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improvement of 4.8%.

This study employs a Data Envelopment Analysis (DEA) modeling technique to investigate the efficiency and
productivity of renewable energy (RE) adoption across technologically diverse electricity-generating utilities. By
employing metrics capturing policy effects, the study evaluates the RE adoption efficiency and productivity using
a dynamic DEA model and the Malmquist DEA technique. First, the findings reveal that RE adoption is not
significantly different across regional electricity markets. Second, the study revealed that RE adoption increased
over the last three years. The total mean productivity change over the entire study period showed a mean

1. Introduction

The U.S. recently increased its commitment to leading the clean
energy revolution through its Climate Change Action Plan, targeting a
100% carbon-free power sector by 2035 (Fact Sheet, 2021). The need to
decarbonize the electricity sector to address climate change is urgent.
According to the Energy Information Administration (EIA), only about
20% of the total electricity generated comes from renewable energy
sources, while over 60% is from fossil fuels (EIA, 2021a). This situation
poses a problem because the electricity sector is responsible for about a
third of the total energy-related carbon emissions in the U.S., thus,
making substantial contributions to global warming. A decarbonized
grid would consist mainly of renewable and low-carbon energy tech-
nologies (such as solar-PV and wind energy systems) alongside energy
storage systems with optimal cost and flexibility (Pourahmadi et al.,
2020). Therefore, decarbonizing the electricity sector represents one of
the most viable strategies for achieving the nation’s ambitious climate
change targets (Fact Sheet, 2021).

In the U.S,, it is expected that electric utilities will continue to be
critical in the efforts aimed at addressing climate change by increasing
investments in low-carbon and renewable energy technologies with in-
creases in technological learning (Shittu, 2013; Shittu et al., 2019). Over
the past years, several policies and incentives have been introduced to
encourage private sector investment in renewable energy at the state
and federal government levels (Ogunrinde and Shittu, 2021). These
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include renewable portfolio standards, carbon pricing, tax benefits, and
clean energy grants and loan programs (Elie et al., 2021; Fowler and
Breen, 2013). These have led to increased capacity additions for
renewable energy technologies like solar-PV and wind energy (Baker
etal., 2020; Jiang et al., 2016). For instance, in 2020, solar-PV and wind
energy capacities grew by 22% and 14%, respectively, from 2019 values
leading to a renewable energy consumption record of 12% of the total U.
S. energy consumption within a year (EIA, 2021b).

Benchmarking power systems and electricity generation is necessary
to evaluate the potential for GHG emission reductions (Alizadeh et al.,
2020). As a result, the increased expansion in renewable energy tech-
nologies within the mix of conventional energy technology portfolios
makes it imperative to perform performance evaluation and bench-
marking in the electricity sector. Benchmarking involves comparing the
performance of production units to a reference or frontier performance.
Benchmarking is critical because it not only allows utilities to compare
themselves to the best possible set but also allows for the identification
of areas of potential improvements and the development of strategic
pathways to enhance their performance (Khetrapal and Thakur, 2014;
Pahwa et al., 2003; Thakur et al., 2006). Performance benchmarking in
the electricity sector is also needed because it aids policymakers in
designing incentive-based policy instruments that encourage the pro-
duction of electricity from cleaner energy sources (Baker and Shittu,
2008; DeLuque and Shittu, 2019).

This study aims to evaluate the dynamic performance and
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productivity of technologically diverse electricity generation utilities in
the U.S., focusing on renewable energy (RE) adoptions. Renewable en-
ergy adoption refers to the ability of production units to maximize the
share of renewable energy capacity additions within their generation
mix in the presence of various incentives and policies designed to drive
the growth of renewable energy (Ogunrinde and Shittu, 2020, 2021).
This study considers only emerging renewable energy technologies,
specifically solar PV, and wind energy. Previous studies have focused on
the performance evaluation of overall efficiencies for a single technol-
ogy, electricity generation, electricity distribution, and vertically inte-
grated utilities. To our knowledge, no previous study has evaluated
renewable energy efficiency and productivity related to technologically
diverse electric utilities. This study makes these evaluations under the
lens of whether the utility belongs to a Regional Transmission Organi-
zation (RTO), and highlights the differences across these metrics for
both groups.

Central to the analysis in this paper is the recognition that electricity
generators and policy effects designed to drive the growth of renewable
energy are located within geographical state lines under the umbrella of
an electric grid that spans multiple states. To that effect, RTOs, equally
known as Independent System Operators (ISOs), are saddled with the
responsibility of managing and coordinating the multi-state electric grid
system. A total of seven RTOs/ISOs exist in the United States and are
responsible for managing about two-thirds of the country’s annual
electricity demand (FERC, 2021). Utilities operating in the RTO regions
are expected to provide an easy entry into private investment in
emerging renewable energy technologies and improve renewable en-
ergy adoption within the regions (Hogan, 2010). Therefore, this study
focuses on evaluating the efficiency and productivity of utilities across
RTO and non-RTO regions.

This study contributes to the performance benchmarking literature
on electricity utilities by employing a framework that evaluates RE
adoption efficiency and productivity within the electricity sector. In
addition, the findings from this study also provide relevant policy in-
sights to policymakers and technology managers on the crucial drivers
for RE adoption among large, technologically diverse generation utili-
ties. The value drawn from this exercise extends our knowledge in un-
derstanding disparities in energy technology investments considering
the ambivalence faced by decision-makers and investors in adopting
emerging RE technologies in the place of existing conventional
technologies.

