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Policies and Power Systems Resilience Under
Time-Based Stochastic Process of Contingencies in
Networked Microgrids

Weijie Pan

Abstract—Given the increasing occurrence of high-impact low-
probability (HILP) contingencies in existing power systems,
strengthening the resilience of these systems has become of
paramount importance. Enhancing the resilience of power systems
is not solely a technical issue but also a socio-economic and policy
concern. Therefore, improving the performance of power systems
greatly relies on the guidance provided by energy policies. While the
decarbonization response, supported by these policies to mitigate
climate change, influences the adoption of energy technologies,
its impact on the resilience of the system remains uncertain. To
uncover the interactions between technologies, policies, and eco-
nomics concerning power systems resilience, this study focuses on
constructing resilience-oriented networked microgrid systems. It
develops a two-stage stochastic programming model by integrating
a method for selecting power outage scenarios identified by users,
in the presence of emissions policies. The results confirm the con-
tributions of integrated systems in enhancing resilience, but they
also reveal that low-carbon emissions policies play an inhibiting role
by increasing the financial costs associated with resilience planning
and operations. Nevertheless, a 30 % emissions reduction threshold
can still be achieved from the integrated network, facilitating the
dual benefits of maximizing emissions reduction and minimiz-
ing the burden of emissions taxes. The study’s contributions are
threefold: firstly, it incorporates techno-economic incentives and
regulations simultaneously; secondly, it quantifies the unintended
consequences of policies on resilience; and thirdly, it provides
constructive guidance for future energy policymaking, particularly
in maintaining system resilience.

Index Terms—Carbon emissions taxation, energy policies,
networked microgrids, power systems resilience, stochastic
programming.

NOMENCLATURE

Acronyms
DERs Distributed renewable-based generations.

ESSs  Energy storage management systems.
HILP High-impact low-probability.

MGs Microgrids.

NC Number of quasi-scenario cluster.
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NS Number of scenarios for each submicrogrid.
NTS  Number of total scenarios for networked microgrids.
TE Transactive energy.

Indices & Sets

n Indices of quasi-scenario case.

t Indices of time.

Vit Indices of time intervals.

T Indices of system fault occurrence time.

VT Indices of system fault duration time.

i, ] Indices of microgrids.

w Indices of scenarios.

ar Sets of time.

QMGs  Sets of microgrids.

CASE Sets of quasi-scenario clusters.

Qv Sets of scenarios.

Parameters

@ Upper bound of ESSs charging coefficient [-].

B Upper bound of ESSs discharging coefficient [-].

n Carbon emissions tax [$/1b].

¥ Carbon emissions abatement coefficient [%].

Ce Levelized cost of electricity from coal-fired power
plant [$/kWh].

Cs Levelized cost of electricity from utility-scale solar
plant [$/kWh].

Cuw Levelized cost of electricity from utility-scale wind
plant [$/kWh].

Cgss  Unit cost of installing ESSs [$/kW].

DE;; Energy demand of microgrid 7 at time ¢ [kWh].

E, Carbon emissions coefficient of coal [[b/kWh].
E, Life-cycle carbon footprint of solar [Ib/kWh].

E, Life-cycle carbon footprint of wind [[b/kWh].

Gi,.. Total loss of coal-fired power generation capacity
[kW].

Ve, User-identified coal-fired power generation capacity
loss interval [kW].

G¢PP* Optimal coal-fired power generation profile of micro-

' grid 7 at time ¢ from the base model [kKW].
G;’:m Capacity of coal-fired power generation of microgrid

¢ at time ¢ without power outage scenario [KW].
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Gi,. Capacity of coal-fired power generation of microgrid
. i in scenario w at time ¢ [kW].
Tjt Capacity of solar power generation of microgrid 7 at
' time ¢ [kW].
T}'ft Capacity of wind power generation of microgrid 7 at
' time ¢ [kW].
P, Probability of scenario w [-].
Rpss Unit reward of storing electrical energy in ESSs
[$/kWh].
Binary Variables
SOC¢;;,, Stateofcharging of ESSsof microgrid: inscenario
w at time ¢ [-].
SOCd; ., State of discharging of ESSs of microgrid ¢ in
scenario w at time ¢ [-].
S0T(;;),, State of transactive energy from microgrid i to
microgrid 5 at time £ [-].
Variables
Qi tw Charging coefficient of ESSs of microgrid ¢ in sce-
nario w at time ¢ [-].
Bitw Discharging coefficient of ESSs of microgrid i in
scenario w at time ¢ [-].
ESS; . Amount of energy reserved in ESSs of microgrid ¢
in scenario w at time ¢ [kWh].
ESS; Capacity of ESSs of microgrid ¢ [kW].
G§, Coal-fired power generation of microgrid  at time £
' [kW].
G;, Solar power generation of microgrid ¢ at time £ [KW1.
G;‘;’t Wind power generation of microgrid 7 at time ¢ [kW].
OFg Expected objective function value of base model [$].
OFg Expected objective function value of policy model
[$].
TE(;j),: Amount of transactive energy from microgrid i to

microgrid j at time £ [kW].

I. INTRODUCTION

OWER systems play an essential role in maintaining the
P uninterrupted functioning of society. As a critical infras-
tructure system, electricity generation in the U.S. has been diver-
sified with the penetration of more renewable technologies in re-
sponse to energy policies, and aggregate capacity has increased
by 37.5% over the past two decades [1] in response to increasing
demand. Unfortunately, correlated with these changes is the
increased frequency of sustained outages. For instance, there
were fewer than two dozen major disruptions in 2000 in the
U.S., but the number surpassed 180 in 2020 [2]. There is no
doubt that the existing U.S. electrical system is becoming less
dependable given that large and sustained outages have occurred
with increasing frequency over the past two decades. Hence, the
two objectives of this study are: 1) to explore resilient integrated
systems as a hedge against contingencies under sustainability
transitions; and 2) to examine the effect of energy policies aimed
at alleviating climate change on the resilience of the underlying
electricity generating system.
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This study is motivated by the severe cascading impacts
caused by system disruptions that are characterized as HILP
events [3], such as extreme weather or malicious cyberattacks
with significant consequences. The failure to restore the system
to normalcy when disrupted often leads to cascading conse-
quences with immeasurable economic losses, property damages,
and even life safety threats. For instance, the Texas electric
power crisis of 2021 led to an estimated property damage of
over $195 billion and 151 deaths [4]. The heatwave in the
western U.S. of 2020 triggered a peak demand record of over
162 GW for emergency interconnection [5]. Hurricane Maria of
2017 in Puerto Rico resulted in 3.4 billion customer-hours lost
of electricity service and over 3000 deaths [6]. The occurrence
of extreme events induced nearly 58% of total power blackouts
since 2002 and an average of 18 to 33 billion dollars in economic
losses annually.

It is noteworthy that, unlike the reliability metrics that mainly
focus on low-impact high-probability events, the resilience met-
rics are mainly for contingencies of HILP characteristics [3], [7].
Particularly, the concept of resilience is proposed to evaluate the
system’s performance along the four postdisruption transition
stages: deterioration, degradation, restoration, and recovery [7].
Considering the complexity of the evaluation of performance
from the dynamic process, there still exist debates on the stan-
dardization of resilience in practice [8], but it is widely rec-
ognized that resilience is beyond sole technical metrics. Under
the context of net-zero carbon power systems, the evaluation of
resilience should incorporate the technical, economic recovery,
social and institutional resilience, ecological, and infrastructural
resilience simultaneously [9].

Yet, improving power systems performance depends on the
guidance of energy policies and the support of advanced tech-
nologies. On the one hand, the response to climate change has
largely focused on adaptation aimed at reducing vulnerability
and exposure to climate risks [4], and mitigation or transition to
low-carbon technologies. For example, a series of electricity
market reforms have been studied to facilitate the process,
including the policy incentives to support the customers’ ac-
cessibility to solar energy [10] and incumbents’ adoption of
wind energy [11]. Energy policies related to emissions taxation
are also implemented to control carbon emissions from pro-
duction [12]. On the other hand, the development of advanced
integration technology and the coordination of multiple energy
sources dawn on the improvement of power system operations
and protection. For instance, technical components such as
distributed generators, supervisory control and data acquisition,
phasor measurement unit [13], fault location, isolation, and
service restoration technologies [14], and automatic transfer
switch for backup energy compensation [15] jointly enhance
the operational reliability. Nevertheless, it is unknown to what
extent the resilience of the system is being impacted by those
zero carbon oriented energy policies.

