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Abstract—While extant research explores the impact of electric vehicle
(EV) incentives on EV market shares, less is known about how such
policies and other socioeconomic factors interact that ultimately affect

the goal of transportation emission reductions. The study summarized
herein employed a sample of 510 state-year CO, emissions datasets in the
transportation sector spanning a decade (2010-2019) in a multiple linear
regression model. Going beyond earlier studies, we find that, while a higher
number of EV incentives would significantly contribute to transportation
emission reductions, this effect could be dampened by population growth.
In addition, we find that, while higher electricity prices may weaken the
effectiveness of EV incentives, a high count of EV incentives is more
effective in reducing CO, emissions than a low count of EV incentives
when the electricity price is low. This finding implies that having multiple EV
incentives can be effective in reducing transportation carbon emissions
even in the face of rising prices of electricity. The study also examines the
effectiveness of promoting the density of charging stations and alternative
fuel incentives in advancing carbon emission reductions.

Key words: Electric vehicles, electricity price, emissions, incentives,

population growth, transportation.

I. INTRODUCTION

CARBON emissions from the
transportation sector have become
the largest source of greenhouse
gas (GHG) emissions in the United
States [1]. According to the U.S.
Energy Information Administration
(EIA),the U.S.transportation

sector had the largest increase

in CO; emissions of all sectorsin
2021 [2]. Carbon emissions from
the transportation sector have been
increasing continually in recent
years, with significant contributions
to climate change [3]. Prior research
clearly underpins the need for
climate change mitigation, since
climate change not only causes

serious environmental problems in
the U.S., but also has detrimental
effects on infrastructure systems
such as transportation, air,and
water,and also contributes to public
health problems simultaneously [4],
[5],[6]. The rural economy of the
U.S.is particularly sensitive to
climate change impacts, reflected
in such resources categories as
agriculture, forestry, water resources,
energy, and fisheries [7]. While

the drivers of climate change and
approaches to adaptation are well
documented, the effectiveness of
various mitigation policies, and the
role of external factors affecting
climate mitigation, have received
less attention. More intriguing is

the influence of these policies on

0360-8581 © 2023 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See hitps:/fwww.ieee.org/publications/rightsfindex.html for more information.

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
a0
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112



113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

IEEE ENGINEERING MANAGEMENT REVIEW, VOL. 00, NO. 0, 2023

sustainability transitions [8],[9]. The
research summarized in this article
was directed toward the effectiveness
of various climate change mitigation
policies and the impacts of related
factors.

Some prior research has been
devoted to understand the
effectiveness of incentives on

EV adoption without adequate
consideration of the impacts of
such policies on actual reductions
in carbon emissions [10],[11],[12].
This lack of full consideration of
the ultimate goal (carbon emission
reductions) has reduced the value
of such research in terms of
contributing to that goal. Furthermore,
some prior research does not
consider interactions among

the related emission reductions
policies and external features [13].
For example, while the inflation
reduction act (IRA) provides not
only EV incentives but also other
clean fuel and renewable energy
infrastructure tax credits, most
previous work has solely focused
on the relationships between EV
incentives and EV market shares,
largely ignoring the goal of emission
reductions and interdependencies
between policies and external drivers.
Therefore, investigations into the
effectiveness of various policies
and their interactions with external
features are warranted.

A better understanding of how
mitigation policy and external drivers,
such as population growth or other
socioeconomic factors, interact is
crucial because the effectiveness

of policy implementation involves
uncertainty,and thus portends a risk
that policy implementation could lead
to less than optimal contributions to
environmental goals. Similarly, recent
studies emphasized the need for
effective climate change mitigation
to rely on a deep understanding of
practical environmental implications
and indicated that the external
environment plays an important

role in the impacts of policy
implementation [14],[15]. In our study,
we use linear regression to analyze
the impacts of external factors on
emission reductions.

Population growth is one of the most
important factors that contribute to
the severe degradation of natural
resources [16]. As population grows,
energy consumption, ultimately
carbon emissions, and other
atmospheric pollution also grow.
Increased population growth has
been demonstrated to increase
GHG emissions, particularly CO,
emissions, through the increase

in human daily commute [17].One
study assessed the impact of
population growth on CO, emissions
in California and found a positive
relationship [18].In addition,an
increase in population size can

lead to a growing demand for
residential consumption in housing
and transportation, showing that
population size is an influential factor
of carbon emissions [19]. The study
emphasized that a higher population
can lead to increased CO, emissions.
Hence, it is necessary to study the
effectiveness of mitigation policies,

taking into account population growth.

In this study, we consider population
influence and its joint effect with the
effectiveness of EV incentives by
adding an interaction term to our
base model and analyzing interaction
plots between the population and
different levels of EV incentives. Such
interactions have been found to be
instructive for policymaking [20], [21].