In sum, to evaluate the renewable energy adoption efficiencies, this
study employs a dynamic non-linear parametric programming approach
in the form of Data Envelopment Analysis (DEA). DEA estimates an
efficient frontier for the best-performing utilities in terms of RE adop-
tions. The DEA model maximizes the share of RE within the generation
mix of utilities’ portfolios. As a result, a utility on the frontier is termed
efficient if it makes the best use of available input resources to maximize
its RE capacity share. Inefficient units on the other hand, operate below
the frontier, implying that they produce lower RE capacities outputs
with relatively higher, or equal, inputs than those that operate on the
frontier. The study further employs non-parametric statistical analysis to
assess the performance of the utilities across electricity market regions.
Finally, the study applies a DEA-Malmquist index technique to evaluate
the utilities” RE productivity change across adjacent periods over the
study horizon.

2. Literature review

Various approaches have been considered in evaluating the perfor-
mance efficiency of electric utilities. The choice of approach largely
depends on data availability and the specific application in question
(Pereira de Souza et al., 2010). Jamasb and Pollitt (2000) surveyed
electric utilities across several countries and identified the three most
widely employed performance evaluation techniques. These techniques
are (i) Data envelopment Analysis (DEA), (ii) Corrected Ordinary Least
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Square (COLS), and (iii) Stochastic Frontier Analysis (SFA). These ap-
proaches involve identifying a frontier of the best performance from a
list of qualified utilities. SFA and COLS are econometric approaches that
estimate efficiency scores and require specifying a production or cost
function. However, as a programming approach, DEA computes the ef-
ficiency scores from actual data and does not require the specification of
production or cost functions. In addition, DEA can be combined with
Malmquist Indices to investigate productivity changes from one period
to the other (Sanchez-Ortiz et al., 2020).

Jamasb and Pollitt (2000) and Khetrapal and Thakur (2014)
reviewed the merits and demerits of these approaches within the context
of performance benchmarking in electric utilities. In addition, prior
research has compared these three techniques. For instance, Jamasb and
Pollitt (2003) conducted an international benchmarking exercise of 63
electric utilities across six European countries using DEA, COLS, and SFA
models. Their findings revealed that the choice of benchmarking tech-
niques significantly influenced both the computed efficiency scores and
the performance rankings of the utilities. In a similar study evaluating
the cost efficiencies of 52 electric distribution utilities in Switzerland,
Farsi and Filippini (2005) also found that both efficiency scores and
performance ranks differed across the three techniques: the DEA effi-
ciency scores and ranks are significantly different in comparison with
that of COLS and SFA. Nonetheless, DEA remains the most widely
employed performance benchmarking technique for electric utilities due
to its ability to accommodate multiple input and output variables
without predefined functional forms for the decision-making units
(Mullarkey et al., 2015).

Studies have focused on evaluating the performance of electric
power generation plants with DEA (Park and Lesourd, 2000; Lam and
Shiu, 2001; Nemoto and Goto, 2003; Vaninsky, 2006; Barros and Pey-
poch, 2008; Liu et al., 2010; Ogunrinde and Shittu, 2023). For example,
Park and Lesourd (2000) employed DEA to investigate the efficiency of
64 conventional fuel power plants in South Korea and used the DEA
efficiencies in an econometric production function to improve the
model’s correctness. Nemoto and Goto (2003) employed a dynamic DEA
framework to model the investment behavior of nine Japanese thermal
plants over 15 years. Vaninsky (2006) evaluated the efficiency of U.S.
electric power plants using DEA and employed a forecasting technique
to compute input and output values required to achieve future efficiency
scores of 100%. Barros and Peypoch (2008) evaluated the performance
of Portuguese thermoelectric power plants using a combined DEA model
and bootstrapping technique to estimate the drivers of the technical
efficiencies. In a recent study, Khodadadipour et al. (2021) considered
undesirable outputs and evaluated the efficiencies of 32
thermal-powered plants using a stochastic DEA approach for ranking
and enhancing discrimination among decision-making units. In sum-
mary, these studies were ultimately concerned with the overall technical
efficiencies for electricity generation across power plants and also did
not consider the generation technologies within the portfolios.

Another group of studies focused on performance benchmarking
across electricity distribution utilities (Miliotis, 1992; Yu et al., 2009;
Celen and Yalcin, 2012; Bongo et al., 2018; Medeiros et al., 2022). An
early study by Miliotis (1992) employed DEA to evaluate the efficiencies
of 45 electricity distribution districts in Greece and concluded that the
scores obtained appeared to be more reliable in comparison to other
techniques. Yu et al. (2009) reported a significant correlation between
weather variables and economic efficiency scores in investigating the
effects of weather on the performance of 12 UK distribution network
operators using factor analysis and a 2-stage DEA method. In incorpo-
rating quality of service in the performance measurement of electricity
utilities, Celen and Yalcin (2012) used a combined FAHP/TOPSIS/DEA
approach to assess the performance of 21 Turkish electricity distribution
utilities. To improve the discriminating power of traditional DEA in
electricity utility benchmarking, Bongo et al. (2018) employed a
super-efficiency DEA to evaluate the performance of 12 distribution
power lines of a public utility company. A recent study by Medeiros et al.
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(2022) focused on evaluating the influence of weight restrictions on the
performance efficiency scores of Brazilian electricity utility companies
using DEA, cost-efficiency, and ratio-based analysis techniques. These
studies focused on performance benchmarking of electricity distribution
networks and utilities, and, as such, the studies were concerned with
performance measurement variables such as the total customers served
and the total electricity sales.