Although the encouragement of a higher proportion of us-
age of clean technologies truly facilitates the decarbonization
process, it is impossible to turn a blind eye to the downside
of the increasing penetration of renewable energy in the ex-
isting systems for three reasons. First, the high intermittency
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of renewable energy sources prohibits system planners from
wholly abandoning traditional energy sources such as fossil
fuels in terms of the stability of electricity generation [16], [17].
Second, the emerging electricity market and the high price of
corresponding production technologies impede both producers
and consumers from completely embracing such clean energy
technologies [18]. Third, even though the technologies are avail-
able, there is still a lack of “smart™ policy instructing integrated
systems planning and operation, especially in the aftermath
of an unexpected system disruption [9], [19]. Admittedly, this
dilemma poses a challenge: To what extent do existing energy
policies and market influence the resilience of power systems?

Furthermore, the presence of advanced technologies could
potentially improve integrated systems operation, but it does
not equivalently indicate satisfactory resilience performance
for three reasons: First, existing standards prohibit DERs from
energizing the main grid during emergencies because of the
proportion of their intermittency [20], [21], thus limiting re-
newable energy in resilience considerations. Second, due to
the uncertainties in energy policies regarding emissions tax,
the incumbent’s investments in large-scale renewable energy
projects are still limited [12], which exacerbates the dependency
on conventional energy sources. Third, a lack of dominant,
reliable, and flexible policy mechanism in guiding the reason-
able coordination among subsystems during the postdisruption
period hampers the potential energy hub function of integrated
systems [22], [23]. Hence, despite the existence of components
for systems resilience enhancement, their efficacy is still within
the confines of policy and market implications. Consequently,
the market and financial considerations for both producers and
consumers also play essential roles in influencing the formation
of the systems. This combination informs the necessity to exam-
ine the construction of integrated power systems on resilience
enhancement from a holistic perspective.

Thus, to unveil the interactions between the technologies,
policies, and the economics of the system in terms of power
systems resilience, this study develops an integrated approach
to evaluate the resilience performance with and without the im-
pact of energy policies. This approach incorporates a two-stage
stochastic programming model by integrating a user-identified
power outage scenario selection method in the presence of
emissions policies, i.e., emissions standards (or limits) and
emissions taxes. Specifically, this study compares the solutions
of two models. The first is a base model without considering
the impact of energy policies, where the minimization of the
total cost of system planning and operation is the objective.
The second is a policy model with the minimization of the total
system cost and emissions tax as the objective. Furthermore, the
proposed user-identified scenario selection method simulates a
stochastic HILP event occurring, and this is used to initiate the
preconditions of power outages for resilience optimization.

The results indicate the following.

1) The contributions of renewable energy for resilience en-
hancement in the integrated power system cannot be un-
derestimated, where solar energy owns greater flexibility
in leveraging resilience performance.

2) The implementation of low-carbon emissions taxation
policies undoubtedly inhibits resilience performance by
increasing the system planning and operation cost, but a
critical emissions abatement threshold can be identified
where the tradeoff of maximizing emissions abatement
and minimizing cost could be reached.

3) The carbon emissions cap and the tax could jointly impact
the resilience performance, a sensible decision on the
combination of carbon emissions cap and tax benefits
system operators most during the sustainability transitions
period.

4) The role of ESSs in resilience planning needs to be em-
phasized, where the battery capacities significantly impact
resilience performance.

The contributions are three-fold. First, from the methodologi-
cal perspective, this study offers an integrated method to demon-
strate the value of integrated power systems on resilience en-
hancement given stochastic scenarios of power outages. Second,
from the technology management perspective, the analysis sheds
light on the optimal combination of conventional and renewable
energy sources for resilience planning in a cost-minimization
approach. Third, from the perspective of the energy policies
and the electricity market, both emissions standards and tax
are evaluated for their optimal thresholds to avoid unintended
negative consequences on systems resilience. Overall, this study
offers systems planners and policymakers crucial insights for
technology planning and the crafting of policies to enhance the
resilience of electricity infrastructure systems in sustainability
transitions.

II. LITERATURE REVIEW

This review draws from three strands of research: 1) the
current decarbonization process and energy policies; 2) the
construction of resilience-oriented networked MGs; and 3) the
scenario selection method for stochastic programming.

A. Decarbonization Process and Energy Policies

To alleviate the effects of climate change, decarbonization
has been deployed in sectors where carbon dioxide emissions
are heavily associated. Those sectors involve energy generation
and end-user consumption [16]. Electricity generation sector
has had a relatively higher penetration of renewable energy than
other sectors, but the decarbonization process is still passive
due to the following three techno-economic reasons. First, many
countries’ economic plans and development are still closely cou-
pled with conventional energy sources, and policymakers find it
challenging to halt coal and oil expansion immediately [24],
[25], [26]. Without an adaptive market mechanism aimed at
coordinating global sustainability dispatch, an entire abnegation
of the conventional energy industry would bring chaos [27].
Second, given the efficiency limitations of installed renewable-
based technologies [28], [29], even though the capacity expan-
sion could improve efficiency, such a long-term decision on
investing in sustainability technologies is still subject to further
considerations. Decision makers are greatly concerned about
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the massive capital cost when instructive guidance on designing
future energy sectors is missing, and uncertainties about future
regulations and market fluctuations exist [18]. Third, other al-
ternative options such as hydroelectricity and nuclear energy
are available, but safety concerns, geographical restrictions,
and pricey operations and maintenance fail to prioritize those
technologies in the decarbonization process [30], [31], [32].
Conversely, fossil-based electricity is flexible and easy to re-
balance the power mismatch between supply and demand under
the circumstance that higher penetration of renewable energy
brings greater intermittency.

Given these challenges, energy policy plays a crucial role
in facilitating the decarbonization process. Currently, the emis-
sions trading schedule and carbon emissions taxation are the
main strategies for controlling the emissions amount. However,
the immaturity and misuse of the mechanisms result in a rela-
tively small proportion of carbon emissions coverage [33], [34],
which calls for a sustainability evaluation of the effectiveness
of current policies. An emissions tax is a policy instrument
used to regulate carbon emissions [12], [35], [36]. The theory
of environmental economics posits that the Pigouvian tax helps
to internalize the external costs of emissions [37]. The pressure
imposed due to tax on emissions influences technology choices
by producers and consumers leading to reductions in aggregate
emissions [38]. Numerous past research studies have focused
on establishing a carbon emissions tax that satisfies both social
acceptance and social viability [39], [40], [41].

Policies towards decarbonization influence energy use man-
agement and optimization, and they also play a significant role in
leveraging both operators’ and consumers’ selection of energy.
This role accelerates the adoption of low-carbon or zero-carbon
technologies in sustainability transitions. Given the uncertainties
of future carbon emissions tax, different renewable portfolios
need to be evaluated to be prepared for risk-averse decision
makers. For instance, the renewable portfolios such as solar-only
and wind-and-solar outperform other portfolios in terms of the
smaller sensitivity to future tax while the carbon emissions
abatement maintains at a large level [12].

Nevertheless, optimism towards the net-zero carbon networks
underestimates the complexity of the coexistence between re-
newable energy and conventional energy. First, low-carbon
power systems face pressing operational challenges on stability,
where cascading outages are more likely to happen due to
the increasing fragility of the system [42], [43], [44]. Second,
compromise strategies are critical for achieving tradeoffs be-
tween economic development and environmental considerations
during the sustainability transitions [45]. Under such a scenario,
a hasty decision on taxing all carbon emissions not only fails
to ensure the smooth adoption of renewable energy and effec-
tiveness on emissions abatement, but also introduces a greater
uncertainty to energy structure and brings chaos to the electricity
market. Thus, this study takes into account the joint impact of
carbon emissions cap and tax on excessive emissions.

Admittedly, discussions on enhancing power systems re-
silience have largely focused on the technical aspects. However,
it is undeniable that power systems resilience requires a holistic
approach that also considers energy policies and the market
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where electricity is traded. It is widely acknowledged that, in
the case of power systems being disrupted, the priority is not
about the carbon emissions abatement, but the fast restoration
of systems back to normalcy [46]. However, under the influ-
ence of low-carbon energy policies, the normalcy status itself
could be unstable due to the high penetration of intermittent
renewable energy. In other words, the restoration of low-carbon
power systems from a disruption needs compensation from other
power generation sources, such as battery systems, to offset the
intermittency of renewable energy.

Likewise, the role of renewable energy in global resilience
enhancement is missing from past research. According to the
standard, DERs are prohibited from energizing the main grid
during emergencies [20], [21], but utility-scale renewable energy
owns its potential in maintaining global resilience. For instance,
the technical response to disruptions often is to adopt nondis-
patchable, utility-scale clean technologies such as centralized
solar and wind plants to gradually replace the conventional
fossil-fueled power plants [9]. As stated before, resilience is a
measure beyond sole technical evaluation as it also incorporates
the evaluation of its economical and social effectiveness [47],
[48]. Even though the capital cost of planning and installing
sustainable technologies is relatively high, they outperform con-
ventional fossil-fired power plants in terms of a relatively lower
operating and maintenance cost [16]. Under this circumstance,
it is worthwhile to examine their contributions to the economic
value of power system resilience given the capacities are fixed
without generating extra capital costs.

