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Fig. 1. MiSleep predicts the location of key body joints during sleep using deep learning on millimeter-wave
wireless signals from off-the-shelf devices.

In this work, we propose MiSleep, a deep learning augmented millimeter-wave (mmWave) wireless system to
monitor human sleep posture by predicting the 3D location of the body joints of a person during sleep. Unlike
existing vision- or wearable-based sleep monitoring systems, MiSleep is not privacy-invasive and does not
require users to wear anything on their body. MiSleep leverages knowledge of human anatomical features
and deep learning models to solve challenges in existing mmWave devices with low-resolution and aliased
imaging, and specularity in signals. MiSleep builds the model by learning the relationship between mmWave
reflected signals and body postures from thousands of existing samples. Since a practical sleep also involves
sudden toss-turns, which could introduce errors in posture prediction, MiSleep designs a state machine based
on the reflected signals to classify the sleeping states into rest or toss-turn, and predict the posture only during
the rest states. We evaluate MiSleep with real data collected from Commercial-Off-The-Shelf mmWave devices
for 8 volunteers of diverse ages, genders, and heights performing different sleep postures. We observe that
MiSleep identifies the toss-turn events start time and duration within 1.25 s and 1.7 s of the ground truth,
respectively, and predicts the 3D location of body joints with a median error of 1.3 cm only and can perform
even under the blankets, with accuracy on par with the existing vision-based system, unlocking the potential
of mmWave systems for privacy-noninvasive at-home healthcare applications.
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1 INTRODUCTION

Humans spend approximately one-third of their lives sleeping. High-quality sleep is of vital
importance for the short-term proper functioning of the human body and for long-term good health
[1]. Chronic sleep deprivation, such as regularly sleeping less than the recommended 7-8 hours, has
been associated with multiple health disorders and risks in cardiovascular, respiratory, neurological,
gastrointestinal, immunological, dermatological, endocrine, and reproductive systems [2, 3]. As per
the national surveys [4, 5], only 25 to 50% of adults in the United States slept the recommended
7-8 hours, and 20 to 35% reported consistent sleep difficulties. As per the international survey
[4], up to 40% of adults show sleep difficulties. These surveys indicate that poor sleep health is
prevalent at both local and global scales. Due to the well-recognized importance of sleep and the
high prevalence of its inadequacy, sleep monitoring has become an important research area. A key
metric to monitoring sleep is the spatial and temporal understanding of sleep postures through the night,
as the postures directly influence sleep behavior and critical parameters [6-8]. Each of us sleeps in
one of the broad categories of posture, such as supine, lateral, fetal, etc., and exhibits wide variations
of them throughout the night [9, 10]. The effect of different sleep postures has been studied widely
to identify its relationship to different health conditions, such as brain activities [11], nocturnal
bruxism [12], carpal tunnel syndrome [13], progressive glaucoma [14], motor development in
infants [15], back pain in adults [16], waking cervical [17], and scapular and arm pain [18].
Specific sleep postures could also be fatal depending on the pre-existing medical conditions. For
example, supine posture is linked with exacerbating obstructive sleep apnea by creating unfavorable
airway geometry, causing a reduction in lung volume and limiting the movement of airway dilator
muscles, which could be life-threatening [19]. Infrequent turns due to impairment in control of the
motor activity of Parkinson’s patients lead to parasomnia and restless leg syndrome [20]. Prone
sleep posture is associated with nearly 73% of sudden unexpected deaths of Epilepsy patients [21].
Infrequent changes in sleep posture are also the primary cause of pressure ulcers (i.e., bedsores) in
post-surgical and elderly patients. Additionally, physicians recommend different sleep postures for
different medical conditions: It is recommended to sleep on the side posture to reduce snoring, or
left side to prevent heartburn, or supine posture to lower back or shoulder pain, or fetal posture
during pregnancy, or some specific posture variations during post-surgery recovery [22-25]. These
examples highlight the importance of a sleep posture monitoring system that can provide real spatio-
temporal observations, which could not only help with corrections but also prevent fatal accidents.
Since it requires time to train a patient to adapt to a new sleep posture, physicians may need
to frequently observe the fine-grained posture, such as skeletal information, and its changes
throughout the night. Apart from error-prone qualitative assessment, where doctors ask patients
(or their caretaker/partner) about their sleep postures, in-clinic quantitative assessment relies on
visually observing the posture or inferring them by analyzing physiological signals from devices
attached to a patient, such as Electrocardiography monitors, accelerometer, etc. [26—-28]. Such
assessments are typically done in a hospital setting, requiring patients to stay there overnight
[29]. Recent works aimed to provide at-home monitoring [27, 30, 31], but they mostly require
users wearing sensors or placing the sensors on the bed. Wearables are not only cumbersome
during sleep but also unreliable since certain patients, such as the elderly, tend to forget to wear
them. Pressure sensors attached to the bed mattress are an alternative solution [7, 32-34], but
they are costlier and often bring sleep discomfort. Contactless sleep monitoring, such as vision-
based solutions, relies on optical and depth cameras to accurately monitor sleep postures, but
they are highly privacy-invasive, and their performance is hindered by dark bedroom conditions
and occlusion due to blanket [35-38]. Wireless-based solutions can overcome these challenges by
inferring postures under no light without being privacy-invasive [39-41], but existing solutions
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rely on special-purpose low-frequency devices. Besides, they can only classify sleep postures into
broad, discrete categories [42], and are unable to provide fine-grained posture information, such as
the location of different body joints.

Fortunately, high-frequency millimeter-wave (mmWave) wireless devices provide an effective
alternative to the existing systems to enable fine-grained posture monitoring: MmWave signals can
penetrate certain obstacles, work under zero visibility, and have higher-resolution than Wi-Fi. So,
mmWave imaging can facilitate “seeing” the body posture under dark conditions and under the
blanket. Besides, mmWave transceivers are poised to soon become ubiquitous in all 5G-and-beyond
smart home devices, such as routers and access points, enabling the opportunity for bringing privacy
non-invasive human sleep posture monitoring system to the masses at-home. However, there exist two
fundamental challenges in mmWave imaging. First, mmWave signals could be absorbed by many
body parts or specularly reflect from them in different directions, away from the device, causing
most signals to never reach back to the receiver [43]. So, the output human shape could have a lot
of missing parts from which it is difficult to infer joint locations. Second, mmWave devices have
extremely low-resolution compared to vision-based systems; so, many high-frequency components,
such as the contour and limbs, will be eliminated from the generated images [44]. Moreover, the
reflected signals carry additional information about the bed and surrounding objects close to the
body, making it harder to separate the human shape. So, it is challenging to extract body joint
information and changes directly from traditional mmWave imaging during sleep.

To overcome these challenges, we propose MiSleep, a single-person sleep posture monitoring system
that leverages signal processing and deep learning models to enable fine-grained monitoring contin-
uously and non-intrusively with commodity mmWave devices. Instead of generating a mmWave
image from traditional algorithms and then predicting the body joint locations, MiSleep directly
predicts the joint locations from the reflected mmWave signals by learning the hidden association
between them from thousands of data samples. To learn such an association, MiSleep employs a
customized Deep Convolutional Neural Network (DCNN), that predicts the 3D locations of several
key body joints from the reflected signals captured by multiple mmWave antennas. The reflected
signals carry amplitude and phase information at various azimuth angles, elevation angles, and
depth, and the DCNN extracts relevant features from multiple spatially co-located antennas’ signals
to formulate a mapping of the signals to the body joints. Furthermore, to generalize the model
for diverse populations, MiSleep models a height classifier and uses the error in its prediction to
finetune the model. We use a dataset collected from several static sleep postures from multiple
volunteers, and at run-time, MiSleep can predict 3D joint locations directly from the mmWave
signals. However, the reflected mmWave signals could be corrupted by various factors, such as the
Doppler effect, under the toss-turn during sleep. For example, a person could turn from a lateral
to a supine posture in the middle of the night. Predicting the body posture, with a model trained
on static postures, during such sudden movements not only is challenging but also is less useful
since toss-turns usually span for a short duration of a few seconds. Therefore, MiSleep designs
a toss-turn detection module that can first classify the sleeping states to either rest or toss-turn.
Then, it predicts the joint locations only during the rest state.

We design and prototype MiSleep with Commercial-Off-The-Shelf (COTS) devices by building a
customized setup with two 77-81 GHz mmWave transceivers [45] to collect the reflected signals
and a Microsoft Kinect Xbox One [46] to collect the ground truth 3D joint locations. We collect
reflected signals and ground truths of nearly 70 K samples (>18.5 GB) from multiple experiments
under different conditions with 9 volunteers. The experimental results show that MiSleep can detect
all ground truth toss-turn events, and can identify the start time and duration within 1.25 s and 1.7
s of the ground truth, respectively, for all cases. For static sleep postures with a base model, MiSleep
predicts the 3D location of body joints with a median error of 1.3 cm only. Furthermore, MiSleep
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Fig. 2. (a) A mmWave device captures reflected signals from the target. (b) Example of reflected signals from
two sleep postures.

generalizes well for diverse volunteers with median and 90" percentile errors of 2.3 cm and 7.4 cm,
respectively. Even when we test performance on unseen volunteers, we observe MiSleep provides
acceptable joint prediction. Furthermore, MiSleep can identify the body postures and locate the
joints under blankets with similar accuracies. Finally, MiSleep can classify volunteers by leveraging
their height information with an accuracy of 87% to 94% for 8 volunteers, and can classify 5 broad
categories of postures with an accuracy above 90% for all volunteers.

