

The Interplay of Incentives, Electricity Price, and Demand on Transport Decarbonization: The Case of Electric Vehicles in the U.S.

12 —TIANYE WANG

13 Department of Engineering Management
14 and Systems Engineering, The George
15 Washington University, Washington, DC 20052
16 USA

18 —JONATHAN DEASON

19 Department of Engineering Management
20 and Systems Engineering, The George
21 Washington University, Washington, DC 20052
22 USA

23 —EKUNDAYO SHITTU

24 Department of Engineering Management
25 and Systems Engineering, The George
26 Washington University, Washington, DC 20052
27 USA

31 (Corresponding author: Ekundayo Shittu.)

32 The review of this article was arranged by
33 Department Editor Sherwat Elwan Ibrahim.

35 IEEE DOI 10.1109/EMR.2023.3347147

Abstract—While extant research explores the impact of electric vehicle (EV) incentives on EV market shares, less is known about how such policies and other socioeconomic factors interact that ultimately affect the goal of transportation emission reductions. The study summarized herein employed a sample of 510 state-year CO₂ emissions datasets in the transportation sector spanning a decade (2010–2019) in a multiple linear regression model. Going beyond earlier studies, we find that, while a higher number of EV incentives would significantly contribute to transportation emission reductions, this effect could be dampened by population growth. In addition, we find that, while higher electricity prices may weaken the effectiveness of EV incentives, a high count of EV incentives is more effective in reducing CO₂ emissions than a low count of EV incentives when the electricity price is low. This finding implies that having multiple EV incentives can be effective in reducing transportation carbon emissions even in the face of rising prices of electricity. The study also examines the effectiveness of promoting the density of charging stations and alternative fuel incentives in advancing carbon emission reductions.

Key words: Electric vehicles, electricity price, emissions, incentives, population growth, transportation.

I. INTRODUCTION

CARBON emissions from the transportation sector have become the largest source of greenhouse gas (GHG) emissions in the United States [1]. According to the U.S. Energy Information Administration (EIA), the U.S. transportation sector had the largest increase in CO₂ emissions of all sectors in 2021 [2]. Carbon emissions from the transportation sector have been increasing continually in recent years, with significant contributions to climate change [3]. Prior research clearly underpins the need for climate change mitigation, since climate change not only causes

serious environmental problems in the U.S., but also has detrimental effects on infrastructure systems such as transportation, air, and water, and also contributes to public health problems simultaneously [4], [5], [6]. The rural economy of the U.S. is particularly sensitive to climate change impacts, reflected in such resources categories as agriculture, forestry, water resources, energy, and fisheries [7]. While the drivers of climate change and approaches to adaptation are well documented, the effectiveness of various mitigation policies, and the role of external factors affecting climate mitigation, have received less attention. More intriguing is the influence of these policies on

113 sustainability transitions [8], [9]. The
114 research summarized in this article
115 was directed toward the effectiveness
116 of various climate change mitigation
117 policies and the impacts of related
118 factors.

120 Some prior research has been
121 devoted to understand the
122 effectiveness of incentives on
123 EV adoption without adequate
124 consideration of the impacts of
125 such policies on actual reductions
126 in carbon emissions [10], [11], [12].
127 This lack of full consideration of
128 the ultimate goal (carbon emission
129 reductions) has reduced the value
130 of such research in terms of
131 contributing to that goal. Furthermore,
132 some prior research does not
133 consider interactions among
134 the related emission reductions
135 policies and external features [13].
136 For example, while the inflation
137 reduction act (IRA) provides not
138 only EV incentives but also other
139 clean fuel and renewable energy
140 infrastructure tax credits, most
141 previous work has solely focused
142 on the relationships between EV
143 incentives and EV market shares,
144 largely ignoring the goal of emission
145 reductions and interdependencies
146 between policies and external drivers.
147 Therefore, investigations into the
148 effectiveness of various policies
149 and their interactions with external
150 features are warranted.

152 A better understanding of how
153 mitigation policy and external drivers,
154 such as population growth or other
155 socioeconomic factors, interact is
156 crucial because the effectiveness
157 of policy implementation involves
158 uncertainty, and thus portends a risk
159 that policy implementation could lead
160 to less than optimal contributions to
161 environmental goals. Similarly, recent
162 studies emphasized the need for
163 effective climate change mitigation
164 to rely on a deep understanding of
165 practical environmental implications
166 and indicated that the external
167 environment plays an important

169 role in the impacts of policy
170 implementation [14], [15]. In our study,
171 we use linear regression to analyze
172 the impacts of external factors on
173 emission reductions.

175 Population growth is one of the most
176 important factors that contribute to
177 the severe degradation of natural
178 resources [16]. As population grows,
179 energy consumption, ultimately
180 carbon emissions, and other
181 atmospheric pollution also grow.
182 Increased population growth has
183 been demonstrated to increase
184 GHG emissions, particularly CO₂
185 emissions, through the increase
186 in human daily commute [17]. One
187 study assessed the impact of
188 population growth on CO₂ emissions
189 in California and found a positive
190 relationship [18]. In addition, an
191 increase in population size can
192 lead to a growing demand for
193 residential consumption in housing
194 and transportation, showing that
195 population size is an influential factor
196 of carbon emissions [19]. The study
197 emphasized that a higher population
198 can lead to increased CO₂ emissions.
199 Hence, it is necessary to study the
200 effectiveness of mitigation policies,
201 taking into account population growth.
202 In this study, we consider population
203 influence and its joint effect with the
204 effectiveness of EV incentives by
205 adding an interaction term to our
206 base model and analyzing interaction
207 plots between the population and
208 different levels of EV incentives. Such
209 interactions have been found to be
210 instructive for policymaking [20], [21].

211 Another influential factor that
212 contributes significantly to carbon
213 emissions is the level of related
214 economic activity. In particular, we
215 study the prices of electricity, which
216 strongly impact the amount of energy
217 consumption, ultimately influencing
218 carbon emissions. A previous study
219 emphasized that residential energy
220 consumption demand is highly
221 price-elastic [22]. This study found
222 that when prices of electricity are low,

223 people are inclined to use electrical
224 appliances. Another study found that
225 the consumer response to higher
226 prices is the dominant effect on
227 electricity usage [23]. As the price
228 of electricity decreases, people
229 shift their preferences from relying
230 on more conventional vehicles to
231 using more EVs. Yet another study
232 found that electricity pricing is an
233 important factor in decarbonizing
234 the transportation sector in
235 California [24]. This study confirmed
236 that, with lower electricity prices, there
237 exists a shift toward EV consumption.
238 Even though consumers are less
239 sensitive to electricity price than to
240 gasoline prices, electricity price still
241 significantly influences consumer
242 commuting preferences. Hence, while
243 the degree to which higher electricity
244 prices dampen the effectiveness
245 of various EV incentives in terms
246 of carbon emission reductions, it is
247 imperative to empirically validate the
248 nature of the interaction between
249 these factors. We consider the effects
250 of electricity price and their joint
251 effect with the effectiveness of EV
252 incentives by adding an interaction
253 term to the basic model and analyzing
254 interaction plots between the
255 electricity price and different levels
256 of EV incentives.

257 In sum, the effects of different
258 types of policies, such as clean
259 fuel tax credits, electric vehicle
260 rebates, and emphasis on increasing
261 the availability of charging
262 infrastructures, on transportation
263 emissions, are studied to explore
264 the effectiveness of such policies
265 and the interplay between policy
266 and the external environment. This
267 study contributes to prior work in
268 EV policy literature by stressing
269 the implementation effectiveness
270 of policy as influenced by external
271 factors such as population growth
272 and electricity price. We apply a set of
273 empirical panel data from 50 states
274 and D.C. in the U.S. over a period of 10
275 years, identifying the key factors that
276 have significant negative or positive

225 impacts on transportation carbon
226 emissions through an ordinary least
227 squares (OLS) regression model. Our
228 results show that the number of EV
229 incentives, the number of charging
230 stations, and the number of incentives
231 on alternative fuels have beneficial
232 impacts on transportation carbon
233 emission reductions. We also find
234 that external environmental factors
235 such as higher population and higher
236 electricity price dampen the effect of
237 climate change mitigation actions.

238 Our study contributes from two
239 perspectives. First, this work
240 contributes to prior work by providing
241 new robust evidence on the
242 extent to which EV policies impact
243 transportation carbon emissions,
244 considering the interactions between
245 EV incentives and external features.
246 Second, our study is the first study
247 that utilizes state-level panel data
248 in the United States to investigate
249 the relationships between policy
250 implementation and transportation
251 carbon emissions.

252 The rest of this article is outlined as
253 follows. Section II describes three
254 factors and two hypotheses relevant
255 to the effectiveness of emissions
256 reduction policies based on the
257 existing literature. In Section III, we
258 describe the data and methodology
259 for our analysis. Then we present our
260 data analysis results, discussion, and
261 conclusions in Sections IV and V.

262 II. THEORETICAL FRAMEWORK

263 In this section, we demonstrate the
264 theoretical framework, discussing
265 the conceptual and operational
266 definitions of our studied variables.
267 We also illustrate the pathway of
268 the manner in which we develop
269 and explain the principal factors
270 and hypotheses affecting the
271 implementation of emission reduction
272 policies.

273 A. The Role of Charging 274 Infrastructures

275 Due to the
276 limited capacity of batteries, an

277 adequate density of charging stations
278 is extremely important to meet EV
279 user mobility demands [25]. Previous
280 research has examined barriers to
281 EV adoption to show that more than
282 20% of participants are concerned
283 with the charging infrastructures [26].
284 With a low density of charging
285 stations or outlets, consumers tend
286 to prefer conventional vehicles
287 to EVs since “range anxiety” is a
288 strong motivating factor for electric
289 car shoppers. Consumers worry
290 about the maximum distance
291 that EVs can travel and whether
292 EVs can successfully bring them
293 to their destinations. Another
294 empirical study demonstrated that
295 charging infrastructure construction
296 is positively correlated with EV
297 adoption rates [27]. The higher
298 density of charging stations shifts
299 the preferences of shoppers toward
300 EVs, as indicated by a higher EV
301 adoption rate. One survey-based
302 study found that free public charging
303 infrastructures can effectively
304 promote the willingness to pay
305 (WTP), ultimately leading to higher
306 EV acquisition rates [11]. Hence,
307 an improvement in the density of
308 charging infrastructures would
309 advance EV adoptions.