Hence, past studies underestimate the interaction between en-
ergy policies and renewable-integrated power system resilience.
This study examines portfolios where the impacts of imposing
a limit on emissions and setting a price on carbon influence the
resilience of the system. The hypothesis is that policies geared
at emissions reduction will have impacts on resilience planning,
the electricity market, and technological investment with a rein-
forcing demand for a comprehensive policy framework [19].

B. Construction of Resilience-Oriented Networked MGs

To put it simply, a resilient system is capable to maintain the
continuity of supplying electricity to critical loads to a great
extent in the aftermath of HILP disruptions [7]. However, as
a multiphase and multidimensional measure, the operational-
ization of resilience is not unitary, as well as the objective of
resilience enhancement [8]. Most research regarding power sys-
tem resilience focuses on the maximization of load restoration,
the minimization of operational cost, and the minimization of
power mismatch [49]. However, the uniqueness of various sys-
tem faults results in different resilience performances [3], [50],
[51], [52], [53]. For example, the resilience of line faults usually
outperforms that of the loss of power generations. This indicates
that more attention should be focused on generation-related
events such as large-scale power blackouts. For an independent
power system with the main power supply being lost, a quick
system restoration is not expected to occur; but for an integrated
power system, it is promising to obtain a satisfactory resilience
performance given the availability of multiple power generation
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technologies. In this case, MGs with distributed generation
resources, especially networked MGs, have been seen as promis-
ing platforms for resilience enhancement due to their flexibility
for structural reconfiguration, the integration of multiple energy
sources, and decentralized control mechanism [49], [54], [55],
[56], [57].

The selection of appropriate power generation sources is
crucial for the construction of a resilient network. Apart from
the conventional fossil fuel power plants, other types of sus-
tainable technologies are also important components in power
quality improvement, such as voltage control via inverted-based
solar technologies [58]. Furthermore, sustainable technologies
can also be utilized to improve resilience. For example, wind
energy and solar energy are widely-used generation resources
for resilience enhancement with the existence of correspond-
ing battery energy storage systems handling the stochasticity
introduced by renewable energy sources [49]. Even so, the
exploration of ESSs is still under R & D phase, which would be
discussed in the next paragraph. From a technical perspective,
the potential of renewable energy in resilience enhancement
cannot be ignored; from an economical perspective, as discussed
previously, it is promising to see the contributions of sustain-
ability technologies on alleviating stress on resilience cost [26].
However, it is impractical for system planners to wholly rely on
sustainability technologies on building systems resilience, given
the situation that the entire abnegation of conventional power
plants during the sustainability transitions period is unacceptable
aforementioned. Hence, a moderate mixture of conventional
electricity generation and sustainable technologies serves as a
compromise solution, which is also missing from past research,
to the best of the author’s knowledge.

The contribution of ESSs to resilience enhancement is
significant. Research on this aspect has focused on mobile
energy storage technologies [56], real-time allocation of
mobile emergency generator [59], and lifetime extension of
battery devices [60]. Nonetheless, the limited capacity of
ESSs worsens the deterioration caused by HILP contingencies.
Technically, even if the energy can be stored efficiently, the
Quality-of-Service contributions diminish when the energy
storage capacity exceeds a certain threshold value [61].
Likewise, the exorbitant purchase and maintenance of battery
devices discourage consumers from emphasizing the worthiness
of ESSs. There is room to accommodate the effects of ESSs
on systems resilience enhancement from a market perspective,
where the positive economic incentives in encouraging system
operators and energy consumers to store electricity for
emergencies become prioritized as conducted in this study.

For networked MGs, the physical structure closely connects
with the complexity of energy use and coordination. Theoretical
research shows that resilience can be enhanced by both central-
ization and decentralization, and simultaneously involves the
network structures and governance structures [62]. Undoubt-
edly, system configuration remarkably influences resilience.
Pervasive across research literature are instantaneous isolation
of deteriorated zones, implementation of islanded operation
modes, and prompt adjustment of connection structures [63],
[64]. Rather than being static, power systems resilience is

dynamic with structural adaptation in a spatiotemporal frame-
work [7]. There are two underlying functions of reconfiguring
system structures: 1) the cascading impact is expected to be
undermined by isolating fault zones; and 2) power dispatch is to
maintain the balance for the rest of the system. Aside from the
structural reconfiguration, the TE achieves those two functional
purposes. Recent discussions on microgrid transactive energy
systems highlight the significance of multiple functional lay-
ers for energy management, such that even in a decentralized
system structure, interaction among users, system operators,
and regulators are preferred [65]. This corresponds to having
more centralized governance within a decentralized network
for resilience enhancement [62]. The application of structural
theory on practical resilience verification is also missing from
past research.

It is also necessary to highlight the current status of modeling
MG:s on resilience impact. There lacks sufficient attention focus-
ing on the resilience modeling based on MGs. For convenience
purposes, most existing models are based on two underlying
assumptions [49]: 1) the energy supply is unlimited during the
system disruption to satisfy the technical constraints; and 2)
the time and duration of an outage can be predicated (or even
fixed) to ensure the smoothness of all postdisruption phases.
Both assumptions would weaken the applicability of research
conclusions in practice. The first assumption involves the sys-
tem planning issue whether generation capacity expansions are
required. For the study of MGs on resilience enhancement,
the combination of planning and operational strategies is ver-
ified to significantly improve the system resilience [66]. Thus,
an integrated approach needs to be developed to evaluate the
techno-economic performance of system resilience. The second
assumption challenges the validity of modeling the stochasticity
of HILP events. Stochastic methods [60], [67], [68] and robust
optimization [69] have been seen as two mainstream approaches
to tackle the uncertainties, but each approach comes with inher-
ent downsides, such as the conservativeness for robust optimiza-
tion and the computational burden for the stochastic method.
Even though there still exist standards to evaluate the validity,
these will be further discussed in the following subsection. Thus,
this study also develops an integrated model to examine the
resilience performance of networked MGs.

C. Scenario Selection for Stochastic Programming

One of the underlying difficulties of studying power systems
resilience is the unexpected occurrence of HILP contingencies.
Though the available historical data is conducive for predic-
tion, the cascading impact from HILP contingencies is hard
to measure [70]. Nevertheless, the literature shows that system
management under uncertainties can be enhanced by conducting
stochastic optimization, but the computational burden is still the
main challenge [71]. For risk assessment, classic methodologies
for modeling purposes include continuous time discrete state
Markov chain to model the dynamics of system performance
under the extreme events [68], and Monte Carlo simulation to
simulate postdisaster impact [47]. However, the common draw-
back of using classic methodologies is the implicit assumption
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Fig. 1. Conceptual structure of networked MGs.

that the occurrence of system faults follows specific probability
distributions that are seldom held in practice. Therefore, scenario
generation is more appropriate for evaluating the impact of HILP
contingencies [72].

The validity of scenario generation is subject to the stability
evaluation, which includes the insample stability and out-of-
sample stability [72], [73]. Compared to the true solution, the
optimal outcomes from appropriate scenarios must be void of
bias—regardless of the differences between the scenarios, the
variation of the ultimate optimal solutions should remain stable
and converge. Following this principle, increasing the number
of scenarios can offer outcome consistency, but with a heavier
computational burden. Thus, selecting adequate representative
scenarios is a prerequisite to improving computation efficiency.
However, scenario selection requires systems parameters and
HILP contingencies to be quantifiable, e.g., demand, capacity,
and voltage profiles, and categorized into high, medium, and
low levels for simplification [67]. For example, the postdisaster
impact of stochastic failures can be classified via a multidimen-
sional scenario selection method based on the corresponding
amount of lost load and lost generation [71].

While the aforementioned examples offer inspiring insights
for scenario generation, understanding that power system re-
silience is an ongoing process, where the system fault occur-
rence, duration, and restoration jointly complicate the scenario
selection process. Thus, this study offers another methodology
to justify the scenario selection process, as well as the probability
for each scenario.

In summary, Table I provides a comprehensive snapshot of
the most closely related body of work while shedding light on
the gaps identified and covered in this article.

I1I. METHODOLOGY

In this section, the proposed conceptual structure of net-
worked MGs and a three-phase methodology are first presented
to capture the whole picture of this study. Each phase of the
methodology is described in each subsection accordingly.