Another influential factor that
contributes significantly to carbon
emissions is the level of related
economic activity. In particular, we
study the prices of electricity, which
strongly impact the amount of energy
consumption, ultimately influencing
carbon emissions. A previous study
emphasized that residential energy
consumption demand is highly
price-elastic [22]. This study found
that when prices of electricity are low,

people are inclined to use electrical
appliances. Another study found that
the consumer response to higher
prices is the dominant effect on
electricity usage [23]. As the price

of electricity decreases, people

shift their preferences from relying

on more conventional vehicles to
using more EVs. Yet another study
found that electricity pricing is an
important factor in decarbonizing

the transportation sector in

California [24]. This study confirmed
that, with lower electricity prices, there
exists a shift toward EV consumption.
Even though consumers are less
sensitive to electricity price than to
gasoline prices, electricity price still
significantly influences consumer
commuting preferences. Hence, while
the degree to which higher electricity
prices dampen the effectiveness

of various EV incentives in terms

of carbon emission reductions, itis
imperative to empirically validate the
nature of the interaction between
these factors. We consider the effects
of electricity price and their joint
effect with the effectiveness of EV
incentives by adding an interaction
term to the basic model and analyzing
interaction plots between the
electricity price and different levels

of EV incentives.

In sum, the effects of different

types of policies, such as clean

fuel tax credits, electric vehicle
rebates, and emphasis on increasing
the availability of charging
infrastructures, on transportation
emissions, are studied to explore

the effectiveness of such policies
and the interplay between policy

and the external environment. This
study contributes to prior work in

EV policy literature by stressing

the implementation effectiveness

of policy as influenced by external
factors such as population growth
and electricity price. We apply a set of
empirical panel data from 50 states
and D.C.in the U.S.over a period of 10
years, identifying the key factors that
have significant negative or positive

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224



225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

INTERPLAY OF INCENTIVES, ELECTRICITY PRICE AND DEMAND ON TRANSPORT DECARBONIZATION

impacts on transportation carbon
emissions through an ordinary least
squares (OLS) regression model. Our
results show that the number of EV
incentives, the number of charging
stations, and the number of incentives
on alternative fuels have beneficial
impacts on transportation carbon
emission reductions. We also find
that external environmental factors
such as higher population and higher
electricity price dampen the effect of
climate change mitigation actions.

Our study contributes from two
perspectives. First, this work
contributes to prior work by providing
new robust evidence on the

extent to which EV policies impact
transportation carbon emissions,
considering the interactions between
EV incentives and external features.
Second, our study is the first study
that utilizes state-level panel data

in the United States to investigate
the relationships between policy
implementation and transportation
carbon emissions.

The rest of this article is outlined as
follows. Section |l describes three
factors and two hypotheses relevant
to the effectiveness of emissions
reduction policies based on the
existing literature. In Section Ill,we
describe the data and methodology
for our analysis. Then we present our
data analysis results, discussion,and
conclusions in Sections IV and V.

Il. THEORETICAL FRAMEWORK

In this section, we demonstrate the
theoretical framework, discussing

the conceptual and operational
definitions of our studied variables.
We also illustrate the pathway of

the manner in which we develop

and explain the principal factors

and hypotheses affecting the
implementation of emission reduction
policies.

A. The Role of Charging
Infrastructures Due tothe
limited capacity of batteries,an

adequate density of charging stations
is extremely important to meet EV
user mobility demands [25]. Previous
research has examined barriers to
EV adoption to show that more than
20% of participants are concerned
with the charging infrastructures [26].
With a low density of charging
stations or outlets, consumers tend
to prefer conventional vehicles

to EVs since “range anxiety’is a
strong motivating factor for electric
car shoppers. Consumers worry
about the maximum distance

that EVs can travel and whether
EVs can successfully bring them

to their destinations. Another
empirical study demonstrated that
charging infrastructure construction
is positively correlated with EV
adoption rates [27]. The higher
density of charging stations shifts
the preferences of shoppers toward
EVs, as indicated by a higher EV
adoption rate. One survey-based
study found that free public charging
infrastructures can effectively
promote the willingness to pay
(WTP), ultimately leading to higher
EV acquisition rates [11]. Hence,

an improvement in the density of
charging infrastructures would
advance EV adoptions.

Some studies highlight the fact that
EVs can efficiently reduce GHG
emissions [28]. For example, one
study applies an energy system
model to analyze the role of EVs in
India [29]. The authors found that
EVs can efficiently benefit CO,
mitigation and that a higher EV
penetration rate can also improve
urban air quality. In another study,a
two-stage data-driven framework
was developed to show that a higher
EV adoption would be beneficial to
carbon emissions [30]. The result
showed that only a 5-10% increase
in EV penetration rate would lead to a
40% reduction in energy consumption
and a 25% reduction in GHG
emissions. Yet another study explored
the actual amount of emission
reductions that electric vehicles

can provide by designing different
scenarios in terms of the location
and time that the EV is charged [31].
The analysis demonstrated that

the widespread use of workplace
charging is expected to reduce
emissions associated with electric
vehicles. That study also considered
the rebound effect of EV adoption
dealing with the possibility that more
CO; emissions could be produced
by electricity generation than those
that are reduced by EV adoption.
The results demonstrated that,

while power generation could cause
more carbon emissions, a higher EV
penetration rate would still lower total
carbon emissions. Thus, an increase
in the count of charging infrastructure
will improve the adoption rate of EVs,
ultimately leading to reductions in
CO, emissions, especially in the
transportation sector.

