is estimated) (X') and its covari-
ance P are updated based on the prediction error
(y) and the Kalman gain (K). This process is
repeated at the arrival of every new measurement
in the order of their timestamps.

The foremost advantage of explicit-time state
estimation is that it severs the false conflation
between the time at which the measurement was
taken and the time at which the measurement
arrives at the estimator and the state is updated.
And this results in accurate state estimation. We
implemented a simple version of an explicit-
time Kalman filter to estimate the position
and orientation of a vehicle in 2 dimensions
by sensing its position from a GPS (Global
Positioning System) sensor at 2 Hz and its
heading from an IMU (Inertial Measurement
Unit) at 100 Hz. The inaccuracy in GPS values
is about +10%, and in the IMU values, about
+5%, and the inaccuracy in both the timestamps
is less than +0.1s. Figure 3 shows that the
explicit-time Kalman filter (orange) can estimate
the vehicle position (blue) much better than the
traditional implementation (yellow). Just like the
Kalman filer, other state estimation algorithms,
including the Particle filter, Luenberger observer,
and different flavors of the Kalman filter such
as EKF, UKEF, etc. can also be made explicit-time.

B EXPLICIT-TIME CONTROL ALGORITHMS

Xo = [X10 X205 -3 Xnoj to]
At =ty =ty
)?k—1|k—1 Update
ST R Prediction Pl o, ¥ =2z — h(X) e O . 00

X = [Xq; %25 owes Xnj o] Kepeor = f Koot 1 AD) k—1]k-1 S = HPHT + R, 0 ep . 00

Pij—1 = FPe—1jk-1F" +Q K = PHS™! Re=|: : = i | |[v—leetuel
Py Py o P P Rk = Kijr—r + KF o 0 - eén 0
Py Py o Pan Py Py = (I — KH)Pje—1 0 0 .. e

e I _
Pny Pz o P P Yk—l\k—l K
Py P oo Py Py Pk71\k—1 Pk|k
Next Step

Figure 2. Outline of the Explicit-time Kalman filter. Parts highlighted in red show the proposed modifica-

tions/extensions.

Time-aware
Time-Unaware | 4

estimation error (m)

Figure 3. Explicit-time Kalman filter can more accu-
rately estimate the state of the system compared to
traditional Time-agnostic Kalman filter(Orange).

10 -)
95f |
5 | |
£ \M (I S ﬂhs‘s’\‘
3 il AN A NALAAAARD
\! AR ANAWAARAN NS 11
9 =i “T"ﬁ“‘r r**\ff%’ﬁ\'TTT"(T\”rUﬂT‘(’ ﬁ“\j
ANRYRVRIAY TV AL ||
‘W \ YYVYY VUV VY YWY
8.5 ; .
0 1 2 3 4 5
Time (s)

Figure 4. The Smith predictor (Orange) is not able
to track the reference when the delay is variable.
However, Explict-time Smith Predictor can track it
pretty accurately (blue).

Since delays have a more dramatic effect on
the quality of control algorithms, more research
has been done on the stability of control sys-
tems with sensor-to-actuator delay [2]. Hierar-
chical architectures such as Distributed Control
Systems (DCS) and Supervisory Control and
Data Acquisition (SCADA) are commonly used
in the industry where the fast control loops
are implemented locally and only the super-
visory control inputs (such as a reference set

point) are affected by network delay. When
the delay is constant and known, control algo-
rithms like Smith predictor [3], Model Predic-
tive Control (MPC), and delay compensated Pro-
portional-Integral-Derivative (PID) control can
be used to compensate for the delay and pro-
vide high-performance control. However, for dis-
tributed CPS with variable delays, these ap-
proaches are unable to provide good-quality con-
trol. Figure 4 shows the response time of a
Smith predictor when the delay is assumed to be
500 ms but actually it varies randomly between
[100, 500] ms. The reference input is a step
function changing from 10 to 9 at t = 0.5s. The
orange curve shows that the Smith predictor con-
trol algorithm cannot properly track the desired
reference. There is some work on developing
control algorithms for systems with variable time
delay [4]. However, the controller design and
stability analysis of such systems becomes very
complex and results in a conservative design. This
is mainly because the stability proof should be
provided for all the allowed values of time delays.

e Controller | %

C(s) l

Plant Model
G(s)

Actuator Plant Yt
e G(s)

Sensor

Figure 5. Explicit-time Smith Predictor can compen-
sate for the sensing-to-actuation delay since it ex-
plicitly knows the sensing time and determines the
actuation time. The modifications are highlighted in
red.