A few more studies considered vertically integrated electricity util-
ities. Techniques such as assurance region DEA (Goto and Tsutsui,
1998), slack-based DEA (Tsutsui and Goto, 2009), and network DEA
models have been employed (Petridis et al., 2019; Alizadeh et al., 2020).
Goto and Tsutsui (1998) compared the cost efficiencies and overall
technical efficiencies of Japanese and U.S. electric utilities using DEA;
the authors reported higher cost efficiency values with Japanese utilities
and found the Japanese utilities to be more efficient in terms of technical
and scale efficiencies. Petridis et al. (2019) employed a network DEA
approach combined with a directional distance function to evaluate the
profit efficiencies of Turkish electrical utility companies. Similarly,
Alizadeh et al. (2020) presented a dynamic network DEA model to assess
the periodic performance of Iranian electricity companies and reported
that the distribution sections have increasing efficiencies while the
generation and transmission sections have decreasing efficiencies. These
studies typically focused on the overall technical efficiencies of verti-
cally integrated electricity generation utilities and evaluated the
inter-relationships between the sub-systems in the electricity generation
systems.

The focus of this study is to evaluate the overall renewable energy
adoption efficiency and productivity across electricity utilities in the U.
S. Specifically, this study takes a holistic approach and considers the
largest technologically diverse electricity utilities. Technologically
diverse, in this case, refers to utilities with varied energy technologies,
such as fossil-fuel-powered plants and renewable energy plants within
the utilities’ generation portfolios. Previous studies in the extant liter-
ature have evaluated the overall technical efficiencies in utility power
plants, distribution networks, and vertically integrated utilities (DeLu-
que et al., 2018). However, this study is concerned with performance
benchmarking of electricity generation utilities at the firm level and
specifically  considers renewable energy adoption across
mixed-generation portfolios. This research study fills some empirical
gaps in the extant literature. First, this study considers how electric
utilities have efficiently maximized renewable energy capacity additions
over the years, given specific energy policies and incentives available
within the utilities’ operating regions. Second, this study investigates
how these renewable energy adoption efficiencies differ across the RTO
and non-RTO regions. Third, this study evaluates how productive utili-
ties have been in maximizing renewable energy capacity additions over
adjacent periods. It is also important to note that this study focuses on
the strength of RE policies in the presence of renewable energy resource
endowment as drivers for RE growth and development. A summary of
the input and output variables employed in past studies is shown in
Tables 1 and 2, respectively.

The RTO/ISO model created wholesale power markets to incentivize
efficient operations and technology investment (Anadon and Holdren,
2009). Ideally, this should create better opportunities for decentralized
energy investment decisions in electricity generation plants,
end-use-efficiency (Helman et al., 2010; Hogan, 2010; Shittu et al.,
2015), and enhance system resilience (Shittu et al., 2021; Shittu and
Santos, 2021). In addition, the choice available to consumers on whom
to purchase electricity from in fully regulated electricity regions is ex-
pected to encourage the growth and development of green energy
technologies in these regions (Carley, 2009; Ogunrinde et al., 2020). On
the other hand, energy investment decisions for vertically integrated
utilities in non-RTO/ISO are at the purview of the electricity utilities and
subject to state economic regulation. These utilities may be less likely to
adopt new and emerging technologies within their generation portfolios.
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Table 1
Summary of input variables employed in DEA electric utility studies.
Inputs Study references
1 Fuel (Yaisawarng and Klein, 1994), (Park and Lesourd,

2000), (Nemoto and Goto, 2003), (Liu et al., 2010),
(Sarica and Or, 2007)

(Yaisawarng and Klein, 1994), (Park and Lesourd,
2000), (Nemoto and Goto, 2003), (Barros and
Peypoch, 2008), (Lam and Shiu, 2001), (Sueyoshi
and Goto, 2012), (Thakur et al., 2006)

(Park and Lesourd, 2000), (Liu et al., 2010), (Yang
and Pollitt, 2009)

(Pahwa et al., 2003), (Sueyoshi and Goto, 2012), (
Vaninsky, 2006)

(Yaisawarng and Klein, 1994), (Barros and Peypoch,
2008), (Lam and Shiu, 2001), (Yang and Pollitt,
2009)

(Yaisawarng and Klein, 1994), (Yang and Pollitt,
2009), (Yang and Pollitt, 2010), (Sueyoshi and
Goto, 2012), (Zhou et al., 2013), (Lee, 2014)
(Yang and Pollitt, 2010), (Sueyoshi and Goto,
2012), (Zhou et al., 2013), (Lee, 2014)

(Yang and Pollitt, 2010), (Sueyoshi and Goto,
2012), (Zhou et al., 2013), (Zhang et al., 2013), (
Shakouri G. et al., 2014), (Yadav et al., 2014), (Lee,
2014)

2 Labor

4  Installed capacity
5  Operations and

maintenance costs
6  Capital costs

7 SO

8 NOx

9 CO;

Table 2
Summary of output variables employed in DEA electric utility studies.