In summary, we make these two contributions: (1) We design a customized deep learning framework
for predicting the 3D location of body joints during sleep from COTS mmWave devices, which
generalizes well for a diverse population. To the best of our knowledge, MiSleep is the first system to
infer sleep postures in the form of 3D joint locations from the COTS mmWave device, and achieve
accuracy on par with the existing vision-based systems. (2) We design a toss-turn detection module
that can accurately identify key sleep events and their timing information from the mmWave
reflected signals. To accelerate the research on COTS mmWave device based sleep monitoring, we
will open-source our dataset and codebase.

2 BACKGROUND AND CHALLENGES
2.1 Millimeter-Wave Reflections and Imaging

Traditional mmWave imaging approaches rely on Frequency Modulated Continuous Waves (FMCW)
from a device to generate an image [47]. The device illuminates the target scene with a wideband
and wide-beamwidth FMCW signal (Figure 2[a]). Each FMCW signal sweeps one of the mmWave
frequency bands linearly (e.g., 77 to 79 GHz, where 2 GHz is the signal bandwidth), and receives
the signals reflected back from various objects in the surroundings, including the sleeping human
(see Figure 2). Let us assume the human body is composed of n reflecting points at different
distances, dy, ds, . . ., d,, from the transceiver. Since points at different distances will reflect back
signals at slightly different times, the receiver can identify the amplitude and phase of the signals by
measuring the difference of frequencies between the received and transmitted signal to obtain the
signal time of flight (ToF). The ToF is then translated into object distance based on d; = ¢ - ToF;/2
[47], where c is the wireless propagation speed. The signals received at time ¢ can then be expressed
as a complex vector of length n, R, ({dy,da, . . .,d,}). Here, d;,; — d; = ¢/2B, where B is the signal
bandwidth. Figure 2(b) shows two examples of such reflected signals for two sleep postures.
While a practical networking device does not possess the capability of the FMCW transceiver,
such reflected signals can still be obtained from them by estimating the Channel Impulse Response
(CIR) from communication packets. For example, all IEEE 802.11ad networking devices, operating
at the 60 GHz mmWave frequency band, allow measuring such CIR from the Channel Estimation
(CE) header field of each standard packet [44, 48]. But the signal received by a single antenna
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Fig. 3. (Top) Kinect depth images for two sleep postures: Left lateral; and Supine. (Bottom) mmWave images
are generated from a device with 3 transmit and 4 receive antennas.

cannot be used to generate an image since the target scene is in 3D and reflected signal is in 1D. So,
the transceiver uses either the reflections from multiple antennas or sweeps a narrow beam along
the horizontal and vertical directions to locate different reflecting points at relative azimuth and
elevation angles. Then, based on the angular and distance information, the reflection points can be
mapped into the 2D plane to generate a mmWave image. The image resolution in depth, azimuth,
and elevation depends on the signal bandwidth, number of horizontal antennas, and number of
vertical antennas, respectively [49, 50].

2.2 Challenges with Direct mmWave Imaging based Posture Detection

Identifying sleep postures directly from the mmWave images, however, is challenging for multiple
reasons. First, existing commercial devices are usually designed with a small number of antennas,
such as 4 or 8, in the horizontal and vertical directions, [51-55]: So, the generated mmWave images
will have an extremely low-resolution. While such images could be potentially fed into a deep
learning model to classify broad categories of postures, it is hard to identify any body joint locations
from them. Second, future mmWave devices could possess a large number of antennas, such as
1024, in both horizontal and vertical directions [56, 57], which could improve the fundamental
image resolution. However, all the antennas must be placed by strictly following the Nyquist spatial
criterion to generate alias-free images. (The Nyquist criterion states that the distance between
adjacent antenna elements should be ~ ¢/(2f), where c is the propagation speed, and f is the
carrier frequency [58].) Adding the reflected signals from non-uniformly spaced antennas will
create spurious reflection points, and the image will appear distorted [59]. Figure 3 shows examples
of such distortions, where the mmWave images have no visual correlation with the actual scene.
While future devices could include a large number of antennas, the antennas will be placed non-
uniformly across the device for a 360° network coverage. So, they will produce aliased images
with unrecognizable body joint locations. Finally, different body parts reflect mmWave signals
differently, such as the torso could reflect a strong signal, but the limbs usually reflect weak signals
[44, 60]. Also, the absolute strength of the reflections from the same body part varies over time if
the posture has changed. This is because some of the body parts could reflect the signal specularly,
so depending on its relative orientation w.r.t. the antenna, it might deflect the signal away from the
device [61]. Due to such uneven reflections, at a specific time instant, only a subset of body parts is
visible to the mmWave device, making it challenging to identify the location of key body joints.
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3 MISLEEP DESIGN
3.1 Overview

MiSleep aims to bring a continuous, non-intrusive, and non privacy-invasive sleep monitoring
system at-home by leveraging COTS mmWave devices. Recording an accurate 3D locations of body
joints throughout the night could enable numerous applications, such as baseline monitoring of
patients, sleep diary to assist physicians, classification of sleep posture, track changes of body parts,
toss and turn detection, detection of sudden movement during the night, amount of time a person
is asleep or is awake or is restless, etc..

Toss-Turn Detector Sleep Posture Predictor Outputs

Rest Network k I
1
Toss

\i‘éﬁ. = O e o C -> Rest Rest
e Distance (m)

Fig. 4. System overview of MiSleep.
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To this end, MiSleep uses mmWave transceivers to illuminate the target scene with an FMCW
signal and subsequently receives the signals reflected back from various objects in the surrounding
environment, including the sleeping human. After capturing these reflected signals, MiSleep applies
Fast Fourier Transform (FFT) to them, where the location of peaks in the frequency spectrum
corresponds to the range of objects. The received signals, after undergoing FFT, serve as the input
to our system, referred to as mmWave reflected signals. Then, MiSleep designs two modules: A
toss-turn detector that classifies the sleeping period into two states, rest or toss-turn, and a sleep
posture predictor that predicts the 3D location of body joints during the rest state. For the toss-turn
detection, MiSleep leverages the cross-correlation between successive mmWave reflected signals
and a Hidden Markov Model (HMM) to label the sleeping period. For the sleep posture prediction,
instead of relying on traditional imaging algorithms, MiSleep trains a customized deep learning
framework with thousands of examples of mmWave signal reflections and ground truth 3D location
of body joints to learn a generalized relationship between them. Then, during the run-time, MiSleep
can accurately predict the joint locations only from the mmWave reflected signals. We collect
diverse datasets with multiple volunteers performing different sleep postures, that record signal
reflections from the body and the ground truth 3D location of the joints from co-located mmWave
transceivers and an RGB-D camera, respectively. These datasets are then fed to MiSleep for training
a height agnostic Deep Convolutional Neural Network (DCNN). The mmWave reflected signals are
paired with the ground truth joint locations and the known height of the monitored user to train
the network. The DCNN, from thousands of data pairs, learns the association between reflections
and joint locations, and at run-time, predicts the joint locations only from the reflected signals.
Figure 4 shows the system overview of MiSleep. We now describe these design components in
detail.

3.2 Data Synchronization and Resampling

MiSleep’s deep learning model relies on datasets collected from different COTS devices that do not
have a tight hardware synchronization or the same sampling rates. Therefore, it is critical to ensure

ACM Trans. Internet Things, Vol. 0, No. 0, Article 0. Publication date: 0.



MiSleep: Human Sleep Posture Identification from Deep Learning Augmented Millimeter-Wave Wireless Systems ~ 0:7

E 12 Eo2 12
c | c 11
o i1 o
= ! = 4
8 s B 0.8
© K]
14 06 X6 06
[ [}
% 04 g 8 o4
14 Toss-Turn Events 02 14 Toss-Turn Events 0.2

10 10

10 20 30 40 50 10 20 30 40 50

(a) Time (s) (b) Time (s)

Fig. 5. (a—b) STFT outputs from two monitored cases with 3 and 4 toss-turn events. Reflected signals are
collected at 40 ms intervals for 60 seconds, and events are marked by visually inspecting the depth images.

synchronization between them so that input-output data pairs are aligned for training. To this
end, we rely on software synchronization and process data to remove any residual misalignment.
We collect the UTC timestamp from an NTP timeserver before triggering the mmWave devices
and the RGB-D camera for data collection. Then, based on timing information, we correlate the
first received frame with all other frames in mmWave devices, which identifies the first local
timestamp of movement and allows synchronization between devices. Once we find the first local
timestamp of movement, we calibrate data samples by offsetting the samples w.r.t. the timestamps.
Additionally, to compensate for the sampling rate mismatch (the mmWave devices and RGB-D
camera in our setup have 25 and 30 fps sampling rates, respectively), we resample the data in time
using a weighted averaging of adjacent samples. Then, the processed datasets are fed into the
toss-turn detector to classify the sleep states as rest or toss-turn, and under the rest states, they are
fed into the sleep posture detector to detect the 3D location of body joints.

3.3 Toss-Turn Detection and State Machine

The core purpose of the toss-turn detector module is to identify sudden movements during sleep and
classify the sleeping period into two states: Rest or toss-turn. It is critical to identify and separate the
states as it not only helps in estimating the time gap between two resting periods but also facilitates
a deep learning model to only predict the posture under rest states, and avoid erroneous predictions
under toss-turns. Furthermore, it helps MiSleep understand that the person has likely changed
the sleep posture so that the posture predictor module can reset itself. Besides, identifying and
recording such states could be beneficial for long-term monitoring. To classify the states, MiSleep
analyzes and processes the reflected mmWave signals received by the monitoring device.

