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productivity of technologically diverse electricity generation utilities in 
the U.S., focusing on renewable energy (RE) adoptions. Renewable en
ergy adoption refers to the ability of production units to maximize the 
share of renewable energy capacity additions within their generation 
mix in the presence of various incentives and policies designed to drive 
the growth of renewable energy (Ogunrinde and Shittu, 2020, 2021). 
This study considers only emerging renewable energy technologies, 
specifically solar PV, and wind energy. Previous studies have focused on 
the performance evaluation of overall efficiencies for a single technol
ogy, electricity generation, electricity distribution, and vertically inte
grated utilities. To our knowledge, no previous study has evaluated 
renewable energy efficiency and productivity related to technologically 
diverse electric utilities. This study makes these evaluations under the 
lens of whether the utility belongs to a Regional Transmission Organi
zation (RTO), and highlights the differences across these metrics for 
both groups. 

Central to the analysis in this paper is the recognition that electricity 
generators and policy effects designed to drive the growth of renewable 
energy are located within geographical state lines under the umbrella of 
an electric grid that spans multiple states. To that effect, RTOs, equally 
known as Independent System Operators (ISOs), are saddled with the 
responsibility of managing and coordinating the multi-state electric grid 
system. A total of seven RTOs/ISOs exist in the United States and are 
responsible for managing about two-thirds of the country’s annual 
electricity demand (FERC, 2021). Utilities operating in the RTO regions 
are expected to provide an easy entry into private investment in 
emerging renewable energy technologies and improve renewable en
ergy adoption within the regions (Hogan, 2010). Therefore, this study 
focuses on evaluating the efficiency and productivity of utilities across 
RTO and non-RTO regions. 

This study contributes to the performance benchmarking literature 
on electricity utilities by employing a framework that evaluates RE 
adoption efficiency and productivity within the electricity sector. In 
addition, the findings from this study also provide relevant policy in
sights to policymakers and technology managers on the crucial drivers 
for RE adoption among large, technologically diverse generation utili
ties. The value drawn from this exercise extends our knowledge in un
derstanding disparities in energy technology investments considering 
the ambivalence faced by decision-makers and investors in adopting 
emerging RE technologies in the place of existing conventional 
technologies. 

In sum, to evaluate the renewable energy adoption efficiencies, this 
study employs a dynamic non-linear parametric programming approach 
in the form of Data Envelopment Analysis (DEA). DEA estimates an 
efficient frontier for the best-performing utilities in terms of RE adop
tions. The DEA model maximizes the share of RE within the generation 
mix of utilities’ portfolios. As a result, a utility on the frontier is termed 
efficient if it makes the best use of available input resources to maximize 
its RE capacity share. Inefficient units on the other hand, operate below 
the frontier, implying that they produce lower RE capacities outputs 
with relatively higher, or equal, inputs than those that operate on the 
frontier. The study further employs non-parametric statistical analysis to 
assess the performance of the utilities across electricity market regions. 
Finally, the study applies a DEA-Malmquist index technique to evaluate 
the utilities’ RE productivity change across adjacent periods over the 
study horizon. 

2. Literature review 

Various approaches have been considered in evaluating the perfor
mance efficiency of electric utilities. The choice of approach largely 
depends on data availability and the specific application in question 
(Pereira de Souza et al., 2010). Jamasb and Pollitt (2000) surveyed 
electric utilities across several countries and identified the three most 
widely employed performance evaluation techniques. These techniques 
are (i) Data envelopment Analysis (DEA), (ii) Corrected Ordinary Least 

Square (COLS), and (iii) Stochastic Frontier Analysis (SFA). These ap
proaches involve identifying a frontier of the best performance from a 
list of qualified utilities. SFA and COLS are econometric approaches that 
estimate efficiency scores and require specifying a production or cost 
function. However, as a programming approach, DEA computes the ef
ficiency scores from actual data and does not require the specification of 
production or cost functions. In addition, DEA can be combined with 
Malmquist Indices to investigate productivity changes from one period 
to the other (Sánchez-Ortiz et al., 2020). 