Outputs Study references

1 Installed capacity (Jha and Shrestha, 2006), (Sueyoshi and Goto, 2014),
(MW) (Sueyoshi and Wang, 2017), (Sueyoshi and Goto,

2017), (You et al., 2018)

(Yaisawarng and Klein, 1994), (Barros and Peypoch,

2008), (Sueyoshi and Goto, 2014), (Sueyoshi and

Goto, 2017), You et al. (2018); (Sueyoshi and Wang,

2017)

2 Electric power
generated (MWh)

3. DEA model

This section presents the basic DEA model with recent extensions and
the Malmquist DEA approach. The variables and underlying data are
also presented.

3.1. Basic DEA model

A decision-making unit (DMU) represents the entity responsible for
transforming sets of inputs into outputs. DEA originates from the
traditional concept of output-to-input ratio, often used to describe effi-
ciency in science and engineering (Cooper et al., 2006). The concept was
pioneered with the CCR (Charnes, Cooper, and Rhodes) model devel-
oped by Charnes et al. (1978). The model involves solving an optimi-
zation problem that maximizes the ratio of the weighted sum of selected
outputs to the weighted sum of their inputs. Consider the CCR
output-oriented model described in Model (1).

S ViXio

min ==—= (1a)

5
Y iU Vro

s.t. ZZlVixi/ > ijlu,y,j; j=1,..n (1b)

u,vize>0, r=1,...8 i=1,....m (1c)

If there are n DMUs such that each DMU; (j = 1, ...., n) uses m inputs
represented by x;; (i = 1, ...., m) to produce s outputs represented by y;;
(r=1, ..., )., then the efficiency of the DMU, under evaluation is
represented by 6,. Due to difficulties associated with fractional pro-
gramming, the model is linearized by setting the denominator in (1a)
equal to 1. We then obtain the CCR multiplier model described in Model
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).

min Z:_n:lv,»x,-,, (2a)
Zf_:]u,ym =1 (2b)
s.t. Zi_n:lv,-x;j > Zizlu,y,j; j=1,...n (20)
U, v;i>e>0; r=1,...;5; i=1,....m 2d)

The CCR model determines for each DMU optimal values of the
output and input multipliers u, and v; respectively, such that Equation
(2a) is maximized subject to all the constraints. These multipliers
represent the marginal effects of the input and output values x;j, and y;,
on the computed efficiency scores. Equation (2c) implies that the sum of
the sum-products of inputs and their respective multipliers always ex-
ceeds or equals the sum-products of the outputs and their respective
multipliers. This restriction ensures that all DMUs lie on or below the
efficient frontier (Ribeiro et al., 2020). The parameter ¢ represents an
arbitrary small (non-Archimedean) positive number introduced to avoid
ignoring any factor and ensure strongly efficient conditions (Charnes
and Cooper, 1984). These constraints ensure the efficiency score’s
optimal value (6;) always has an upper bound of 1 and a lower bound of
0.

The dual of the multiplier model is referred to as the envelopment
model and is often preferred due to its computational efficiency
compared to the multiplier model (Liu et al., 2010). The output-oriented
CCR model is shown in Model (3).

maxz—0+e<2:”]s, +Z’i]s,*> (32)

st Z;;lﬂ/xiﬁsi’ =X i=1..m (3b)
;:]/b‘yrj—sr+ =0y0; r=1,..,5 (30)
bpsps 200 j=lom r=los i=1om 3d)

Where s; and s; represent the slacks of the input and output constraints
in Equations (3b) and (3c), respectively. 1; represents the dual weights
assigned to each DMU and provides a lower bound for x;, and an upper
bound for y,, thus enveloping all observations. A DMU is considered
efficient if the optimal value of 6* = 1 and all slacks are equal to zero.

The BCC model (Banker et al., 1984) under variable returns to scale
conditions is achieved by including the additional constraint in Equation
(3e).

o=l (3e)

When faced with time-series data, various approaches can be
employed in evaluating the performance of DMUs over time. Static ap-
proaches consider aggregate values (Kao and Hwang, 2008) and average
values (Portela et al., 2012) of input and output variables. Dynamic DEA
models evaluate the interdependency between successive periods by
considering the transition process between periods and evaluating a
single efficiency of each DMU over the period. Consider the multi-period
DEA model developed by Park and Park (2009), where a DMU operates
over q periods such that p = 1, ....,q. The output-oriented CCR model,
Model 4, is shown in Equations (4a) to (4d).

7 e (Z:l lesi—(m + Z::] Z’:lsﬁlj)) (4a)

5.t Zl_:ll;”)x;’-’) 45V =X =1, m p=1,.4 (4b)
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Z;’:,l}”)yﬁf)—S,W):é’yEZ); r=1,..5 p=1..q (40)
/1_@,‘{(”),‘;:0"),20; j=1,.n r=1,..s i=1,..m p=1,...4q
(4d)

3.2. Malmquist DEA model

The DEA method can be used to evaluate the productivity change of
DMUs over time using the Malmquist Index of productivity change. The
Malmgquist Index is a distance function combining efficiency and tech-
nical change (Kannan et al., 2021). Fare et al. (1994) allowed for the
decomposition of total productivity change into an efficiency change
relating to the operating DMU and an industry-level productivity change
beyond the DMU’s control. The Malmquist productivity index (MPI) is
computed as shown in Equation (5).

Hb,h ea.b Hu.u 12

MPI= |:0a,u:| * |:<€bb> (gba>:| (5)
where,

044 is the efficiency of a DMU observed in period “a” relative to the
frontier in “a”.