3.3.1 Cross-Correlation based Toss-Turn Detection. Inspired by the previous works on elderly fall
detection using wireless signals [62, 63], MiSleep leverages the observation that in comparison to
the rest states, toss-turn states are usually associated with significantly higher spatio-temporal changes
in the received mmWave signals. While it might appear logical to detect toss-turn states based on
the velocity changes of the reflection points, as movement often translates to a change in velocity,
during sleep, individuals often exhibit minor, sometimes sudden, movements without necessarily
shifting their overall posture. For instance, someone might momentarily twitch an arm or leg,
or adjust their head position. Such sporadic movements, though seemingly minor, can result in
noticeable velocity changes in the reflecting points. By solely relying on these velocity changes,
our system could misconstrue these transient movements as significant toss-turn events.

To this end, we perform a preliminary experiment with our setup with a bed placed at 2.5 m in
front of the mmWave devices (see Figure 12), and a volunteer is asked to lie down and perform
multiple toss-turns, i.e., move from one posture to another. We collect the reflected mmWave signals
as a frame at 40 ms intervals from the experimental setup for 60 seconds, and apply a Short-Time
Fourier Transform (STFT) over the signal received by one of the mmWave antennas. Figures 5(a—b)
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show the STFT output for two cases, with 3 and 4 toss-turn events. While some changes are observed
under the toss-turn states, it is hard to separate them from the rest states without consulting the
ground truth. The changes are much weaker than the stark time-and-frequency changes observed
in the wireless signals during the fall [62]. A fall is a large-scale event associated with a change in
the height, the centroid of the body, and distance of the limbs and torso from the monitoring device,
which creates a strong, unique signature in the reflected signals. In comparison, the toss-turn during
sleep is usually a small-scale event, where the centroid of the body might not change, and the limbs
typically move between adjacent distance bins of the reflected signals (Section 2). Therefore, it
will require additional signal processing to amplify the changes during the toss-turns and separate
them from the rest states.

To amplify such changes, MiSleep applies a cross-correlation between successive frames of the
reflected signals, and estimates the rate of change (i.e., time-derivative) in the peak correlation
output. The key idea is intuitive: Cross-correlation between successive frames allows uncovering
the similarity (or dissimilarity) between the consecutive reflected signals. Since during the rest
states, there are almost no changes in the successive reflected signals, the cross-correlation will
show almost the same peak; so, its rate of change over time should be close to zero. On the other
hand, during the toss-turn states, such correlation peak fluctuates significantly, with a variable rate
of change. More importantly, the time-derivative removes the almost constant reflections from the
static background, i.e., bed, furniture, nightstands, etc., so that the only changes due to the body
movement are amplified and stand out. Let’s consider, R;({d1,ds, . . .,d,}) as the reflected signal
at time ¢ from distances d; w.r.t. the receiver. Mathematically, the cross-correlation, xCorr, and its
time-derivative, AxCorr, can be expressed as follows:

xCorry = max [Re(*) * R ()] = max | X" Re(divm) - Ry (i)

me(0,n—1)
AxCorr! , = xCorr; — xCorry.1

Where R; | is the complex conjugate of the received reflected signal at time instant ¢-1. Figure 6
shows an example of monitoring for ~30 seconds with 4 toss-turn events, the corresponding cross-
correlation output, and its time-derivative, which shows a stark contrast between the toss-turn
and rest states. To reduce the number of oscillations between the false detections (+/-) and states,
MiSleep smoothens AxCorr over time with an envelope detector using a Hilbert Transformation,
similar to [64]. The envelope detector uses the Root-Mean-Square (RMS) of AxCorr amplitudes
over N consecutive frames. Intuitively, a large value of N suppresses many false detections but
will have a slow reaction to the true state change. On the other hand, a small value of N will have
a fast reaction but could lead to high false detections and state oscillations. In practice, N = 25
frames, i.e., 1 second of the consecutive reflected signals, for envelope estimation, yields a good
result, since human movements during the sleep are on the order of several seconds [65].

Figure 7 shows another output of the envelope detector, and compares the result with the Kinect
based output. It also shows a zoomed time period, where a volunteer in the left lateral posture
turns right and moves to the supine posture.

» Practical Challenges: There are two practical challenges in using the envelope output for
state detection. First, since MiSleep uses a wideband mmWave device, the signals may occasionally
show strong fluctuations in the correlation output, even under the rest state, which can lead to
false detections. This is because the signals include reflections from all objects in the scene, even
far away. For example, with 256 samples in each frame of the reflected signals and 1.62 GHz
bandwidth, MiSleep is capable of measuring reflections up to 23.69 m. Clearly, dynamic events
(such as another human walking in another room) from such a faraway distance not only are
irrelevant for short-range monitoring but also can affect state detection. So, MiSleep considers a
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Fig. 7. Monitoring toss-turns: Envelope detector output from mmWave signals follows the changes in posture.

maximum range and prunes the reflected signals that are beyond the threshold. In our design and
evaluation, we use a maximum range of 5 m to cover only the bed and the surrounding area. Second,
the output of the envelope detector is a real number between 0 and 1, where 0 indicates no change
in the successive reflected signals, and 1 indicates a very high change. But for posture detection,
MiSleep requires discrete binary states: Rest or toss-turn. A strawman approach to discretize the
envelope could be to use a fixed threshold, such as envelope < 0.5 as rest, and envelope >= 0.5 as
toss-turn. Or, apply an adaptive threshold with a temporal clustering algorithm, such as k-means,
over small observation periods. But such approaches can often lead to false detections. This is
because, mmWave signals are very sensitive to the minute changes in the environment; so, the
envelope detector can still show high output during the occasional hand or leg movements, even if
the full body has not turned yet. Also, there could be early toss start and late toss end detection,
leading to the wrong estimation of the event duration: See Figure 7, where the turn time duration
estimated by mmWave signals is much larger than the Kinect output.

3.3.2 Improving Detection with a Two-States HMM. To overcome this challenge and improve the
detection accuracy and timing estimations, we design a lightweight two-states HMM [66]. The
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Fig. 8. (a) A two-states HMM. We use the Kinect output to learn the state and emission matrices, and then
use a Viterbi decoder on the envelope to predict the states. (b) Example detection of rest and toss-turn states.

HMM not only converts the envelope with real-valued output between 0 and 1 to a discrete output
of 0 and 1, but also improves the state detection accuracy and reduces the timing errors. Figure 8(a)
shows the state transition diagram of MiSleep’s HMM: The two states are rest and toss-turn, and
the emissions are different levels of envelope values.

To build the HMM, we collect several ground truth datasets involving multiple volunteers tossing
and turning during their sleep, and formulate the state transition matrices by estimating the 4 condi-
tional probabilities, i.e., p(Rest|Rest), p(Rest| Toss-Turn), p ( Toss-Turn|Rest), and p( Toss-Turn| Toss-Turn).
We formulate the emission matrix by estimating the conditional probabilities for discrete envelope
values (e), i.e., p(e < ai|Rest), p(e < az|Rest), ..., p(e < ai|Toss-Turn), p(e < az|Toss-Turn), and so
on. Finally, at run-time, MiSleep first calculates the envelope from the reflected mmWave signals,
and then uses the state transition and emission matrices and a Viterbi decoder [66] to predict the
binary states, corresponding to rest and toss-turn. Figure 8(b) shows an example of ~20 seconds of
monitoring with three toss-turn events and compares the prediction with the ground truth Kinect
based output. Clearly, in comparison to the k-means with adaptive threshold, HMM can improve
the errors in event start and stop times. Once the entire sleeping period is classified into rest and
toss-turn states, MiSleep aims to predict the sleep posture during the rest state.

3.4 Deep Learning based Sleep Posture Prediction

MiSleep predicts sleep posture using a deep learning model that relies on the relationship between
the 3D location of body joints and the mmWave reflected signals. The model can only learn such a
relationship based on the feature variance between distinct postures and individuals. So, we first
analyze the behavior of reflected signals and their relationship with individuals’ sleep postures.

3.4.1 Relationship between Human Sleep Postures and Signal Reflections. Intuitively, we can predict
the 3D location of joints for a specific posture only if the raw reflected signals from various postures
from the same human demonstrate distinct behavior in feature space. Similarly, we can distinguish
the 3D location of joints of individuals performing the same posture only if raw reflected signals
from a different person (i.e., varying in height and gender) appear distinct in feature space. These
distinctions not only will help the model to capture the relationship between raw reflected signals
and 3D joint locations but also are useful in generalizing the model for a diverse population. To this
end, we conduct two sets of experiments: First, we collect mmWave reflected signals from our setup
with the bed from a single volunteer performing 6 different sleep postures (Figure 9[a]). Second, we
ask 6 volunteers (3 males and 3 females, height varying from 155 to 178 cm) to lie down on the bed
in the same posture (Posture 2 in Figure 11) and collect signals reflected from their bodies (Figure
9[c]). For each experiment, we project the reflected signals in two-dimensional feature space by
measuring the t-SNE distribution; this distribution represents the signals in such a way that the
input with similar features appears closer to each other.

Figures 9(b) and 9(d) show the t-SNE distribution for a single volunteer performing 6 different
sleep postures on the bed and for 6 volunteers performing the same posture, respectively. Clearly,
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Fig. 9. t-SNE analyses of reflected signals from different sleep postures and volunteers show unique clusters
in the 2D feature space.

we observe 6 unique feature clusters for both the cases: Such unique clusters indicate that the input
signal carries enough signature so that a learning model should be able to effectively learn and
distinguish them using mmWave reflected signals.