Jamasb and Pollitt (2000) and Khetrapal and Thakur (2014) 
reviewed the merits and demerits of these approaches within the context 
of performance benchmarking in electric utilities. In addition, prior 
research has compared these three techniques. For instance, Jamasb and 
Pollitt (2003) conducted an international benchmarking exercise of 63 
electric utilities across six European countries using DEA, COLS, and SFA 
models. Their findings revealed that the choice of benchmarking tech
niques significantly influenced both the computed efficiency scores and 
the performance rankings of the utilities. In a similar study evaluating 
the cost efficiencies of 52 electric distribution utilities in Switzerland, 
Farsi and Filippini (2005) also found that both efficiency scores and 
performance ranks differed across the three techniques: the DEA effi
ciency scores and ranks are significantly different in comparison with 
that of COLS and SFA. Nonetheless, DEA remains the most widely 
employed performance benchmarking technique for electric utilities due 
to its ability to accommodate multiple input and output variables 
without predefined functional forms for the decision-making units 
(Mullarkey et al., 2015). 

Studies have focused on evaluating the performance of electric 
power generation plants with DEA (Park and Lesourd, 2000; Lam and 
Shiu, 2001; Nemoto and Goto, 2003; Vaninsky, 2006; Barros and Pey
poch, 2008; Liu et al., 2010; Ogunrinde and Shittu, 2023). For example, 
Park and Lesourd (2000) employed DEA to investigate the efficiency of 
64 conventional fuel power plants in South Korea and used the DEA 
efficiencies in an econometric production function to improve the 
model’s correctness. Nemoto and Goto (2003) employed a dynamic DEA 
framework to model the investment behavior of nine Japanese thermal 
plants over 15 years. Vaninsky (2006) evaluated the efficiency of U.S. 
electric power plants using DEA and employed a forecasting technique 
to compute input and output values required to achieve future efficiency 
scores of 100%. Barros and Peypoch (2008) evaluated the performance 
of Portuguese thermoelectric power plants using a combined DEA model 
and bootstrapping technique to estimate the drivers of the technical 
efficiencies. In a recent study, Khodadadipour et al. (2021) considered 
undesirable outputs and evaluated the efficiencies of 32 
thermal-powered plants using a stochastic DEA approach for ranking 
and enhancing discrimination among decision-making units. In sum
mary, these studies were ultimately concerned with the overall technical 
efficiencies for electricity generation across power plants and also did 
not consider the generation technologies within the portfolios. 

Another group of studies focused on performance benchmarking 
across electricity distribution utilities (Miliotis, 1992; Yu et al., 2009; 
Çelen and Yalçın, 2012; Bongo et al., 2018; Medeiros et al., 2022). An 
early study by Miliotis (1992) employed DEA to evaluate the efficiencies 
of 45 electricity distribution districts in Greece and concluded that the 
scores obtained appeared to be more reliable in comparison to other 
techniques. Yu et al. (2009) reported a significant correlation between 
weather variables and economic efficiency scores in investigating the 
effects of weather on the performance of 12 UK distribution network 
operators using factor analysis and a 2-stage DEA method. In incorpo
rating quality of service in the performance measurement of electricity 
utilities, Çelen and Yalçın (2012) used a combined FAHP/TOPSIS/DEA 
approach to assess the performance of 21 Turkish electricity distribution 
utilities. To improve the discriminating power of traditional DEA in 
electricity utility benchmarking, Bongo et al. (2018) employed a 
super-efficiency DEA to evaluate the performance of 12 distribution 
power lines of a public utility company. A recent study by Medeiros et al. 
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(2022) focused on evaluating the influence of weight restrictions on the 
performance efficiency scores of Brazilian electricity utility companies 
using DEA, cost-efficiency, and ratio-based analysis techniques. These 
studies focused on performance benchmarking of electricity distribution 
networks and utilities, and, as such, the studies were concerned with 
performance measurement variables such as the total customers served 
and the total electricity sales. 

A few more studies considered vertically integrated electricity util
ities. Techniques such as assurance region DEA (Goto and Tsutsui, 
1998), slack-based DEA (Tsutsui and Goto, 2009), and network DEA 
models have been employed (Petridis et al., 2019; Alizadeh et al., 2020). 
Goto and Tsutsui (1998) compared the cost efficiencies and overall 
technical efficiencies of Japanese and U.S. electric utilities using DEA; 
the authors reported higher cost efficiency values with Japanese utilities 
and found the Japanese utilities to be more efficient in terms of technical 
and scale efficiencies. Petridis et al. (2019) employed a network DEA 
approach combined with a directional distance function to evaluate the 
profit efficiencies of Turkish electrical utility companies. Similarly, 
Alizadeh et al. (2020) presented a dynamic network DEA model to assess 
the periodic performance of Iranian electricity companies and reported 
that the distribution sections have increasing efficiencies while the 
generation and transmission sections have decreasing efficiencies. These 
studies typically focused on the overall technical efficiencies of verti
cally integrated electricity generation utilities and evaluated the 
inter-relationships between the sub-systems in the electricity generation 
systems. 