310 Some studies highlight the fact that
311 EVs can efficiently reduce GHG
312 emissions [28]. For example, one
313 study applies an energy system
314 model to analyze the role of EVs in
315 India [29]. The authors found that
316 EVs can efficiently benefit CO₂
317 mitigation and that a higher EV
318 penetration rate can also improve
319 urban air quality. In another study, a
320 two-stage data-driven framework
321 was developed to show that a higher
322 EV adoption would be beneficial to
323 carbon emissions [30]. The result
324 showed that only a 5–10% increase
325 in EV penetration rate would lead to a
326 40% reduction in energy consumption
327 and a 25% reduction in GHG
328 emissions. Yet another study explored
329 the actual amount of emission
330 reductions that electric vehicles

331 can provide by designing different
332 scenarios in terms of the location
333 and time that the EV is charged [31].
334 The analysis demonstrated that
335 the widespread use of workplace
336 charging is expected to reduce
337 emissions associated with electric
338 vehicles. That study also considered
339 the rebound effect of EV adoption
340 dealing with the possibility that more
341 CO₂ emissions could be produced
342 by electricity generation than those
343 that are reduced by EV adoption.
344 The results demonstrated that,
345 while power generation could cause
346 more carbon emissions, a higher EV
347 penetration rate would still lower total
348 carbon emissions. Thus, an increase
349 in the count of charging infrastructure
350 will improve the adoption rate of EVs,
351 ultimately leading to reductions in
352 CO₂ emissions, especially in the
353 transportation sector.

354 *Factor 1: Higher densities of
355 charging stations lead to lower local
356 transportation carbon emissions.*

357 B. The Role of EV Incentives

358 Electric vehicles are often promoted
359 as a symbol of clean energy and a
360 significant component to reduce
361 transportation sector carbon
362 emissions. Despite these benefits,
363 EV adoption is still confronting some
364 barriers, such as high purchase
365 prices, reliability, and driving distance.
366 To overcome these challenges
367 and improve the adoption rate, the
368 federal government or entities at
369 the state level have experimented
370 with various types of policies to
371 stimulate the desire of consumers to
372 purchase EVs. Such policies include
373 various types of incentives, such as
374 exemptions from registration taxes,
375 free public parking, toll exemptions,
376 and purchase rebates [12]. Most
377 previous studies have estimated
378 EV market share changes due to EV
379 incentives. For example, a regression
380 model was developed to explore the
381 impact of tax rebates on EV market
382 share in Canada [32]. The result
383 of the study found that an implied

337 tax rebate would generate 25%
 338 more EV market sales. Similarly,
 339 another study investigated the
 340 difference in impact on EV adoption
 341 among different incentives [33]. The
 342 results demonstrated that different
 343 incentives play the same role in EV
 344 adoption. These studies all show
 345 that the implementation of EV
 346 incentives can efficiently increase
 347 the EV penetration rate. However, the
 348 dummy variable, used to represent
 349 the implementation of EV incentives
 350 in their models, can only capture
 351 some aspects of the impact of policy
 352 but is not comprehensive. In our
 353 study, we operationalize the various
 354 levels of EV policy of each state
 355 as the count of incentives enacted
 356 by the state-level government and
 357 posit that has a positive relationship
 358 with EV adoption, indicating the
 359 higher count of incentives, the
 360 higher the emission reductions.
 361 Similar approaches have shown
 362 that incentives or policies could act
 363 to stimulate investments or direct the
 364 adoption of new technologies [21],
 365 [34], [35].

367 Moreover, existing literature
 368 demonstrates the positive effect
 369 of EVs on carbon emission
 370 reductions. For example, a study
 371 modeled the CO₂ emissions from
 372 EV and plug-in hybrid electric
 373 vehicles (PHEV) in comparison
 374 with conventional vehicles [36].
 375 The results demonstrated that EVs
 376 and PHEVs have the advantage
 377 to reduce the CO₂ emissions
 378 from automotive transport unless
 379 the country undertakes a major
 380 decarbonization of power generation.
 381 This study confirmed that the higher
 382 the EV penetration rate, the greater
 383 is the gain the carbon emission
 384 reductions. Another research effort
 385 highlighted the projection of EV
 386 penetration rates considering
 387 economic factors [37]. It found that
 388 a higher level of fleet electrification
 389 becomes increasingly important to
 390 achieve decarbonization. Therefore, a
 391 higher number of incentives that are

392 positively associated with EV market
 393 share can increase rates of EV
 394 adoption. Since higher usage of EVs
 395 can efficiently reduce transportation
 396 carbon emissions, we posit that a
 397 higher number of EV incentives
 398 may result in higher transportation
 399 emission reductions.

400 *Factor 2: Higher numbers of EV
 401 incentives lead to local transportation
 402 carbon emission reductions.*

403 **C. The Role of Alternative Fuel
 404 Incentives** Alternative fuels
 405 in our context indicate that clean
 406 fuel is used for transportation, such
 407 as hydrogen and biomass [38].
 408 These fuels serve are intended
 409 to substitute for more carbon-
 410 intensive energy sources, like
 411 gasoline, petroleum, and diesel,
 412 and contribute to decarbonization
 413 in the transportation sector and
 414 reductions in air pollution [39].
 415 Unlike EV incentives, alternative
 416 fuel incentives do not directly affect
 417 EVs. The clean fuels consumed by
 418 conventional combustion engines
 419 do not emit as much GHG as fossil
 420 fuels. Prior research confirms that
 421 consuming alternative fuels would
 422 emit less GHG than gasoline [40].
 423 For example, one study reviews
 424 research from 2015–2020 to
 425 analyze the technologies regarding
 426 pollution and emissions [41]. The
 427 study finds out that alternative
 428 fuels, particularly biomass, and
 429 biodiesel, are the most capable
 430 of reducing carbon emissions. In
 431 addition, compared to using fossil
 432 fuels, conventional combustion
 433 engines rely on clean fuels and can
 434 help reduce the significant amount of
 435 carbon emissions as well. Similarly,
 436 alternative fuel vehicles can also
 437 offer considerable benefits to GHG
 438 emission reductions.

439 Moreover, previous studies suggest
 440 that alternative fuel incentives would
 441 significantly influence the market
 442 share of alternative fuel vehicle
 443 adoptions, resulting in reductions in

444 transportation carbon emissions [42],
 445 [43]. The results illustrate that a lower
 446 price of alternative fuel stimulates
 447 the consumers' WTP for clean
 448 energy vehicles. Another study
 449 also investigates the implication of
 450 alternative fuel regulations, using
 451 text mining and negative binomial
 452 (NB) regression, to show that
 453 alternative fuels can help to reduce
 454 carbon emissions [44]. However,
 455 they also find out that alternative
 456 fuel incentives might hinder EV
 457 acquisition. In summary, more clean
 458 fuels consumed are equivalent to
 459 the lower consumption of fossil
 460 fuels, which is still conducive to
 461 transportation carbon emission
 462 reductions eventually. Thus, we
 463 posit that alternative fuel incentives
 464 would be negatively associated with
 465 transportation carbon emissions,
 466 indicating that the higher count of
 467 alternative fuel incentives, the higher
 468 the emission reductions.

469 *Factor 3: Higher numbers of
 470 alternative fuel incentives tend to
 471 reduce local transportation carbon
 472 emissions.*

473 **D. Population Growth and the
 474 Effect of EV Incentive** The
 475 interaction between the impact
 476 of EV incentives and population
 477 size is captured on different levels
 478 of incentives. EV incentives in
 479 our study are measured by the
 480 number of EV-related policies
 481 regardless of type. We posit that,
 482 while they contribute to promoting
 483 EV adoption, the effectiveness of
 484 EV incentives may be dampened
 485 by population growth. On the one
 486 hand, larger populations may wider
 487 variety of consumer behavior
 488 types [45]. For example, while the
 489 IRA provides consumers a credit of
 490 up to US\$7,500, consumers need to
 491 satisfy several requirements about
 492 batteries or other characteristics to
 493 redeem the tax credits. As population
 494 increases, consumers may have
 495 numerous types of preferences for
 496 vehicle selections due to different

types of cultural backgrounds or personalities [46]. Various purchase preferences may lead consumers to be more willing to purchase conventional vehicles if EVs cannot satisfy their desires or if consumers are not familiar with EVs. Another study investigated transportation structures associated with transportation emissions to show that a higher population would lead to diverse motorization pathways, which could escalate transportation emissions [47].

464 Other existing efforts also found
465 that population growth is one of
466 the main factors driving transport
467 sector CO₂ emissions growth [48],
468 [49]. For example, one study applied
469 an econometric model to show that
470 an increase in population growth can
471 yield environmental degradation
472 and transportation emissions in
473 Pakistan [50]. Another empirical
474 study confirmed that population
475 size is positively correlated with
476 carbon emissions [51]. Population
477 growth is the most important factor
478 contributing to transportation carbon
479 emissions, which is negatively
480 associated with the impact of EV
481 incentives on emission reductions. In
482 addition, a larger population requires
483 a greater need for transportation,
484 no matter whether these people rely
485 on public transportation or private
486 conventional vehicles. While EV
487 incentives benefit CO₂ emission
488 reductions, population growth offsets
489 such reductions, yielding more CO₂
490 emissions than would be the case
491 with stable population levels. Hence,
492 we posit that population growth
493 dampens the effect of EV incentives
494 on transportation emissions.

496 *Hypothesis 1: Larger population sizes
497 tend to dampen the effects of carbon
498 emissions reduction incentives.*

500 E. Electricity Price and the 501 Effect of EV Incentive The 502 interaction between the impact of 503 EV incentives and electricity price

is captured on different levels of incentives. Prior work suggests that electricity price would not only influence the spatial distribution of EV owners but also EV adoption rates [52]. For example, one study used questionnaire surveys and structural equation modeling (SEM) to investigate the factors affecting EV adoption in India [53]. They found that, in addition to incentives, such as exemption of road taxes, registration fees, free parking fees, and toll charges, lower electricity tariffs, and higher gasoline prices, may attract more consumers to purchase EVs, since consumers always need to consider the fuel cost of the vehicle in addition to the original purchase cost. The electricity price significantly impacts the willingness of consumers to buy EVs. Similarly, electricity price is considered one part of the operational cost. The level of maintenance cost also significantly affects consumers' WTP [54]. This study also highlighted that people are more willing to purchase vehicles with lower operational costs because compared to the investment cost, the operational cost is a big portion of the total life-cycle cost for a vehicle.