Oy is the efficiency of a DMU observed in period “b” relative to the
frontier in “b”.

0qp is the efficiency of a DMU observed in period “a” relative to the
frontier in “b”.

64 is the efficiency of a DMU observed in period “b” relative to the
frontier in “a”.

Z‘;—': is the distance between the two frontiers at the input mix of the

DMU in period “b”.

Z:“ is the distance between the two frontiers at the input mix of the

DMU in period “a”.

The first component on the LHS in Equation (5) represents the effi-
ciency change or the catching-up component and measures how much
closer to the frontier a DMU is in period “b” compared to period “a.” The
second component on the RHS is computed by taking the geometric
mean of two ratios and is referred to as the technical change or
boundary-shift component. It represents a measure of the technology or
industry changes occurring over adjacent periods (Thanassoulis, 2001).
The results from Equation (5) can be interpreted as follows:

MPI > 1 implies an increase in productivity between period “a” and
“b”.

MPI = 1 implies that the productivity is unchanged between periods
“a” and “b”.

MPI < 1 implies a decline in productivity between periods “a” and
“b”.

3.3. Data and variable selection

This study employs data from investor-owned electric utilities
operating in the U.S. The qualified utilities are utility companies with a
minimum total generation capacity of 5000 MW to limit any unfair
comparisons and improve the validity of the analysis. The final dataset
comprises 24 electric utilities operating in different regions in the U.S.
over six years from 2014 to 2019, for a total of 144 observations. The list
of eligible and included electricity utilities is shown in Table A1 in the
Appendix.

The DEA methodology is sensitive to the selected input and output
variables, thus making the efficiency scores computed and the inter-
pretation of results significantly influenced by the choice of input and
output variables (Donthu et al., 2005). In addition, there is no rigid
consensus on the choice of input and output variables to be employed in
the performance evaluation of electric utility when using DEA (Gian-
nakis et al., 2005). As such, DEA analysis can be carried out with a subset
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of selected inputs and outputs depending on the particular concepts
being measured (Pahwa et al., 2003). The selection of inputs and output
variables for this study is informed by the extant literature, the goals of
this study, and data availability.

All the data employed in this study are from publicly available
sources and aggregated together, providing a means of adequately
capturing the essential evaluation metrics focal to this study. The study
employed five input variables and one output variable, as shown in
Fig. 1. The input variables are as follows: policy effects (RPS policy
strength and RE financial incentive strength), a financial variable (op-
erations and maintenance (O&M) costs), and environmental variables
(solar insolation and wind speed). The output variable employed is the
percentage share of renewable energy capacity within each firm’s en-
ergy generation portfolio.

The first input variable employed was the total operations and
maintenance cost. These data were estimated from the average nominal
values in $/MWh provided by the EIA for each generation technology
each year. The second input variable employed is the RPS target
strength. RPS requires that a fixed portion of the electricity utilities
produce, come from renewable energy sources. According to the U.S.
EIA (Energy Information Administration), RPS has been implemented
across 30 states and the District of Columbia as of 2021, with 12 states
having requirements for 100% clean energy on or before 2050. It is
expected that the strength of RPS policies within regions would directly
impact the production of renewable energy (Barbose et al., 2016; Upton
and Snyder, 2017).

Data on state RPS targets over the study horizon was obtained from
the U.S. renewable portfolio standards database of the Lawrence Ber-
keley National Laboratory (LBNL). The percentage RPS target for each
state was obtained by dividing the nominal RPS requirements in
megawatt hours (MWh) by the total retail electricity sales in MWh
(Ogunrinde et al., 2018). As shown in Equation (6), a variable was
developed to capture the strength of RPS for every utility j by employing
a weighted sum of the policy strength computed by combining the RPS
policy strength Ry, for each state k in each period p and the utility’s
share of total generation capacity Wy, in each state k within each period

p-
K .
RPS]-(”):ZI(:]WW(”) RY: (i=1,...n); (p=1,....q) (6)

The third input variable in this study is the strength of renewable
energy financial incentives. Several federal and state financial incentives
have been introduced to promote the growth and development of
renewable energy technologies within the U.S., such as tax-credit

Inputs

Renewable
Portfolio Standards
Renewable Energy
Financial Incentives Output
Solar Insolation g g DMU b s
Capacity Share
Wind Speed

0 &M Costs —

@ Policy g Environmental

@ Financial

Fig. 1. Input and output variables.
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programs, buy-down programs, and loan programs (Gouchoe et al.,
2002). Data on federal and state renewable energy financial incentives
were obtained from the Database of State Incentives for Renewable
Energy (DSIRE, 2021). These incentives provide a crucial foundation
that complements renewable energy policies such as RPS. Consistent
with related approaches, the count of financial incentives available to
utility within each period was used as a proxy for the strength of the
financial incentive input variable (Shittu and Weigelt, 2022a, 2022b), as
shown in Equation (7).