The focus of this study is to evaluate the overall renewable energy 
adoption efficiency and productivity across electricity utilities in the U. 
S. Specifically, this study takes a holistic approach and considers the 
largest technologically diverse electricity utilities. Technologically 
diverse, in this case, refers to utilities with varied energy technologies, 
such as fossil-fuel-powered plants and renewable energy plants within 
the utilities’ generation portfolios. Previous studies in the extant liter
ature have evaluated the overall technical efficiencies in utility power 
plants, distribution networks, and vertically integrated utilities (DeLu
que et al., 2018). However, this study is concerned with performance 
benchmarking of electricity generation utilities at the firm level and 
specifically considers renewable energy adoption across 
mixed-generation portfolios. This research study fills some empirical 
gaps in the extant literature. First, this study considers how electric 
utilities have efficiently maximized renewable energy capacity additions 
over the years, given specific energy policies and incentives available 
within the utilities’ operating regions. Second, this study investigates 
how these renewable energy adoption efficiencies differ across the RTO 
and non-RTO regions. Third, this study evaluates how productive utili
ties have been in maximizing renewable energy capacity additions over 
adjacent periods. It is also important to note that this study focuses on 
the strength of RE policies in the presence of renewable energy resource 
endowment as drivers for RE growth and development. A summary of 
the input and output variables employed in past studies is shown in 
Tables 1 and 2, respectively. 

The RTO/ISO model created wholesale power markets to incentivize 
efficient operations and technology investment (Anadon and Holdren, 
2009). Ideally, this should create better opportunities for decentralized 
energy investment decisions in electricity generation plants, 
end-use-efficiency (Helman et al., 2010; Hogan, 2010; Shittu et al., 
2015), and enhance system resilience (Shittu et al., 2021; Shittu and 
Santos, 2021). In addition, the choice available to consumers on whom 
to purchase electricity from in fully regulated electricity regions is ex
pected to encourage the growth and development of green energy 
technologies in these regions (Carley, 2009; Ogunrinde et al., 2020). On 
the other hand, energy investment decisions for vertically integrated 
utilities in non-RTO/ISO are at the purview of the electricity utilities and 
subject to state economic regulation. These utilities may be less likely to 
adopt new and emerging technologies within their generation portfolios. 

3. DEA model 

This section presents the basic DEA model with recent extensions and 
the Malmquist DEA approach. The variables and underlying data are 
also presented. 

3.1. Basic DEA model 

A decision-making unit (DMU) represents the entity responsible for 
transforming sets of inputs into outputs. DEA originates from the 
traditional concept of output-to-input ratio, often used to describe effi
ciency in science and engineering (Cooper et al., 2006). The concept was 
pioneered with the CCR (Charnes, Cooper, and Rhodes) model devel
oped by Charnes et al. (1978). The model involves solving an optimi
zation problem that maximizes the ratio of the weighted sum of selected 
outputs to the weighted sum of their inputs. Consider the CCR 
output-oriented model described in Model (1). 

min
∑m

i=1vixio
∑s

r=1uryro
(1a)  

s.t.
∑m

i=1
vixij ≥

∑s

r=1
uryrj; j = 1,…, n (1b)  

ur , vi ≥ ε > 0; r = 1,…, s; i = 1,…,m (1c) 

If there are n DMUs such that each DMUj (j = 1, …., n) uses m inputs 
represented by xij (i = 1, …., m) to produce s outputs represented by yrj 
(r = 1, …., s)., then the efficiency of the DMUo under evaluation is 
represented by θo. Due to difficulties associated with fractional pro
gramming, the model is linearized by setting the denominator in (1a) 
equal to 1. We then obtain the CCR multiplier model described in Model 

Table 1 
Summary of input variables employed in DEA electric utility studies.   

