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5G Millimeter Wave (mmWave) technology holds great promise for Connected Autonomous Vehicles (CAVs)
due to its ability to achieve data rates in the Gbps range. However, nmWave suffers from a high beamforming
overhead and requirement of line of sight (LOS) to maintain a strong connection. For Vehicle-to-Infrastructure
(V2I) scenarios, where CAVs connect to roadside units (RSUs), these drawbacks become apparent. Because
vehicles are dynamic, there is a large potential for link blockages. These blockages are detrimental to the
connected applications running on the vehicle, such as cooperative perception and remote driver takeover.
Existing RSU selection schemes base their decisions on signal strength and vehicle trajectory alone, which is
not enough to prevent the blockage of links. Many modern CAVs motion planning algorithms routinely use
other vehicle’s near-future path plans, either by explicit communication among vehicles, or by prediction.
In this paper, we make use of the knowledge of other vehicle’s near future path plans to further improve
the RSU association mechanism for CAVs. We solve the RSU association algorithm by converting it to a
shortest path problem with the objective to maximize the total communication bandwidth. We evaluate our
approach, titled B-AWARE, in simulation using Simulation of Urban Mobility (SUMO) and Digital twin for
self-dRiving Intelligent VEhicles (DRIVE) on 12 highway and city street scenarios with varying traffic density
and RSU placements. Simulations show B-AWARE results in a 1.05x improvement of the potential datarate in
the average case and 1.28x in the best case vs. the state-of-the-art. But more impressively, B-AWARE reduces
the time spent with no connection by 42% in the average case and 60% in the best case as compared to the
state-of-the-art methods. This is a result of B-AWARE reducing nearly 100% of blockage occurrences.
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1 INTRODUCTION

Autonomous vehicles (AVs) are already present in today’s society. Even so, many of these AVs
still require an individual at the wheel to take over in the case of an emergency. To improve the
safety of AVs and alleviate the need for physically present safety drivers, the paradigm of connected
autonomous vehicles (CAVs) arose. CAVs have the ability to share sensor data with one another to
perform sensor fusion or cooperative perception. For example, a vehicle which spots an obstruction
in the road can transmit this information to the vehicles behind it, allowing other vehicles to safely
avoid the hazard. Another feature of CAVs is that they allow for remote safety driver takeovers.
This means that a single human safety driver can service 10s to even 100s of vehicles at the same
time depending on the rate of incidents [29]. This idea of remote takeovers has been adopted among
currently operating AV companies as a stop gap in order to reduce operator costs while they push
their level 3 autonomy vehicles towards level 4/5 [31]. Regardless of the exact application, CAVs
typically require a high percentage of network up-time and large amounts of network bandwidth.
There are two main infrastructure schemes for connecting CAVs, Vehicle-to-Infrastructure (V2I) and
Vehicle-to-Vehicle (V2V). In V2I, autonomous vehicles communicate with road side units (RSUs),
which can then relay information to other autonomous vehicles on the road. In V2V, vehicles
communicate directly with one another. 5G mmWave has been considered for use in V2X (V2I
+ V2V) communication due to its high bandwidth and low latency characteristics. 802.11ad, a 60
GHz mmWave based protocol, can achieve a theoretical maximum throughput of 6.75 Gbps [26].
This high transmission speed makes it a good choice for use with self-driving vehicles, as current
commercially available connected autonomous vehicles can consume up to 750 Mb of data per
second [43]. Future vehicles may operate by consuming even more data, and a larger fraction of
that may be coming from communication channels.

MmWave connections are highly directional, unlike other technologies such as WI-FI. For a
strong connection, the transmitter and receiver must maintain line-of-sight (LOS), as non line-
of-sight (NLOS) connections will not be as strong [17]. In a dynamic environment LOS paths
can be obstructed by other large vehicles [8]. Such blockages could potentially be minimized by
strategically placing RSUs, but there is still a chance that the links will become blocked [39]. This
will cause significant loss in signal strength, as blockages can cause a 20-30 dB loss at 60 GHz [7, 45].
If a CAV were to lose its LOS with a currently connected RSU, a handover would occur to find an
RSU with a stronger connection. A handover is when a CAV moves from a serving RSU to a target
RSU, and in a vehicular environment these handovers can occur frequently [36]. Handovers have a
large overhead, due to the lengthy beamforming procedure needed to form mmWave connections
[6]. Beamforming is the process of finding the beam parameters (e.g., direction, spread) that will
provide the antenna on the vehicle the best connection for the longest time by some metric. The
duration of the beamforming procedure can be reduced based on the implemented beamforming
algorithm, but in general, it still takes a long time — often hundreds of milliseconds [28]. Thus
blockages, or more precisely blockage-induced handovers, present one of the big challenges to the
success of mmWave technology, and to reduce that, several RSU assignment algorithms are being
proposed.

Figure 1 illustrates the problem of blockages, explains the existing RSU assignment approaches,
and provides the key intuition behind our approach. Figure 1 (a) shows a driving scenario in which
two vehicles, V.4, and Vp, are traveling north on a 4-lane road, and there are two nearby RSUs, RSU,
on the left side of the road, and RSUp on the right side of the road, and the ego vehicle V4, needs
to connect to an RSU. The previous algorithm [1] selects the RSU that has the best RSS (Received
Signal Strength) to connect with. In this scenario, without loss of generality, assume that the RSUp
is higher power than RSU,4. Then the approach [1] will chose RSUp. However, this may not be the
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Fig. 1. (a) Consider a scenario where vehicle Vego wants to connect to an RSU, and there are two RSUs around,
RSUy4 and RSUg. A previous popular approach, which we call Baseline[1], may connect with RSUp if the
signal quality is better from RSUg. However, the LOS to RSUp will soon be blocked by the vehicle Vg. (b)
Another previous approach SMART([35] considers the vehicle’s own trajectory and evaluates that for its own
trajectory it will achieve higher total potential bandwidth by connecting to RSUg, and therefore will connect
to RSUB. (c) Our Approach, B-AWARE, also considers the trajectory of other vehicles — Vg in this case, and
determines that connection to RSUg will be blocked and therefore it is beneficial to connect to RSUy,.

best choice, since the vehicle V3 may soon block the connection of Vg, to RSUp, and result in an
expensive handover. The more recently proposed RSU assignment algorithm, SMART[35], makes a
decision for RSU assignment based on the total bandwidth it will achieve in the near future. Figure
1 (b) shows that given its own (V.y4,) path plan, SMART will compare the total bandwidth achieved
if it connects to RSUy4 vs. RSUg, and based on that it may also choose the RSUg. The problem with
both the previous algorithms is that they did not consider the impending blockage caused by the
vehicle Vp. Figure 1 (c) summarizes our approach. In our approach V.4, considers the near-future
plan of the vehicle Vg (which it can either receive directly from vehicle Vg through communication,
or by prediction) to conclude that the RSUp will be blocked, and therefore it may be better to
connect to RSU_,4.