3.4.2 MiSleep’s Rest Network. The core purpose of the Rest Network is to predict the 3D location of
body joints from the mmWave signal reflections and capture diverse sleep postures during the rest state.
The Rest Network is designed using a customized Deep Convolutional Neural Network (DCNN)
called Joint Regressor to map the relevant higher-dimensional features in input to output. The Joint
Regressor is trained with two human-anatomy specific features. First, 3D location of body joints of
an individual is correlated with her height [67, 68]; so, MiSleep could constrain and finetune the
prediction for joint locations by predicting the height and comparing the difference with the known
height of the user. Then, the model can output better 3D joint locations by backpropagating the
height prediction error, and the network can be generalizable for many users. Second, most of the
human body joints are spatially connected to each other in a parent-child, tree-like hierarchy [69],
and 3D pose of one joint is usually constrained by its parent’s pose [70]. So, the 3D location output
of a child joint should be conditioned on its parent joint to ensure the distance between the parent
and child is always fixed, across all postures. We now briefly discuss the DCNN fundamentals and
then describe the network components in detail.

» DCNN as the Feature Extractor: A DCNN maps relevant features in input to output by using
filters through a series of the convolution operation: It extracts the spatial features relevant to the
network by observing the non-linear correlation between input-output pairs. A DCNN consists of
input and output layers and a series of hidden layers along with millions of parameters that allow
it to model non-linear relationship, which is otherwise difficult to observe through mathematical
regression models [71]. However, DCNN needs to learn the mapping between joints and reflections
as well as learn interconnected spatial dependencies between joints. Therefore, DCNN needs deeper
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Table 1. Joint Regressor network parameters. Cj:jth Convolutional layer; Si: ith Stack in jth Convolutional
layer; FL: Flatten layer; FC: Fully Connected layer; Act. Fcn.: Activation Function. LReLU: Leaky ReLU.

C1 C2 C3 C4 C5 FL | FC1 FC2 | Output
Stack S1,S2 $1,S2 S1,S2 $1,S2 S1,S2
Filter # 4 8 16 32 64 512 128 63 21x3
Filter Size 6x6 6x6 6x6 6x6 6x6
Dilation | 2x2, 1x1 | 2x2, 1x1 | 2x2, 1x1 | 2x2, 1x1 | 2x2, 1x1
Act. Fen. | LReLU | LReLU | LReLU | LReLU | LReLU LReLU | Linear

customization in its architecture. Inspired by the approach in Deeppose [72] where they propose a
cascade of DCNN regressors, we propose to instead exploit the parent-child relationship between
joints. If we exploit the parent-child relationship between joints, we can model the joint hierarchy
that governs the joint locations and can reduce the overhead on DCNN. This allows DCNN to focus
on mapping signals to individual joints and propagate information into the output layer.

» Rest Network Architecture: Figure 10 shows the Rest Network architecture, with two major
components: Joint Regressor and Height Classifier, which we discuss next.

Joint Regressor: The objective of the Joint Regressor is to capture the hidden relationship between
mmWave reflections and 3D joint locations to infer the complete posture by using a customized
DCNN as the Feature Extractor. A DCNN maps relevant features in input to output by using filters
through a series of the convolution operation: It extracts the spatial features relevant to the network
by observing the non-linear correlation between input-output pairs [71]. Joint Regressor’s DCNN
takes a 2D input and performs a series of 2D convolutions in several layers to learn the relationship
between input and output. Joint Regressor is composed of several layers to first learn the basic
features, and as it gets deeper, it learns deeper hidden features that map non-linear relationship
between input and output. For the purpose of mapping signals to joint locations, we observe
through a series of finetuning processes that 5-layers of stacked convolution with 2 convolution
layers in each stack yield the best result than a vanilla DCNN. Stacked representation provides
depth to the network so it can learn complex hidden representations [73]. We also apply batch
normalization after each stacked layer to ensure normalization and prevent overfitting. The five
2D stacked convolutional layers are connected to a flatten layer that converts the input to a 1D
abstract feature of size 512, and then, pass it through two fully connected layers of size 128 and
63, respectively, to finally give output as the 3D location of 21 joints. Table 1 shows the detailed
network parameters.

Height Classifier: The objective of the Height Classifier is to assist the Joint Regressor in learning
the association between diverse postures of the same person. Since the skeleton of a person
typically depends upon her height [74, 75], incorporating height information can make the model
generalizable to many individuals with very little or no finetuning. A user could input her ground
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truth height to the monitoring system, and MiSleep can constrain the output from the Joint Regressor
by comparing the predicted height w.r.t. the ground truth, and backpropagating the error to rectify
the prediction of joint locations. Instead of predicting the actual height, we employ a classifier
by quantizing human heights into discrete values, and then predicting the class labels associated
with the quantization. The reason behind designing the model in such a way is twofold. First, it is
relatively easier to achieve higher accuracy in predicting a class label than regressing exact height
when we work with small samples from a diverse population. Second, since human heights are
limited to a certain deterministic range (e.g., in the US, the average height ranges 163 to 179 cm
[76]), it is well-suited to discretize them into range bins, instead of regressing a real value of height,
where the network could suffer from out-of-range issues. To learn the association between height
and sleep postures to mmWave signals, Height Classifier takes input from the flatten layer in the
Joint Regressor and uses a Multilayer Perceptron (MLP) to output a height classification. MLP is a
neural network with one or more hidden layers of neurons that are fully connected in each layer
to learn the mapping between input and output. Similar to DCNN, hidden layers provide levels
of abstraction to learn the mapping between input and output; but in contrast to DCNN, MLPs
are fully connected in each layer, providing all combinations of the features of the previous layers
rather than relying on local spatial coherence with a small receptive field. Additionally, the input
to the Height Classifier is a vector, and MLP works well with such a vector representation. MLP in
the Height Classifier comprises three hidden layers with 256, 128, and 64 neurons and an output
layer with the number of neurons equal to the number of height classes. We apply ReLU activation
in each layer and a Softmax activation in the output layer, which outputs probabilities associated
with the labels, and we select the label with the highest predicted probability.

» Total Loss Function: We train the Joint Regressor and the Height Classifier jointly by
designing a custom loss function, which is crucial to ensure that the network converges to an
optimal value by updating and backpropagating weights [77]. For N number of total joints, the loss

for the Joint Regressor is a combination of the Euclidean distance loss, Lgp = \/Zfil( rieal -J ;;re D5

between the predicted (J ;;re ) and ground truth (J jeal) for i joint locations and the parent-child
distance loss, Lyg = Zfil |PCD}  — PCD;W 4| that captures the joint hierarchy between predicted

real

(PCD;W ,) and ground truth (PCDi .o distance of i™" joint. The loss function in the Height Classifier is

a categorical cross-entropy loss, Lyc = — XX (yi’e“l.logr yf wd), between the i’ predicted (yf7 red) and
ground truth (yl.""“l) label of height for K number of class labels, which provides a good quantitative
measure in distinguishing probability distributions of discrete categories. The total loss can be
expressed as Lo = A1 - Lgp + A2 - Ly + A3 - Lpc, where Ay , A2, and A3 are the hyperparameters
that govern the contribution of each loss, and we will discuss their choice in Section 4.

3.4.3 MiSleep’s Posture Classification Network. The core objective of this network is to elevate the
capability of MiSleep to classify different sleep postures. To this end, we design a Posture Classifier
that can classify the sleep postures directly from the reflected mmWave signals. We modify the
network architecture of MiSleep in Figure 10, by adding a classifier to the Rest Network, to learn to
map reflections to different sleep postures. Similar to the Height Classifier, the Posture Classifier
takes the reflected signals of size 24 X 256 as input, and then leverages 5-Layered 2D Stacked
DCNNs5s and 4 fully-connected dense layers to predict classes. We apply batch-normalization and
LeakyReLU activation function in all the convolutional layers, and ReLU activation function in all
dense layers. We also apply a Softmax activation at the output layer of size 5, for the categorical
classification. The softmax activation assigns a probability (0 to 1) to each class, indicating the
likelihood of input belonging to each class. Table 2 shows the detailed network parameters.
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Table 2. Posture Classifier network parameters. Cj: jf! Convolutional layer; Si: ith Stack in jh Convolutional
layer; FL: Flatten layer; FC: Fully Connected layer; Act. Fen.: Activation Function. LReLU: Leaky ReLU.

C1 C2 C3 C4 C5 FL | FC1 FC2 | FC3 | FC4 | Output
Stack S$1,52 51,52 51,52 S$1,S52 51,52
Filter # 4 8 16 32 64 512 | 128 64 32 16 5
Filter Size 6x6 6x6 6x6 6x6 6x6
Dilation | 2x2, 1x1 | 2x2, 1x1 | 2x2, 1x1 | 2x2, 1x1 | 2x2, 1x1
Act. Fen. | LReLU | LReLU | LReLU | LReLU | LReLU LReLU | ReLU | ReLU | ReLU | Softmax

To train the network, we select the categorical cross-entropy as the loss function between actual
probabilities and predicted probabilities of different categories [78]. We discuss the network training
parameters in Section 4 and present evaluation in Section 5. Our classifier is primarily focused on
our baseline postures, but it can be expanded to include more postures without requiring substantial
changes in the layers or training with larger samples.

To summarize the design components, MiSleep first classifies the sleeping states as rest or toss-turn, and
then predicts the 3D location of the key body joints during the rest state from the reflected mmWave
signals, which in turn, helps to classify the sleeping postures.