Similarly, this variable was computed for each j utility by employing
a weighted sum of the total financial incentive count, computed from the
incentives count fi, for each state k in each period p and the utility’s
share of total generation capacity Wy, in each state k within each period

D
K . .
FING =30 Wi £95 (j=1,...n); (p=1,....q) %)

Resource endowments are expected to drive the development and
adoption of renewable energy growth in the regions (Carley et al., 2018;
Olivier and Del Lo, 2022; Weigelt and Shittu, 2016). The fourth input
variable employed is solar insolation measured in kWh/m?/day. It
represents the total amount of solar radiation per unit area annually.
Since sun rays strike the earth’s surface at different angles, locations
with higher latitudes have a smaller angle of incidence and thus less
solar isolation compared to locations closer to the equator. Therefore, a
location’s solar resource allocation would directly impact the amount of
renewable solar energy. The insolation parameter was obtained from
each location’s average annual solar insolation over each operating
year. This data was obtained from NASA’s POWER (Prediction of
Worldwide Energy Resources) database. The final input variable
employed is wind energy resource allocation, measured by the wind
speed in m/s. In general, higher wind speeds are associated with greater
wind power density. As a result, regions with higher wind power
resource allocations are more attractive for the advancement and sub-
sequent adoption of renewable wind energy (Wang et al., 2021). Data on
wind resource endowment was also obtained from NASA’s POWER
database.

4. Results

Table 3 shows the summary statistics and correlation matrix of all
variables employed in the study. The time series data were plotted, as
shown in Figs. 2 and 3. The vertical axes represent the average values of
these input and output variables, while the horizontal axes show the
study period. Fig. 2 shows that the average values of RPS percentage
targets and percentage share of RE capacity addition increased from
2014 to 2019. However, from Fig. 3, it can be seen that the average
value of the estimated operations and maintenance costs dropped
slightly in 2015 and then in 2019, which could indicate a reduction in
fossil-fuel technology investment during the period. Furthermore, Fig. 3
shows that the average number of available financial incentives for
renewable energy adoption considerably increased over the study
horizon.

The CCR out-oriented dynamic DEA model described in Model 4 was
employed to evaluate the dynamic performance of the 24 electric utili-
ties during the study period. The output-oriented model maximizes the
outputs while keeping the inputs concerned. This approach is best
suitable for this study because the utilities seek to maximize their out-
puts for a given level of inputs (Mohd Chachuli et al., 2021; You et al.,
2018).

The efficiency scores were then computed for each utility described
in the dynamic CCR-output-oriented model. The non-RTO group com-
prises ten utilities represented using the notations F1 to F10. The RTO
group consists of 14 utilities designated by notations E1 to E14; see
Table A1l in the Appendix for a complete listing of the utilities. The re-
sults from the dynamic DEA model are shown in Fig. 4. The top section
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Table 3
Summary statistics and correlation matrix of all variables.
Mean Standard RPS (%) Financial 0&M Renewable Energy Solar Insolation (kWh/ Wind Speed
Deviation Incentives ($/MWh) (%) mz/day) (m/s)
RPS (%) 0.0486 0.0670 1.0000
Financial Incentives 8.5584 9.3977 0.3577 1.0000
O&M ($/MWh) 30.9837 4.5835 —0.4014 —0.4216 1.0000
Renewable Energy (%) 0.0601 0.1611 0.0344 0.1157 —0.5909 1.0000
Solar Insolation (kWh/ 5.7780 0.2827 —0.2530 —0.1331 0.1573 —0.2749 1.0000
m?/day)
Wind Speed (m/s) 3.1889 1.0770 0.3082 0.0827 —0.1354 0.3711 —0.5879 1.0000
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Fig. 3. Graph of average financial incentive count and O&M expenses across
the study horizon.

shows the efficiency scores for utilities (F1 to F10) operating in the non-
RTO regions, while the lower section shows utilities operating in the
RTO regions (E1 to E14). The results show that three utilities (F1, E1,
and E2) have efficiency scores equal to unity and lie on the efficient
frontier. This finding implies that relative to other utilities in the dataset,
these utilities have been able to optimally maximize the share of
renewable energy within their generation portfolios for a given level of
inputs. Utilities with relative efficiency scores of less than one lie below
the efficient frontier and have been inefficient in maximizing their
renewable energy capacities for the given level of inputs.

Table 4 shows a breakdown of the efficiency scores for both groups of
utilities. On average, the efficiency scores for utilities in the non-RTO are
higher than those in the RTO regions. A Mann-Whitney U test was
conducted on the two groups of efficiency scores to investigate whether
the differences were statistically significant. Generally, a Mann-Whitney
U test provides statistical power advantages over the paired-t tests when
conditions of normality are not satisfied for independent samples and, as

0.4 0.
Efficiency Scores

Fig. 4. Efficiency scores of dynamic DEA model. F1 — F10: Utilities in Non-RTO
Group; E1 - E14: Utilities in RTO Group (see the Appendix for exact names).

Table 4

Summary of efficiency scores.
Region Obs. Mean Std. Dev. Min. Max.
RTO 14 0.2123 0.3486 0.0100 1.0000
Non-RTO 10 0.2620 0.3263 0.0110 1.0000

such, is employed to distinguish between two distributions drawn from
independent samples (Sawilowsky, 2005). The test statistic, p-value, and
non-parametric confidence interval were computed as 48.5, 0.2182, and
[—0.2171-40.0580], respectively. Since 48.5 > 36 (the critical value at
a = 5%) and p > 0.05, we do not reject the null hypothesis that the
difference between the two pairs has a probability distribution centered
at zero.