IEEE Internet of Things Magazine

In Explicit-time control algorithm the actua-
tion can be scheduled to be applied at a certain
specific time. The explicit-time control algorithm
can benefit from the knowledge of actuation time,
and achieve better performance. Additionally, the
controller design and safety proofs of the explicit-
time control algorithms can be simplified, if the
upper bound on the sensing-to-actuation latency
can be fixed to a constant.

We explain explicit-time control algorithms
using the Smith predictor. Consider a system
as depicted in Figure 5. G(s) is the plant and
C(s) is the controller. The sensor delay and
actuator delay are ¢; and d2, respectively. Figure 5
shows our modifications to the Smith predictor
to make it explicit-time. In explicit-time Smith
predictor, the controller sets the actuation time
and therefore, is aware of the sensing-to-actuation
delay (6; +05 = t4 —tg) and can compensate for
it. The error signal (e) is generated based on the
predicted output (¢) and the reference signal (x,.).
If the model mismatch (Am = G(s) — G(s)) is
small, the signal y,, cancels the delayed output
(y) and with a proper controller, the output can
accurately track the reference input.

The time-aware nature of explicit-time
Controller will allow it to naturally adapt
to the inherently variable computation and
communication delays of distributed systems.
The blue curve in Figure 4 shows the output
response of our approach, and it is clear that
our approach can follow the reference much
better. If the actuation time is set to be later
than the worst-case delivery time to the actuator,
then the sensing-to-actuation delay can be
made constant and that makes the controller
design and stability analysis much simpler as
compared to existing approaches. This is mainly
because tighter bounds can be considered for the
Lyapunov functions to show that its derivative is
negative-definite.

B EXPLICIT-TIME SENSORS, ACTUATORS,
AND NETWORKS Ignoring the sensing, compu-
tation, networking, and actuation times in DCS
can cause performance degradation [5]. As a
reference, [6] discusses the network impact on
the performance of DCS. Our proposed explicit-
time architecture requires the sensors to provide
a timestamp along with the value they sense,

May/June

and actuators have a mechanism to deliver the
actuation at the scheduled timestamp (within the
specified tolerance).

Currently, only a few sensors have such ca-
pability. For example, the Velodyne VLS-128
LIDAR has a GPS inside the LIDAR to provide
timestamps with the point cloud readings. We
are not aware of actuators that are capable of
scheduled actuation. Depending on the design and
modifyability of the sensors and actuators, they
can be made explicit-time to varying levels of
timing accuracy.

Some sensors and actuators have a
microprocessor and therefore an internal clock
inside them, and their firmware is modifiable.
Either their clocks are already synchronized to
an external clock source, e.g., Global Positioning
System (GPS). If not, they can be made to
synchronize with the clock of the CPS node that
it is connected to. For actuators, the firmware
of the actuators can be modified so that they
set up an internal interrupt to fire at the desired
actuation time to perform the actuation. Some
other sensors and actuators have an internal
processor/microcontroller, but their firmware
cannot be modified. Most existing sensors and
actuators fall into this category. The best way to
capture the sensing time in these kinds of sensors
is to capture the timestamp at the CPS node the
sensor is connected to. The best way to control
the actuation time on these kinds of actuators
is to manage the timing and actuation from the
CPS node that the actuator is connected to. The
driver software for the actuator can be modified
so that actuation commands can be sent to the
actuator on time. Finally, many analog sensors
and actuators have a simple structure and do not
even have an internal processor. These sensors
and actuators are usually directly connected
to the pins of a CPS node. The value sensing
is done through the ADC (Analog to digital
converter), and the actuation is done through
PWM (Pulse Width Modulation). For these
sensors and actuators, the sensing/actuation time
should be controlled by the CPS node directly.