For reiterate purposes, one objective in this study is to explore
the construction of a resilient integrated system to hedge against
contingencies under the context of sustainability transitions.
From the discussion in the literature review section, the crucial
components of a resilience-oriented networked MGs involve the
availability of multiple energy sources, the interdependence of
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the energy sectors, and the flexibility of structure reconfiguration
and control mechanisms. Fig. 1 shows the conceptual structure
of the system, such that the networked MGs consist of submi-
crogrids with generators and ESSs independently installed for
serving the local region. The layout of the networked MGs is in a
decentralized physical structure. However, energy exchange can
be realized via TE between neighboring submicrogrids, which is
subject to centralized control in governance. In this framework,
the cascading impact of HILP contingencies is treated as the loss
of power generation capacities from the local power generators.

Another objective of this article is to examine the extent
to which the low-carbon policies could impact the resilience-
oriented planning and operation of an integrated system. Two
models are developed and compared for illustration in this study.
The methodology consists of three main phases as presented
in Fig. 2. The black arrows indicate the flow of data between
phases. The first phase utilizes a user-identified scenario se-
lection method to randomly output power outage profiles with
a normalized probability distribution. In the second phase, the
base model is developed where a two-stage stochastic program-
ming model is implemented to obtain optimal power genera-
tion portfolios with the minimized cost of systems resilience
planning in the presence of power outage scenarios. The third
phase introduces the policy model where carbon emissions tax
with adjustable emissions abatement is added to the base model.
The objective function updates power generation portfolios,
where the reference level of carbon emissions is derived from
the optimal power generation solutions in the second phase.
The contributions of carbon emissions reduction policies are
evaluated by comparing the objective function value (power
systems resilience planning and operation cost) under different
emissions abatement levels.

A. User-Identified Scenario Selection

In this research, the occurrence time and the duration of
stochastic system faults are jointly identified as uncertainties.
For each power generation plant, any unforeseen contingencies
could occur at any time with an uncontrolled fault duration
period. Table II presents a combination of all power outage
possibilities based on the time dimension. The left column
indicates all possible fault occurrence times and the top row
indicates all possible outage intervals. Each crossing mark indi-
cates the possible existence of a power outage (loss of power
generation) at that time spot. For clarification purposes, if a
system disruption occurs at 2:00 A.M., there are 23 different
fault duration scenarios correspondingly.

Based on the calculation of permutations, the number of all
power outage scenarios of a single submicrogrid zone (NS) is
300 for an entire day of a 24-h timescale, as in (1).

24
NS =Y (25—Ty) = 300. (1)

T;=1
The total number of power outage scenarios of the entire net-

worked MGs with multiple submicrogrid zones (NTS) is calcu-
lated by (2).

NTS = (300)001.1111; of Sub—microgrids‘ (2)
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TABLEI

SUMMARY OF GAPS IN RELATED LITERATURE

§8 | Research Common Objective Refs. Research Gap / Issues
Cluster

A | Carbon Re- | Focus on the challenges in the decar- |[16,17 Gap is the need for adaptive market and the role of
duction bonization process & energy market. | 27] energy policies in the decarbonization process.

Examine the role of decarbonized |[24],[25],| Economic growth is connected to conventional energy

electricity in economic growth. [26] sources with no role for renewable technologies.

Limited efficiency of renewable tech- |[28,29] Efficiency improvements limited by economics is con-

nologies, economical consideration. trary to the study in this paper.

These papers offer overviews of other |[10, Premised on technical, safety, and economic concerns

existing sustainability technologies. | 30,31, limits large-scale sustainability adoption.

32]

Offer overviews of electricity market |[9, 18, The gap is the absence of resilience-oriented market

and system resilience planning,. 19] planning as currently examined in this paper.
Energy Focus is on the standards for DERs. |[20,21] | The gap is that DERSs are prohibited from energizing
Policies the grid in emergencies is contrary to this paper.

Offer comments on the weakness of |[33,34] Underscores the relatively small proportion of carbon

the CO2 emissions mechanisms. emissions coverage are resulted from existing policies.

The emphasis is on the establishment |[39, 40, Find uncertainties in CO2 pricing limit economics of

of a carbon emissions tax. 41] generations portfolios contrary to this paper.

Offer the economics of renewable |[16,47, The roles of multiple renewable energy sources for

technologies on resilience planning. 48] resilience enhancement are underestimated.

Use partial integrated approaches to | [46] Resilience evaluation needs to incorporate technical,

evaluate the resilience. economic, and social factors.

B | Microgrids | Cover the potentials of microgrids for |[54,55] Resilience-oriented networked microgrids needs veri-
Study resilience enhancement. fication and validation as done in this paper.

Explore technologies on power qual- |[26,49, The value of sustainable technologies for resilience en-
ity /resilience enhancement. 58] hancement cannot be ignored; covered in this paper.
Energy Explore mobile energy storage tech- |[56,59] This paper extends with the integration of energy
Storage nologies for emergency use. storage storage systems to meet microgrids needs.
Explore the lifetime and capacity ex- |[60,61] Storage capacities play critical role in influencing sys-
pansion of battery devices. tem planning; addressed in this paper.
System Ar- | Theoretical study toward |[62] The resilience-oriented structure (decentralized in
chitecture de/centralized structure on re- physical and centralized in governance) are covered
silience enhancement. in this paper.
Highlight the role of transactive en- |[63, 64, Transactive energy is integrated into the systems for
ergy in network reconfigurations. 65| resilience enhancement as done in this paper.
Microgrid Reviews existing modeling of micro- | [49] Assumptions on unlimited generation capacities and
Modeling grids’ objectives & methodologies. known contingencies weaken its applicability.
Emphasize the value of planning and | [66] The gap is the absence of an integrated approach for
operational phases for integrated sys- model verification and validation as done in this pa-
tems. per.
Apply stochastic optimization meth- |[60,67, There gap is the computational burdens with proba-
ods for resilience planning. 68] bility distribution for contingencies; addressed in this
paper.
Apply robust optimization for mar- |[69] The gap is the conservative property of robust opti-
ket price uncertainties. mization; this paper avoids that limitation.

C | Scenario- Use stochastic methods, Markov |[47,68, The challenge is the computational burden from clas-
Selection Chains, & Monte Carlo for generic | 71] sic methods for HILP events simulation that this pa-
Method uncertainties. per avoids.

Study the theoretical validity of [[72,73] This paper extends with verification and validation
scenario-selection methods for sys- from synthetic modeling of the practical system.
tems modeling.
Apply scenario-selection method is [[67,71] The stochastic nature of HILP events needs to be
for system modeling without HILP captured in multi-dimensional scenario generation
events. method.

As stated earlier, the cascading impact from HILP events is Clearly, even though all scenarios are displayed, it is impractical

simulated as an entire loss of the electricity generation ability of

impacted power plant(s). Mathematically, the power generation
capacity is null within that period, as in (3).

Gz, =0 VielTy, Ty + Tyl 3)

and inefficient to handle them on any computation machine.
However, though system fault time and fault duration vary for
each unique scenario, different scenarios may share the same
cascading impact which is represented by the total amount of
lost power generation capacities. For instance, the power outage
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Fig.2. Methodology flowchart.
TABLE Il power outage situation and the latter stands for the actual power
TIME-BASED POWER OUTAGES SCENARIO GENERATION generation capacity under the power outage impact. The user
can customize a power outage amount interval 7G¢, __ as the
Fault Time System Fault Duration Ty PO ge a Voss .
benchmark to classify scenarios into each corresponding quasi-
Ty 1h 2h 3h 22h  23h 24h . w . . . . .
scenario cluster {2“. The quasi-scenario cluster is identified as
1:00 am X X X X X X . . o
the set of all scenarios whose lost power generation capacity lies
2:00 am X x X X X - . . .
within the same interval. Equation (5) presents the calculation
3:00 am X X X X . . .
A4:00 v % x of the number of quasi-scenario clusters (NC), and (6) is the
: almn . . . .
quasi-scenario cluster categorization process
: : : : C
. _ loss
10:00pm x x X NC = [_ch —| (5)
11:00pm x x loss
12: 00 am X Qﬁe[(n_l)'vaoss ' n'lecoss n=1,2,...NO.
(6)

scenario occurring at 2:00 A.M. with a duration of five hours
may result in the same amount of lost power generation as the
power outage scenario occurring at 6:00 A.M. with a duration
of only two hours. Thus, a user-identified scenario selection
methodology is proposed to alleviate the computational burden
of the program while simultaneously maintaining the validity
of the scenario selection procedure and avoiding any selection
bias. The specific process is visualized on the left side of Fig. 3.