The Malmquist Productivity Index (MPI) was computed as described
in Equation (5) to investigate the periodic productivity changes for
renewable energy adoption across the utilities. For each year, the effi-
ciency change (catching-up effect), technology change (boundary-shift
effect), and total productivity change (MPI) were computed. The indices
less than one indicate a decline in productivity, while those greater than
unity indicate productivity growth. Fig. 5 shows the mean efficiency
change (Effch), technology change (Techch), and total factor produc-
tivity change (Tpch) over time for all the utilities. A detailed summary of
the differences in productivity change across the utilities is shown in
Table A2 in the Appendix. Table A2 is interpreted by the bubble plots for
utilities in non-RTO (Fig. 6) and RTO (Fig. 7) regions. In both Figures,
the size of the bubbles represents the MPIL. Notably in Fig. 6, non-RTO
utilities seem to have their technological change explained by their ef-
ficiency change given the moderate but significant R-squared value,
represented by the broken straight line in both Figures. On the other
hand, the RTO utilities do not demonstrate the same relationship as
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shown in Fig. 7.

These different effects, i.e., these differences in RE adoption patterns
across the utilities, differentiated by their belonging to a balancing au-
thority or not, and within periods can also be seen in the overall periodic
mean productivities shown in Fig. 4. In addition to these, Table A3 in the
Appendix also provides a summary of the periodic mean productivities.

5. Discussion

An analysis of the bar graphs shown in Fig. 4 and the summary in
Table A2 reveal that the variation in RE productivity is significant across
the utilities in both groups. While some utilities show considerable
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improvements in RE productivity over the period, others appear less
productive in RE adoption. The results from the Mann-Whitney U test
imply that the differences in renewable energy adoption efficiencies
across utilities in the two groups are not statistically significant. This
finding is unexpected, counter-intuitive, and contrary to assumptions
that utilities operating in RTO markets provide an easy entry for private
investment into emerging energy technologies and improve the inte-
gration of renewable energy sources into the existing generation port-
folios (GAO, 2008; Hogan, 2010).

The findings counter those reported by Sueyoshi and Goto (2012),
who focus on the overall technical efficiencies for coal-fired utility
plants in the U.S. and report a higher performance for those utilities in
the non-RTO as compared to those in the RTO regions. The implication
of the findings from our study policy-wise, is that for technologically
diverse utilities operating in regions where the transmission coordina-
tion and control have been unbundled, the renewable energy adoption
efficiencies may not be significantly different from those of utilities
operating in regions where the utilities can exercise more control over
their transmission networks and are mostly vertically integrated. Our
results provide empirical evidence that over the observed period, the
investment rate in emerging renewable energy technologies targeted at
displacing existing fossil technologies may be independent of the elec-
tricity market structure in which the utilities operate.

Therefore, it may be the case that new investments in emerging
renewable energy technologies would be concentrated mainly in sepa-
rate and independent utilities that have specialized in specific energy
technology deployments. Therefore, investors may find it more chal-
lenging to develop hybrid systems that accommodate investments
driven by regulatory incentives and market conditions. Our findings
reinforce those of Ogunrinde et al. (2018), who observed that some
utilities specialize in specific energy technologies within specific market
regions.

From Fig. 5, for all the periods except 2014-2015 and 2018-2019,
there is a growth in efficiency change for renewable energy adoption.
The highest growth of 118% occurred in 2017-2018, while the least
growth was 45% from 2016 to 2017. The periods 2014-2015 and
2018-2019 experienced a slight decline in efficiency change of 9% and
7%, respectively. The efficiency change component measures the prox-
imity of the DMUs to the efficient frontier, and it reflects improvement in
the utilization of input resources available to the qualified utilities. This
study captures how well the firms have utilized the available renewable
energy incentives, renewable energy resource endowments, and policy
mandate impacts in maximizing the share of renewable energy within
their generation portfolios.

By considering technology change, Fig. 5 shows that despite a
decline in technology change over the first two observed periods
(2014-2015 and 2015-2016), the last three periods experienced an
improvement of 1%, 9%, and 39% over adjacent years. Technology
change refers to frontier shifts and compares the observation of DMUs in
one period to the technology of an adjacent period. As a result, it refers
to changes in the industry which may be due to process or product in-
novations. With respect to this research study, technology change rep-
resents technological improvements that have driven the adoption of
renewable energy in the electricity sector over the years. These changes
could range from improvements in operational efficiencies to optimized
grid integration technologies and processes for renewable energy
generators.

On a general note, efficiency change (catching-up effects) was seen to
improve at different rates over each adjacent study period with only
some slight declines. However, in analyzing the technology change
(frontier-shift effects), we see declines in the initial periods, followed by
considerable improvements from period to period in the later years.

Furthermore, Fig. 5 also shows the total productivity change (MPI)
that combines the efficiency change with the technology change. The
MPI measures the overall effects and reflects how well electricity utili-
ties have been able to adopt renewable energy within their generation
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portfolios over the periods. The first two periods, 2014-2015 and
2015-2016, were observed to have the greatest decline in total pro-
ductivity change, with a mean productivity growth of 56% and 35%,
respectively, driven by the decline in technology change across these
periods. However, the subsequent three periods experienced improve-
ments in mean productivity growth, 47% in 2016-2017, 139% in
2017-2018, and 28% in 2018-2019. These improvements in total pro-
ductivity change were observed to be driven by improvements in both
efficiency and technology change. The overall mean productivity change
was computed as a geometric mean of the change across every period
(Forsund and Kittelsen, 1998). The mean efficiency change showed a
growth of 1.325 (32.5% increase) for all utilities, while the mean tech-
nology change showed a decline of 0.791 (20.91% decrease) across
utilities. In addition, the mean total factor productivity change across all
periods was computed as 1.048, indicating a mean improvement of 4.8%
in renewable energy adoption across all utilities over this period.