4 IMPLEMENTATION
4.1 Hardware Platform

We implement and evaluate MiSleep by collecting real datasets from a customized hardware setup
we built. Our setup includes two mmWave transceivers operating at the 77-81 GHz unlicensed
mmWave frequency bands, TI IWR1443BOOST [45], that collect the mmWave reflected signals in
real-time at a frame rate of 25 fps, and one RGB-D camera, Microsoft Kinect Xbox One [46], that
collects the ground truth depth images and 3D location of body joints at a frame rate of 30 fps. A
data capture module, TI DCA1000EVM [79], is attached to each device to capture the mmWave
signals in real-time at a frame rate of 25 fps. The RGB-D camera captures depth images and outputs
3D joint locations at a frame rate of 30 fps. We follow Section 3.2 to preprocess the datasets and
synchronize and resample the captured signals and frames to align the datasets from multiple
devices, and further sanitize them to remove delays and spurious noise. Figures 12(a-b) show our
experimental setup similar to at-home bedroom setting with a Queen bed placed at 2.5 m from the
monitoring equipment. Each mmWave device has 3 transmit and 4 receive antennas on a linear axis,
and in its horizontal orientation, it can resolve reflection points in azimuth and depth mostly. So, to
resolve points also from elevation, we use two devices with one rotated 90° counter-clockwise w.r.f.
another. The resultant setup has two antenna arrays arranged in 3x4 and 4x3 configurations, and
with a bandwidth of 1.62 GHz, it achieves a depth resolution of 9.25 cm. To process the received
signals, we apply traditional FMCW signal processing with the following parameters: Ramp start
frequency - 77 GHz; frequency slope — 29.982 MHz/yS; baseband sampling rate — 1 Msps; number
of ADC samples — 256; chirp sweep duration — 60 uS; pulse repetition rate — 1 kHz; and maximum
antenna gain - 30 dB. Our input dimensions are 24x256, given by the number of ADC samples and
two antenna arrays. Here, 24 corresponds to the count of virtual channels derived from both 3x4
and 4x3 configurations, while 256 denotes the number of ADC samples. We implement MiSleep on
Matlab and Python environments running on host PC and GPU servers, which use the mmWave
reflected signals as input and generate rest/toss-turn states, 3D location of body joints, and sleep
posture class as outputs.
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Fig. 11. 5 broad categories of sleep posture in MiSleep.

4.2 Real Data Collection

We collect datasets from 8 volunteers (age: 19-30 years, M/F percentage: 62.5/37.5, height range:
155-178 cm) performing several variations of the 5 sleep postures on the bed: See Figure 11 and
Table 3 for the sleep postures and volunteers’ information. The background in our setup consists of
drywalls, like a bedroom, without any clutters (except for the whiteboard on the right side).

For the toss-turn datasets, we ask a volunteer to lie down on the bed and perform multiple
toss-turns, i.e., move from one posture to another, within 60 seconds. For static posture datasets, a
single experiment requires 60 seconds to complete, where the first 7 seconds are spent on walking
into the setup and looking into the Kinect for about 5 seconds so that Kinect starts detecting the
joints. Then, the volunteer is required to lie down in a posture till the end of the experiment. Even
though we collect data for 60 seconds with 30 fps, we discard many frames during preprocessing
and only consider those frames where the body joints are successfully detected by the Kinect during
the time the volunteer is in a static posture.

For height classification, we quantize the height range into 18 equal-sized bins from 147 cm to
191 cm, and label them 1 to 18. We train the Height Classifier with these ground truth labels, and
finetune the Joint Regressor using the loss from this classifier (Section 3.4.2). For heights beyond
this range, little finetuning can help the network to better understand the association between the
reflected signals and body joints. In total, we have nearly 70 K samples with a raw data size of
16.2 GB of toss-turn events, with a processed data size of 2.5 GB with 5 postures from 8 volunteers
of diverse ages, genders, and heights. Such diverse datasets help MiSleep to not only build accurate
models that are generalizable but also help benchmark and test them for multiple volunteers.

4.3 Network Training

We train MiSleep’s Rest Network by exploring different parameter settings to ensure convergence
to a near-optimal value. MiSleep’s Rest Network predicts two outputs, 3D joint locations and height
class, and trains the network end-to-end with different loss functions for each output. First, we set
the training epochs as 2500, and then monitor the training process by saving weights of the best
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model using model checkpoint and callbacks till the total loss function shows no improvement for
consecutive 30 epochs. Then, we explore different optimizers, such as, Adam, Rmsprop, SGD, etc.,
and observe better convergence with Adam with a learning rate of 2x10™* and a batch size of 2.
To ensure better convergence and prevent overfitting, we split the training set into training and
validation sets in an 8:2 ratio. MiSleep’s Rest Network includes three different losses, Lgp, Ly, and
Lyc with the hyperparameters of 1, A;, and A3, respectively. We explore a different combination
of hyperparameters for loss functions, and found that the whole network performs better with a
combination of 0.5, 0.5, and 0.1 for A4, A;, and A3, respectively. This combination ensures that the
Joint Regressor in the Rest Network equally prioritizes the absolute joint locations estimation and
maintains the joint hierarchy, and Height Classifier pays attention to height variation. We also
train the Posture Classifier using Adam optimizer with a learning rate of 1x10™* and a batch size
of 4 for training epochs of 1000. The Rest network is implemented in Python with TensorFlow 2.4
[80] using Spyder IDE [81] and Anaconda version 4.10.3 distribution [82]. Our training time varies
between 6 to 10 hours for completion in a GPU server with 2 NVIDIA RTX A6000 nodes [83].

5 MISLEEP EVALUATION

Evaluation Summary: We summarize MiSleep’s overall performance below:

» MiSleep’s HMM-Viterbi detects toss-turn events with a median accuracy above 85% along with
median precision, recall, and F1-score of 0.97, 0.88, and 0.92, respectively, indicating high accuracy
and low false positives. MiSleep always predicts the event duration within 1.7 s of the ground truth,
and can identify the start and end times within 0.25 s and 0.73 s errors in the median.

» MiSleep’s Rest Network predicts the 3D location of body joints of a person in various sleep
postures with median and 90" percentile errors of 1.3 cm and 6.24 cm, respectively. The network
generalizes well across multiple volunteers, with median and 90" percentile errors of 2.3 cm and
7.4 cm, respectively. The network shows similar performance for persons sleeping under blankets.

» The Rest Network classifies volunteers based on their height information with accuracies
ranging from 87% to 94% for 8 volunteers, and classifies 5 different postures with an accuracy above
90% for all 8 volunteers, and generalizes well across unseen volunteers.

5.1 Toss-Turn Detection Results

5.1.1 State Detection Performance. To evaluate the effectiveness of MiSleep’s toss-turn detection
modules, we use the dataset collected from a single volunteer performing several toss-turns on
the bed. First, we preprocess the dataset following the method in Section 3.2 to generate the input-
output pairs of mmWave reflected signals and 3D location of body joints. Also, for each pair, we
collect the corresponding Kinect depth images to identify the ground truth rest or toss-turn states.
Then, we build the HMM from the Kinect ground truth, use the reflected signals to estimate the
envelope, and apply the Viterbi decoder to it to predict the states. We find the ground truth toss-turn
using these three steps: (1) apply a fixed mask corresponding to the area of the bed in the depth
image; (2) calculate the pixel-to-pixel difference in the successive depth images; and (3) find the
energy in the residual depth, which ensures that the effect of posture change is sharply amplified
in the output (see Figures 6 and 7). Since it is hard to control the number of toss-turns during
the actual sleep, and obtain a reasonably-sized dataset, our volunteer mimics the toss-turn events
with posture changes within a short period of 20 to 30 seconds to generate one dataset. We obtain
19,386 state observations from 30 datasets, and compare the state detection accuracy by calculating
the percentage of the cases where MiSleep’s observation matches with the Kinect output. Since
COTS mmWave devices can have a variable number of antennas, we also use the observation from
multiple antennas and take median votes to decide between the output binary states.
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Fig. 13. Rest and toss-turn detection accuracy: Effects of (a) the number of antennas. (b) different RMS
duration for envelope estimation. The bar and errorbar represent the median and standard deviation across
19,386 states. We have three observations: (1) Performance is consistently better with HMM-Viterbi. (2) Only
a small improvement is observed when using multiple antennas. (3) A large RMS duration causes more state
prediction error since the reaction time of the system becomes slower.

Figure 13(a) shows the state detection accuracy w.r.t. the Kinect-based ground truth, across the
different number of antennas. Clearly, MiSleep’s HMM-Viterbi performs consistently better than
the envelope thresholding algorithm, and the median accuracy is always above 85%, reaching up
to 100% in certain cases. This is because the HMM-Viterbi can enforce the envelope to follow the
Kinect based toss-turn events with its state and emission matrices. Moreover, the detection accuracy
is unaffected by the number of antennas used in our model. This is because mmWave signals are
sensitive, and even one antenna, with a large beamwidth, can cover the whole bed area and detect
state changes. Furthermore, we use a variable number of frames, from 3 to 100, corresponding to
0.12 to 4 s, to compute the RMS for the envelope detector, and predict the states.

Figure 13(b) shows that the large RMS duration, such as 4 s, although useful for suppressing false
detections, decreases the state detection accuracy significantly, since it reacts slowly to the true state
changes. Still, MiSleep performs consistently better with HMM-Viterbi, and RMS duration of 1 s
shows 88% detection accuracy on the median. Figure 14(a) shows the distribution of precision, recall,
and F1-score of the event detection, where the median values are 0.97, 0.88, and 0.92, respectively,
indicating MiSleep is not only accurate but also has low false detection rates. Finally, these state
detection performances are estimated during a short period by limiting our observations near the
toss-turn events. When we test the reflected signals from only the static postures, collected over
a combined duration of more than 7.5 hours, we observe that MiSleep always outputs the rest
states, i.e., it has 100% accuracy, irrespective of the volunteers or their postures. This is because
mmWave signals have very low fluctuations under the static posture, and are unaffected by the
quiet bedroom conditions. In summary, these results show that MiSleep’s toss-turn detector modules
consistently perform well and can predict the rest and toss-turn states with high accuracy.