Inputs Study references 

1 Fuel (Yaisawarng and Klein, 1994), (Park and Lesourd, 
2000), (Nemoto and Goto, 2003), (Liu et al., 2010), 
(Sarıca and Or, 2007) 

2 Labor (Yaisawarng and Klein, 1994), (Park and Lesourd, 
2000), (Nemoto and Goto, 2003), (Barros and 
Peypoch, 2008), (Lam and Shiu, 2001), (Sueyoshi 
and Goto, 2012), (Thakur et al., 2006) 

4 Installed capacity (Park and Lesourd, 2000), (Liu et al., 2010), (Yang 
and Pollitt, 2009) 

5 Operations and 
maintenance costs 

(Pahwa et al., 2003), (Sueyoshi and Goto, 2012), ( 
Vaninsky, 2006) 

6 Capital costs (Yaisawarng and Klein, 1994), (Barros and Peypoch, 
2008), (Lam and Shiu, 2001), (Yang and Pollitt, 
2009) 

7 SO2 (Yaisawarng and Klein, 1994), (Yang and Pollitt, 
2009), (Yang and Pollitt, 2010), (Sueyoshi and 
Goto, 2012), (Zhou et al., 2013), (Lee, 2014) 

8 NOX (Yang and Pollitt, 2010), (Sueyoshi and Goto, 
2012), (Zhou et al., 2013), (Lee, 2014) 

9 CO2 (Yang and Pollitt, 2010), (Sueyoshi and Goto, 
2012), (Zhou et al., 2013), (Zhang et al., 2013), ( 
Shakouri G. et al., 2014), (Yadav et al., 2014), (Lee, 
2014)  

Table 2 
Summary of output variables employed in DEA electric utility studies.   

Outputs Study references 

1 Installed capacity 
(MW) 

(Jha and Shrestha, 2006), (Sueyoshi and Goto, 2014), 
(Sueyoshi and Wang, 2017), (Sueyoshi and Goto, 
2017), (You et al., 2018) 

2 Electric power 
generated (MWh) 

(Yaisawarng and Klein, 1994), (Barros and Peypoch, 
2008), (Sueyoshi and Goto, 2014), (Sueyoshi and 
Goto, 2017), You et al. (2018); (Sueyoshi and Wang, 
2017)  
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portfolios over the periods. The first two periods, 2014–2015 and 
2015–2016, were observed to have the greatest decline in total pro
ductivity change, with a mean productivity growth of 56% and 35%, 
respectively, driven by the decline in technology change across these 
periods. However, the subsequent three periods experienced improve
ments in mean productivity growth, 47% in 2016–2017, 139% in 
2017–2018, and 28% in 2018–2019. These improvements in total pro
ductivity change were observed to be driven by improvements in both 
efficiency and technology change. The overall mean productivity change 
was computed as a geometric mean of the change across every period 
(Førsund and Kittelsen, 1998). The mean efficiency change showed a 
growth of 1.325 (32.5% increase) for all utilities, while the mean tech
nology change showed a decline of 0.791 (20.91% decrease) across 
utilities. In addition, the mean total factor productivity change across all 
periods was computed as 1.048, indicating a mean improvement of 4.8% 
in renewable energy adoption across all utilities over this period. 

6. Conclusion 

This study examines renewable energy adoption efficiencies across 
the largest investor-owned electric utilities in the U.S. The investigation 
focuses on utilities with diverse energy technologies within their gen
eration portfolio, specifically fossil-fuel-based generators and emerging 
renewable energy generators, such as solar-PV and wind energy. The 
study employs a dynamic DEA technique to evaluate the overall tech
nical efficiencies of these utilities. The results show significant differ
ences in renewable energy adoption across the qualified utilities. Only 
three utilities have efficiency values of one and, as a result, operate on 
the efficient frontier. In addition, the mean overall efficiency for the 
included utilities was 23%. 

A Mann-Whitney test was employed to investigate how the renew
able energy adoption efficiencies for utilities operating in the RTO re
gions compare with those in the non-RTO regions. The results showed 
that despite the non-RTO group having a higher mean efficiency, the 
differences in performance between the two groups are not statistically 
significant. 