Furthermore, a relatively low electricity price is equivalent to relatively high conventional fuel prices for consumers. Some previous studies confirm that fuel prices are highly associated with commuting behavior [55], [56]. For example, one study used OLS regressions to show that gasoline prices are one of the most important factors to determine commuting modes [57]. With higher fuel costs, people are more willing to use more public transportation tools to save on commuting costs, such as buses or metros, instead of driving private vehicles. Similarly, higher fuel prices may reduce the usage of conventional vehicles, which is reflected by the average fuel consumption [58]. Consumers are less motivated to use or purchase an EV in a low fuel-price period.

Conversely, consumers are more willing to purchase EVs when the electricity price is low. Hence, we posit that high electricity prices reduce the effects of EV incentives on transportation emission reductions, indicating that EV incentives is weakened.

Hypothesis 2: Higher electricity prices tend to dampen the effectiveness of carbon emissions reduction incentives.

F. Relationship Between Factors and Hypotheses

sheds light on the effectiveness of differing provisions of environmental policy, such as direct and indirect incentives that stimulate people to use more clean energy. Fig. 1 presents an overview of the hypotheses.

In the context of this article, the factors are treated as pseudohypotheses that are often generally known facts, but are required as substrates on which the main hypotheses are based. Thus, the development of charging infrastructures is an important external driver that helps us to reduce transportation carbon emissions (F1). The EV incentives contribute to the reductions of transportation carbon emissions (F2). Alternative fuels, such as clean fuels, are also beneficial to carbon emission reductions (F3). However, as population grows, stable levels of EV incentives are less effective (H1). Similarly, the efficacy of EV incentives is influenced by the fluctuation of electricity price (H2).

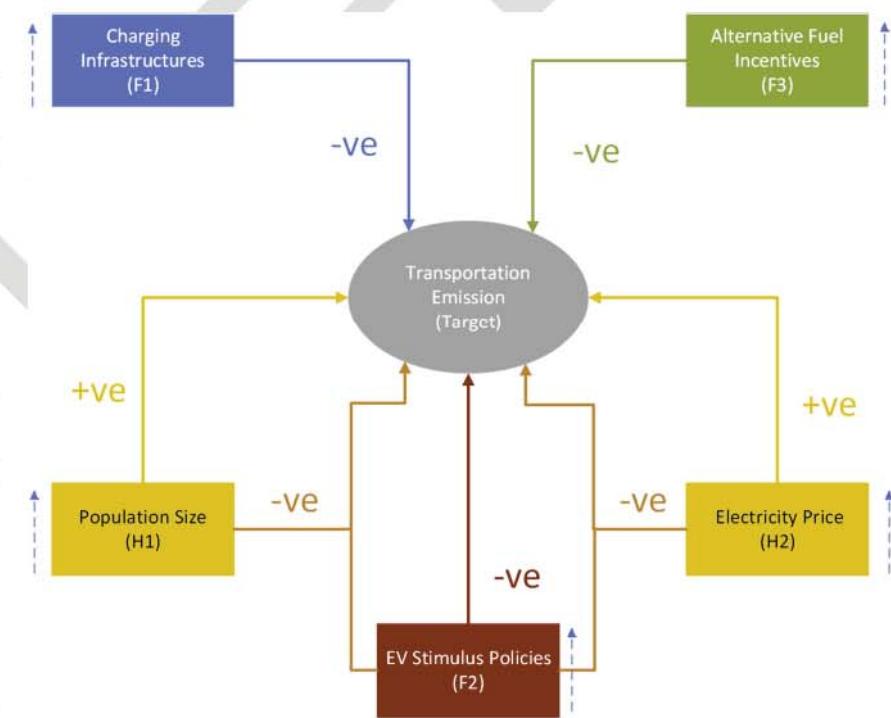
III. METHODOLOGY

In this section, emphasis is placed on the data collection including sources of data and the regression model. In the regression model, the variables are differentiated as dependent, explanatory, and control. The following sections provide more details.

561 **A. Data Collection** This study
 562 applies empirical data to evaluate
 563 the effect of different policies and
 564 external environmental features
 565 on the carbon emissions from the
 566 transportation sector across 10 years,
 567 from 2010 to 2019. We collected
 568 data from various sources, such
 569 as EIA, Office of Energy Efficiency
 570 and Renewable Energy (EERE),
 571 the US Census Bureau, and the
 572 Transportation Energy Data Book
 573 (TEDB). The policy data obtained
 574 from TEDB indicates the number of
 575 incentives in seven major provisions.
 576 We do not rely on dummy variables
 577 as do some previous studies, since
 578 dummy variables cannot accurately
 579 reflect the degree to which an ACT
 580 can influence emission reductions.
 581 Therefore, this study uses the
 582 count of incentives to capture the
 583 levels of the impacts of policy.
 584 Since our analysis unit is the state,
 585 the policy data are reflective of
 586 state-level policies without taking
 587 into account federal policies. The
 588 dataset also contains the socio- and
 589 macroeconomic features that are

590 highly associated with transportation
 591 carbon emissions.

592 Data for the dependent variable,
 593 transportation carbon emissions
 594 by state (in millions of tons), were
 595 collected from EIA. Explanatory
 596 variables we considered include
 597 policy data, socioeconomic features,
 598 and other control variables. Policy
 599 data include various types of
 600 incentives, such as for hydrogen,
 601 ethanol, natural gas, and EVs.
 602 Socioeconomic factors include
 603 population size, median household
 604 income, electricity price, and gasoline
 605 price. Population size represents
 606 the size of the state, which has
 607 a significant impact on carbon
 608 emissions [59], so it is chosen
 609 as a control variable. Median
 610 household income, electricity price,
 611 and gasoline price indicate the
 612 citizens' consumption behavior,
 613 which may influence commuting
 614 behavior, ultimately impacting carbon
 615 emissions. We also include the
 616 number of charging stations and the
 617 number of public vehicles, which


618 capture the impacts of external
 619 drivers on transportation emissions.
 620 The details of both dependent and
 621 independent variables are presented
 622 in Table 1.

623 **B. Regression Models** The
 624 variables from Table 1 are
 625 incorporated into an OLS regression
 626 model to analyze the effectiveness
 627 of different categories of incentives.
 628 OLS regression is a type of linear
 629 regression method for identifying
 630 the unknown parameters in a linear
 631 regression model by the principle
 632 of least squares, which means
 633 minimizing the sum of the squares
 634 of the differences between the
 635 observed dependent variable in the
 636 input dataset and the output of the
 637 function of the independent variable.
 638 The equation of OLS regression is
 639 shown below in

$$640 EM_{i,t} = \beta_1 MHI_{i,t} + \beta_2 EP_{i,t} \\ 641 + \beta_3 GPF_{i,t} + \beta_4 POP_{i,t} \\ 642 + \beta_5 CS_{i,t} + \beta_6 PVR_{i,t} \\ 643 + \beta_7 BIO_{i,t} + \beta_8 EV_{i,t} \\ 644 + \beta_9 NG_{i,t} + \beta_{10} LPG_{i,t} \\ 645 + \beta_{11} HY_{i,t} + \beta_{12} ET_{i,t} \\ 646 + \beta_{13} AFC_{i,t} + \beta_{14} EV_{i,t} \\ 647 * POP_{i,t} + \beta_{15} EV_{i,t} \\ 648 + EP_{i,t} + \epsilon_{i,t} \quad (1)$$

649 where $EM_{i,t}$ represents the amount
 650 of carbon emissions for state i at year
 651 t . The explanatory variables are $CS_{i,t}$,
 652 $EV_{i,t}$, and $HY_{i,t}$, while we control for
 653 income, electricity and gas prices,
 654 population, count of public vehicle,
 655 and other types of incentives. The
 656 vector of β are the coefficients of the
 657 independent variables. $EV_{i,t} * POP_{i,t}$
 658 and $EV_{i,t} * EP_{i,t}$ represent the
 659 interaction between EV incentives
 660 and population, and EV incentives
 661 and electricity price for Hypothesis
 662 1 and 2. ϵ is the error term to capture
 663 the internal variations.

664 Model 1 describes and shows
 665 the result of testing Factor 1, i.e.,

666 Figure 1. Snapshot of the hypotheses structure.

evaluating the role of charging infrastructure. The variable, number of charging stations, is included and other variables are used as controls, i.e., median household income, electricity price, gas price, population, number of public vehicles, number of biofuel incentives, number of natural gas incentives, number of LPG incentives, and number of ethanol incentives. Model 2 tests Factor 2, the role of EV incentives on emission reductions, by adding an EV incentives variable to Model 1. In Model 3, alternative fuel incentives variable is included to justify Factor 3. Model 4 sets up the test of the first hypothesis whether population growth dampens the effect of EV incentives (H1) with the inclusion of an interaction term, EV incentives and population, to Model 1. Model 5 separately includes another interaction term, EV incentives and

electricity price, to Model 1 to test the second hypothesis on how different levels of electricity price influence the effect of EV incentives on emission reductions (H2).

IV. RESULTS

Table 2 shows the correlation matrix of the variables. Carbon emissions strongly correlate with population and the number of public vehicles. Economic factors, such as household median income, electricity price, and gasoline prices, negatively correlate with carbon emissions. In addition, we also calculate the variance inflation factor (VIF) for our selected parameters. A VIF greater than ten signals multicollinearity. We only have one factor, gasoline price, which is slightly greater than 10, which we deemed to be acceptable [60]. Table 3 presents the outcomes of the OLS

regression model 1-5, indicating the separate regression models that test Factor 1-3 and Hypothesis 1-2, respectively. We are able to assess the magnitude of the effect based on the sign and statistical significance of the variables' coefficients.