As mentioned in the previous section, the
controller computes an actuation value to be de-
livered by the actuator at the specified timestamp.
Since the timestamp should be set to a later

time to account for computation and actuation
times and more importantly network delay, the
controller’s performance may be low for a regu-
lar network. Time-Sensitive Network (TSN) [7],
on the other hand, provides deterministic delays
through traffic shaping. As a result, the controller
will set the actuation timestamps as tight as pos-
sible to achieve higher performances. Although
(Network TIme Protocol) NTP is widely used for
clock synchronization, components of a TSN use
Precision Time Protocol (PTP) [8] to achieve sub-
microseconds clock synchronization.

B BAckuP ROUTINE BASED ROBUST EXE-
CUTION Failure of timing constraints is an un-
avoidable concern in the design of time-sensitive
systems, and different solutions have been sug-
gested at various levels of CPS design abstraction.
At the runtime level, Medhat et. al proposed to
monitor the end-to-end timing constraints [9], and
on failure, the event can be logged, the user can
be warned about the event, or the program just
terminated. At the task scheduling level, various
approaches for budget replenishment have been
proposed where the scheduler decides to abort
(kill the task for the current iteration and not
generate an output), ignore (continue and eventu-
ally generate the output), or queue (which is the
default when timing failures are not considered)
an overrun execution. A more complicated way
to handle timing failure is to continuously adjust
the period of tasks based on the best-case and
worst-case delays that have been observed till the
current moment. However, providing safety guar-
antees for such approaches is hard and a rare long
execution time can make the design very conser-
vative. In the control systems domain, researchers
have developed adaptive control approaches that
work for variable time-delay systems by updating
the parameters of the controller. However, the
controller design and stability analysis of such
controllers does not account for the exceeded time
delays and timing failure.

The main idea of Backup Routine-based exe-
cution is to design a CPS such that it will meet
the timing constraints “most of the time”, but if
the timing constraint is not going to be met, a
“backup routine” will be fired up in time to keep
the system in a safe state[10]. This approach does
result in a conservative design that is developed
based on the worst-case timing and at the same

time guarantees safety by relying on a fail-safe
backup routine that is triggered on time. Since the
designed system may switch between ‘“normal”
and “backup” modes, system safety and stability
should be verified similar to switched and hybrid
systems.

One of the most important safety-critical tim-
ing constraints in an AV is that the delay from the
sensing (using cameras, LiDAR, or RADAR) to
applying the brake (if needed) should be less than
a maximum value. If this timing constraint is not
going to be met, a simple backup routine is to ap-
ply the “brake” before the deadline expires. This
early execution of the backup routine — before
the deadline expires — will in some cases result in
false positives — i.e., executing the backup routine
even though the timing constraint was actually
going to be met. However, even with that, the
backup routine mechanism will ensure system
safety, and therefore convert a safety requirement
(meeting the timing constraint) into an optimiza-
tion metric — The safety of the system now
actually depends on making sure that the backup
routine completes in time. This can be achieved
since the backup routine can be really small, fast,
and local, and it can even be permanently cached
so as to make its execution really fast. This way
executing the backup routine will only require
a small fraction of the original deadline, and
thereby reduce the rate of false-positive firings
of the backup routine. It should be noted that the
AV will stop if its velocity is less than 2 m/s.

As mentioned, the main advantage of the
backup routine-based execution mechanism is
that it makes the original timing constraint a
performance issue and not a correctness issue.
The correctness is dependent on the timely ex-
ecution of the backup routines. This flexibility
gives system designers freedom to explore var-
ious methods for continuously adapt the system
execution to optimize system performance while
ensuring safety, e.g., operating the system at
lower performance when timing constraints are
met with a small margin or violated, and then
shift back towards operating at a higher perfor-
mance point when timing constraints are met
with large margins. Consider an AV (Autonomous
Vehicle) that can safely operate at 16 m/s. This
requires the sensing-to-actuation latency to be
less than 200 ms. Figure 6 shows the relationship

IEEE Internet of Things Magazine

Recovery:
1 Increase Ref

@ Veloci
elocity

g’ Unsafe

14 - 4 Timing Failure:
é‘ Operatmg 1 Decrease Ref
§ 12 Zone Velocity
L
> 10 Timing Failure:
8 8 1=y Looser
= Deadline
26
2 Recovery:
O 4 Tighter
~ 2 Deadline