In this paper, we define an optimization problem to maximize the potential datarate from received
signal strength (RSS) based on RSU selections, given the near-future path plan of the ego and the
other vehicles. Our solution is a framework, titled B-AWARE, which utilizes vehicle dimensions,
trajectory, and map data to design an RSU selection schedule that avoids blockages and prevents
unnecessary handovers. The RSU selection schedule tells the vehicle which RSU to associate with
and when (the table below figure 1 (c)). The B-AWARE framework avoids unnecessary handovers
and unexpected outages from blockages, thereby improving the maximum potential raw datarate for
each vehicle, allowing safe and reliable CAV network applications, such as remote driver takeover
and blind spot data sharing. The main contribution of this paper is as follows: We develop a
blockage-aware RSU selection scheme, B-AWARE, which reduces unexpected outages and decreases
unnecessary handovers whilst maintaining strong signal quality in a V2I environment by leveraging
CAV path plans and sensing information.

We test our approach in both city and highway environments, varying both traffic density and
RSU placements. The results of our comparison show that B-AWARE results in a overall 1.05x
improvement in potential data transmission in the average case and 1.28x in the best case in both
highway and city cases. Results also show our approach is resilient to changes in vehicle paths
and can reduce the amount of time a vehicle is disconnected from the network by 42% in the
average case and 60% in the best case. This is partly a result of B-AWARE reducing almost 100%
of blockage occurrences in simulation. B-AWARE therefore increases the potential datarate and
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exhibits a significantly larger resilience to complete connection loss caused by blockages over
existing approaches in multiple scenarios.

This paper is organized as follows: Section 2 further explains the impact of handovers on
network performance and related works, Section 3 describes our system model, Section 4 is the
definition of our maximization problem, Section 5 explains our RSU scheduling strategy and
schedule optimization algorithm, section 6 explains our experimental setup, Section 7 explains the
results comparing our RSU scheduling algorithm with two other RSU selection approaches, and
Section 8 summarizes our findings and next steps.

2 BACKGROUND AND RELATED WORK

This section gives some background as to why handovers and blockages are detrimental to mmWave
links. Understanding this can help realize an RSU association policy to avoid such events.

2.1 mmWave Handover Overhead

In [18], researchers found the average time of a blockage induced hand off to be 2.749 seconds.
Researchers in [11] reported similar results, finding the outage time of a blockage induced handover
to be up to 2.8 seconds. This outage time is a combination of disassociation time with the current
RSU and re-association time with a new RSU. These high handover times are largely due to a lack of
intelligent handover mechanism in the current 802.11ad standard. Current consumer off-the-shelf
hardware only chooses to find a new RSU when there has been poor link performance for an
extended period of time. In 802.11ad, links are created by using a brute-force beam refinement
procedure. During this procedure, a sector-level-sweep (SLS) is performed to locate the general
direction of the receiver. Then, during the beam refinement procedure, different beams are tested
until the one with the strongest strength is found. The actual association with a new RSU takes
less than a second. [18] reports this to be an average of 240 milliseconds and [11] reports a slightly
higher 440 milliseconds. A value of 700 milliseconds is used as the handover delay for experiments
in [22]. This procedure is captured in Figure 5 summarised from [11] results. The occurrence of a
blockage causes a significant drop in throughput and the link quality has not fully recovered until
the searching and re-association with a new RSU is complete. The cost of handovers has also been
modeled as a percentage of resources that needs to be used for signaling [27, 35]. Due to such high
overhead, it is clear handovers have a direct impact on system throughput and too many handovers
can be detrimental to system performance. For mmWave frequencies where LOS is imperative, if a
CAV selects a base station which is then quickly blocked, there will be a drop in link performance
and the CAV will need to find a new base station. Because even intermediary blockages can trigger
handovers, avoiding blockages can help improve network performance. Research has shown even
a single car moving down the street can lose LOS with an RSU every couple seconds [36].

2.2 Handover Time Reduction

There are works which aim to reduce the time it takes to perform a handover which may be caused
by blockage. This is not to be confused with approaches that reduce the number of handovers.
These papers reduce handover overhead by improving the beamforming or beam selection process.
[30] uses signal to interference and noise ratio (SINR) to predict the direction of currently connected
user equipment (UE). The current serving RSU then notifies the other RSU in the UE’s line of travel
which beams to use to reduce the beamforming overhead. [19] forms a similar approach, where
contextual information from the current link is transmitted to the next target RSU, which uses the
information to reduce the beam search space. [41] looked at handovers for CAV moving indoors and
between indoors and outdoors. The authors predicted the movement of the CAV using a Markov
chain and used that information to reduce the handover overhead. These works show with proper
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mobility prediction, handover time can be reduced. [28] and [6] both demonstrate the advantages
of leveraging positional data to reduce beamforming overhead. [28] studies the impact of GPS
position data on beamforming overhead in a real world scenario. The authors find they can predict
the best beam to select using GPS data and machine learning. [6] provides a machine learning
based framework which utilizes geo-location data to schedule UEs to cells/beams and reduce beam
selection overhead. Using their framework, which they apply to a 28 GHz 5G NR network, they are
able to reduce UE’s initial access to a base station by up to 38%. Their approach is also functional
for speeds of up to 150 km/h, meaning it can be applied to vehicular networks. [24] also shows
the benefit of location information on network performance. [9] uses deep reinforcement learning
to detect when a blockage has occurred and switch links. It detects blockages based on channel
state. In [3], authors use machine learning to predict when a mobile agent will perform a handover.
Because they can predict the handover time, the RSU can preemptively handover to a new RSU.
Their experiments show they can reduce handover time and they consider static blockages. Other
approaches opt to use a backup link if the current link becomes blocked. [44] uses pre-connection
method to reduce handover time. Some antenna elements to connect to potential RSUs, so when a
blockage breaks the link, the vehicle can handover quickly. [32] uses dual-band LTE with mmWave
to quickly switch when a drop in quality is detected.

2.3 RSU Selection

N (Xg,Y55ts)
R\ (XY goty)

(X3,Y3t5)

1,7¥D,>3D,:r,

Fig. 2. Example of RSU selection using SMART
[35]. The vehicle calculates which RSU will
yield the highest data transmission before the
threshold-based handoff condition is met and se-
lects accordingly. This approach is path aware,
but not dynamic blockage aware.

Fig. 3. B-AWARE system model: Blue car has
NLOS to r; due to blockage from vehicle. Planned
position for the blue car is shown. From the blue
car to ry and r3, two distances are given, and the
RSS is dependent on the distance. The motion
plan and predicted RSS are used to define the

optimal RSU selection schedule.