A. Effects of Control Variables

We discuss control variables in Table 3, Model 1, and compare their effects with those in other models. In Table 3, the coefficient of population size ($\beta = 4.415 - 4.617, p < 0.01$) and the number of public vehicles ($\beta = 0.094 - 0.099, p < 0.01$) are both positive with a p -value close to 0. This finding implies that the population of a state and the number of public vehicles significantly affect the amount of carbon emissions. Similarly, these two factors that are positive and significant in Models 2–5 indicate the

TABLE 1. Variables Summary				
Variables	Description	Unit	Source	
Dependent	Transportation sector Carbon emissions (EM)	Million Tons	EIA	756
Independent	Median Household Income (MHI)	thousand \$	US Census Bureau	757
	Transport Electricity Retail Price (EP)	¢/kwh	EIA	758
	Gas Price (GP)	\$/MMBtu	EIA	759
	Population (POP)	Million	US Census Bureau	760
	Number of Charging Station (CS)	Count	US DOE	761
	Public Vehicle Registration (PVR)	Count	TEDB	762
	Incentives on Biodiesel (BIO)	Count	TEDB	763
	Incentives on EV (EV)	Count	TEDB	764
	Incentives on Natural Gas (NC)	Count	TEDB	765
	Incentives on Liquefied Petroleum Gas (LPG)	Count	TEDB	766
	Incentives on Alternative Fuel (ALF)	Count	TEDB	767
	Incentives on Ethanol (ET)	Count	TEDB	768
	Incentives on Aftermarket Conversions (AFC)	Count	TEDB	769

TABLE 2. Correlation Analysis														
	EP	MHI	EP	GP	POP	CS	BIO	ET	NG	LPG	EV	ALF	AFC	PUB
EP	1.00													
MHI	-0.03	1.00												
EP	-0.02	0.46	1.00											
GP	-0.06	-0.12	0.17	1.00										
POP	0.97	0.01	0.05	-0.03	1.00									
CS	0.44	0.13	0.10	0.03	0.49	1.00								
BIO	0.34	-0.12	-0.13	0.06	0.35	0.21	1.00							
ET	0.31	-0.16	-0.13	0.10	0.32	0.18	0.84	1.00						
NG	0.61	0.04	-0.07	-0.05	0.61	0.42	0.46	0.41	1.00					
LPG	0.52	-0.02	-0.09	-0.04	0.53	0.37	0.53	0.44	0.91	1.00				
EV	0.55	0.37	0.19	0.01	0.62	0.52	0.41	0.33	0.72	0.67	1.00			
ALF	0.55	0.13	0.17	0.10	0.62	0.48	0.53	0.42	0.81	0.80	0.84	1.00		
AFC	0.43	0.10	-0.06	-0.09	0.42	0.31	0.33	0.39	0.66	0.53	0.46	0.47	1.00	
PUB	0.91	-0.01	-0.01	-0.02	0.91	0.56	0.39	0.33	0.62	0.55	0.61	0.63	0.39	1.00

importance of the levels of population and quantities of vehicle in reducing carbon emissions. With a lower level of population or public vehicles, the emissions from the transportation sector are reduced, which confirms the findings of existing literature. The economic factors, such as, income ($\beta = -0.073 - 0.015, p > 0.1$) electricity price ($\beta = -0.145 - 0.0778, p > 0.1$), and gasoline prices ($\beta = -0.792 - 0.183, p > 0.1$) are negatively related to the emissions in the models, except for electricity price in Model 3 (electricity price is insignificant in all 5 models). This might be caused by the implementation of EV and alternative fuel incentives, which leads to a change in the economic environment. However, electricity price does not have significance in any models. For income ($\beta = 0.026, p > 0.1$) in Model 2 and 5, the positive coefficient is caused by considering

the EV incentives and interaction with electricity price. We also find that the variable, aftermarket conversion ($\beta = 1.011 - 1.198, p < 0.051$), is positive with a low p -value in all five models. This finding implies that the behavior of vehicle or engine modification would significantly influence transportation carbon emissions since people who like conversions always convert their engines to a higher horsepower, which may increase the level of emissions [61]. This result also suggests that policies benefiting engine conversions are not favorable to emission reductions.

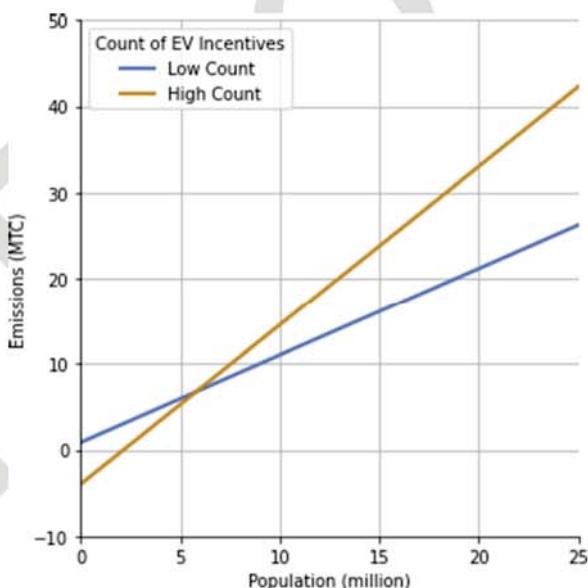
B. The Significance of Factors and Hypotheses Factor 1 predicts that an increase in EV-related infrastructure would reduce transportation emissions. We find that the number of charging stations has a negative coefficient and is significant

($\beta = -0.0024, p < 0.05$) in Model 1, demonstrating Factor 1. This means an increase in charging stations leads to carbon emission reductions from the transportation sector. This result holds true in Models 1–5 by providing a negative regression coefficient and p -values less than 0.05.

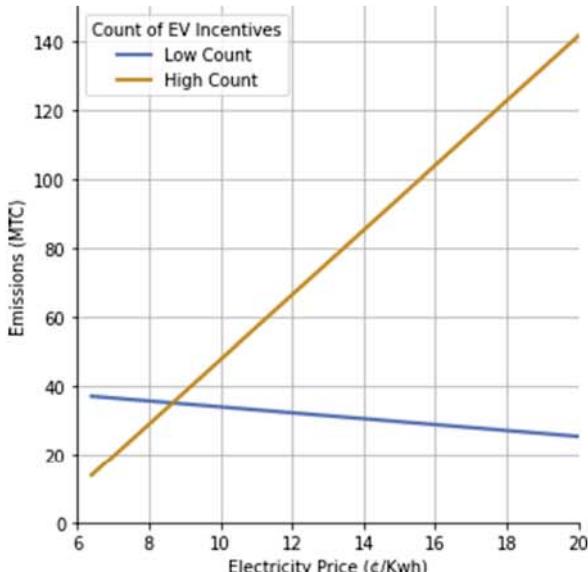
Factor 2 states that EV incentives would have a positive impact on transportation carbon emission reductions. As shown in Table 3, the EV incentives have a negative regression coefficient with a low p -value close to 0 ($\beta = -0.53, p < 0.05$). This result demonstrates Factor 2 that more EV-related incentives would reduce transportation carbon emissions. In other words, enacting more EV incentives can effectively reduce transportation carbon emissions, indicating that EV incentives could be effective tools to mitigate the impacts of climate

Variables	Model 1	Model 2	Model 3	Model 4	Model 5
Median Household Income	-0.073 (0.05)	0.026 (0.05)	-0.015 (0.05)	-0.015 (0.05)	0.026 (0.05)
Electricity Price	-0.145 (0.12)	-0.156 (0.12)	0.0778 (0.12)	-0.164 (0.12)	-0.156 (0.12)
Gasoline Price	-0.792** (0.27)	-0.30 (0.28)	-0.192 (0.27)	-0.183 (0.28)	-0.300 (0.26)
Population	4.415*** (0.14)	4.591*** (0.14)	4.579*** (0.14)	4.617*** (0.14)	4.591*** (0.13)
Public Vehicles	0.095*** (0.01)	0.094*** (0.01)	0.098*** (0.01)	0.0995*** (0.01)	0.094*** (0.01)
Biofuel	-0.431* (0.19)	-0.292 (0.19)	-0.0391 (0.19)	-0.319* (0.19)	-0.292 (0.18)
Natural Gas	-0.084 (0.24)	0.237 (0.24)	0.49* (0.24)	0.354 (0.24)	0.237 (0.23)
LPG	-0.010 (0.31)	0.158 (0.30)	0.657* (0.32)	-0.069 (0.32)	0.158 (0.30)
Ethanol	0.141 (0.19)	0.170 (0.18)	0.010 (0.18)	0.149 (0.18)	0.170 (0.18)
AF-Conversions	1.198*** (0.35)	1.075** (0.34)	1.011** (0.34)	1.069** (0.34)	1.075** (0.33)
Charging Stations	-0.0024*** (0.0004)	-0.0019*** (0.0004)	-0.00184*** (0.0004)	-0.001*** (0.0004)	-0.00196*** (0.0004)
EV		-0.5317*** (0.086)	-0.1955** (0.099)	-0.3231* (0.123)	-0.5311** (0.26)
Alternative Fuel			-1.421*** (0.23)		
EV * POP				-0.0077** (0.003)	
EV * EP					-0.000002 (0.014)
R^2	0.955	0.958	0.964	0.958	0.962
N	510	510	510	510	510

Standard Errors in parentheses; * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.


897 change. This result stays consistent
 898 in other models. These findings thus
 899 illustrate the impact of Factor 2.

900
 901 Factor 3 predicts that policies on
 902 alternative fuel reduce transportation
 903 emissions. For Model 3, we add an
 904 explanatory variable, compared with
 905 Model 2, representing the number
 906 of alternative fuel incentives. The
 907 regression result reflects a negative
 908 coefficient and p -value close to 0
 909 ($\beta = -1.421, p < 0.05$). This finding
 910 implies that the effect of clean
 911 fuel incentives would significantly
 912 influence transportation carbon
 913 emissions, demonstrating Factor
 914 3. Compared with the results from
 915 Model 2, we obtain one interesting
 916 finding, that is the coefficient of EV
 917 incentives becomes higher but still
 918 negative. This result shows that an
 919 increase in the count of EV incentives
 920 would result in emission reductions,
 921 which implies the impact of EV
 922 incentives on emission reductions
 923 is weakened by the implementation
 924 of alternative fuel incentives. This is
 925 because people might choose to use
 926 alternative fuel vehicles instead of
 927 EVs.