5.1.2  Toss-Turn Timing Parameters. We also evaluate MiSleep’s performance in identifying the
timing of the toss-turn events. This information could be useful in not only identifying the precise
start and end of toss-turn but also annotating the events automatically. To this end, we use the same
set of state observations as before and estimate the toss-turn times from both MiSleep and ground
truth. We evaluate three different errors in timing parameters: Toss-turn start time, end time, and
duration. For the start and end times, we first locate each event in the ground truth and identify
the time of the state change from 0 to 1 (i.e., rest to toss-turn) as start and 1 to 0 (i.e., toss-turn to
rest) as an end. For each case, we identify the closest time of such events detected by MiSleep and
estimate their corresponding start and end times. For the duration error, we find the sum of the
absolute differences in start and end times of the ground truth and MiSleep.

Figure 14(b) shows the distribution of error in duration estimation across ~100 toss-turn events,
and compares the performance with and without the HMM-Viterbi. First, our total count for
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Fig. 14. (a) Precision, recall, and F1-score for the state detection with HMM. (b) Distribution of errors in
toss-turn duration estimation, with and without HMM. (c) Distribution of errors in toss-turn start and end
times detection with HMM.

predicted toss-turn events shows that MiSleep did not miss any detection. Second, without HMM-
Viterbi, we observe that the median and 90" percentile errors are 1.22 s and 2.04 s, respectively.
In contrast, HMM-Viterbi can reduce this error to 0.58 s and 1.34 s in median and 90" percentile,
respectively. More importantly, MiSleep always predicts the duration within 1.7 s of the ground
truth across all our observed events. Figure 14(c) further shows the toss-turn start and end time
estimation errors with HMM-Viterbi. Here, the median errors in start and end detections are 0.25 s
and 0.73 s, respectively. Moreover, the 90" percentile errors show that MiSleep is accurate within 1
s and 1.5 s to detect the start and end of the event, respectively. These experimental results show
that MiSleep not only can count the number of toss-turn events accurately but also is highly accurate
in locating the events in time.

5.2 Sleep Posture Prediction Results

5.2.1 Error in Estimating 3D Location of Body Joints. We now evaluate the performance of MiSleep’s
Rest Network in predicting the 3D location of body joints during sleep. For a baseline performance,
we first use a small-scale dataset of ~9730 samples collected from three volunteers (2 females
and 1 male, height varying from 155 cm to 178 cm), with the lowest and highest height among
all volunteers, performing 5 different sleep postures and their variations, and then evaluate the
performance across all 8 volunteers. Initially, we want to evaluate the performance of the system on
volunteers with the lowest and highest height among all volunteers, such that, when we evaluate
the generalizability of the system, we can test on unseen volunteers whose height falls within
the range. We follow the same process as before to synchronize and resample the ground truth
joint locations and mmWave reflected signals, and we label the volunteers’ height into discrete
categories following Section 4. Then, we randomly select ~8700 samples for training and ~1030
samples for testing. All our samples are evenly distributed across all postures. During training, we
use 20% of the training samples for validation. The baseline results include the performance of the
Joint Regressor in terms of the Euclidean distance between the ground truth and predicted joint
locations.
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Fig. 15. (a) MiSleep’s prediction errors for 3D locations of 21 joints across 5 poses for 3 volunteers. (b) MiSleep’s
prediction errors across all joints, summarized for individual sleep postures.
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Fig. 17. Height Classifier improves the performance of Rest Network. The median joint location error is
reduced by 4.92 cm.

Figure 15(a) shows the performance of MiSleep, where we observe that for all 21 joints, median
error is always less than 4.1 cm. However, we see a very high standard deviation across joints
14, 15, 16, 19, and 20 (left knee, left ankle, left foot, right ankle, and right foot). This increased
standard deviation can be attributed to limitations in the device’s angular resolution. If the angular
resolution is not sufficiently fine, two body parts that are close together might be detected as one, or
their relative positions might be inaccurately assessed. While our kinematics-based learning model
offers robustness against such challenges, it is not entirely impervious to them. To investigate
this issue further, we plot the aggregated errors from all joints and separate them in terms of
the sleep postures. Figure 15(b) shows that a majority of the errors are from the right fetal, i.e., a
curled up posture. The reason for such high error could be due to the inability of the ground truth
device to produce accurate joint locations for curled up postures. Although the location of feet
joints play a significant role in sleep postures. But the joints that are critical to facilitate a sleep
posture monitoring application can be predicted accurately by MiSleep. Figure 16 shows top-view
of skeletons for various sleep postures predicted by MiSleep. These results demonstrate that MiSleep
can predict the 3D location of body joints accurately, and the predicted postures are similar to the
ground truth.

5.2.2  Effect of Height Classifier. Recall that, MiSleep uses the output from the Height Classifier
to finetune its Joint Regressor so that the network learns association between height and the 3D
posture of a person from the mmWave signals. Our model’s primary objective is to accurately
deduce the 3D joint positions, and these positions remain relatively consistent across different
body types when considering individuals of similar height. If two people of the same body type
and similar height were to assume the same sleeping posture, our system would generate nearly
identical skeletons based on the reflected signals. This improves the generalization ability of the
network as well as helps to refine the prediction.

To understand the benefit of the Height Classifier, we estimate the absolute 3D joint location
errors with and without using it in the model. To this end, we first train the Rest Network without
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Fig. 18. MiSleep generalizes across multiple volunteers with only a little finetuning. (a) Joint and (b) Height
errors. MiSleep starts with training from a single volunteer’s dataset, and as we progressively add new
volunteers, the error decreases for both joint locations and height estimation. The testing samples are from
all 8 volunteers.

the classifier on ~6500 samples collected from three volunteers, and test it on another set of ~2000
samples. Furthermore, we build the Height Classifier following Section 3.4.2 into the network
and feed its loss function to finetune the output of the Joint Regressor. Then, we evaluate the
performance with the same set of training and testing samples.

Figure 17 shows the performance of the Rest Network with and without the Height Classifier.
We observe that MiSleep predicts joint locations with median and 90 percentile errors of 6.22 cm
and 12.12 cm, respectively, without the Height Classifier. However, by incorporating the classifier,
we observe a better prediction with median and 90" percentile errors of 1.3 cm and 6.24 cm,
respectively. This is because the network can better associate height information of an individual
with variations in sleep postures, which, in turn, enables better joint location estimation from
the reflected mmWave signals. These results show the efficacy of the Height Classifier in assisting
MiSleep’s Rest Network to yield better estimation of the 3D location of body joints from mmWave
reflected signals.

5.2.3  Effect of Number of Volunteers. To evaluate the generalizability of MiSleep’s Rest Network
for diverse volunteers, we now perform an ablation study. Here, we would like to understand the
performance and amount of finetuning required for new, unseen volunteers for MiSleep. To this
end, we randomly select 2000 test samples from 8 volunteers, including all 5 sleep postures, with
250 samples from each volunteer. These are unseen data for MiSleep’s Rest Network. We then create
a training set of ~3000 samples from one volunteer and train MiSleep’s Rest Network: We consider
it as a base model. We then evaluate the performance on the test samples that include data from all
volunteers by calculating absolute joint location error across all 21 joints and the absolute error in
height prediction. Then, we progressively add 2 new volunteers’ datasets and finetune the base
model, and test on the same set of test samples for 8 volunteers.

Figure 18 shows the performance of MiSleep with different levels of finetuning. With zero
additional volunteers for the base model, the network is unable to capture variations in sleep
posture and its relation to the height of varying individuals. We see that the median joint location
error is very high, 11.6 cm, and the predicted body joints may not be usable in practice. Similarly,
the median error in the predicted height of the unseen volunteers could be 10.2 cm, which is highly
inaccurate. This is intuitive since the network has learned from the dataset of only one volunteer,
which results in both body joint and absolute height errors. However, by finetuning the network
with 2 additional volunteers’ datasets for 500 epochs, we see an improvement in prediction as
median errors for joint locations and height decrease to 7.5 cm and 5.08 cm, respectively. This
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is because MiSleep can learn feature association between individuals and their sleep posture and
become more generalizable to capture the correlation between mmWave reflections and human
body shape. Such improvements are also consistent in both the joint locations and height prediction,
as we increase the number of volunteers for finetuning.

In summary, MiSleep is generalizable to different volunteers and requires minimal finetuning as it
learns an association between individual’s skeletal feature and reflections to predict posture.

5.2.4 Classification of Different Individuals. Recall that, MiSleep’s Rest Network also provides the
height information from its Height Classifier, which is used to further finetune the Joint Regressor’s
performance. To evaluate the efficacy of the classifier, we use the datasets from 3 volunteers with
different heights and label them into three different classes, and predict the labels from the model.
We randomly test on 1026 data samples (342 from each volunteer), and Table 4 shows the confusion
matrix of categorical labeling, where columns are the actual labels and rows are the predicted
labels. While the misclassification rate between volunteers 1 and 2 is a bit higher because they have
similar heights (4.3% for 1 and 2 vs. less than 2% for the others), we see an average classification
accuracy of 93.56% across all three classes. Furthermore, Table 5 shows the confusion matrix of all

Table 4. Confusion matrix of 3 volunteers classification in MiSleep.

Actual/Predicted | Volunteer 1 | Volunteer 2 | Volunteer 3
Volunteer 1 93.6% 2.9% 3.5%
Volunteer 2 4.7% 92.7% 2.6%
Volunteer 3 3.8% 1.8% 94.4%

Table 5. Confusion matrix of 8 volunteers classification in MiSleep.