This study employs the DEA Malmquist Index technique to analyze 
utility productivity on the adoption of renewable energy across adjacent 
periods. The result shows that the total productivity change for renew
able energy adoption increased in the last three years within the study 
period by 47%, 139%, and 28%, respectively. The results observed are 
typically driven by differences across the utilities in RE energy adoption 

over the different periods. While some utilities have consistently 
improved RE adoption over the entire study period, others displayed 
slow growth with individual spikes across different periods. As a result, 
the mean overall technical change for renewable energy adoption was 
observed to be 1.048, indicating a mean growth rate of 4.8% through the 
period, driven by both technology and efficiency change. This finding 
implies that the utilities in this study have recorded an effective growth 
in the average renewable energy adoption over this period. It is expected 
that as gaps in process and product innovation within the industry close 
and the utilities continue to improve their efficiency changes by effi
ciently utilizing firm resources, available state incentives, and natural 
resource availability, coupled with effective regulation policies, the 
overall total productivity changes for renewable energy adoption would 
continue to improve steadily in subsequent years. 

The scope of this study was limited to the largest electricity gener
ation utilities in the U.S., with a mix of fossil and renewable energy 
technologies in their generation portfolios. Due to data availability 
limitations, the study did not incorporate undesirable outputs such as 
SOx, NOx, and CO2 into the model. This study can be extended by 
incorporating undesirable outputs into the model. More robust 
comparative analysis and productivity indices for renewable energy 
adoption can be evaluated by considering undesirable outputs. Further 
extensions can be included by performing comparison benchmarking 
studies for various regions outside of the U.S. to observe how renewable 
energy adoption could also compare across geographical lines. 
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Appendix A  

Table A1 
Participating Electricity Utilities  

Group Utility Notation 

RTO MidAmerican Energy Co E1  
Oklahoma Gas & Electric Co E2  
Pacific Gas & Electric Co. E3  
Northern States Power Co E4  
Wisconsin Electric Power Co E5  
DTE Electric Company E6  
Consumers Energy Co E7  
Virginia Electric & Power Co E8  
Appalachian Power Co E9  
Union Electric Co - (MO) E10  
Southwestern Electric Power Co E11  
Duke Energy Indiana, LLC E12  
Entergy Arkansas LLC E13  
Entergy Louisiana LLC E14 

Non-RTO Tampa Electric Co F1  

Florida Power & Light Co F2  
Arizona Public Service Co F3 

(continued on next page) 
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Table A1 (continued ) 

Group Utility Notation  

PacifiCorp F4  
Duke Energy Florida, LLC F5  
Georgia Power Co F6  
Public Service Co of Colorado F7  
Alabama Power Co F8  
Duke Energy Progress - (NC) F9  
Duke Energy Carolinas, LLC F10   

Table A2 
Mean efficiency change, productivity change, and total productivity change across utilities.  

Utility Code Efficiency Change Technology Change MPI 

F1 3.018 1.288 3.887 
F2 1.558 1.280 1.994 
F3 0.931 0.439 0.408 
F4 0.948 0.682 0.646 
F5 2.603 1.288 3.353 
F6 1.705 0.813 1.386 
F7 1.585 0.452 0.715 
F8 1.902 0.777 1.478 
F9 2.677 0.935 2.503 
F10 1.481 0.906 1.341 

mean (non-RTO) 1.715 0.829 1.421 

E1 1.000 0.485 0.485 
E2 0.935 0.650 0.608 
E3 0.826 0.923 0.762 
E4 1.082 0.741 0.801 
E5 0.956 0.684 0.654 
E6 0.935 0.833 0.779 
E7 0.953 0.833 0.793 
E8 2.223 0.812 1.804 
E9 1.046 0.807 0.844 
E10 1.128 0.835 0.942 
E11 1.150 0.685 0.788 
E12 1.626 0.970 1.577 
E13 1.036 0.822 0.852 
E14 1.083 0.772 0.836 

mean (RTO) 1.102 0.765 0.844 
Overall 1.325 0.791 1.048   

Table A3 
Mean efficiency change, technology change, and total productivity change across periods  

Period Efficiency Change Technology Change MPI 

2014–2015 0.914 0.478 0.437 
2015–2016 1.531 0.424 0.649 
2016–2017 1.449 1.011 1.465 
2017–2018 2.177 1.097 2.389 
2018–2019 0.926 1.378 1.276 
Mean 1.325 0.791 1.048  
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