928
 929 Hypothesis 1 indicates that
 930 population growth dampens the
 931 effect of EV incentives. We add an
 932 interaction term, EV incentives, and
 933 population, based on Model 2 to
 934 develop Model 4. The coefficient
 935 of the interaction term is negative
 936 and significant ($\beta = -0.0077, p <$
 937 0.05). We also compare the value of
 938 EV incentives in Model 2 with that
 939 in Model 4 ($\beta = -0.323, p < 0.05$).
 940 The coefficient of EV incentives
 941 in Model 4 is greater without
 942 considering population interaction,
 943 indicating that an increase in the
 944 count of EV incentives would
 945 result in less emission reductions.
 946 This result implies considering
 947 the interplay between EV
 948 incentives and the population
 949 would lead to a weakened
 950 effect of EV incentives on
 951 emissions reductions. This

953
 954 observation demonstrates
 955 Hypothesis 1.

956
 957 Moreover, we graphed the interaction
 958 effect, as shown in Fig. 2. According to
 959 the figure below, for both high-count
 960 and low-count incentives lines,
 961 populations are positively related to
 962 transportation emissions. In other
 963 words, regardless of the count of
 964 incentives, as the population grows,
 965 transportation emissions increase.

956
 957 Figure 2. Interaction effect between the count of EV incentives and the
 958 population growth.

959
 960 Figure 3. Interaction effect between the count of EV incentives and the Electricity
 961 Price.

1009 count of incentives does not reduce
 1010 carbon emissions as it is supposed
 1011 to. This result also demonstrates
 1012 Hypothesis 1.

1013

1014 Hypothesis 2 states that higher
 1015 electricity prices dampen the effect of
 1016 EV incentives on emission reductions.
 1017 In Model 5, we test our hypothesis
 1018 by interacting the EV incentives with
 1019 electricity price, indicated by adding
 1020 another interaction term to Model
 1021 3. The coefficient of the interaction
 1022 term is negative but insignificant (β
 1023 = $-0.000002, p > 0.1$). Comparing
 1024 the value of the coefficient of EV
 1025 incentives between the two models,
 1026 the coefficient of EV incentives in
 1027 Model 5 is higher than the one in
 1028 Model 2. This finding implies an
 1029 increase in the count of EV incentives
 1030 would result in less emission
 1031 reductions. This result also indicates
 1032 a high count of EV incentives does
 1033 not maintain the same level of carbon
 1034

emission reductions, considering
 the effect of higher electricity prices.
 This result supports this hypothesis,
 indicating that higher electricity prices
 would lead to more conventional
 vehicle usage, ultimately increasing
 transportation emissions.

In addition, according to the
 interaction plot shown in Fig. 3, the
 low count line has a negative slope.
 It shows that the electricity price is
 negatively, but very slightly, related to carbon emissions. Even as the
 electricity price increases from
 \$0.06/kWh to \$0.20/kWh in 3, the
 amount of emissions barely changes.
 This finding also demonstrates
 Factor 2 indirectly, showing that a low
 count of incentives is not effectively
 beneficial to emission reductions.
 Conversely, the high count line has
 a positive slope. The higher the
 electricity price, the higher the carbon
 emissions. When the electricity price

is low, high-count incentives reduce
 more emissions than low-count
 incentives. When electricity price
 increases, the impacts of low count
 of incentives on carbon emissions
 are not sensitive to high electricity
 price, but the high-count incentives
 do not reduce emissions as they
 perform when electricity price is
 low. This finding implies that as
 the electricity price increases, the
 effect of EV incentives is damped,
 demonstrating Hypothesis 2. These
 results provide information to policy
 makers that increasing the amount
 of EV incentives is most effective in
 reducing emissions when electricity is
 relatively cheap for consumers.

C. Robustness Test We
 estimate several robustness tests
 as presented in Table 4 for Models
 1–5. First, we re-estimate each model
 using only the subsample chosen
 randomly from the whole dataset [62].

Variables	Model 1	Model 2	Model 3	Model 4	Model 5
Median Household Income	-0.103 (0.06)	0.015 (0.07)	-0.048 (0.07)	-0.040 (0.07)	0.015 (0.06)
Electricity Price	-0.141 (0.16)	-0.266 (0.15)	0.086 (0.15)	-0.176 (0.24)	-0.284 (0.15)
Gasoline Price	-0.654* (0.34)	-0.05 (0.35)	-0.081 (0.35)	-0.088 (0.35)	-0.144 (0.33)
Population	4.290*** (0.17)	4.781*** (0.17)	4.471*** (0.17)	4.477*** (0.17)	4.479*** (0.16)
Public vehicles	0.115*** (0.01)	0.112*** (0.01)	0.112*** (0.01)	0.116*** (0.01)	0.111*** (0.01)
Bio-fuel	-0.569** (0.24)	-0.424 (0.24)	-0.132 (0.24)	-0.422** (0.24)	-0.361 (0.23)
Natural Gas	-0.405 (0.29)	0.749 (0.30)	0.293 (0.30)	0.076 (0.30)	-0.033 (0.29)
LPG	-0.334 (0.39)	0.383 (0.37)	0.969*** (0.39)	-0.202 (0.39)	0.456 (0.37)
Ethanol	-0.037 (0.23)	0.116 (0.23)	0.144 (0.23)	0.276 (0.23)	0.129 (0.22)
AF-Conversions	1.832*** (0.43)	1.607*** (0.42)	1.501*** (0.42)	1.604*** (0.42)	1.624*** (0.40)
Charging Stations	-0.0027*** (0.0004)	-0.0022*** (0.0004)	-0.002*** (0.0004)	-0.002*** (0.0004)	-0.0022*** (0.0004)
EV		-0.483*** (0.086)	-0.093 (0.120)	-0.292** (0.104)	-0.680** (0.337)
Alternative Fuel			-1.607*** (0.28)		
EV * POP				-0.0066** (0.004)	
EV * EP					0.01 (0.017)
R^2	0.957	0.961	0.964	0.962	0.961
N	375	375	375	375	375

Standard Errors in parentheses; * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.

1121 The results presented in Model 1
 1122 and Model 2 are consistent with
 1123 those in the main model, showing
 1124 that all coefficients remain in the
 1125 same direction and significance. In
 1126 Model 3, all the results are consistent
 1127 with the outcomes from the main
 1128 model. In Model 4, the results are
 1129 mostly consistent with those in
 1130 the main model. Only the *p*-value
 1131 of biofuel incentives becomes
 1132 lower, so it still remains significant.
 1133 Besides, the *p*-value of EV incentives
 1134 becomes smaller, which indicates the
 1135 significance level of EV increases.
 1136 Similarly, in Model 5, only the
 1137 coefficient of incentives for natural
 1138 gas changes from negative to slightly
 1139 negative. This might be caused by
 1140 the random selection of samples.
 1141 Overall, only the coefficients of
 1142 incentives for natural gas are slightly
 1143 sensitive to the sample size, but their
 1144 insignificance remains consistent
 1145 through all models. This finding
 1146 indicates that this predictor does not
 1147 seem to influence the transportation
 1148 emissions in our sample.

1150 V. DISCUSSION

1151 In this section, we discuss our
 1152 findings and their implications. The
 1153 interpretation of results is presented
 1154 based on the order of factors and
 1155 hypotheses. We also provide some
 1156 insights and recommendations for
 1157 policy-making.

1158 The density of charging stations, as
 1159 an important factor in improving the
 1160 adoption of EVs, has a significant
 1161 impact on transportation CO₂
 1162 emissions. Increasing the number
 1163 of charging stations properly
 1164 addresses the consumer concerns
 1165 about the distance an electric
 1166 vehicle (EV) can travel on a single
 1167 charge, called "range anxiety."
 1168 This is one of the biggest barriers
 1169 that prevent consumers from
 1170 purchasing EVs, since consumers
 1171 worry about the maximum distance
 1172 an EV can travel and fear getting
 1173 stranded. Consequently, our results

1174 demonstrate a significant negative
 1175 relationship between the density of
 1176 charging stations and CO₂ emissions.

1177 Alternative fuels or clean fuels,
 1178 such as hydrogen, are important
 1179 components in efforts to mitigate
 1180 climate change. Clean fuels do not
 1181 affect the adoption of EVs directly,
 1182 but they do contribute to emission
 1183 reductions in that their usage leads to
 1184 less GHG emissions than fossil fuels.
 1185 Providing tax credits for alternative
 1186 fuels can motivate consumers to use
 1187 more clean energy and rely less on
 1188 conventional vehicles, ultimately
 1189 leading to reductions in carbon
 1190 emissions. Our results show that the
 1191 number of alternative fuel incentives
 1192 has a negative relationship with
 1193 CO₂ emissions and is statistically
 1194 significant. However, policymakers
 1195 should realize that the effectiveness
 1196 of EV incentives, as shown in Model
 1197 3, is reduced. This indicates that
 1198 the impact of EV incentives on
 1199 mitigating CO₂ emissions might be
 1200 damped in the face of alternative
 1201 fuel incentives since consumers then
 1202 would be willing to use alternative
 1203 fuel vehicles instead of EVs. The
 1204 mitigation impacts of EV incentives
 1205 on transportation emissions can be
 1206 damped by population growth
 1207 as we have shown. While the
 1208 interaction between EV incentives
 1209 and population affects emission
 1210 reductions, the positive impact of EV
 1211 incentives on emission reductions is
 1212 damped by population growth. The
 1213 higher the population, the higher the
 1214 need for transportation, resulting in
 1215 higher carbon emissions. Therefore,
 1216 policymakers are encouraged
 1217 to adjust policy enactments in
 1218 correlation with population growth.

1219 Our findings also imply that the
 1220 positive impact of EV incentives on
 1221 emission reductions is reduced by
 1222 higher electricity prices. Electricity
 1223 price is one of the major factors
 1224 that affect consumers' preferences
 1225 when choosing between EVs and
 1226 conventional vehicles. Consumers

1227 are also more willing to purchase EVs
 1228 when the electricity price is low or
 1229 gasoline prices are high. Therefore,
 1230 the guidance for policymaking is
 1231 to enact EV incentives with the
 1232 knowledge of the dampening effect
 1233 of higher electricity prices.