0 Nominal

N L)
06 08 1 12 14 16 18 21 Operating Point

Delay (s)

o
o
N
o
IS

Figure 6. Backup routine-based execution method
enables CPS designers to optimize system perfor-
mance while meeting the safety requirements. As
sensor-to-actuation delay increases, the system can
adapt itself and reduce the maximum or reference
velocity (black vertical arrows), and when it is met
again, the system can go back to operating at a higher
maximum velocity (blue vertical arrows).

between the maximum velocity of an AV and its
sensing-to-actuation delay requirement. The red
area (top right) shows unsafe operating points
and the green area (bottom left) shows the safe
operating points. The AV was supposed to drive
at 16 m/s and suppose a timing failure happens.
The backup routine can then reduce the maximum
velocity of the AV by 20% and adjust the sensing-
to-actuation timing requirement to 12.8 m/s. After
the execution of the backup routine, the delay
requirement is relaxed, and the AV can still safely
operate, albeit at a lower performance level. If
the delay becomes greater than 600 ms, another
backup routine can be executed, reducing the
maximum speed of AV to 10.2 m/s, and setting
the sensor-to-actuator timing requirement to be
less than 950 ms. When the end-to-end delay
returns back to normal (200 ms), the AV can re-
adjust its operating point and drive at its nominal
velocity (16 m/s). If the delay is beyond the
acceptable tolerance of the AV (1.6 s), the fail-
safe backup routine (applying full brake) can be
executed.

This backup routine-based execution
mechanism can become the central point
for tackling several robustness issues of the CPS.
This is because a lot of other system failures
also show up as timing failures. For example,
if a sensor goes bad and stops working, then
that manifests itself as a timing failure at the

May/June

controller that is supposed to use the sensed
value. Diagnosis and recovery (startup of a
backup sensor) in such scenarios can be done as
a part of backup routines.

B FuTuRE RESEARCH DIRECTIONS Control-
theoretic Aspects: Just like the Smith
predictor, explicit-time versions of MPC, delay-
compensated PID, state feedback control, etc. can
be developed. Their stability can be proved using
Lyapunov-Krasovskii and Lyapunov-Razumikhin
methods. In these approaches, a positive definite
energy (Lyapunov) function can be considered
and with the help of time-invariant functions, it
should be possible to show that the derivative of
this function is negative definite.

Technological Realizability: One challenge
related to the proposed Kalman filter is a deter-
mination of covariance matrices (R and Q).
Researchers have proposed techniques to over-
come this challenge [11]. Another challenge asso-
ciated with the explicit-time Kalman filter is that
more computation is needed since the algorithm
computes the inverse of the matrix S with every
received measurement. However, the good news
is that the computation overhead is not too much
since the sensor model h and its derivative are
sparse (they only consider one measurement at
a time) matrices and there is scope for further
reducing the computation overhead. In addition,
the state estimation for samples that end up being
captured at times that are very close to each
other can be performed in the same iteration. As
another challenge, it may not be possible to de-
termine strict ordering among the measurements
since the timestamps of the sensed values can
be inaccurate (e.g., due to the limits of clock
synchronization). Those measurements may be
good candidates to club together for a single-
shot update. As a suggestion, the sensitivity of
the sensed values can be used as a metric to
determine how much we can delay the update
for a sensed value or combine its update with
the later ones, or just drop them. In networked
systems, it is even possible that the sensed values
may arrive at the compute node in a different
order than the one in which the measurements
were taken. Clearly, we will need a buffer in
front of the compute node to store and reorder

the measurement values. However, if that is not
possible (for example because one packet was
delayed a lot), several solutions are possible,
including, just ignoring the incoming value if it
is within a small margin of the expected value at
its timestamp. If the measurement is coming too
late, then rollback to a previous state, and then
recompute from there is a possibility. It may be
possible to develop analytical solutions to apply
the effects of the late-coming value without doing
the rollback — if that happens often.