Actual/Predicted | Volunteer 1 | Volunteer 2 | Volunteer 3 | Volunteer 4 | Volunteer 5 | Volunteer 6 | Volunteer 7 | Volunteer 8
Volunteer 1 91.2% 4.8% 2% 2% 0% 0% 0% 0%
Volunteer 2 6.4% 88.8% 3.2% 1.6% 0% 0% 0% 0%
Volunteer 3 4.4% 1.6% 87.2% 6.4% 0.4% 0% 0% 0%
Volunteer 4 0% 0% 8% 92% 0% 0% 0% 0%
Volunteer 5 0% 0% 4% 0% 93.6% 0% 2% 0.4%
Volunteer 6 0% 0% 0% 0% 7.2% 88.8% 3.2% 0.8%
Volunteer 7 0% 0% 0% 0% 0% 0% 92% 8%
Volunteer 8 0% 0% 0% 0% 0% 0% 6% 94%

8 volunteers’ height prediction, where we retrain MiSleep with 24,000 data samples that include
data from all volunteers. Then, we randomly test on 2000 data samples (250 per volunteer), and
predict their height labels. We observe that class prediction is consistent with an accuracy of more
than 85% across all volunteers. We also observe some misclassification rates of 0.4% to 8%, among
volunteers that share nearly the same height information. Even though the error is a bit higher, the
overall performance of the classifier is acceptable with accuracy in the range of 87% to 94%. These
results demonstrate that MiSleep can classify different volunteers accurately, and can generalize well
to individuals of varying heights and genders.

5.2.5 Classification of Different Sleep Postures. We now evaluate MiSleep’s ability to predict the
discrete categories of broad sleep postures (Figure 11). Such broad categories could be used to not
only label the rest states but also summarize an individual’s sleeping habits. We use the datasets
from all volunteers performing the 5 postures, and train the Posture Classifier using 7336 training
samples (917 from each volunteer), and randomly select 3735 test samples (747 from each posture
class) from all volunteers to evaluate the classification accuracy. Table 6 shows the confusion matrix
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of categorical labeling with columns as an actual label and rows as predicted label for sleep postures.
We observe that the accuracy for the broad categories of posture is well above 91%, which indicates
that MiSleep can accurately extract distinguishing features from postures by identifying signatures
in reflected signals associated with each posture.

Furthermore, to observe the generalizability of the Posture Classifier, we reduce training samples
to ~5500 by eliminating samples from two volunteers. Then, we predict using the same 3735 test
samples from all volunteers (747 from each of the categories). Table 7 shows that even by training
MiSleep with datasets from 6 volunteers and testing on datasets from 8 volunteers, there is no
significant difference in the classification performance. From these results, we see that the mmWave
signal carries a distinct signature associated with a person’s sleep posture, and MiSleep can classify
these postures with very high accuracy.

Table 6. Confusion matrix of posture classification trained with data from 8 volunteers and tested on those 8
volunteers.

Actual/Predicted | Supine | Right Lateral | Right Fetal | Left Lateral | Left Fetal
Supine 91.3% 4.2% 3.3% 0.9% 0.3%
Right Lateral 0% 98% 2% 0% 0%
Right Fetal 0% 2% 98% 0% 0%
Left Lateral 0% 0% 0% 98.6% 1.4%
Left Fetal 0% 0% 0% 1% 99%

Table 7. Confusion matrix when trained with data from 6 volunteers but tested on 8 volunteers.

Actual/Predicted | Supine | Right Lateral | Right Fetal | Left Lateral | Left Fetal
Supine 90.7% 4.8% 3.8% 0.5% 0.2%
Right Lateral 0% 97.4% 2.6% 0% 0%
Right Fetal 0% 6.3% 93.7% 0% 0%
Left Lateral 0% 0% 0% 98.4% 1.6%
Left Fetal 0% 0% 0% 2.2% 97.8%

5.2.6  Effect of Different Sleeping Positions on the Bed. We now evaluate the effect of body’s location
in bed by asking a volunteer to sleep at 5 different locations in the bed. Since the location of a
person may change during the sleep, we would like to verify if MiSleep would still work without
re-training the system. Intuitively, MiSleep should perform similarly at all locations when the
background is static. It is because MiSleep relies on the signatures in reflected signals for specific
postures. Therefore, if there is no significant change in background, MiSleep generates similar
reflected signals for the same postures at every location. We select 5 different locations in bed: (1)
leftmost edge (90 cm from bed center), (2) left edge (45 cm from bed center), (3) center, (4) right
edge (45 cm from bed center), and (5) rightmost edge (90 cm from bed center). Figure 19 shows the
prediction for these 5 locations. We observe a median error ranging from 1.17 to 2.29 cm, which is
on par with the baseline prediction. Our observation shows bed location has minimal impact on
the performance of MiSleep in predicting joint locations. Therefore, MiSleep has a similar prediction
performance regardless of the body’s locations in the bed.

5.2.7  Effect of Occlusion. In all our analyses thus far, we have evaluated sleep postures without any
occlusion, such as a blanket. We now evaluate the effect of occlusion on MiSleep’s performance. We
rely on Kinect to obtain the ground truth sleep postures, but Kinect does not work under the blanket
since its depth sensors cannot penetrate through occlusion. Therefore, to evaluate the performance
under the blanket, we rely on approximating the ground truth. First, we ask a volunteer to perform
sleep posture without a blanket so Kinect can capture the ground truth. Then, we cover their body
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Fig. 19. Average prediction error for body joint location for 5 sleeping locations in bed.
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Fig. 20. (a) Cross-correlation of reflected signals during data collection. (b) Reflected signal strength with no
blanket, thin blanket, and thick blanket. (c) CDF plots for prediction error from all three settings.

with a blanket without disturbing the setup, ensuring no change in the sleep posture, and collecting
the mmWave reflections. From the cross-correlation between consecutive reflected signals (Figure
20[a]), we ensure the mmWave reflections are not used for prediction when we cover the person
with the blanket. Such approximation works, since the signature of the reflected signal for the same
posture does not change drastically with or without the blanket: mmWave signal can still penetrate
through the blanket (see Figure 20[b]). Also, we collect data with two types of blanket: thin sheet
and thick comforter as shown in Figure 21. In total, we collect 600 data samples for each case with
the volunteer in various sleeping postures. We compare MiSleep’s prediction for occlusion to the
ground truth obtained from Kinect before the occlusion.

Our experimental results in Figure 20(c) show median and 90** percentile errors of 3.5 cm and
4.45 cm, respectively, when a person performs posture without the blanket, which is closer to our
baseline performance. With the thin blanket, the median and 90" percentile errors are 6.8 cm and
9.2 cm, respectively, and with the thick blanket, they are 11 cm and 13.33 cm, respectively. Note
that we do not finetune our system due to a lack of ground truth. Our visual result in Figure 21(a—c)
shows the prediction of MiSleep without the blanket, under the thin blanket, and under the thick
blanket. Even without finetuning, we observe that MiSleep can capture the sleep postures during
occlusion. We believe with better medium to capture the ground truth, such as a pressure sensor
mattress [84], we can improve the performance of MiSleep to capture postures under the blanket.

Oth

5.2.8 Longitudinal Study. We now demonstrate MiSleep’s Rest Network performance for a longer
duration. We collect 98 instances of various postures of a volunteer, each posture spanning 60
seconds to create an observational window of 98 minutes. Then, we compute the median prediction
error of body joint locations for each instance. Figure 22 shows that even for several variations
of sleep postures, our median error lies within a tolerable range of 1.1 to 2.5 cm, indicating the
effectiveness of Rest Network in capturing the variations of sleep postures for a long duration. The
result shows that the prediction performance of MiSleep is unaffected by the observational period, so it
can identify the sleep postures throughout the night with tolerable errors.
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Fig. 21. (Top) RGB images of sleep postures. (Bottom) Predicted sleep postures for three settings: (a) Without
blanket; (b) With thin blanket; (c) With thick blanket. Sleep postures are from a 2D (top) view.
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Fig. 22. Median prediction error of 3D locations of body joints for ~100 minutes of sleep.

6 COMPARISON WITH A STATE-OF-THE-ART WORK

Since our proposed approach is the first of its kind in using mmWave wireless signals for 3D
joint estimation during sleep, our evaluation is limited to comparing it with other works that
concentrate on activities like standing or performing exercises. Specifically, we compare MiSleep
with RF-Pose [85], a state-of-the-art technique in the RF domain that estimates human poses by
generating skeletons from radio signals during standing postures.

In RF-Pose, a student-teacher network approach is implemented, where the teacher network
learns from RGB images and demonstrates high accuracy in estimating human pose. In our system,
our ground truth pose information from Kinect’s depth images is highly accurate and thus, acts
as the output of teacher’s network to guide the student network. Similar to RF-Pose, the network
learns to estimate the pose by computing and comparing the loss between the output of the teacher
network (based on Kinect’s human pose) and the student network’s predictions. Based on the
loss, the network adjusts its parameters to minimize the difference between output of teacher
network and student network’s prediction during training. As the training progresses, the student
network gradually improves its performance and aligns its pose estimation with the output of
teacher. This iterative process of minimizing the loss helps the student network refine its pose
estimation capabilities and achieve higher accuracy over time.

We follow similar architecture as in RF-Pose, making some adjustments to match our specific
input and output requirements. Like in RF-Pose, our student network follows an encoder-decoder
design, but with modifications to accommodate the input from our horizontal and vertical mmWave
devices as shown in Figure 23. Our heatmaps are generated from the horizontal and vertical antenna
array of our mmWave devices. The size of these heatmaps is 26 X 64. Since sleep is a static activity,
we do not consider the temporal dimension and set it to 1. Consequently, our input to the encoder
is represented as 1 X 26 X 64 X 1, indicating the number of channels x depth x height x width.
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Fig. 23. Heatmaps generated from horizontal and vertical mmWave devices.

This modified encoder-decoder architecture allows us to process the heatmap information from
our mmWave devices effectively and estimate human pose accurately for sleep monitoring.