1234 VI. CONCLUSION

1235 This article sheds light on how
 1236 climate change mitigation policies
 1237 and socioeconomic factors interact
 1238 to influence emissions in the
 1239 transportation sector. While prior
 1240 research has explored the impact
 1241 of EV incentives on EV market
 1242 shares, less is known about the mixed
 1243 outcome related to whether an EV
 1244 incentive can ultimately achieve the
 1245 goal of emission reductions. We
 1246 link the policies' effectiveness to the
 1247 ultimate goal of carbon emission
 1248 reductions directly.

1249 First, according to the outcomes from
 1250 Model 1, we find that the number
 1251 of charging infrastructures has a
 1252 mitigation impact on transportation
 1253 emissions. A reason for this finding is
 1254 that building more charging stations
 1255 would mitigate EV consumers'
 1256 concerns, improving their willingness
 1257 to buy an EV. As more EVs are
 1258 adopted, less GHG is emitted due to
 1259 the reduced usage of conventional
 1260 vehicles. This finding suggests
 1261 to policymakers that developing
 1262 charging infrastructures can
 1263 significantly reduce transportation
 1264 carbon emissions. Besides initiating
 1265 more EV incentives, building more
 1266 charging stations is also a necessary
 1267 step to mitigate carbon emissions
 1268 from the transportation sector.

1269 Second, we find that alternative fuel
 1270 incentives are negatively related to
 1271 transportation emissions. This result
 1272 suggests a higher count of incentives
 1273 for clean fuel can lower the carbon
 1274 emissions from the transportation
 1275 sector. The reason for this finding is
 1276 that alternative fuels are clean fuels,
 1277 that have low or zero emissions when

1233 combusting in vehicle engines. In
1234 addition, alternative fuel incentives
1235 also promote alternative fuel
1236 vehicle adoption, which can reduce
1237 transportation emissions compared
1238 to conventional vehicles. Even though
1239 the implementation of alternative
1240 fuel incentives may dampen the
1241 effectiveness of EV incentives, they
1242 both still contribute to reductions
1243 in transportation emissions, if
1244 combining these two types of policies.
1245

1246 Third, the results indicate that EV
1247 incentives have a beneficial impact on
1248 transportation emission reductions.
1249 This finding implies that a higher
1250 number of EV incentives would
1251 effectively reduce transportation
1252 emissions. However, based on the
1253 results from Model 4, the effect is
1254 dampened by population growth. Due
1255 to the qualified vehicle limitations
1256 under EV incentives, a larger variety
1257 of options on vehicle purchase
1258 negatively influences the adoption of
1259 EVs, that is unfavorable to emission
1260 reductions. Furthermore, population
1261 growth itself always has a positive
1262 and significant relationship with
1263 transportation emissions. Hence,
1264 population growth dampens the
1265 positive impact of EV incentives on
1266 emission reductions. This suggests
1267 that with a low population size, a high
1268 count of incentives can effectively
1269 reduce carbon emissions. However,
1270 in a larger population environment,
1271 the effectiveness of EV incentives is
1272 reduced.
1273

1274 Similarly, high electricity prices tend
1275 to reduce the positive influence of EV
1276 incentives on emission reductions
1277 as well. This finding is because
1278 higher electricity prices tend to shift
1279 consumers' preferences toward
1280 conventional vehicles. High electricity
1281 prices increase the operational cost
1282 of using an EV, which reduces the
1283 adoption of EVs since consumers
1284 might feel the energy cost of EVs
1285 is too high to afford. Moreover, the
1286 interaction effects also suggest that
1287 effective incentives need to combine
1288

with the low level of electricity prices.
To be more specific, high-count
incentives coupled with low electricity
prices can be effective tools to reduce
transportation carbon emissions.

Furthermore, the effectiveness
of such CO₂ reduction policies,
in terms of cost, is still of crucial
importance that must be factored
into consideration. This is because
transportation policies promoting
EVs generally tend to come with cost
implications either to the individual
consumer or the government [63].
Some contemporary studies
show that by 2030, the cost of
CO₂ abatement of EVs would
have significantly increased to
approximately \$200 per ton [64],
[65]. This cost implication has been
examined relative to the effectiveness
of the policy as a function of the cost
per unit CO₂ reduction in a metric
referred to as "policy effectiveness
index" [66]. This index is the ratio
of the relative reduction in CO₂
emissions to the value of the
incentive. There is no doubt that
there are ample opportunities for
research to further shed lights on
the relative cost effectiveness of
the policies and/or incentives as
electrified mobility continues to rise.

Moreover, it is worth noting that
prior research has examined the
influence of incentives using different
approaches. For instance, some
studies assessed the effects of
electric vehicle incentives, such
as rebates, subsidies, income tax
credits, excise tax credits, or sales
tax exemptions, by quantifying
their monetary value [11], [67].
Other studies treat incentives as a
binary variable where the variable
is taken as 1 if incentive is present
or as 0 if incentive is absent (12,
[43], [68]). In addition, as done in
this study, some use the count of
different incentives [8], [21]. This
research examines the effects of EV
incentives using the count approach
based on the number of EV-related

incentives. This option was adopted
in this article because of the diverse
characteristics of these incentives for
two main reasons. First, some local
governments offer EV incentives
through tax credits for EV consumers,
while others implement policies that
indirectly support EV adoption, such
as providing production or investment
tax credits for EV charging stations.
Second, this model employs panel
data spanning a decade, therefore,
the effects of monetary incentives
vary depending on time and the
prevailing economic conditions. Thus,
determining a suitable reference
point for the actual incentive amounts
is challenging. While the count of
incentives approach in this article
did not account for the relative dollar
amounts of the incentives, it does
not diminish the aim of investigating
the influence of such incentives
given that there is time value of
money differences, and the count is
proportional to the magnitude of the
incentives.

Our study obviously has practical
implications for policymakers: Our
findings imply that any incentives
for EVs and alternative fuels
could significantly contribute to
transportation emission reductions.
An increase in the amount of these
incentives can lead to greater CO₂
emission reductions. However, the
positive impact of such EV incentives
on the reductions in CO₂ emissions
can be dampened by population
growth and high electricity prices.
In addition, the development of
clean energy infrastructure, such
as constructing more charging
stations, could also effectively reduce
transportation emissions, since the
primary concern of consumers, range
anxiety, is properly addressed by
increasing the charging density. This
is consistent with the extant literature
that demonstrates how policy
could impact investments in clean
technologies or provide accessories
for the implementation of such
technologies [35], [69], [70]. Finally,

1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344

1345 besides focusing on the policies
 1346 surrounding EVs, alternative fuel
 1347 incentives can also be an effective
 1348 tool to mitigate transportation
 1349 emissions. Overall, our findings
 1350 suggest that, while EV incentives
 1351 foster climate change mitigation
 1352 in the U.S. transportation sector,

the dampening effects of external
 drivers need to be considered in the
 implementation of such policies.

(NSF) under Grant 1847077. Any
 opinions, findings, conclusions, or
 recommendations expressed in this
 material are those of the authors and
 do not necessarily reflect the views of
 the NSF.

1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456

1353 REFERENCES

1355 [1] Environmental Protection Agency (EPA), "Inventory of U.S. Greenhouse Gas
 1356 Emissions and Sinks: 1990–2021," U.S. Environmental Protection Agency, EPA
 1357 430-R-23-002, 2023. [Online]. Available: <https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2021>

1359 [2] "U.S. Energy Information Administration (EIA) - independent statistics and
 1360 analysis," 2023. [Online]. Available: <https://www.eia.gov/environment/emissions/carbon/>

1362 [3] C. Shirley and R. Gecan, "Emissions of carbon dioxide in the transportation
 1363 sector," 2022. [Online] Available: <https://www.cbo.gov/system/files/2022-12/58566-co2-emissions-transportation.pdf>

1365 [4] R. Jackson, The effects of climate change, 2022. [Online]. Available: <https://climate.nasa.gov/effects>

1366 [5] A. M. Kilpatrick, M. A. Meola, R. M. Moudy, and L. D. Kramer, "Temperature, viral
 1368 genetics, and the transmission of west nile virus by culex pipiens mosquitoes,"
 1369 *PLOS Pathogens*, vol. 4, no. 6, 2008, Art. no. e1000092.

1370 [6] K. Ebi et al., "Chapter 2: Effects of global change on human health," *Analyses
 1371 of the Effects of Global Change on Human Health and Welfare and Human
 1372 Systems–Final Report, Synthesis and Assessment Product*, vol. 4, 2008.

1373 [7] P. Lal, J. R. R. Alavalapati, and E. D. Mercer, "Socio-economic impacts of climate
 1374 change on rural united states," *Mitigation and Adaptation Strategies for Global
 1375 Change*, vol. 16, no. 7, pp. 819–844, 2011.

1376 [8] E. Shittu and C. Weigelt, "When the wind blows: Incumbents' sourcing strategies
 1377 for wind power," *IEEE Transactions on Engineering Management*, vol. 71,
 1378 pp. 1374–1393, 2024.

1379 [9] E. Shittu and C. Weigelt, "Accessibility in sustainability transitions: U.S. electric
 1380 utilities' deployment of solar," *Energy Policy*, vol. 165, 2022, Art. no. 112942.

1381 [10] A. Jenn, K. Springel, and A. R. Gopal, "Effectiveness of electric vehicle
 1382 incentives in the United States," *Energy Policy*, vol. 119, pp. 349–356, 2018.

1383 [11] J. H. M. Langbroek, J. P. Franklin, and Y. O. Susilo, "The effect of policy
 1384 incentives on electric vehicle adoption," *Energy Policy*, vol. 94, pp. 94–103,
 1385 2016. [Online]. Available: <https://www.sciencedirect.com/science/article/pii/S0301421516301550>

1387 [12] A. C. Mersky, F. Sprei, C. Samaras, and Z. S. Qian, "Effectiveness of incentives on
 1388 electric vehicle adoption in Norway," *Transportation Research Part D: Transport
 1389 and Environment*, vol. 46, pp. 56–68, 2016.