6. Conclusion

This study examines renewable energy adoption efficiencies across
the largest investor-owned electric utilities in the U.S. The investigation
focuses on utilities with diverse energy technologies within their gen-
eration portfolio, specifically fossil-fuel-based generators and emerging
renewable energy generators, such as solar-PV and wind energy. The
study employs a dynamic DEA technique to evaluate the overall tech-
nical efficiencies of these utilities. The results show significant differ-
ences in renewable energy adoption across the qualified utilities. Only
three utilities have efficiency values of one and, as a result, operate on
the efficient frontier. In addition, the mean overall efficiency for the
included utilities was 23%.

A Mann-Whitney test was employed to investigate how the renew-
able energy adoption efficiencies for utilities operating in the RTO re-
gions compare with those in the non-RTO regions. The results showed
that despite the non-RTO group having a higher mean efficiency, the
differences in performance between the two groups are not statistically
significant.

This study employs the DEA Malmquist Index technique to analyze
utility productivity on the adoption of renewable energy across adjacent
periods. The result shows that the total productivity change for renew-
able energy adoption increased in the last three years within the study
period by 47%, 139%, and 28%, respectively. The results observed are
typically driven by differences across the utilities in RE energy adoption

Appendix A

Table Al
Participating Electricity Utilities
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over the different periods. While some utilities have consistently
improved RE adoption over the entire study period, others displayed
slow growth with individual spikes across different periods. As a result,
the mean overall technical change for renewable energy adoption was
observed to be 1.048, indicating a mean growth rate of 4.8% through the
period, driven by both technology and efficiency change. This finding
implies that the utilities in this study have recorded an effective growth
in the average renewable energy adoption over this period. It is expected
that as gaps in process and product innovation within the industry close
and the utilities continue to improve their efficiency changes by effi-
ciently utilizing firm resources, available state incentives, and natural
resource availability, coupled with effective regulation policies, the
overall total productivity changes for renewable energy adoption would
continue to improve steadily in subsequent years.

The scope of this study was limited to the largest electricity gener-
ation utilities in the U.S., with a mix of fossil and renewable energy
technologies in their generation portfolios. Due to data availability
limitations, the study did not incorporate undesirable outputs such as
SOx, NOx, and CO; into the model. This study can be extended by
incorporating undesirable outputs into the model. More robust
comparative analysis and productivity indices for renewable energy
adoption can be evaluated by considering undesirable outputs. Further
extensions can be included by performing comparison benchmarking
studies for various regions outside of the U.S. to observe how renewable
energy adoption could also compare across geographical lines.

Funding

This work was supported by the National Science Foundation (NSF)
under Grant 1847077. Any opinions, findings, and conclusions or rec-
ommendations expressed in this article are those of the authors and do
not necessarily reflect the views of the NSF.
Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Group Utility Notation

RTO MidAmerican Energy Co El
Oklahoma Gas & Electric Co E2
Pacific Gas & Electric Co. E3
Northern States Power Co E4
Wisconsin Electric Power Co E5
DTE Electric Company E6
Consumers Energy Co E7
Virginia Electric & Power Co E8
Appalachian Power Co E9
Union Electric Co - (MO) E10
Southwestern Electric Power Co Ell1
Duke Energy Indiana, LLC E12
Entergy Arkansas LLC E13
Entergy Louisiana LLC E14

Non-RTO Tampa Electric Co F1
Florida Power & Light Co F2
Arizona Public Service Co F3

(continued on next page)
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Table A1 (continued)
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Group Utility Notation
PacifiCorp F4
Duke Energy Florida, LLC F5
Georgia Power Co F6
Public Service Co of Colorado F7
Alabama Power Co F8
Duke Energy Progress - (NC) F9
Duke Energy Carolinas, LLC F10

Table A2

Mean efficiency change, productivity change, and total productivity change across utilities.

Utility Code Efficiency Change Technology Change MPI

F1 3.018 1.288 3.887
F2 1.558 1.280 1.994
F3 0.931 0.439 0.408
F4 0.948 0.682 0.646
F5 2.603 1.288 3.353
F6 1.705 0.813 1.386
F7 1.585 0.452 0.715
F8 1.902 0.777 1.478
F9 2.677 0.935 2.503
F10 1.481 0.906 1.341
mean (non-RTO) 1.715 0.829 1.421
El 1.000 0.485 0.485
E2 0.935 0.650 0.608
E3 0.826 0.923 0.762
E4 1.082 0.741 0.801
E5 0.956 0.684 0.654
E6 0.935 0.833 0.779
E7 0.953 0.833 0.793
E8 2.223 0.812 1.804
E9 1.046 0.807 0.844
E10 1.128 0.835 0.942
El1 1.150 0.685 0.788
E12 1.626 0.970 1.577
E13 1.036 0.822 0.852
El4 1.083 0.772 0.836
mean (RTO) 1.102 0.765 0.844
Overall 1.325 0.791 1.048

Table A3

Mean efficiency change, technology change, and total productivity change across periods

Period Efficiency Change Technology Change MPI

2014-2015 0.914 0.478 0.437
2015-2016 1.531 0.424 0.649
2016-2017 1.449 1.011 1.465
2017-2018 2.177 1.097 2.389
2018-2019 0.926 1.378 1.276
Mean 1.325 0.791 1.048
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