Equation (4) presents the sum of lost power generation capac-
ities from all power outage scenarios. This magnitude serves as
the fundamental for conducting the subsequent scenario classi-
fication.

Tr+vTr
c _ c,ini
loss — E : E : Gt’,t (4)
icQMG =Ty

It is notable that G{;"" is different from G¢,, where the for-

mer stands for the initial power generation capacity without

By updating the customized power outage interval, another
different set of quasi-scenario clusters can be obtained. The set
of quasi-scenario clusters under the same power outage interval
is labeled as CASE in this study. For clarification purposes, the
affiliation relation between scenario, quasi-scenario cluster, and
CASE is clarified in (7).

we Q¥ e CASE. (7

Every single scenario, randomly chosen from the quasi-scenario
cluster, can be seen as a standard representative of the cor-
responding quasi-scenario cluster. Thus, they share the same
probability. The probability is calculated by the ratio of the total
number of scenarios from each cluster to the total number of
scenarios of this CASFE, as in (8).

Number of scenarios per cluster ®)
NTS '

The power outage scenarios are treated as the input for stochastic

optimization. For each C'ASE, the algorithm randomly selects

Pw:PQu:
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Fig. 3. Framework of the proposed stochastic two-stage programming.

one scenario from its corresponding quasi-scenario cluster to
form the data for the test. By implementing stochastic pro-
gramming repeatedly based on different CASFEs, a unified,
convergent trend of solution profiles is expected to be obtained.
The modeling outcomes displayed in the results section illustrate
the feasibility of the proposed methodology.

B. Base Model

The objective of developing a base model is to examine system
resilience planning in the presence of system disruptions but
without considering any influence from existing energy poli-
cies. The base model is formulated as a two-stage stochastic
programming, which corresponds to the planning and operation
phase of networked MGs in practice. The first stage (plan-
ning phase) involves the capacity decision of ESSs and the
electricity profiles including power generation from each plant
and TE schedule. The second stage (operation phase) involves
the specific operation of ESSs including discharging status and
disconnection status under the uncertainties of power outages.
The uncertainties are introduced from the implementation of
the user-identified scenario selection method aforementioned.

A complete optimization flowchart is presented on the right side
of Fig. 3.

To justify the determination of first-/second-stage variables,
there are two underlying assumptions. First, the capacities of
power generators and ESSs are supposed to be fixed in the
planning phase, which indicates the unlimited energy supply is
avoided in this model. Second, ESSs have been installed locally
within corresponding submicrogrid zones. When a system dis-
ruption occurs, local ESSs take actions for system restoration.
Though TE also plays a role in restoring power balance, it is not
generated from a single energy source and is subject to multi-
faceted coordination such as the remaining availability of power
generation capacities, the demand from local users, the operation
status of ESSs, and the system disconnection structures. Hence,
it is more appropriate to assign the TE portfolios as first-stage
variables.

It is also necessary to mention that there exists the possibility
the optimization process ends up with an infeasible problem due
to the numerical infeasibility of parameters. This situation also
results from the random selection of power outage scenarios. The
issue can be solved by running the scenario selection algorithm
again to generate another set of scenarios under the same power
outage interval.
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The implementation of the proposed optimization model out-
puts the optimal resilience planning under the circumstance of
minimized financial cost, which includes the power generation
portfolios, TE scheduling, and ESSs status. The detailed expla-
nations of the objective function and technical constraints are as
follows.

1) Objective Function: In the proposed base model, the total
cost of systems resilience planning and operation without the
impact of energy policies is the objective function. Equations
(9) and (10) define the proposed system cost to be minimized
physically and mathematically, respectively.

min Objective(pase) = Cost of power generation
+ Cost of ESSs installation
— Expected finanical rewards from
energy storage &)

min OFp = Z

icQMe

Z Vi (Ce- Gzl':_.t +Cs - Gg,t

ten2T

+ Cy - Git) + CEgss - ESS,

— 3" 3 P,-vi-Russ-ESSi.|.

teQT wehw

(10)

There are three parts to the objective function. The first term is
the total cost of generating power from available power plants.
The second term is the cost of installing ESSs with the installed
capacity in the corresponding microgrid zone. The third term
is the hourly financial rewards mechanism for encouraging the
storage of electrical energy in ESSs for emergency use.

It should be noted that only the second-stage terms take
stochastic scenario indices. In the proposed model, the second-
stage variables are the amount of energy stored in the ESSs that
varies by different scenarios. The power generation and ESSs
capacity, which are presented as first-stage variables without
scenario indices, are also influenced by the ultimate second-stage
decision variables.

2) ESSs Constraints: ESSs are locally installed within the
corresponding submicrogrid for self-supply use purposes. In
the event of HILP contingencies, ESSs are relatively efficient
measures to supply electricity. With the aid of advanced de-
velopment of power electronic technologies, ESSs can realize
the smart charging and discharging commands delivered from
online sensors or control agents [74]. In this study, the charging
and discharging states are treated as two independent binary
variables but with mutual exclusive coexistence constraints, as
in (11).

SOOCg',t,w + SOOdi,t,w S 1 VE, t,w. (].])
The variable of 1 means this state works at the time, while
the variable of 0 means this state is disabled at the time. The
constraint ensures that at most only one of two states works at
the time. There is a possibility that both charging and discharging
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states are determined as 0 simultaneously, which means the ESSs
are disconnected from the main system.

From the perspective of physical operations, the operation of
ESSs at each time step depends on its discharging states from
the last time step. The stored energy at () time point equals
charged energy added to the remaining energy at (f — v/t) time
point or discharged energy subtracted from the remaining energy
at (t — v/t) time point. Equations (12)—(15) mathematically
present the constraints for the real-time amount of energy stored
inside ESSs.

0< ESSire Vijt,w
ESSi 0 < ESSit gtw +S0Cci 10 - aipw - Gy

—SO0Cd; 4 Bivw  ESSis e Yirt,w (13)
(14)

15)

First, the numerical value of stored energy in ESSs should be
nonnegative at any time point, as stated in (12). Second, the
charging and discharging states can be integrated into a unique
equation based on the mutual exclusiveness of the state of
discharging variables. As presented in (13), when the charging
state is ON, a certain amount of the external electricity generated
from the power plant is stored in ESSs, which depends on a
charging coefficient o ; .. When the discharging state is ON,
a certain amount of the internal reserved electricity based on
the last period (¢ — s7t) is released to the main system, which
depends on a discharging coefficient 3; ; .,. Third, both charging
and discharging coefficients is less than a positive upper bound
value, restricted to less than 1, as in (14) and (15), respectively.

Equation (16) is the amount of real-time stored energy that is
limited by the capacity of ESSs.

0< ESS,,,, < ESS,.

(12)

0 S QG tw S o S 1 V%., taw

0<Bitw<B<1l Vitw.

(16)

For each scenario, the real-time stored energy inside ESSs
cannot exceed its capacity where the ESSs capacities (£55;)
are decision variables in the first-stage planning phase.

Equation (17) describes a day-ahead planning condition that
the stored energy in the ESSs at the last timescale is expected to
be no less than that at the initial timescale, which prepares the
ESSs for use at the beginning of the next day.

ESS;i—0w < ESS; =24 - (17

3) TE Dispatch Constraints: The contributions to the energy
balance from TE between neighboring submicrogrids need to
be emphasized for the operations of networked MGs. Though
the TE between two neighboring submicrogrid zones is a bidi-
rectional variable, the mutual exclusiveness of energy flow di-
rections is the underlying assumption. The state of TE from
microgrid ¢ to microgrid j is labeled as SOT(;;) ; in (18).

SOZI—'(@j),t + SO{I—’(JI)J S ]_ Vi,j, t.,i. 7é j. (18)

It should be noted that SOT{;; , and SOT;;) ; are two indepen-
dent binary variables. The value of 1 indicates the existence of
energy flow from the start point to the destination, and vice versa.
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There are circumstances in that no energy exchange happens
between two neighboring submicrogrid zones, given the value
of 0 for both SOT variables.

Similar to the ESSs, it needs to highlight the assumptions of
the operations of TE. First, the value of TE should be nonnegative
at all time points. Second, TE is outputted to other submicrogrids
under the circumstance that local energy demand has been
satisfied. Equations (19) and (20) show that TE outputted from
microgrid 7 under the assumptions mentioned.

0 S TE(@ j)_.t
TEj),: < SOT(ij),: - (Gi o + Gy + Giy — DE;t)
Vi, .t 1 # J.
In this model, we only treat TE from its power injection node
to other neighboring nodes to safeguard the uniqueness of the
direction of TE. A bidirectional energy exchange at the same
time between two submicrogrids is strictly forbidden.