1390 [13] B. Lin and Z. Zhang, "Carbon emissions in China's cement industry: A sector
 1391 and policy analysis," *Renewable and Sustainable Energy Reviews*, vol. 58,
 1392 pp. 1387–1394, 2016.

1393 [14] J. Loehr and S. Becken, "The tourism climate change knowledge system,"
 1394 *Annals of Tourism Research*, vol. 86, 2021, Art. no. 103073.

1395 [15] G. Kumbaroğlu, C. Canaz, J. Deason, and E. Shittu, "Profitable decarbonization
 1396 through e-mobility," *Energies*, vol. 13, no. 16, 2020, Art. no. 4042.

1397 [16] I. Martínez-Zarzoso, A. Bengochea-Moranco, and R. Morales-Lage, "The
 1398 impact of population on co 2 emissions: Evidence from European countries,"
 1399 *Environmental and Resource Economics*, vol. 38, pp. 497–512, 2007.

1457 [17] C. Sulaiman and A. S. Abdul-Rahim, "Population growth and CO₂ emission
1458 in nigeria: A recursive ARDL approach," *Sage Open*, vol. 8, no. 2, 2018,
1459 Art.no. 2158244018765916. 1513
1460 [18] J. C. Cramer and R. P. Cheney, "Lost in the ozone: Population growth and ozone
1461 in california," *Population and Environment*, vol. 21, no. 3, pp. 315–338, 2000. 1514
1462 [19] Y. Wang, Y. Kang, J. Wang, and L. Xu, "Panel estimation for the impacts of
1463 population-related factors on CO₂ emissions: A regional analysis in China,"
1464 *Ecological Indicators*, vol. 78, pp. 322–330, 2017. 1515
1465 [20] O. Ogunrinde, E. Shittu, and K. K. Dhanda, "Distilling the interplay between
1466 corporate environmental management, financial, and emissions performance:
1467 Evidence from U.S. firms," *IEEE Transactions on Engineering Management*,
1468 vol. 69, no. 6, pp. 3407–3435, Dec. 2022. 1516
1469 [21] C. Weigelt and E. Shittu, "Competition, regulatory policy, and firms' resource
1470 investments: The case of renewable energy technologies," *Academy of
1471 Management Journal*, vol. 59, no. 2, pp. 678–704, 2016. 1517
1472 [22] I. M. L. Azevedo, M. G. Morgan, and L. Lave, "Residential and regional electricity
1473 consumption in the U.S. and EU: How much will higher prices reduce CO₂
1474 emissions?," *The Electricity Journal*, vol. 24, no. 1, pp. 21–29, 2011. 1518
1475 [23] A. Newcomer, S. A. Blumsack, J. Apt, L. B. Lave, and M. G. Morgan, "Short run
1476 effects of a price on carbon dioxide emissions from U.S. electric generators,"
1477 *Environmental Science & Technology*, vol. 42, no. 9, pp. 3139–3144, 2008. 1519
1478 [24] J. B. Bushnell, E. Muehlegger, and D. S. Rapson, "Energy prices and electric
1479 vehicle adoption," 2022. 1520
1480 [25] S. Bakker, K. Maat, and B. van Wee, "Stakeholders interests, expectations, and
1481 strategies regarding the development and implementation of electric vehicles:
1482 The case of The Netherlands," *Transportation Research Part A: Policy and
1483 Practice*, vol. 66, pp. 52–64, 2014. 1521
1484 [26] O. Egbue and S. Long, "Barriers to widespread adoption of electric vehicles:
1485 An analysis of consumer attitudes and perceptions," *Energy Policy*, vol. 48,
1486 pp. 717–729, 2012. 1522
1487 [27] W. Sierzchula, S. Bakker, K. Maat, and B. van Wee, "The influence of financial
1488 incentives and other socio-economic factors on electric vehicle adoption,"
1489 *Energy Policy*, vol. 68, pp. 183–194, 2014. 1523
1490 [28] D. G. Clover, "The market for electric vehicles in New Zealand: Using stated
1491 choice methods to evaluate the implications for electricity demand and carbon
1492 emissions to 2030," 2013, Accepted: 2013-11-13T03:36:31Z Publisher: Victoria
1493 University of Wellington. 1524
1494 [29] S. Dhar, M. Pathak, and P.R. Shukla, "Electric vehicles and India's low carbon
1495 passenger transport: A long-term co-benefits assessment," *Journal of Cleaner
1496 Production*, vol. 146, pp. 139–148, 2017. 1525
1497 [30] S. P. Sathiyan et al., "Comprehensive assessment of electric vehicle
1498 development, deployment, and policy initiatives to reduce GHG emissions:
1499 Opportunities and challenges," *IEEE Access*, vol. 10, pp. 53614–53639, 2022. 1526
1500 [31] J. McLaren, J. Miller, E. O'Shaughnessy, E. Wood, and E. Shapiro, "Emissions
1501 associated with electric vehicle charging: Impact of electricity generation mix,
1502 charging infrastructure availability, and vehicle type," National Renewable
1503 Energy Lab. (NREL), Golden, CO (United States), NREL/TP-6A20-64852,
1504 Apr. 2016. 1527
1505 [32] A. Chandra, S. Gulati, and M. Kandlikar, "Green drivers or free riders? an
1506 analysis of tax rebates for hybrid vehicles," *Journal of Environmental Economics
1507 and Management*, vol. 60, no. 2, pp. 78–93, 2010. 1528
1508 [33] B. C. Clinton and D. C. Steinberg, "Providing the spark: Impact of financial
1509 incentives on battery electric vehicle adoption," *Journal of Environmental
1510 Economics and Management*, vol. 98, 2019, Art. no. 102255. 1529
1511 [34] D. H. B. Gai et al., "Examining community solar programs to understand
1512 accessibility and investment: Evidence from the U.S.," *Energy Policy*, vol. 159,
2021, Art. no. 112600. 1530

1569 [35] E. Shittu, G. Parker, and X. Jiang, "Energy technology investments in competitive 1625
1570 and regulatory environments," *Environment Systems and Decisions*, vol. 35, 1626
1571 pp. 453–471, 2015. 1627

1572 [36] R. T. Doucette and M. D. McCulloch, "Modeling the prospects of plug-in hybrid 1628
1573 electric vehicles to reduce CO₂ emissions," *Applied Energy*, vol. 88, no. 7, 1629
1574 pp. 2315–2323, 2011. 1630

1575 [37] A. F. Alarfaj, W. M. Griffin, and C. Samaras, "Decarbonizing US passenger vehicle 1631
1576 transport under electrification and automation uncertainty has a travel budget," 1632
1577 *Environmental Research Letters*, vol. 15, no. 9, 2020, Art. no. 0940c2. 1633

1578 [38] "Alternative fuels European alternative fuels observatory," [Online]. Available: 1634
1579 [https://alternative-fuels-observatory.ec.europa.eu/general-information/](https://alternative-fuels-observatory.ec.europa.eu/general-information/alternative-fuels) 1635
1580 alternative-fuels 1636

1581 [39] Office of Energy Efficiency and Renewable Energy, US Department of Energy, 1637
1582 Alternative fuels, 2023. [Online]. Available: <http://www.fueleconomy.gov/feg/current.shtml> 1638

1583 [40] H. Koten, "Hydrogen effects on the diesel engine performance and emissions," 1639
1584 *International Journal of Hydrogen Energy*, vol. 43, no. 22, pp. 10511–10519, 1640
1585 2018. 1641

1586 [41] A. C. R. Teixeira, P. G. Machado, F. M. d. A. Collaço, and D. Mouette, 1642
1587 "Alternative fuel technologies emissions for road heavy-duty trucks: A 1643
1588 review," *Environmental Science and Pollution Research*, vol. 28, no. 17, 1644
1589 pp. 20954–20969, 2021. 1645

1590 [42] S. Yeh, "An empirical analysis on the adoption of alternative fuel vehicles: The 1646
1591 case of natural gas vehicles," *Energy Policy*, vol. 35, no. 11, pp. 5865–5875, 2007. 1647

1592 [43] A. Hackbarth and R. Madlener, "Consumer preferences for alternative fuel 1648
1593 vehicles: A discrete choice analysis," *Transportation Research Part D: Transport* 1649
1594 *and Environment*, vol. 25, pp. 5–17, 2013. 1650

1595 [44] B. Kutela, A. E. Kitali, and E. Kidando, "Examining the influence of alternative 1651
1596 fuels' regulations and incentives on electric-vehicle acquisition," in *Proceedings* 1652
1597 *of the International Conference on Transportation and Development*, 2022, 1653
1598 pp. 196–206. 1654

1599 [45] I. Grilo, O. Shy, and J.-F. Thisse, "Price competition when consumer behavior 1655
1600 is characterized by conformity or vanity," *Journal of Public Economics*, vol. 80, 1656
1601 no. 3, pp. 385–408, 2001. 1657

1602 [46] H.-S. Shin, Z. A. Farkas, and A. Nickkar, "An analysis of attributes of electric 1658
1603 vehicle owners' travel and purchasing behavior: The case of maryland," in 1659
1604 *Proceedings of the Conference on Transportation and Development*, 2019, 1660
1605 pp. 77–90. 1661

1606 [47] H. Hao, Y. Geng, H. Wang, and M. Ouyang, "Regional disparity of urban 1662
1607 passenger transport associated GHG (greenhouse gas) emissions in China: 1663
1608 A review," *Energy*, vol. 68, pp. 783–793, 2014. 1664

1609 [48] G. R. Timilsina and A. Shrestha, "Transport sector CO₂ emissions growth 1665
1610 in asia: Underlying factors and policy options," *Energy Policy*, vol. 37, no. 11, 1666
1611 pp. 4523–4539, 2009. 1667

1612 [49] S. M. Rahman, A. N. Khondaker, M. A. Hasan, and I. Reza, "Greenhouse gas 1668
1613 emissions from road transportation in Saudi Arabia - a challenging frontier," 1669
1614 *Renewable and Sustainable Energy Reviews*, vol. 69, pp. 812–821, 2017. 1670

1615 [50] M. Mohsin, Q. Abbas, J. Zhang, M. Ikram, and N. Iqbal, "Integrated effect of 1671
1616 energy consumption, economic development, and population growth on CO₂ 1672
1617 based environmental degradation: A case of transport sector," *Environmental* 1673
1618 *Science and Pollution Research*, vol. 26, no. 32, pp. 32824–32835, 2019. 1674