The following related works attempt to design intelligent RSU selection schemes. Due to the high
overhead of handovers, most selection schemes are designed to reduce the number of handovers or
blocked links. Handovers can be prevented by avoiding blockages and maintaining connection to
an RSU for as long as possible. Most literature focuses on using some form of machine learning or
statistical model to predict and learn which beams will be blocked by static blockages [9] [2]. [34]
tackles the problem of frequent blockage induced handovers in dense mmWave networks. They
define a policy where mobile agents associate with base stations by selecting the one with the
longest predicted unobstructed LOS time. Their association is performed based on the UE’s expected
velocity; however, they only consider stationary blockages. [35] implements two reinforcement
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learning based RSU selection algorithms which aim to reduce the number of handovers while
maintaining a minimum QoS. In their approach, they use machine learning to predict which RSU
will yield the best data and select accordingly. This approach applied to vehicles is shown in Figure
2. [27] uses a Markov decision process (MDP) model for RSU selection. The states are defined
based on the probability of links being in an outage, LOS, or NLOS. [40] takes a similar approach,
using Markov chains to obtain analytical expressions for the blockage probability, average blockage
duration, and the SINR distribution. [42] implements a centralized learner which makes association
and handover decisions for vehicles. Their algorithm is able to learn the presence of static blockages
using a Semi-Markov Decision Process (SMDP). Other papers attempt to reduce the impact of
blockage induced handovers; if the handover overhead can be reduced, there is less impact of
blockages and base stations can be selected on signal quality alone. [17] proposes a methodology
which leverages re-configurable intelligent surfaces (RIS). Where when a blockage is detected,
the RSU switches beams to reflect off an intelligent surface and route around blockages to the
UE, thus preventing a handover. Their approach does consider mobile blockages, but requires
additional infrastructure. [21] solves the blockage induced handover problem through intelligent
beam selection. They frame the problem as a contextual multi-armed bandit problem. To reduce
handover time, the currently connected RSU makes beam alignment predictions for the target
RSU. [2] also defines an intelligent beam selection scheme to avoid blockages, they use past beam
observation to predict the next best beam when the primary beam becomes blocked. Although
experiments in their work show the low latency of switching to the next best beam, their approach
is still reactive - in the sense that it does not predict the impending blockages. In contrast, our
approach, B-AWARE, utilizes the near-future path plan of the nearby vehicles to identify the
dynamic blockages and plans a better RSU assignment.

3 SYSTEM MODEL

This section will detail the vehicle model, environment model, communication model, and a model
to estimate the potential datarate in a channel, considering the static and dynamic blockages
between the vehicle and an RSU. Some of the parameters of our system model are captured in
Figure 3.

3.1 Vehicle Characteristics

Autonomous vehicles regularly plan their own trajectories and also estimate the near-future
trajectories of their nearby vehicles to drive safely. The vehicle’s planned position over time
is defined as a series of coordinate pairs with time, ((x1, y1, t1), (X2, Y2, t2), (X3, Y3, t3), ... ). Each
coordinate is an x and y position associated with a timestep of length At. We define the length of
time that the vehicle knows its future position as the planning horizon, Lp. Vehicles are equipped
with high bandwidth 60 Ghz antennas, allowing them to connect to a single RSU at a time within
range Syange- These antennas are mounted in the center of the vehicle atop the roof to have the
best connection with RSUs. Vehicles also have Lidar and cameras, allowing them to sense objects
within a certain radius. Vehicles have 3D environment maps which include the building models
and RSU locations. The duration of a vehicle’s trip is notated as #;;,. Vehicles sizes are given by
W,xL,xH,. Our scenario assumes vehicles of varying sizes, such as sedans, semi-trucks, and buses.

3.2 RSU Characteristics and Deployment

The set of RSUs in a region are notated as R = {ry,r,,73,...,7;}, where r; is the RSU at the j”’
index. RSUs are equipped with Multiple-In-Multiple-Out (MIMO) 60 Ghz antennas. These antennas
can communicate with vehicles within S,;,4.. RSUs are connected with one another via a high
bandwidth back-haul link. RSUs know the location of other nearby RSUs, as well as their own
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location, mounting height, and a 3D environment map. RSUs are mounted along roadsides atop
streetlights and in the road median, as shown in Figure 4 Since we are considering dynamic
blockages, placing RSUs to simply provide coverage is not enough [14][16]. If there is only a single
RSU which a vehicle can connect to, and that link becomes blocked, then the vehicle will lose
connection to the network. Such a scenario is shown in Figure 4. In the figure, the large truck has
blocked Vg40’s LOS with the RSU it was previously connected to. We design our RSU placement
such that at any given time, a vehicle has at minimum two RSUs in S 4pge. In order for our algorithm
to avoid blockages, there needs to be another RSU to connect to if a link becomes blocked. While
it is still possible for all potential links to be blocked, the chance of outage is less likely. If the
autonomous vehicle is not-connected to the network, then RSUs have to predict the motion of the
vehicle [23]. However, if the vehicle is connected to the network, then it may receive the near-future
trajectory of other vehicles through communication channels [20].

PR |
o ‘ th— t, ;
locking ' : 1/ Reconneetion

‘i/ RSU Vehicle

I\ Blockage |
Oceurs

Throughput

|
|

~ sonnect
~ Disconnection)
~. 1
- |

L] ;
L Time

Fig. 4. Large vehicles can block the connection
to other vehicles in the network. Ve, is trying to
connect to the RSU, but the blocking vehicle has
obstructed LOS. This causes Vg to disconnect to
the current RSU and connect to a different RSU
in LOS.

Fig. 5. Detriment of blockages and handovers on
potential throughput as shown by [11]. After the
occurrence of a blockage, throughput drops sig-
nificantly to a point where it is useless for high
bandwidth CAV applications. Throughput is only
rectified after the CAV disconnects from the pre-

vious blocked RSU and connects to a new RSU.
The disconnection time is measured as tp and the
time to connect to a new RSU is tg

3.3 Association Frequency

The set of timesteps is defined as T = (#1, 2, 3, . . ., t,) Where t,, is the nth timestep and At is the
duration of the timestep. All timesteps have equal duration. The length of a timestep is chosen to
encapsulate the occurrences of network events, like blockage and handover. Vehicles associate to
RSUs periodically at each timestep. If a vehicle becomes blocked within a timestep, the blockage
will not result in handover until the next timestep. The set of potential RSUs a vehicle can connect
to at time ¢, is written as Rpor,s,, = {r1,72,73,... rj | Vr; € R}. An association between the RSU r;
and vehicle V at timestep t, is expressed as r}t.". A vehicle can only connect to one primary RSU
during a timestep, while RSUs can connect to many vehicles simultaneously during a timestep.