4) Energy Balance Constraints: The complexity in evaluat-
ing the operations of networked MGs lies in the interdependence
among multiple sectors. To put it in a simple way, each submicro-
grid can be seen as a main energy sector. Once the energy balance
of all submicrogrids can be maintained with the aid of TE, the
global stability of the energy supply over the whole networked
MGs can be secured accordingly. From the perspective of phys-
ical operation, the energy balance of each submicrogrid can
be measured by the relationship between supplied energy and
consumed energy. Equations (21) and (22) present the energy

balance constraint by considering all contributions in the system
physically and mathematically, respectively.

(19)

(20)

Generated energy + Injected transactive energy
+ Discharged energy from ESSs

> Demanded energy + Outputted transactive energy

+ Charged energy into ESSs (21)
Gii+Gia+Giy + Z SOT(ji)e - TE(ju),e
JEQME iZj

+ Z P,-S50Cd; w0 - Bitw - ESSit—giw

wew
>DEii+ Y, SOTuj.-TEuj.
JEQME iZj

+ Y Pu-SOCcity-aipw- Gy Vit (22)

wew

The left side of the inequality represents the supplied energy,
which encompasses energy generated by power plants, the TE
injected into this submicrogrid, and the energy discharged from
ESSs to compensate for the energy balance. The right side is
the consumed energy that includes the energy demand within
the submicrogrid, the TE exported to serve other neighboring
submicrogrids, and the energy charged into the ESSs.

5) Generation Capacity Constraints Under Uncertainties:
As stated in literature review section, the roles of renewable
energy in resilience enhancement are unclear, especially when

sustainability technologies become indispensable components
of integrated energy systems with a higher penetration of renew-
able energy. Thus, we are particularly interested in examining
the resilience performance of those sustainability technologies
in this study. The power systems resilience performance is to be
evaluated under the circumstance that the plant of larger capacity
goes offline during the postdisruption period. Correspondingly,
even though there are multiple energy sources available in
integrated power systems, only the coal-fired power plants are
simulated to be impacted by HILP contingencies. Equation (23)
constraints the coal-fired power generation by considering the
average expected value of generation capacity at each time point

0<G{, <> P, G, Vit (23)

weNw

For other energy sources, such as utility-scale solar and wind
power plants, the power generated is subject to real-time gener-
ation limitation that is related to the corresponding installation
capacities, as in (24) and (25), respectively.

0<G;, <G5, Vit (24)

0<GY <GF, Vit (25)

C. Policy Model

The policy model is proposed to examine the influence of
energy policies on systems resilience performance. The out-
comes from the base model recommend optimal power gen-
eration portfolios where the cost of resilience is minimized.
Based on the outcomes, an emissions tax serves to influence
the system planner’s decision. As stated in literature review
section, a reasonable combination of emissions cap and tax on
excessive carbon emissions are more appropriate for the current
sustainability transitions period than a hasty implementation of
tax on all carbon emissions. In this study, the carbon tax and the
emissions cap are integrated as control variables and added to the
original objective function, as in (26) and (27). All constraints
are kept the same as the base model.

min OFg = OFg + Excessive carbon emissions tax (26)

Excessive emissions tax

=7 - max Z Z Vi(GeiiEe + Gsi 1 Eg + Gw; 1 Fy,)

ieQMG teQT

- Y Y VUGEE B+ G E, + GuwiP'E,),0].
ieQMG =T

27

Three points need to be highlighted regarding the policy model.
First, only excess carbon emissions are taxed. As in (27), the
first term is the ultimate carbon emissions, and the second term
is an adjustable emissions cap. If the ultimate emissions amount
is below the emissions cap, no emissions are taxed. The unit
charge is labeled, n, i.e., a constant parameter determined by the
regulator or policymaker. Second, the reference emissions cap
is dependent on the optimal power generation portfolios from
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Fig. 4. Physical structure of the tested networked MGs.
TABLE III

ENERGY SOURCES OF EACH SUBMICROGRID WITH INSTALLED CAPACITY [75]

Microgrid Coal-fired Power  Solar Power (PV) Wind Power (WT)
Index Plant Connection Connection Connection
(Capacity MW)  (Capacity MW) (Capacity MW)
MG-A YES (20) YES (12.8) NO
MG-B NO YES (11.2) YES (2.6)
MG-C NO YES (11.2) YES (3.4)
MG-D YES (20) YES (11.2) NO

the base model. In other words, the purpose of implementing
the policy model is to scrutinize whether and to what extent
low-carbon emissions policies would impact optimal resilience
planning. Third, the emissions cap is adjustable, and -y serves as
the emissions abatement coefficient. For clarification purposes,
if 4 = 1, the emissions abatement cap is 0%, i.e., all emissions
are permissible based on the optimal power generations of the
base model. If v = 0, the emissions abatement cap is 100%,
i.e., no emission is permissible and all emissions are taxed.

IV. DATA AND MODELING PLATFORM

The following analysis is based on a modified benchmark
networked MGs test system. The original test system has been
developed and evaluated for reliability in the previous research
study [75]. The physical topology of the modified test system is
displayed in Fig. 4.

The modified networked MGs system consists of four sub-
microgrid zones. Within each zone, there are multiple but inde-
pendent power plants. ESSs are only connected to coal-fired
power plants where higher power generation capacities are
available. The solid line indicates the necessary power dispatch
path, and the dotted line indicates that the power dispatch (path
connection) is subject to specific commands.

Table I1I presents the specific types of power plants connected
to each submicrogrid with corresponding installed capacities.
For coal-fired power plants, the actual hourly power generation
amount is at most the installed capacity. For solar and wind
energy, the actual power generation amount is subject to the
weather and time. The reference values of those system param-
eters are also provided in the previous study on the original
test system [75], including the hourly power demand in each
submicrogrid and hourly availability of renewable energy in
the percentage of the installed capacity, which are presented
in Tables IV and V, respectively.

It is noteworthy that, compared to the reference value, the
installed capacities of solar and wind plants are doubled to obtain
more evident numerical results for further analysis.

Table VI shows the value of cost-related parameters. The
levelized cost of electricity (LCOE) from technologies including
coal, solar, wind, and battery purchase is derived from the
2020 power generation costs data [76]. This analysis assigns
a 10% reward of LCOE for coal-fired energy that is stored in
ESSs.

As stated in the methodology section, the impact of energy
policies on system resilience planning is reflected by a joint
implementation of carbon emissions cap and tax. Both factors
are adjustable parameters in the policy model. Here, the average
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TABLE IV

HoURLY ENERGY DEMAND IN EACH SUBMICROGRID (KWH) [75]

TABLE VI
VALUE OF COST-RELATED PARAMETERS [76]

Time MG-A MG-B MG-C MG-D
1:00 am  7951.77 6279.72 6390.40 4556.00
2:00 am  7559.09 6279.72 6470.28 4271.25
3:00 am  7853.60 6133.68 6550.16 4442.10
4:00 am  7755.43 6060.66 6709.92 4556.00
5:00 am  7755.43 6133.68 6869.68 4726.85
6:00 am  8049.94 6133.68 6869.68 4897.70
7:00 am  8246.28 6352.74 7109.32 5068.55
8:00 am  8540.79 6571.80 7189.20 5125.50
9:00 am  8835.29 6936.90 7348.96 5239.39
10:00 am  9227.98 7155.96 7508.72 5410.25
11:00 am  9326.15 7228.98 7668.48 5353.30
12:00 pm 9227.98 7155.96 7588.60 5467.20
1:00 pm  9129.81 7009.92 7508.72 5467.20
2:00 pm 893346 6717.84 734896 5353.30
3:00 pm  8638.95 6498.78 7189.20 5125.50
4:00 pm  8540.79 6352.74 7189.20 5125.50
5:00 pm 893346 6571.80 734896 5296.35
6:00 pm  9326.15 6936.90 7988.00 5467.20
7:00 pm  9620.66 722898 7988.00 5695.00
8:00 pm  9817.00 7302.00 7988.00 5695.00
9:00 pm 952249 7228.98 7748.36 5638.05
10:00 pm 9227.98 7082.94 7428.84 5353.30
11:00 pm 8246.28 6571.80 6630.04 4783.80
12:00 am 8638.95 6790.86 6630.04 5296.35

TABLE V

HOURLY AVAILABILITY OF RENEWABLE ENERGY IN PERCENTAGE OF THE

INSTALLED CAPACITY (%) [75]

Solar  Energy Wind Energy
Time MG-A MG-B MG-C MG-D | MG-B MG-C
1:00 am 0 0 0 0 0 19
2:00 am 0 0 0 0 0 19
3:00 am 0 0 0 0 17 24
4:00 am 0 0 0 0 17 24
5:00 am 0 0 0 0 34 37
6:00 am 0 0 0 0 34 37
7:00 am 11 17 19 23 28 40
8:00 am 20 35 38 39 28 40
9:00 am 40 45 46 50 21 52
10:00 am 60 64 68 73 21 52
11:00 am 86 87 93 100 18 56
12:00 pm 100 100 100 100 18 56
1:00 pm 100 100 100 100 16 57
2:00 pm 100 100 100 100 16 57
3:00 pm 83 83 89 91 32 46
4:00 pm 56 56 65 69 32 46
5:00 pm 32 32 41 50 33 43
G:00 pm 23 23 31 35 33 43
700 pm | 0 0 0 0 26 2
8:00 pm 0 0 0 0 26 24
9:00 pm 0 0 0 0 19 21
10:00 pm 0 0 0 0 19 21
11:00 pm 0 0 0 0 0 18
12:00 am 0 0 0 0 0 18

Parameter Ce Cs Cy Cgss Rgss
$/kWh S$/kWh S$/EWh S$/EW §$/EWh
Value 0.017 0.057 0.039 635 0.0017

reference emissions tax 7 is selected as 0.02723$/1b, which is
sourced from the Organization for Economic Co-operation and
Development (OECD) [77].