Platform-related Constraints: An important
issue in non-explicit-time sensors and actuators
is that there is always a bias in the captured
timestamp (i.e., the captured timestamp is
always late), and in the actuation time (i.e.,
the actuation time is always later than the time
when the system node applied the actuation) that
is not compensated for. This is because of the
intervening microcontroller inside the sensor or
actuator that takes a non-zero time to provide the
sensed value or perform the actuation. Research
is needed to develop ways to estimate these
systematic biases and compensate for them. The
good news is that this systematic bias should
have low variation and therefore it should be
possible to estimate it using existing time delay
estimation methods [12].

Timely execution of backup routines: The
most straightforward approach to execute the
backup routine at the right time will be to set up
a timer at the start event of the timing constraint
and fire it at the right time (before the deadline
of the timing constraint) so that the system safety
can be ensured. However, one challenge associ-
ated with using timers for firing up the backup
routines is that many platforms have a limited
number of hardware timers while an application
may have multiple timing constraints. To address
this issue, the concept of virtual timers can be
used to accommodate multiple timing constraints
using a single hardware timer. A virtual timer is
basically the combination of a hardware timer and
a software queue of backup routines in sorted
order by their firing times. The timer always
verifies and fires the backup routine at the head
of the queue, and removes them after that. In
case of repeating timing constraints, the backup
routine just moves to the back of the queue at

its right place (by firing time). Since the firing
of backup routines on time is safety-critical, they
can be pre-cached and will have a high priority
for execution. They can also be executed on
a separate and dedicated processor so that the
WCET of the backup routines can be computed
more accurately. Also, although rarely, there can
be cases when multiple timing constraints fail at
the same time or are very close to each other so
that the execution of the corresponding backup
routines overlap each other. In such cases, the
maximum block time for a backup routine —
by other backup routines— should be taken into
account which can be done by assigning a priority
value to each backup routine and performing
an analysis similar to the WCRT (Worst Case
Response Time) analysis [13].

Determining safe backup routines: Given a
backup routine and a “firing time”, it should be
possible to test/check if the backup routine can
keep the system in a safe state by modeling the
physics of the system with differential equations
and software using a state machine. From a
high-level perspective, the software part of the
proposed architecture operates in two modes:
1) normal operation, where no timing violations
happen, and 2) backup mode when a timing
failure happens. In the CPS domain, such systems
are commonly modeled as switched systems and
more commonly hybrid systems. A few tools such
as Breach [14] and Flow* [15] can determine the
set of the state that a hybrid system may reach in
the future and verify if it reaches a set of unsafe
states.

Security: Networked systems are prone to
cyber attacks such as spoofing and Denial of
Service (DoS). An attacker can change the sensed
timestamp or commanded actuation timestamp or
prevent the actuator from receiving the actuation
command and timestamp. As a result, sensors,
computation nodes, and actuators should have a
mechanism to encode/decode the data that is sent
over the network and be able to detect spoofed
packets. In addition, spoofing can happen if the
components of the system (e.g. Phase Measure-
ment Unit or PMU) synchronize its clock via
GPS. However, GPS with a precise internal clock
can detect considerable GPS spoofing and have
deterministic time accuracy.

B CONCLUSION In this vision paper, we study

IEEE Internet of Things Magazine

the challenges of meeting timing constraints
in complex, large-scale, and distributed time-
sensitive applications. We propose a set of stan-
dards to build explicit-time sensors and actuators
as a prerequisite to perform explicit-time state
estimation and closed-loop control. Our explicit-
time state estimation and control algorithms can
tolerate large and variable delays while achieving
high performance. Finally, we introduce an in-
tegrated fail-safe mechanism that kicks in when
timing constraints are not met. Our fail-safe
mechanism ensures the safety of the system when
timing failures happen.

B ACKNOWLEDGEMENT This material is based
upon work supported by the National Sci-
ence Foundation under Grants No. 1646235 and
1645578.

B REFERENCES

1. Yan Liang, Tongwen Chen, and Quan Pan. Multi-
rate optimal state estimation. International Journal of
Control, 82(11):2059-2076, 2009.

2. Emilia Fridman. Tutorial on lyapunov-based methods
for time-delay systems. European Journal of Control,
20(6):271-283, 2014.

3. Chien-Liang Lai and Pau-Lo Hsu. Design the remote
control system with the time-delay estimator and the
adaptive smith predictor. |[EEE Transactions on Indus-
trial Informatics, 6(1):73-80, 2009.