3.4 Channel Model and LOS Categorization

An antenna and receiver have LOS if a line between them with points P; = (X3, Y;,Z;) and
P, = (X3, Yz, Z;) does not intersect with buildings or surrounding vehicle bounding boxes. Vehicles
are simplified into rectangular prisms of size Wyr x Ly x Hy, where Wy is the max width of the
vehicle, Ly is the length of the vehicle, and Hy is the height of the vehicle, and the radio is at the
center of the top of the rectangular prism.
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Table 1. AD Table: MCS and Achievable Datarate

Sensitivity Level (Kycs) | -47 | -51 | -54 -63 -64 -68 | -78
Datarate (Gbps) 6.75 | 5.19 | 4.158 | 1.386 | .8663 | .385 | .027

For LOS conditions, we apply the free-space path loss model, shown in Equation 1 [45], where d
is the distance between the transmitter and receiver in meters, which in our case is the distance
between an RSU r; and the vehicle, V. f is the carrier frequency in Hz and c is the speed of light
constant. The resulting path loss is given in dB:

PLios =10 loglo [(@) l . (1)

If there is NLOS, we assume an additional loss of size P to be added to PLyps from Equation (1).
This loss is significant enough to cause disconnections in our system model. The NLOS path loss is
given as:

PLnros = PLios + P. (2)

PL if LOS
PL= { ros ! 3)

PLnios otherwise.

The received signal is calculated following Equation (4), where Gy is the antenna gain, G, is
the mobile gain, and P;, is the transmission power in dBm. PL is the pathloss, which is dependent
on LOS status and is found from (3). The RSS for a link, r]t.", can then be defined as RSS (r;"):

RSS = Gps + G + Prx — PL. 4)

The potential datarate, D, is found using the RSS with the Modulation and Coding Schemes (MCS)
defined in the 802.11ad standard [33]. 802.11ad gives sensitivity thresholds, Kjscs, for the minimum
RSS required to use a MCS. The MCS that is used affects the datarate achieved. The achievable
datarate and the associated thresholds Kycs are in Table 1. We call this table the achievable datarate
(AD) table. We denote the datarate of link r;" at timestep ¢, as D(rjt.") and it is chosen with Table 1.
Kpics is the minimum RSS required to receive the associated datarate. Thus, the achievable datarate
is calculated using AD as a lookup table.

D(r}") = AD[RSS(r{")]. ©)

3.5 Data Transmission Calculation

The potential datarate for a timestep can be calculated based on RSS, the RSS is shown in Equation
4. Following equation 3, RSS and consequently datarate, are both functions of RSU and vehicle
positions. Vehicles only associate with RSUs at the beginning of a timestep and timesteps are
synchronized between all vehicles in the network. As shown in Figure 5, the achievable datarate is
also affected by the occurrence of handovers and blockages. Because blockages cause a large drop in
RSS, they trigger a handover, which we call a blockage induced handover. As shown in, [11], it takes
some time for the CAV to attempt recovery and decide to disconnect from the current RSU, ¢p. tp is
the additional penalty from the blockage on the handover time. The time to actually connect to the
new RSU is labelled as tf. We assume there is reduced time in a scheduled association. Since the
vehicle knows the location of the target RSU, a preemptive connection or GPS location based method
can be implemented to reduce the beamforming overhead [6][44]. From the delays described, we

, Vol. 1, No. 1, Article . Publication date: February 2023.



B-AWARE: Blockage Aware RSU Scheduling for 5G Enabled Autonomous Vehicles 9

realize 3 handover overheads, Oy, Opy, and Opp. These overheads are the length of time caused
by the type of handover where meaningful data cannot be transmitted. The calculation for Oy
is shown in Equation 6. Since a standard handover is not triggered by blockage, Oy = ty. We
also assume planned handovers take less time, due to an intelligent beamforming implementation,
Opy < Og.

Oy =1tp +1ty. (6)

Throughout the duration of a trip, we can compile the total time spent in handover events as
a set of intervals consisting of the start time of the handover event ¢, and the end time of the
handover event t, + O, shown in Equation 7. E, is the set of intervals in a vehicle’s trip for which
the handover events are occurring and no data can be transmitted. Each interval has length O, and
the start time of each handover event is t. where i is the ith occurrence of handover event x. x is
restricted to the three types of handover events, standard handover - H, planned handover - PH,
and blocked handover - BH. Similarly, we can compose the same style sets for blockage induced
handovers and planned handovers in Equations (9) and (8), respectively.

We can calculate the potential data during a trip as the sum of data, D(rjt.”), at each timestep
over that period, minus the occurrence count of each penalty event, multiplied by their respective
penalties. We assume that during ANY event regardless of whether it is a handover, blockage
induced handover, or planned handover the data rate is effectively zero for our high bandwidth
applications [11]. Therefore, the time lost during each timestep, At, that would otherwise be
transmitting at D(rjt.") is the length or p() of the intersection of all handover event intervals with
the current time interval [¢, t + At). Thus, the total potential data transmission rate for a vehicle
trip can be found using Equation (11):

Ey = {[t}t + On)., [tip th + On) oo [thp thy + On) } (7)
Epri = {[tp tog + Opmr) s [tpprs tpg + Opm) s oo [tppps tppg + Opmr) } (®)
Egt = {[tpp torr + Obn) » [tpars tppr + Or) s s [tpgrs tpyr + O ) } )
G = Ey U Epy U Egyy (10)
n
tn

Dirip = ), D(ry) (At = ([, +A6) N G). (an

t=0

From Equation 11, the datarate achieved during a trip of length t;,;, is dependent on the RSU
selection r]t.” at each timestep. The datarate also depends on the previous RSU selection, r]t."’l, as
achievable data is affected by handover overhead. The ordered sequence of RSU selections for a
vehicle is given as

tnstntlerip — th tns1 lni2 Intlerip
S rip = (rj AN R ). (12)
4 PROBLEM FORMULATION

We form a maximization problem with Equation (14) as our objective function we seek to maximize.
Because the achievable datarate is dependent on the RSU selections, we aim to find the ordered set
of vehicle RSU associations, S /n*!triv which maximizes the potential datarate for a time interval
(tn, tn + tirip). This makes our problem an RSU, or RSU, association/selection problem. We choose
to maximize achievable datarate because it is directly related to signal strength, which is what most
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approaches use to select RSUs. The potential data rate of a trip for V' from ¢, to t, + t;,p, shown in
Equation (11), is dependent on S'»!»*!trir from Equation (12). Therefore we can rewrite Equation 11
as:

t
Dirip = ) D(S™"rie [n]) (At = pu([t, £ + At) N G)). (13)
=0
Our objective function is:

arg max Di,ip (149)

gtmotn*terip

5 PROPOSED APPROACH

In this section, we define how we utilize vehicle position data and environment information to
maximize the total potential bandwidth, Dy, as calculated in Equation (14). As shown in Figure
1, signal strength and trajectory is not enough information to make an optimal RSU selection. In
order to select the optimal RSU, we also must consider the trajectory of other vehicles on the road.
Using the path planning module, an autonomous vehicle has its planned position up to a certain
time, Lp [12, 38]. In addition, vehicles have access to RSU positions along with map data. Using this
data, we propose the creation of an association schedule, Stwtn*tLp that defines the sequence of RSU
selections, r'", for each vehicle to follow. The schedule tells the vehicle which RSU to connect to
and when. Once a schedule has been created, an estimation of the achieved potential datarate can
be calculated by applying Equation (11). The occurrence of blockages can be predicted by checking
if a blocking vehicle’s bounding box along its planned path intersects a link between a vehicle
and an RSU. Being able to predict if a blockage will occur within Lp for a schedule S n*LP can
help maximize the datarate, as scheduling RSU connections to avoid blockages can reduce link
downtime. Since handovers are triggered following the schedule, a vehicle may also choose to
connect to an RSU with a stronger connection when other approaches would not.