Similar to the architecture used in RF-Pose, our encoder consists of 10 layers of spatio-temporal
convolutions with a filter size of 9 X 5 X 5. Every other layer applies 1 X 2 X 2 strides on spatial
dimensions. Batch normalization and ReLU activation functions are applied after each layer, and
max-pooling is performed every second layer. The encoder takes the horizontal and vertical
heatmaps as input and encodes them into a 32 X 2 X 1 X 1 tensor, separately for each heatmap.
For the decoder, we utilize a combination of spatio-temporal convolutions and fractionally strided
convolutions to decode the pose into a 21 X 3 tensor. The overall architecture is similar to RF-Pose,
but we modify the output layer to generate the 21 X 3 pose information. To train the network, we
use the mean-squared error as the loss function, which measures the difference between the ground
truth pose and the generated pose. The network is trained using a batch size of 24, with the Adam
optimizer and a learning rate of 0.001. The implementation is done in the PyTorch framework.

We compare the performance of MiSleep’s Rest Network and RF-Pose in terms of the Euclidean
distance between the ground truth and predicted joint locations in Figure 24. In Figure 24(a), we
observe that RF-Pose predicts joints with median and 90 percentile errors of 4.04 cm and 12.14 cm,
respectively, while our baseline result shows median and 90" percentile errors of 1.3 cm and 6.24
cm. Additionally, we analyze the prediction error for individual joints in Figure 24(b). We observe
that for all 21 joints, the median error is always less than 6 cm, which is comparable to our baseline
in Figure 15(a), where the median error is always less than 4 cm across all 21 joints. However, we
notice that with RF-Pose, the standard deviation across all joints consistently reduces, indicating
lower variability across data points.

We observe that implementing RF-Pose’s architecture for our input yields results that are quite
similar to our baseline, indicating that the joint predictions produced by MiSleep are comparable to
those achieved by the state-of-the-art human joint prediction system.

7 LIMITATIONS AND FUTURE WORKS

Implementing MiSleep on mmWave Networking Devices: We have designed and prototyped
MiSleep on COTS mmWave Radars that operate on a 1.62 GHz bandwidth and can achieve a depth
resolution of 9.26 cm. In the future, our goal is to deploy MiSleep for at-home monitoring by
reusing COTS mmWave networking devices, such as the 5G home wireless routers. We expect
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Fig. 24. (a) Performance comparison of joint location prediction between MiSleep and RF-Pose. (b) RF-Pose’s
prediction errors for 3D locations of 21 joints.

that MiSleep will perform even better on COTS mmWave communication devices. This is because
current standard mmWave networking devices, that follow IEEE 802.11ad protocol [48], operate
on a 2 GHz bandwidth; so it can achieve a better depth resolution of 7.5 cm. With higher depth
resolution, a device can distinguish reflections from two different points with higher confidence,
and it should be able to predict joint locations with higher accuracy. Also, these devices can already
measure the reflected signals from the Channel Estimation (CE) header field [48], requiring no
protocol or packet format modifications. But current COTS mmWave networking devices do not
provide user access to the reflected signals yet, without device firmware modifications. We propose
to explore its feasibility in the future.

Extending MiSleep for Two Persons on a Bed: MiSleep is currently designed and evaluated
as a single person sleep posture monitoring system. Extending MiSleep to monitor two persons
simultaneously is very challenging. First, when two persons share a bed, they lie in proximity to
each other, so, the reflected signals from their bodies will be entangled with each other when they
are received by MiSleep. Given the depth resolution is 9.26 cm only, it might be hard to separate the
mixed reflections. Second, two persons may move and toss-turn at the same time, which makes
it harder to identify and track the toss-turn of an individual based on signal cross-correlation.
One approach could be to track vital signs, such as breathing rate, heart rate, etc., as two different
individuals may show some distinct signatures, and then, we can improve spatial resolution with
digital beamforming overall receive antennas. Existing works [86-89] can extract vital signs for
multi-person or improve spatial resolution to enable multi-person tracking. But they are limited to
human motion and have not been adapted for sleep posture monitoring, and we will investigate
their feasibility and challenges in the future.

Long-term Sleep Monitoring and Field Deployment: In MiSleep, we analyze two critical aspects
of the sleep posture monitoring: (1) we identify the toss-turn events during sleep from reflected
mmWave signals, and classify the sleeping period to binary states; (2) we show that mmWave
signals carry enough information and build and validate a model to predict the accurate 3D location
of body joints. However, our observations and evaluations are limited to datasets collected for a
short duration due to low buffer sizes in mmWave devices and Kinect image acquisition [90], and
they quickly fill up with high sampling rates (25 fps and 30 fps). Therefore, we were unable to
collect data for a long duration, and analyze the joint performance of MiSleep’s toss-turn detector
and sleep posture predictor. One option could be lowering the sample rates to 1 or 2 fps and/or
modifying data collection software to enable real-time frame streaming to either a local PC or cloud.
In the future, we will extend the data collection period for long-term monitoring and evaluate
MiSleep’s performance end-to-end.
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8 RELATED WORK

RF-based Sleep Posture Detection: Significant research efforts have been directed to under-
standing and inferring sleep posture using RF signals. These approaches use signals that bounce
off the body of the person to determine the sleep posture. [91] embeds RFID tags in bedsheets
and enables a contactless sleep-monitoring system by recognizing sleep postures using a machine
learning classifier. [92] implements passive RFID tags under a bed sheet to provide a non-intrusive,
and comfortable way of monitoring the sleep postures. [39] uses signals from Wi-Fi like device
to identify the angular orientation of a person to determine sleep posture. [40] also uses Wi-Fi to
exploit the fine-grained channel information to capture the minute movements caused by breathing
and heartbeats. [41, 93, 94] adopt off-the-shelf commodity Wi-Fi devices to monitor sleep, but
they mainly focus on predicting sleep stages and identifying breathing and motion patterns rather
than sleep postures. However, all these works provide a coarse representation of the sleep and
cannot identify the key body joint locations due to the low-resolution offered by Wi-Fi-like devices.
MmWave signals in ubiquitous commodity networking devices can enable such system by repre-
senting the human body at a fine-grain scale as compared to Wi-Fi. Yet, it is challenging to extract
body joint information directly from traditional mmWave imaging during sleep.

Millimeter-Wave based 3D Joint Estimation: In recent years, researchers have been able to
extract meaningful information about humans using mmWave wireless signals from commodity
devices [95-97]. In particular, extracting skeletal information has been the main focus as it provides
visual information about the 3D pose of a person [95, 98—103]. For example, [98] predicts the
3D location of 15 key body joints during human walking using a point-cloud representation
of mmWave reflection points, and it can enable application in pedestrian detection for traffic
monitoring. Similarly, CLGNet estimates 3D location for 21 joints using a commodity mmWave
device, where it uses a global spatial information encoding module to improve the detection
performance of key points in minor body parts (such as, hands or feet), and achieves an average
accuracy of 0.29 m [100]. Furthermore, [101] incorporates forward kinematic constraints to learn
3D skeleton without suffering from corrupted pose estimations. The input is in the form of a
range-doppler spectrum that intuitively helps in encoding the range and velocity of each joint,
enabling the learning of spatial rotation angle required for incorporating kinematic constraints.
All these existing works focus on human motion and have not been adapted for sleep posture
monitoring. Unlike in human motion, where previous timestamp information about joints can
be utilized to predict joint locations in the next frame, we cannot leverage this fact fully in sleep
posture monitoring. It is because during sleep, a person is mostly in the rest state, and changes in
postures take place abruptly. MiSleep overcomes these challenges by designing a toss-turn detector
and a static sleep posture predictor that detects a precise time of change in the posture and then,
predicts the postures during the rest states.

Sleep Behavior Assessment using non-RF Modalities: Clinical approaches to monitoring sleep
behavior include polysomnography, actigraphy, and ballistocardiography [104-106]. However,
they require a patient to sleep overnight or for many hours with many sensors. Sleep behavior
monitoring can be categorized into three aspects: sleep quality, sleep pattern, and sleep posture. In
MiSleep, we focus on monitoring the sleep postures to provide visual information related to the
3D location of body joints during sleep. Accelerometer based sleep posture monitoring system
categorizes sleep posture based on accelerometer readings, where a person is required to wear
a device and based on the sensor reading, posture can be classified [107-109]. [110] designs a
textile-based sensor system that can be worn like a pajama to measure physiological signals and
classify sleep postures. Pressure sensor-based approach, such as [34] uses thousands of tiny stretch
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sensors embedded in textiles on top of the bed mattress for sleep posture classification. [111] uses
multimodal information from the pressure sensor and video, images to classify postures. They
rely on distributed pressure sensors or arrays of force-sensing resistors, and measure the pressure
exerted by the body during sleep [33, 112-114]. The major drawback of these systems is that they
require additional hardware either attached to a person or embedded in a bed to detect postures,
both of which could be cumbersome and bring sleep discomfort. In contrast, MiSleep enables
contactless sleep posture monitoring by using the mmWave technology in ubiquitous 5G smart
home devices.

9 CONCLUSION

In this work, we present MiSleep, a single person sleep posture monitoring system that detects
the toss-turn events during sleep, and predicts the 3D location of body joints accurately. MiSleep
designs a cross-correlation and HMM-Viterbi based event detector, and a customized deep learning
model based posture predictor to overcome the challenges of poor resolution, specularity, and
aliasing problems in the COTS mmWave system. The experimental results demonstrate that MiSleep
generalizes to multiple volunteers with little finetuning and works well for different sleep postures.
In the future, we plan to extend MiSleep to monitor sleep postures for two persons on the bed,
and collect datasets for long durations to evaluate its end-to-end performance. We believe MiSleep
can unlock the potential of 5G mmWave systems, such as home wireless routers, in enabling
privacy-noninvasive, high-quality sleep monitoring systems for masses at-home.
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