4. Wenlong Zhang, Masayoshi Tomizuka, Peng Wu, Yi-
Hung Wei, Quan Leng, Song Han, and Aloysius K Mok.
A double disturbance observer design for compensation
of unknown time delay in a wireless motion control
system. IEEE Transactions on Control Systems Tech-
nology, 26(2):675-683, 2017.

5. JK Yook, DM Tilbury, and NR Soparkar.
methodology for distributed control systems to optimize

A design

performance in the presence of time delays. In Pro-
ceedings of the 2000 American Control Conference.
ACC (IEEE Cat. No. 00CH36334), volume 3, pages
1959-1964. IEEE, 2000.

6. Feng-LiLian, James Moyne, and Dawn Tilbury. Network
design consideration for distributed control systems.
IEEE Transactions on Control Systems Technology,
10(2):297-307, 2002.

7. Norman Finn. Introduction to time-sensitive networking.
IEEE Communications Standards Magazine, 2(2):22—
28, 2018.

8. Juha Kannisto, Timo Vanhatupa, M Hannikainen, and
TD Hamalainen. Software and hardware prototypes of

May/June

the ieee 1588 precision time protocol on wireless lan.
In 2005 14th IEEE Workshop on Local & Metropolitan
Area Networks, pages 6—pp. IEEE, 2005.

9. Ramy Medhat, Borzoo Bonakdarpour, Deepak Kumar,
and Sebastian Fischmeister. Runtime monitoring of
cyber-physical systems under timing and memory con-
straints. ACM Transactions on Embedded Computing
Systems (TECS), 14(4):1-29, 2015.

10. Mohammad Khayatian, Mohammadreza Mehrabian,
Edward Andert, Reese Grimsley, Kyle Liang, Yi Hu,
lan McCormack, Carlee Joe-Wong, Jonathan Aldrich,
Bob lannucci, et al. Plan b-design methodology for

cyber-physical systems robust to timing failures. ACM

Transactions on Cyber-Physical Systems, 2022.

11. Yulong Huang, Yonggang Zhang, Zhemin Wu, Ning Li,

and Jonathon Chambers. A novel adaptive kalman
filter with inaccurate process and measurement noise
covariance matrices. IEEE Transactions on Automatic

Control, 63(2):594-601, 2017.
12. Li Chunmao and Xiao Jian. Adaptive delay estimation
In 2006
International Symposium on Communications and Infor-

mation Technologies, pages 707-710. IEEE, 2006.

13. Reinder J Bril, Johan J Lukkien, and Wim FJ Verhaegh.
Worst-case response time analysis of real-time tasks

and control of networked control systems.

under fixed-priority scheduling with deferred preemption
revisited. In 79th Euromicro Conference on Real-Time
Systems (ECRTS’07), pages 269-279. IEEE, 2007.

14. Alexandre Donzé. Breach, a toolbox for verification

and parameter synthesis of hybrid systems. In Inter-
national Conference on Computer Aided Verification,

pages 167—170. Springer, 2010.
15. Xin Chen, Erika Abraham, and Sriram Sankara-
narayanan. Flow*: An analyzer for non-linear hybrid
systems. In International Conference on Computer

Aided Verification, pages 258—263. Springer, 2013.

Aviral Shrivastava is a
full Professor in the School of
Computing and Al at Arizona

State University, where he
established and heads the
Make Programming Simple

Lab
He completed his Ph.D. in Information and
Computer Science and from the University of
California, Irvine, and bachelor’s in Computer
Science and Engineering from IIT Delhi..

(https://labs.engineering.asu.edu/mps-lab/).

10

Mohammad Khayatian is a
Senior Robotics Software Engi-
neer at Vecna Robotics, work-
ing on autonomous mobile robots
for wearhouses. He received his
Ph.D. in Computer Engineering from the Arizona
State University and his M.Sc. and B.Sc. in
Electrical Engineering - Control Systems from
Shiraz University.

Bob Iannucci is a Distin-
guished Engineer at Google. Be-
fore this he was a Distinguished
Service Professor at Carnegie
Mellon University, and Senior VP
and CTO at Nokia. He recieved
his Ph.D. from MIT in Electrical Engineering and
Computer Science.

IEEE Internet of Things Magazine

	REFERENCES