At a high level, the scheduled association policy can be explained in the following steps, which
occur at each timestep on an RSU.

(1) Each vehicle connects to the RSU according to its connection schedule

(2) Each vehicle then shares its position, and size with the currently connected RSU.

(3) Using the knowledge of vehicle trajectories and sizes, the RSU finds the schedule for each
vehicle which maximizes the potential datarate.

(4) Each RSU then sends the optimal blockage aware association schedules back to each vehicle
connected to it.

5.1 Vehicle Algorithm

We show the execution context of our RSU selection algorithm with the different software modules
running on the CAV in figure 6. The solution for a non-connected RSU will be slightly (but not
substantially) different. Our approach relies on the output of the planning module, like the one
found in Apollo, a popular open source autonomous driving stack [38]. In hybrid mode, the Apollo
planning module takes the map information, obstacles, and current status of the AV to calculate
the planned trajectory. This trajectory is found using a combination of a machine learning based
planning model and set of scenario algorithms. The RSU Communication module, shown in green,
is a new addition which will control the radio to create the connection to the RSU from the schedule
and receive information from the RSU. The planned trajectory from the planning module is what
would be transmitted to the currently connected RSU. The algorithm on the vehicle needs to
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Fig. 6. Integration of our B-AWARE framework integration with Autoware AV stack: B-AWARE primarily relies
on the output of the planning module, as we plan RSU connections based on vehicle’s future positions.

perform the following new operations at each timestep: At the start of each timestep, the vehicle
connects to the RSU from its schedule. If the vehicle is unable to connect to the RSU in its schedule
or it is making its initial connection, it will connect to the RSU with the best signal strength.

5.2 Schedule Creation Algorithm on RSU

The RSU schedules of each vehicle are modified by their currently connected RSU. Because RSUs
have access to other vehicle’s trajectories, they can better predict the schedule which will yield the
best potential data. While we are not considering the computation power of the RSU, we assume the
correction algorithm execution time must be reasonably small, such that a vehicle can receive an
accurate schedule before the start of the next timestep. The selection of an RSU at each time for Lp
is a series of actions that can be represented as a directed acyclic graph (DAG). Because the vehicle
trajectory is known, the currently connected RSU is also able to find RSUs in the range of the vehicle
along its path. At any given time, a vehicle will have a set of RSUs within its transmission range,
we label these as potential RSUs, Ryos,1,. With Ry, at each timestep acting as nodes, a DAG is
formed to describe all the potential vehicle to RSU connection schedules. Nodes are RSU selections
rJt.” and edges represent the handover from one RSU to another. Edge weights are calculated from
Equation 11 with a trip time of 1 timestep.

An example DAG construction is shown in Figure 7. In this example, there are 3 available RSUs
at each timestep; however, this may vary. The RSUs which are in range of the CAV change as
the vehicle moves through the environment. Node A, represents RSU A at the current timestep,
to. All nodes have a subscript, which is the future time at which they are available. For example,
A is an available RSU for the current vehicle at t; and ;. Note that the amount of edges leaving
any node at f, is equal to the number of available RSUs at t,;. This is so all possible schedule
combinations are captured. The edges are directed toward the t,.1 nodes, so no edges connect
nodes within the same timestep to one-another. Following, 11, the potential datarate is dependent
on the previously connected RSU. If a vehicle is switching between RSUs, there will be handover
overhead. Thus, edge weights entering a node will depend on the node they are exiting. We define
the edge weights between nodes N; and N, as the potential datarate a vehicle would have for a
timestep by connecting to the RSU represented by N, at t,,.; from the RSU represented by Nj at ¢,,.
The edge weight is calculated from 11. For example, the edge weight from A, to B; is calculated as
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Fig. 7. DAG constructed from RSUs in range at each timestep, which is then used to find optimal schedule.
Edge weights are calculated as the expected data achieved by connecting to the RSU represented by the
nodes.

= % t t t t t t t

3 4 5 6 7

pos = | (%:¥p) (%3] (%,9,)| (5, ¥ (5, )| (K4.¥9)|(%6 ) | (X557)
Potential @
000"
cC | c

Schedule

Fig. 8. RSU selection schedule construction and integration with path plan.

the potential datarate a vehicle would achieve at ¢, if it were to connect to B at t; from A at £y. Edge
weights, with the exception of those directed toward the END node, are excluded for cleanliness.

To find the RSU selection schedule which maximizes the datarate, we add an additional node to
the DAG. The start node, N4, is set to be the RSU the vehicle is currently connected to. In Figure
7 this is Ap. The nodes at the final timestep in Lp all connect to an ending node, N,,4, by edges
with weight 0. Edge weights are assigned based on datarate. If any RSUs are predicted be in NLOS
at a timestep, all edges directed toward that node will have a weight of an infinitely large negative
number. This is because we assume the datarate achieved from a blocked RSU to be zero. The
blockage prediction is performed by using the vehicle’s planned position in combination with the
other vehicle’s planned positions and dimensions. The edge weights are then all negated, so that
we can find the shortest path from Ny; 4, to Nepg in O(N+E), where N is the number of nodes and
E is the number of edges[37]. The resulting nodes in the shortest path will be the RSU connection
schedule, S'/n*LP which maximizes the datarate in Equation 14.

The complete schedule construction and optimization is illustrated in Figure 8. Each column
represents a timestep. At every timestep for L;, a vehicle has its planned position, pos, and set of
potential RSUs. Using the potential RSUs at each timestep in Lp a DAG is constructed and the
path leading to the maximum datarate is calculated. This path is highlighted in green and results
in the schedule shown in the bottom row. Note the connection schedule is at the granularity of
the path planner. The length of the schedule is also the length of the path planner, Lp. At each
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Table 2. Experimental Scenarios, environment, RSU count, vehicle count, and RSU placements are all varied.

’ # \ Roadway \ RSUs \ Vehicles \ RSU Placement
1 | Highway 12 26 1
2 | Highway 12 101 1
3 | Highway 12 128 1
4 | Highway 24 26 2
5 | Highway | 24 101 2
6 | Highway 24 128 2
7 City 16 101 3&4
8 City 16 177 3&4
9 City 16 297 3&4
10 City 32 101 3&4
11 City 32 177 3&4
12| City 32 297 3&4

timestep, the RSU calculates the best selection schedule for each vehicle connected to it. Because
the RSU is connected to the network, it has access to the 3D map of the area and other nearby
vehicle trajectories. It uses this information to create the DAG and calculate the best schedule.