In this study, it is noteworthy that the life-cycle carbon
footprint is adopted instead of the direct carbon emissions
per unit. Although there is no direct carbon emitted into the
atmosphere during the electricity generation process from wind-
powered and solar-powered technologies, the life-cycle carbon
footprint has been treated as a more holistic and practical as-
sessment index for system planning purposes [78], [79]. The
unit value for carbon emissions from coal-fired generation E.
is 2.231b/kWh, which is referred from the Energy Information
Administration (EIA) [80]. The value of the life-cycle carbon
emissions footprints of solar energy F, and wind energy E,, are
0.11023116/kWh and 0.024251b/kWh, respectively, which are
sourced from the Cool Effect Organization [81] and the Office of
Energy Efficiency & Renewable Energy [82], correspondingly.
Notably, the carbon emissions coefficient of coal-fired energy
is numerically more than 20 times that of renewable energy
sources, which indicates that the ultimate optimization results
are not impacted if the carbon emissions of renewable energy
sources are adjusted to null.

Considering the increasing computational burden of the pro-
posed mixed-integer nonlinear programming as more stochastic
scenarios add up when the power outage interval is smaller,
the time interval v is selected as three hours to accelerate the
optimization process; intervals lower than three hours offer no
discernible differences in numerical results.

For clarification purposes, the computation time of 20
C' ASEs under different models are recorded and visualized in
Fig. 5.

For both the base model and policy model with different
emissions abatement levels, the computation time increases as
the user-identified power outage interval decreases. The specific
power outage interval and corresponding scenario numbers are
presented in the results section.

Regarding the specific modeling platforms, the user-identified
power-outage scenario selection method (Phase 1) is conducted
in MATLAB (R2022a version). The proposed base model (Phase
2) and policy model (Phase 3) are implemented in A Math-
ematical Programming Language (AMPL) software with the
Couenne nonlinear solver. The processor of the machine for
simulation is Inter(R) core i5-5300 U CPU at 2.30 GHZ and 8 GB
of RAM.

V. RESULTS

The results are presented following the tripartite methodology
structure. The first part is the results from the user-identified
scenario selection process. The second part is the comparison of
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power systems resilience planning with different energy sources
under different emissions abatement levels. The third part is
a detailed presentation of optimal power generation portfolios
under the optimal emissions abatement case. The last segment
discusses the results.

A. Outcomes of Scenario Selection

As stated in the methodology section, the power outage sce-
narios are simulated to only occur within MG-A and MG-D
where the coal-fired power plants are connected. The number of
scenarios for corresponding power outage interval is presented
in Fig. 6.

As seen in Fig. 6, the orange dotted plot indicates the specific
user-identified power outage interval amount for each CASE,
and the blue bar stands for the number of quasi-scenario clusters

within each C ASE. The initial power outage interval is selected
as 100 MW for CASE-1. There is a constant 2.5 MW reduc-
tion from the power outage interval as the CASE is updated
(97.5 MW for CASE-2, 95 MW for CASE-3, etc). With the
power outage interval becoming smaller, more scenario clusters
are correspondingly generated. In total, there are 20 CASEs
and 270 scenarios selected for verification.

The probability distribution of scenarios for each CASE is
presented in Fig. 7. With the CASE index being updated (a
smaller power outage interval is selected), the overall probability
distribution presents a smoother trend, which indicates a smaller
probability for each power outage scenario cluster. However, no
matter how power outage interval varies, the probability distri-
bution for each CASE is always normalized; the probability
density always sums to 1 for each C ASE, which confirms the
validity of the proposed scenario selection method.
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Fig. 7. Probability distribution of scenarios of each CASE.

From a practical perspective, it is also plausible to explain the
probability distribution is visually skewed toward the left side.
First, the underlying assumption of this study is the inevitable oc-
currence of HILP events, and the cascading impact is measured
by the total amount of lost power generation capacity. Second,
the user-identified power outage interval is used to generate
various ranges for the lost generation capacities. Among all
scenarios, only one scenario can represent the worst case that two
power plants simultaneously experience an entire 24-h blackout
without ontime restoration, which results in a relatively smaller
probability of scenarios within the same power outage range
(right-side tail). Likewise, the situation of only a one-hour power
outage with ontime restoration likely deviates from the definition
of severe influence from HILP events, but there are 24 scenarios
representing this situation for each power plant, which indicates
the probability (left-side tail) is larger than that of the worst case
(right-side tail) numerically.

B. Comparison of Optimization Outcomes

Following the user-identified power outage scenario selection
phase, the optimization results can be obtained by implementing
the base model and the policy model, respectively.

First of all, the accomplishment of the proposed stochastic
programming indicates all technical constraints are satisfied.
Under this circumstance, the system resilience performance is
secured where the main concern for the energy mismatch is
resolved in the presence of power outage scenarios. The joint
contributions of sustainability technologies, ESSs, and TE in
networked MGs are successfully validated for resilience en-
hancement. The following analysis is based on the feasibility
of networked MGs being resilient systems.

To obtain a complete profile of integrated power systems
resilience planning costs under different policy regimes, the
carbon emissions abatement coefficient varies from 0% to 100%,
and the emissions tax increases to four times the reference level.
The comparison of results is presented in Fig. 8.

As seen in Fig. 8, the power system resilience planning cost
profile (optimal value of the objective function) is the red curve,
and the blue curve indicates the change of taxation amount
on excessive carbon emissions. Three interesting points can
be observed from this result. First, for the average resilience
planning cost profile, an overall upward trend is observed as
the emissions abatement increases. However, the uptrend below
30% emissions abatement is less pronounced than that above
30% emissions abatement. Furthermore, the cost profiles are
impacted to a greater extent by a larger emissions tax when the
emissions abatement is above 30%. Second, the emissions tax
profile also shows an overall upward trend when the emissions
abatement exceeds 30%. However, no carbon tax is generated
when the emissions abatement is below 30% because carbon
emissions are below the emissions cap. Third, combining those
two result profiles, it can be seen that applying low-carbon
emissions policies undeniably increases the financial cost of
systems resilience planning. Nevertheless, a strategic blend of
carbon emissions caps and taxes can prove advantageous for
all stakeholders. System operators would be able to invest min-
imally in the system, thereby facilitating more robust system
management, while energy policymakers could make substantial
progress in achieving their emissions abatement goals. This
would be the appropriate identification of the critical point at
30% emissions abatement.

Even though, it is conceivable that the critical emissions
threshold greatly depends on the power generation capacities of
the system, particularly the capacities of sustainability technolo-
gies. As stated in the literature review section, it is impractical
to wholly abnegate conventional fossil-fired power generation
during the sustainability transitions period. Hence, a larger
capacity from sustainability technologies indicates a larger re-
placement of electricity generated from fossil-fired power plants,
as well as a larger emissions abatement. The capacity expan-
sion of clean technologies is undoubtedly the future research
direction.

The comparison of usage proportion of different energy
sources is presented in Fig. 9.
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As can be seen in Fig. 9, at a higher level of emissions
abatement, the usage proportion of clean energy sources in-
creases. However, due to the limitations of the power generation
capacities, the increase of usage proportion of clean energy
stops at its maximum capacity. An interesting finding is that the
threshold point is also located between 30% and 40% emissions
abatement. This is due to the maxed-out generation from clean
energy sources when the emissions abatement is greater than
40%.