1619 [51] K. Dong, G. Hochman, Y. Zhang, R. Sun, H. Li, and H. Liao, "CO₂ emissions, 1675
1620 economic and population growth, and renewable energy: Empirical evidence 1676
1621 across regions," *Energy Economics*, vol. 75, pp. 180–192, 2018. 1677

1622 [52] S. M. Rahman, A. N. Khondaker, M. A. Hasan, and I. Reza, "Greenhouse gas 1678
1623 emissions from road transportation in Saudi Arabia - a challenging frontier," 1679
1624 *Renewable and Sustainable Energy Reviews*, vol. 69, pp. 812–821, 2017. 1680

1681 [52] C. Zhuge, B. Wei, C. Shao, C. Dong, M. Meng, and J. Zhang, "The potential 1737
1682 influence of cost-related factors on the adoption of electric vehicle: An 1738
1683 integrated micro-simulation approach," *Journal of Cleaner Production*, vol. 250, 1739
1684 2020, Art. no. 119479. 1740

1685 [53] V. V. Krishnan and B. I. Koshy, "Evaluating the factors influencing purchase 1741
1686 intention of electric vehicles in households owning conventional vehicles," *Case 1742
1687 Studies on Transport Policy*, vol. 9, no. 3, pp. 1122–1129, 2021. 1743

1688 [54] J. Yan and J. Zhao, "Willingness to pay for heavy-duty hydrogen fuel cell trucks 1744
1689 and factors affecting the purchase choices in China," *International Journal of 1745
1690 Hydrogen Energy*, vol. 47, no. 58, pp. 24619–24634, 2022. 1746

1691 [55] A. M. Bento, J. E. Hughes, and D. Kaffine, "Carpooling and driver responses to 1747
1692 fuel price changes: Evidence from traffic flows in los angeles," *Journal of Urban 1748
1693 Economics*, vol. 77, pp. 41–56, 2013. 1749

1694 [56] K. Gillingham and A. Munk-Nielsen, "A tale of two tails: Commuting and the 1750
1695 fuel price response in driving," *Journal of Urban Economics*, vol. 109, pp. 27–40, 1751
1696 2019. 1752

1697 [57] I. Belloc, J. I. Giménez-Nadal, and J. A. Molina, "The gasoline price and 1753
1698 the commuting behavior: Towards sustainable modes of transport," GLO 1754
1699 Discussion Paper, Working Paper 1130, 2022. 1755

1700 [58] K. Storchmann, "Long-run gasoline demand for passenger cars: The 1756
1701 role of income distribution," *Energy Economics*, vol. 27, no. 1, pp. 25–58, 1757
1702 2005. 1758

1703 [59] W. Guo, T. Sun, and H. Dai, "Effect of population structure change on carbon 1759
1704 emission in China," *Sustainability*, vol. 8, no. 3, p. 225, 2016. 1760

1705 [60] G. James, D. Witten, T. Hastie, and R. Tibshirani, *An Introduction to Statistical 1761
1706 Learning: With Applications in R*, Ser. US: Springer Texts in Statistics. Springer.

1707 [61] D. R. Johnson, R. Heltzel, A. C. Nix, N. Clark, and M. Darzi, "Greenhouse gas 1762
1708 emissions and fuel efficiency of in-use high horsepower diesel, dual fuel, 1763
1709 and natural gas engines for unconventional well development," *Appl. Energy*, 1764
1710 vol. 206, pp. 739–750, 2017. 1765

1711 [62] M. Tsao and X. Ling, "Subsampling method for robust estimation of regression 1766
1712 models," *Open Journal of Statistics*, vol. 02, no. 3, p. 281, 2012. 1768

1713 [63] A. Brem and P. A. Nylund, "Home bias in international innovation systems: The 1769
1714 emergence of dominant designs in the electric vehicle industry," *Journal of 1770
1715 Cleaner Production*, vol. 321, 2021, Art. no. 128964. 1771

1716 [64] C. Thiel, A. Perujo, and A. Mercier, "Cost and CO₂ aspects of future vehicle 1772
1717 options in Europe under new energy policy scenarios," *Energy policy*, vol. 38, 1773
1718 no. 11, pp. 7142–7151, 2010. 1774

1719 [65] Z. P. Cano et al., "Batteries and fuel cells for emerging electric vehicle markets," 1775
1720 *Nature Energy*, vol. 3, no. 4, pp. 279–289, 2018. 1776

1721 [66] T. Wang and E. Shittu, "Simulating the impact of the us inflation reduction act 1777
1722 on state-level CO₂ emissions: An integrated assessment model approach," 1778
1723 *Sustainability*, vol. 15, no. 24, 2023, Art. no. 16562. 1779

1724 [67] S. Wee, M. Coffman, and S. La Croix, "Do electric vehicle incentives matter? 1780
1725 Evidence from the 50 US states," *Research Policy*, vol. 47, no. 9, pp. 1601–1610, 1781
1726 2018. 1782

1727 [68] N. Wang, H. Pan, and W. Zheng, "Assessment of the incentives on electric 1783
1728 vehicle promotion in China," *Transportation Research Part A: Policy and 1784
1729 Practice*, vol. 101, pp. 177–189, 2017. [Online]. Available: <https://www.sciencedirect.com/science/article/pii/S0965856416309193> 1785

1730 [69] X. Jiang, G. Parker, and E. Shittu, "Envelope modeling of renewable resource 1786
1731 variability and capacity," *Computers & Operations Research*, vol. 66, 1787
1732 pp. 272–283, 2016. 1788

1733 [70] D. H. B. Gai and E. Shittu, "Stochastic dominance of renewables to replace 1789
1734 hydropower under policy uncertainty," *IEEE Access*, vol. 10, pp. 45855–45869, 1790
1735 2022. 1791

1736

1793	Tianye Wang received the bachelor's degree in mathematics from Oregon State University, Corvallis, OR, USA, in 2015, and the master's degree in mathematics from Northeastern University, Boston, MA, USA, in 2017. He is currently working toward the Ph.D. degree in systems engineering with George Washington University, Washington, DC, USA, in 2021.	1849
1794		1850
1795		1851
1796		1852
1797		1853
1798	His research areas include the food-water-energy nexus, engineering optimization under uncertainty, public policy, and operations research.	1854
1799		1855
1800	Jonathan Deason received the B.S. degree in engineering from U.S. Military Academy, West Point, NY, USA, in 1970, the M.B.A. degree in management from Golden Gate University, San Francisco, CA, USA, in 1975, the M.S. degree in environmental engineering from Johns Hopkins University, Baltimore, MD, USA, in 1978, and the Ph.D. degree in environmental systems from the University of Virginia, Charlottesville, VA, USA in 1984. He is a Professor of Environmental and Energy Management in the Department of Engineering Management and Systems Management, and the Executive Director of the Environmental and Energy Management Institute, at the George Washington University (GW), Washington, DC, USA.	1856
1801		1857
1802		1858
1803		1859
1804		1860
1805		1861
1806		1862
1807	Prior to joining GW, he was the Vice President for Environmental Affairs at the American Road and Transportation Builders Association, a federation of 7000 organizations engaged in transportation construction. Before that he was the Director, Office of Environmental Policy and Compliance at the U.S. Department of the Interior, where he managed nine regional offices across the nation and seven staff divisions in Washington, DC. He was with the National	1863
1808	Boards of Directors of the American Water Resources Association and the Renewable Natural	1864
1809	Resources Foundation, and as the President of the National Capital Section, American	1865
1810	Society of Civil Engineers. He is a licensed Professional Engineer, has authored more than	1866
1811	150 academic and professional papers dealing with environmental and energy issues, and	1867
1812	has received 21 sponsored research grants for environmental and energy management	1868
1813	investigations. He has received more than a dozen major awards including the Founder's	1869
1814	Medal of the National Society of Professional Engineers as the Federal Engineer of the Year,	1870
1815	the Arthur S. Flemming Award for work related to improving the Nation's water resources, the	1871
1816	Engineering Achievement Award of the Virginia Engineering Foundation, and an Executive	1872
1817	Rank Award from the President of the United States. He has been featured in many news	1873
1818	programs and media including Newsweek, the Associated Press, ABC News, World News	1874
1819	Group, The Hill, Bloomberg Law, CNN and Good Morning America.	1875
1820		1876
1821		1877
1822		1878
1823		1879
1824		1880
1825	Ekundayo Shittu received the B.Eng. degree in electrical engineering from the University of Ilorin, Ilorin, Nigeria, in 1998, the M.S. degree in industrial engineering from the American University in Cairo, New Cairo, Egypt, in 2004, and the Ph.D. degree in industrial engineering and operations research from the University of Massachusetts Amherst, Amherst, MA, USA, in 2009. His research studies the strategic interaction between firms' technology stocks and the external environment through the lenses of transaction cost economics and resource-based view. He authored or coauthored <i>Renewable Energy: International Perspectives on Sustainability</i> (Springer). He is an Associate Professor with the Department of Engineering Management and Systems Engineering, The George Washington University, Washington, DC, USA. He was a Lead Author on Chapter 2, "Integrated Risk and Uncertainty Assessment of Climate Change Response Policies," of Working Group III to the 5th Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). His current research interests include the arena of technology management and the economics of renewable energy focuses on the interplay between public policy, competition, and energy technology investments. He was the recipient of multiple awards from the National Science Foundation, Department of Energy, Department of Defense, Alfred P. Sloan Foundation, Duke Energy Renewables, etc.	1881
1826		1882
1827		1883
1828		1884
1829		1885
1830		1886
1831		1887
1832		1888
1833		1889
1834		1890
1835		1891
1836		1892
1837		1893
1838		1894
1839		1895
1840		1896
1841		1897
1842		1898
1843		1899
1844		1900
1845		1901
1846		1902
1847		1903
1848	<i>Production and Operations Management, Renewable and Sustainable Energy Reviews, Applied Energy, Energy Economics, Naval Research Logistics, Vaccines, Risk Analysis, Systems Engineering, and Climate Policy.</i> He has reviewed <i>Practical Management Science</i> 4th–6th editions by Wayne Winston and Christian Albright.	1904