6 EXPERIMENT SETUP

To evaluate the effectiveness of our approach, and compare it with previous approaches, we perform
experiments in multiple highway and city street traffic scenarios with varying density of vehicles
and placement of RSUs. Scenarios are created by importing a 2 kilometer stretch of an interstate
highway from Open Street Map (OSM) and generating traffic with Simulation of Urban Mobility
(SUMO). The summary of all experimental scenarios is captured in Table 2. The first 6 scenarios are
in a highway environment, where RSUs are deployed following the RSU placements shown in Figure
9. For each RSU deployment, the number of vehicles in the simulation is set at 3 traffic levels. The
final 6 scenarios are in a city environment. For these scenarios we also vary the RSU deployments
and 3 levels of traffic. Specifics on the environment, RSU placement, and traffic characteristics are
explained in the following sections.

6.1 City and Highway Environments

We evaluate our approach on two different maps. The first being a 2km long single direction 7
lane highway, which is a segment of the I-10 West taken from OSM. The next map is a 2km x 2km
road network consisting of two connected intersections. Lane count ranges from 2-3 per direction
and lanes of differing direction are divided by a median. Buildings which can act as blockages are
placed along the roadside. The improvement of B-AWARE over other approaches is dependent on
dynamic and static blockage occurrence. These events are fully captured in the city and highway
environments we use.

6.2 RSU Deployment Strategies

We deploy RSUs in both dense and sparse fashion using the different strategies shown in Figure
9. The arrows represent the direction of traffic flow. Dual side deployments are shown in 1 and 2,
where the RSUs can be placed on both sides of the road. In a denser deployment like 2, the vehicles
will be more prone to excessive handovers [18], but less prone to blockage. The converse holds
true for strategy 1. Strategies 3 and 4 are single side deployments, where they are set along one
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Fig. 9. Different RSU deployment strategies. We consider both sparse (1,3,4) and dense (2) deployments. In
dense RSU deployments, there are more options for a vehicle if a link becomes blocked.

roadside or along the median. Following the system model presented in Section 3, we deploy RSUs
such that at any time a vehicle on the road has at least 2 RSUs within range. This is because our
approach is an association policy, which tells the vehicle which RSU to connect to. If there is only 1
RSU available, then such an approach is not needed.

6.3 Traffic Density and Blocking Vehicle Count

The ratio of vehicles to non-blocking vehicles in all scenarios is roughly 3:1. For both the highway
and city environments, we vary the traffic density by increasing the amount of vehicles in the
SUMO simulation. In the highway scenario, the number of vehicles ranges from 26 to 128. In the
city scenario, the number of vehicles ranges from 101-297. We keep the number of vehicles large to
ensure blockages occur in the simulation.

6.4 System Model Parameters

The values of the parameters defined in Section 3 for our experiments are shown in Table 3. We
apply the channel model described in Section 3, using the freespace pathloss model with P = 20,
f =60 GHz, and P;x = 20 dBm. RSUs and CAVs have a communication range, Syqnge of 200 meters.
The dimensions for blocking and non-blocking vehicles are given in the table. We set a timestep
length, At, of 1 second. We model initial access to RSUs, blockages, and handovers between RSU’s
as a duration of time when no data can be transmitted [14]. We assume association with an RSU
takes 320 milliseconds, whether it be initial access or handover,this was calculated as the average
of the two latency’s found in [18] and [11]. We treat this as the standard handover time, Op.
Since our proposed method generates a schedule and also shares positional data, we assume an
approach similar to [6] is implemented. [6] demonstrated the impact of scheduling RSU selection
and geo-location on the beamforming overhead, finding a 38% reduction in initial access time. Other
works also show the positive impact of using location information on achievable datarate [13, 24].
Using the percentage from [6] and the average association time, we calculate the RSU association
time when connection is scheduled, Opy, to be 198.4 milliseconds. From the real world experiments
in [11], there is some penalty when a CAV becomes blocked and must select a new RSU. For our
experiments, when a CAV’s current connection to an RSU becomes blocked, we assume there is zero
data transmitted for that timestep, or a length of 1 second. Therefore, the overhead of a blockage
induced handover, Opy, is given a value of 1. This latency sums the time for the CAV to realize
there is a blockage and re-associate with the next best RSU. We use these numbers in conjunction
with the occurrence count of handover and blockage events to calculate the potential max data rate
for each vehicle during the simulation. For simplicity, we assume perfect beam tracking, meaning
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’ Parameter ‘ Description Value
PL Pathloss Model Freespace
p Additional NLOS Loss 20
f Carrier Frequency 60 GHz
P;y tx Power 20 dBm
Srange Max. tx Distance 200 m
RSU;presn | Baseline and SMART threshold —54 dBm
W.xL.xH, | Car Dimensions 219x26x4.1m
WpxLpxHp | Blocking Vehicle Dimen. 5x1.6x15m
At Timestep length 1s
Lp Length of path plan & sel. sched. 10s
Oy Assoc. Time 320 ms
Opy Scheduled Assoc. Time 198.4 ms
OBy Blocked Assoc. Time 1s

there is no overhead induced by a connection being mobile. The length of the path plan, Lp, is set
to 10 seconds, which is the time used in current open source AV software stacks [12]. The threshold
used by the baseline and SMART algorithms for triggering handoff, RSU;p;.sh, is selected to be -54
dBm. We are assuming CAVs require multiple Gbps at each timestep and -54 dbm is the minimum
threshold to achieve such a datarate in our system model, as shown in Table 1.

6.5 SUMO + DRIVE Simulation Testbed

We implement our algorithm in Digital Twin for Self-driving Intelligent Vehicles (DRIVE), which is
a MATLAB based simulator that communicates with SUMO via SUMO’s Traffic Control Interface
(TraCI) [25]. This simulator was chosen so we can leverage the built-in support for modelling
5G mmWave links. Path uncertainty is introduced into the simulator to get closer to a real world
scenario. When a vehicle shares its planned position with the serving RSU, there is a 25% chance
the position sent to the RSU toward the end of the plan is not the exact position. We assume
the CAVs used in the simulation are equipped with an off-the-shelf GNSS receiver and that time
synchronization between the vehicles is maintained using the GNSS time sync. Hasan et. al have
shown between two vehicles to be capable of synchronizing to within 30 nanoseconds, which is far
more precise than required for our application [15]. We propose that the vehicles can also conform to
the gPTP standard defined in the IEEE 802.1AS standard, which provides for microsecond accurate
synchronization. This allows us to have a multi modal fallback system to maintain the highest
available timesync. If gPTP is available from any peer vehicles or RSU within range of the ego CAV,
that is used first. If that fails, GNSS is used as a fallback. Finally, if neither is available we rely on
the clock drift to be corrected and low within the CAV systems such that the drift during these
relatively short lapses will be minimized. As soon as GNSS or gPTP is available, those are used
again. The error from either of these methods should be on the order of in the worst case 5 ms and
our system can handle the error with relatively small downside. An error of 5 ms or smaller will be
easily contained in our sensor error buffer with little loss, which we define next.