Combining both results in Figs. 8 and 9, a salient observation
emerges—the implementation of a low-carbon emissions policy
undoubtedly increases the optimal power systems resilience
planning cost. However, the reasons behind the cost increase are
subject to further analysis depending on the critical emissions
abatement point. When emissions abatement is below the critical
point, though no emissions are taxed, the financial cost increases
due to higher usage of clean technologies, which are more
expensive than conventional coal-fired power generation. When

40%
Emission cap: Emissions abatement level

50% 60% 70% 80% 90% 100%

Comparison of energy sources usage under different emissions taxation caps.

emissions abatement is above the critical point, the utilization
of clean technologies reaches its maximum capacity, causing
emissions tax to dominate the financial cost. Hence, for poli-
cymakers who are interested in establishing a tax on excessive
carbon emissions, it is of great essence to evaluate the energy
usage situations for the entire system in order to determine
an appropriate carbon emissions cap prior to establishing the
tax level. An appropriate carbon emissions cap brings about
dual benefits: 1) an acceptable threshold of carbon emissions
abatement; and 2) a minimized emissions tax burden for system
operators.

C. Analysis of Power Generation Profiles

With the identification of the critical emissions abatement
point, a closer examination of power generation portfolios is
of importance to systems planners of resilient systems. The
power generation portfolios of coal, wind, and solar under 30%
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emissions abatement are shown in Figs. 10-12, respectively.
The power generation profile under each CASE circumstance
is represented by a unique color on the figures.

InFig. 10, though all 20 C AS E's are generated independently,
a clear convergent trend of power generations can be observed,
and this is expected from the outcomes of the stochastic op-
timization routines. The two implications of this result are: 1)
given the high energy demand during the day and the impact
of power outage scenarios, the availability of renewable energy
greatly alleviates the stress of generating power from conven-
tional coal-fired power plants; 2) the incentives from the energy
policies lead to a more evident tendency in using renewable
energy whenever it is available.

In Fig. 11, the results from all C ASE's overlap for the power
generation portfolios from wind technology. This result follows
from the cheaper price and the lower life-cycle carbon footprint
of wind energy than solar energy.

Unlike wind energy with an overlapping profile, the power
generations from solar technology show a more nonuniform
profile in Fig. 12. This result exactly illustrates the potentials
of solar energy for resilience enhancement in the presence of
energy policies. On the one hand, wind energy would run out

Power generation profiles from wind power plants under 30% emissions abatement.

immediately for its cheaper cost and lower life-cycle carbon
footprint, which leaves no space to prepare for any further
possible occurrence of power outage situations. The cost of
solar energy is more expensive, but the availability of remaining
energy could be used for emergency use. On the other hand,
utility-scale solar power plants are introduced in this study, but
solar energy is more flexible in its forms of accessibility such
as rooftop solar panels at customers’ houses, which could be
used as a short-term strategy for meeting local demand. Hence,
compared to wind energy, solar energy owns greater flexibility
in enhancing systems resilience.

D. Analysis of ESSs Status

In this study, another incentive to enhance power system
resilience is the energy reserve rewards mechanism. By
financially encouraging utilities to reserve energy, the robustness
of the energy supply is enhanced. Notably, the charging and
discharging status of ESSs are second-stage decision variables
in the model, thus the reserved energy profiles in ESSs
vary by each power outage scenario. In Fig. 13, the change
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profiles of reserved energy in ESSs for all 270 scenarios are
presented.

As can be seen in Fig. 13, the line with a positive slope
indicates the operation of charging status and a negative slope is
the discharging status. As expected, most of the time, the energy
can be maintained at its maximum capacity to ensure enough
energy is reserved for contingencies. It is also worthwhile to
mention that the reserved energy at the last timescale ¢ = 24
converges to the initial stored energy value at ¢ = 0; resetting
the ESSs preparatory for use the next day.

This is a very interesting finding from this study. From past
research on ESSs, batteries are usually used to alleviate power
generation stress during the peak hours of a day. However, in this
study, the operations of ESSs mostly occur during the evening
when the energy demand is relatively small. This situation could

12:00 pm

3:00pm  6:00 pm  9:00 pm  12:00 am

Time

Reserved energy in ESSs under 30% emissions abatement circumstance.

be explained by the following two points. First, the objectives
of the proposed models are to minimize the total cost for a
24-h time scale. Under the financial incentives from the energy
reserve rewards mechanism, a full capacity means the maximum
revenue. Hence, during the day, solar and wind energy are prior-
itized for use in response to the low-carbon emissions require-
ment. Second, at night, it is still more profitable to use energy
stored in ESSs than to generate electricity from conventional
coal-fired power plants.

E. Discussion

The proposed methodology offers an avenue for system
planners to determine the optimal portfolios of generation
technologies from different energy sources to hedge against the
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impact of HILP contingencies. Policymakers may estimate an
appropriate carbon emissions abatement level for the objective
of maximizing carbon emissions abatement while simultane-
ously minimizing the burden of emissions tax. This core obser-
vation sheds more light on four important implications.

First, in the presence of low-carbon energy policies, the
contributions of networked MGs for resilience enhancement are
validated in this study. The multiple energy sources, the flexible
decentralized system structures, the centralized governance
control, the advanced energy storage technologies, and the
reasonable energy incentives programs are all indispensable
components. However, the practical construction of such highly
integrated systems is much beyond the technical considerations,
which also calls for operational regulations and management
policies.

Second, an optimal power generation portfolio does not
mean that the proposed resilient system can fully hedge against
HILP contingencies. One of the prerequisites for utilizing the
optimization model is treating power outage scenarios as input
parameters, considering all postdisruption phases, including
occurrence time and duration. However, the scenario-based
optimal solutions can mitigate the cascading impact to the
greatest extent because the worst scenario (power outage of
24 hours in each CASE) has already been considered in the
computation process.

Third, from the financial perspective, taking into account
low-carbon emissions in systems planning indeed inhibits re-
silience enhancement by introducing more intermittent renew-
able energy and increasing the total planning cost. However,
the contributions of renewable energy cannot be underesti-
mated in the process of decarbonization. The occurrence of
high-impact contingencies indeed is of small probability, and
the advantages of higher utilization of clean technologies out-
weigh the consequences of climate change from a long-term
perspective.

Fourth, from the perspective of energy policies, though the
critical emissions abatement point is determined to be at 30% in
this study, this recommendation is subject to specific system
parameters. The entire methodology can be replicated, i.e.,
the critical emissions abatement point varies depending on the
system configuration and energy source capacities. Additionally,
the implementation of energy policies impacts system operation,
while the system planning follows the stipulation of the policies.

VI. CONCLUSION

In sustainability transitions aimed at responding to climate
change, enacted energy policies and disruptions jointly chal-
lenge system resilience performance. The difficulty in studying
this problem goes beyond only technical consideration because
policies and economics are also of equivalent significance in
influencing decision-making. In this study, an integrated ap-
proach is developed and implemented to demonstrate the ef-
fectiveness of constructing networked MGs for resilience en-
hancement, and to explore the influence of low-carbon emissions
policies on resilience performance. The proposed approach is

developed as a two-stage stochastic optimization model that
captures both the system planning and operation phases in the
presence of HILP contingencies.

The outcomes shed light on the potentials of integrated sys-
tems at enhancing power resilience with large-scale adoption
of sustainable technologies. The comparison of results from the
base model and the policy model offers insights into the estab-
lishment of low-carbon emissions policies where a reasonable
combination of emissions cap and tax can achieve the tradeoffs
between the expectations of larger carbon emissions abatement
and the strengthening of system stability in the presence of
power outage circumstances. The results also imply the benefi-
cial contributions from policy incentives and demand response
programs where both system operators and energy consumers
could cooperatively behave in stabilizing the operation of the
systems.

To summarize, several practical and managerial implications
can be derived from this study for both policymakers and system
planners. For policymakers who are charged with establishing
energy policies, it is of significance to realize the existence of a
critical emissions abatement threshold. To reach this threshold,
system planners are expected to invest in clean technologies
to reduce carbon emissions. However, beyond this threshold,
system planners face the burden of emissions tax. Though this
critical point is not significantly impacted by the emissions tax,
appropriately setting the level of the carbon tax is a prerequisite
to stabilizing the planning and operation of the entire system.
For system planners who are contributing to the resilience
enhancement, it is imperative for them to be cognizant of the
trends in future energy policies. This is crucial because resilience
is not only a technical performance metric, it is a multidimen-
sional metric including the joint contributions from policies and
€conomics.

The opportunities for the directions this work could be ex-
tended to in the future include the focus on the transmission
capacity expansion within integrated systems, the consideration
of the heterogeneity of service purposes of different infrastruc-
ture subsystems, and the application of the model into different
regions where energy policies vary.
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