Sensing and timing error is modeled using the method outlined by Andert et. al by adding a
buffer around the vehicle within SUMO that is equivalent to the expected sensor error as we cannot
be certain where the vehicle is within that zone [5]. This model shown in figure 10 is similar to the
sensing error model used by Andert et. al in their time-sensitive autonomous intersection model
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[4]. Positioning error over time can increase. However, this increase in positioning error can be
recorded over time by the B-AWARE system and added back into future trajectories as a steadily
increasing position error buffer, shown in Figure 11. This increasing position buffer accounts for
reasonable trajectory uncertainty in a computationally efficient manner, as it only affects the width
and length of the vehicle in B-AWARE’s computation, thus adding negligible overhead.

T+2

Fig. 10. To account for position error, a static buffer
can be added around the vehicle to account for the Fig. 11. Throughout the path plan of the vehicle, typ-

position uncertainty. B-AWARE simply considers the ical position and plan uncertainty can be applied as
vehicles area as larger. Typical position localization ~ an increase in the position error buffer over time. This
(position) uncertainty is less 10cm for an autonomous allows B-AWARE to account for growing uncertainty
vehicle so this buffer is not large. in the path plan as the time horizon increases.

6.6 Baseline and SMART Comparison Algorithms

For each scenario, we assess the performance of our approach against two other RSU handoff and
selection algorithms. The first being a threshold-based handoff algorithm, like the one found in
802.11ad, which we call baseline. If the RSS drops below a threshold, a handoff will occur. The CAV
then selects the RSU with the highest RSS to associate with. This can also be described as rate-based
handoff (RBH), since the highest RSS will yield the best potential data rate [35]. This selection
policy was chosen for comparison as it most closely resembles the behaviour of current consumer
off-the-shelf 5G hardware. We also compare our approach to an idealized version of the SMART-S
algorithm proposed in [35]. SMART-S is a state-of-the-art selection algorithm applicable to vehicular
networks for solving the 5G matching problem. To select the next RSU, SMART implements a
reward function which minimizes the number of handoffs by selecting the RSU which can transmit
the most amount of data from time t to t* when a vehicle switches to RSU k. t¥ is the time at which
the next handoff occurs based on the handoff condition. Because the time before the next handoff
and the datarate achieved at each time are unknown, researchers implemented a reinforcement
learning algorithm to estimate these parameters. For our experiments, we have access to vehicle’s
paths and RSU placement before hand, so we can calculate the future volume of transmitted data
for each potential RSU selection. The handoff condition will be based off of event A2 defined in
3GPP, but instead of using reference signal receive power (RSRP), we will handoff based on RSS
which is available in DRIVE [1, 25]. Therefore SMART uses the same handoff trigger as the one in
baseline. In our experiments, handoffs are triggered when the RSS falls below a prescribed threshold,
RSU;pyesh, see Table 3.

6.7 BAWARE Performance Analysis

In addition to comparing our method to existing approaches, we also examine the behaviour of
our algorithm through the following two experiments. First, we measure the execution time of the
primary RSU schedule optimization algorithm described in Section 5.2. The DAG is constructed
based on the RSUs available to a vehicle at each future timestep for the length of the planning
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Fig. 12. Average potential datarate improvement from using B-AWARE over SMART and Baseline for all
vehicles in each scenario. B-AWARE consistently provides a higher potential datarate on average in all
scenarios.
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Fig. 13. Best and worst case potential datarate improvement from using B-AWARE over SMART and Baseline
for a single vehicle in each scenario. In the best case, B-AWARE can improve the datarate of a single vehicle
by 25% over existing approaches. In the worst case, there may be some loss in datarate, but this is much lower
than the maximum improvement in all scenarios.

horizon. Finding available RSUs (i.e. ones that are not blocked by other vehicles) can be done
through ray tracing, which modern GPUs can perform in a matter of milliseconds [10]. We focus
our performance analysis on the run time of the schedule optimization algorithm, which occurs
after the DAG has been constructed. For this experiment, we consider a scenario where a single
RSU is calculating the optimal schedule for a single vehicle, with 4 potential RSUs at each timestep
for a length of 10 timesteps. This creates a DAG with 42 nodes and 168 edges. Our optimization
algorithm and example DAG were implemented in C++ using the Boost Graph Library (BGL). The
average execution time over 20 independent runs was measured on a PC equipped with an AMD
Ryzen 7 3700X and 16GB of RAM. In the second experiment, we look at the impact of the planning
horizon on our algorithm’s improvement over other approaches. We do this by running scenario 6
multiple times while varying the length of the planning horizon between 3 and 7.

7 RESULTS DISCUSSION

This section covers our experimental results and related insights.
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Fig. 14. Best case improvement in average datarate for a vehicle against the existing approaches. As the
traffic count increases, the potential benefit of B-AWARE does as well. In higher traffic densities, blockages
may occur for a vehicle more frequently. Since other approaches do not account for blockage and B-AWARE
does, we see a larger increase in average datarate
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Fig. 15. B-AWARE can reduce almost 100% of blockage occurrences over Baseline and SMART in the 12
scenarios.

7.1 Better Potential Data over Previous Approaches

Figure 12 shows the average improvement in datarate for all vehicles using B-AWARE over Baseline
and SMART. Total potential bandwidth is calculated for each vehicle using equation 11, e.g. summing
the available bandwidth for each time-step according to equation 5 when there is no blockage
or handover occurring. This is then divided by the vehicle’s trip time to get the average datarate.
Each scenario, with the same traffic traces, is ran 3 times, one time for each algorithm, the average
datarate of each vehicle is then calculated and compared across the 3 simulations. The percent
improvement of B-AWARE over each other approach is calculated and then averaged for all the
vehicles in the simulation. In all scenarios, B-AWARE is able to maintain a consistent improvement
in average datarate over the two existing approaches, ranging from 2%-6%. SMART achieves a better
potential datarate over the normal approach because it selects RSUs based on vehicle trajectory.
Although it is path aware, SMART is not blockage aware like B-AWARE. This is why B-AWARE
can achieve a better average potential datarate over the baseline approach and SMART. Since
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Fig. 16. B-AWARE can reduce the average dis- Fig. 17. B-AWARE can reduce the average discon-
connection time by as much as 75% in the high- nection time by as much as 80% in the city scenar-
way scenarios. Even as traffic density increased, ios. Even as traffic density increases, the benefit
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Fig. 18. The length of the planning horizon impacts the improvement of our approach over the baseline RSU
association policy. For scenario 6, the planning horizon length is varied from 3 to 5 to 7. As length of the
planning horizon increases, BAWARE can form a more optimal schedule, leading to a larger improvement over
the baseline approach. Even if the planning horizon is short, we still see an improvement over the baseline
RSU association policy.

the baseline approach and SMART are both threshold-based, they will wait to handover until the
threshold has been broken, even if there is an RSU with a better signal strength available. B-AWARE
does not have this limitation.

Although B-AWARE is able to improve the datarate on average, it is not a very large improvement.
This is because the main benefit of B-AWARE is its ability to avoid blockages. Avoiding a single
blockage or handing over to gain an additional Gigabit of throughput does not have much effect
on the total average potential data. Because on average some vehicles may not experience a high
amount of blockages. To see the true impact of B-AWARE, we look at which vehicle had the largest
percent improvement in potential datarate by using B-AWARE over the other approaches in each
scenario. Since the same traffic traces are run for each algorithm and scenario, we chart the vehicle
which saw the maximum and minimum percent improvement in average potential datarate over
Baseline and SMART by using B-AWARE, as shown in Figure 13. In the best case, B-AWARE can
improve the average datarate for a vehicle by as much as 26% over the existing approaches. This
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large improvement is due to a vehicle travelling alongside multiple blocking vehicles. Using a
selection policy like Baseline, the vehicle has no knowledge of its surroundings and will continue
attempting to connect to RSUs which will be shortly blocked. In the worst case, the degradation
remains around 0%. There are some cases, like in scenario 6, where the worst case reaches a 7%
degradation in average potential throughput for B-AWARE. This is a result of some vehicles having
short trips, where B-AWARE is not able to fully optimize from the initial RSU selection. However,
it can be seen the max improvement is always greater than the maximum degradation and using
B-AWARE results in a higher datarate on average.

7.2 Significant Outage Reduction over Previous Approaches

The increased potential datarate is primarily a result of the decreased connection time, allowing
more time for data transmission. The reduction in connection time is a result of reduced handover
overhead and blockage avoidance, as the time without connection is calculated as the sum of time
a handover is occurring and when a link is blocked. A blockage event is logged any time a vehicle
losses LOS with the RSU it is currently connected to. Figure 15 shows the percent reduction in
total blockage occurrences by using B-AWARE compared to the existing approaches. Each scenario
is ran 3 times using each approach; Baseline, SMART, and B-AWARE. The percent decrease in
blockage count during the simulation between the existing approaches and B-AWARE are charted
for each scenario. From Figure 15, it is clear B-AWARE can avoid almost 100% of the blockages
which occur in all experiment scenarios. In one scenario B-AWARE reduced the total number of
blockages in the simulation by as much as 573. If we assume a larger blockage penalty, like the
2.7 seconds from [18] that is 25 minutes of cumulative avoided outage time in a 200 second long
period. The percent decrease in average disconnection time for all scenarios are captured in Figures
16 and 17. For each scenario, we calculate the average disconnection time among the vehicles for
Baseline, SMART, and B-AWARE. We then calculate the percent improvement of B-AWARE over the
other approaches. The highway scenarios are shown in Figure 16. Each RSU deployment strategy is
represented by a separate line. It is shown in all scenarios, B-AWARE is able to reduce the average
vehicle disconnection by a minimum of 50%. Figure 17 is constructed in similar fashion and also
shows that on average, B-AWARE can decrease the link downtime by about 50% over existing
approaches.

7.3 Consistent Performance with Traffic Scaling

We can also see from Figures 16 and 17 that our approach still succeeds in higher traffic density
relative to the other approaches on average. In addition, the potential benefit of using B-AWARE
increases as the traffic density increases; this is shown in Figure 14. Using the 12 scenarios, we
take the maximum percent datarate improvement, shown in Figure 14, at each traffic density and
average them together. As the traffic density increases, the probability of a vehicle experiencing more
blockages also increases. Since other approaches are not blockage aware, B-AWARE’s improvement
over them increases as the blockage rate increases. B-AWARE’s improvement is also shown to be
consistently better in the average case by Figures 16 and 17, regardless of traffic density.

7.4 Robustness to Environment and Path Changes

Even with path uncertainty set to 25%, our approach is still able to predict blockages and significantly
reduce the number of link outages for a vehicle. This is in addition to unexpected path changes
that the SUMO lane changing and lane following models themselves introduce as our transmitted
paths don’t account for unexpected lane changes and speed deviations caused byother vehicles
until they actually happen. We also show our approach can adapt to different traffic densities
and RSU deployment strategies, as shown in Figure 15. Regardless of RSU deployment, traffic,
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and environment, B-AWARE performs consistently well over existing approaches. The average
improvement in datarate and link uptime for B-AWARE also remains constant, as shown in Figures
14, 17, and 16 despite differences in scenarios, traffic density, and RSU deployments. Figure 15
shows that even with a short planning horizon, our algorithm still improves upon the baseline
RSU association policy. As the planning horizon is longer, BAWARE is able to optimize the RSU
associations further, leading to a larger increase in total potential datarate.

7.5 Fast Execution Time

In order for our approach to be implemented, it must be able to execute at high speed and finish
the optimal schedule computation before the start of the next timestep. Modern GPUs can perform
blockage detection through ray tracing in a matter of milliseconds [10]. Once the available RSUs
are found through blockage detection and path prediction, the schedule optimization algorithm
runs on the constructed DAG. From the experiment described in Section 6.7, we found it takes an
average of 336550 nanoseconds or 0.00033655 seconds for an RSU to compute the optimal schedule
for a single vehicle. These results are from a "worst-case" scenario, where the planning horizon
is 10 seconds and there are 4 potential RSUs at each timestep. In a dense traffic scenario where a
single RSU is serving 200 vehicles, it would take an RSU approximately only 0.06731 seconds to
find the optimal schedule for all vehicles. This leaves plenty of time for the RSU to perform the
raytracing and communicate the optimal RSU selection schedule to the connected vehicles.

8 CONCLUSION

In this paper, we have addressed the current challenges of applying 5G mmWave to autonomous
vehicles, namely maintaining line of sight with the serving RSU and minimizing the occurrence of
handovers. We developed the B-AWARE framework, which defines an optimization problem to
maximize the potential datarate for a vehicle’s trip. B-AWARE defines an RSU selection schedule,
which is created for a vehicle by the current serving RSU from the most current environment
and vehicle trajectory information. This schedule is optimized to produce the maximum potential
datarate for a vehicle’s planning horizon by avoiding blockages and unnecessary handovers. Our
simulation evaluations of B-AWARE in the SUMO and DRIVE test-bed results in a 1.05x improve-
ment of the potential datarate in the average case and 1.28x in the best case vs. the state-of-the-art
algorithm SMART. B-AWARE reduces close to 100% of blockage occurrences resulting in an im-
pressive reduction in time spent with no connection - 42% in the average case and 60% in the best
case as compared to SMART. Our approach is shown to give CAVs a significant increase in link
up-time as well as a higher average potential datarate over traditional and state-of-the-art RSU
selection strategies. In addition, B-AWARE is shown to be robust to trajectory prediction failures,
traffic induced chaos, RSU deployment differences, and different traffic scenarios. In the future we
would like to explore the application of B-AWARE to full-size Autonomous Vehicles so that we can
further improve the B-AWARE approach by applying it in the physical world.
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