Factor 1: Higher densities of
charging stations lead to lower local
transportation carbon emissions.

B. The Role of EV Incentives
Electric vehicles are often promoted
as a symbol of clean energy and a
significant component to reduce
transportation sector carbon
emissions. Despite these benefits,
EV adoption is still confronting some
barriers, such as high purchase
prices, reliability,and driving distance.
To overcome these challenges

and improve the adoption rate, the
federal government or entities at

the state level have experimented
with various types of policies to
stimulate the desire of consumers to
purchase EVs. Such policies include
various types of incentives, such as
exemptions from registration taxes,
free public parking, toll exemptions,
and purchase rebates [12]. Most
previous studies have estimated

EV market share changes due to EV
incentives. For example, a regression
model was developed to explore the
impact of tax rebates on EV market
share in Canada [32]. The result

of the study found that an implied
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tax rebate would generate 25%
more EV market sales. Similarly,
another study investigated the
difference in impact on EV adoption
among different incentives [33]. The
results demonstrated that different
incentives play the same role in EV
adoption. These studies all show
that the implementation of EV
incentives can efficiently increase
the EV penetration rate. However, the
dummy variable, used to represent
the implementation of EV incentives
in their models, can only capture
some aspects of the impact of policy
but is not comprehensive. In our
study, we operationalize the various
levels of EV policy of each state

as the count of incentives enacted
by the state-level government and
posit that has a positive relationship
with EV adoption, indicating the
higher count of incentives, the
higher the emission reductions.
Similar approaches have shown

that incentives or policies could act
to stimulate investments or direct the
adoption of new technologies [21],
[34],[35].

Moreover, existing literature
demonstrates the positive effect
of EVs on carbon emission
reductions. For example, a study
modeled the CO, emissions from
EV and plug-in hybrid electric
vehicles (PHEV) in comparison
with conventional vehicles [36].
The results demonstrated that EVs
and PHEVSs have the advantage
to reduce the CO, emissions
from automotive transport unless
the country undertakes a major

decarbonization of power generation.

This study confirmed that the higher
the EV penetration rate, the greater
is the gain the carbon emission
reductions. Another research effort
highlighted the projection of EV
penetration rates considering
economic factors [37]. It found that
a higher level of fleet electrification
becomes increasingly important to
achieve decarbonization. Therefore, a
higher number of incentives that are

positively associated with EV market
share can increase rates of EV
adoption. Since higher usage of EVs
can efficiently reduce transportation
carbon emissions, we posit that a
higher number of EV incentives

may result in higher transportation
emission reductions.

Factor 2: Higher numbers of EV
incentives lead to local transportation
carbon emission reductions.

C. The Role of Alternative Fuel
Incentives Alternative fuels
in our context indicate that clean
fuel is used for transportation, such
as hydrogen and biomass [38].
These fuels serve are intended
to substitute for more carbon-
intensive energy sources, like
gasoline, petroleum, and diesel,
and contribute to decarbonization
in the transportation sector and
reductions in air pollution [39].
Unlike EV incentives, alternative
fuel incentives do not directly affect
EVs.The clean fuels consumed by
conventional combustion engines
do not emit as much GHG as fossil
fuels. Prior research confirms that
consuming alternative fuels would
emit less GHG than gasoline [40].
For example, one study reviews
research from 2015-2020 to
analyze the technologies regarding
pollution and emissions [41]. The
study finds out that alternative
fuels, particularly biomass, and
biodiesel, are the most capable
of reducing carbon emissions. In
addition, compared to using fossil
fuels, conventional combustion
engines rely on clean fuels and can
help reduce the significant amount of
carbon emissions as well. Similarly,
alternative fuel vehicles can also
offer considerable benefits to GHG
emission reductions.

Moreover, previous studies suggest
that alternative fuel incentives would
significantly influence the market
share of alternative fuel vehicle
adoptions, resulting in reductions in

transportation carbon emissions [42],
[43]. The results illustrate that a lower
price of alternative fuel stimulates
the consumers’ WTP for clean
energy vehicles. Another study

also investigates the implication of
alternative fuel regulations, using
text mining and negative binomial
(NB) regression, to show that
alternative fuels can help to reduce
carbon emissions [44]. However,
they also find out that alternative
fuel incentives might hinder EV
acquisition.In summary, more clean
fuels consumed are equivalent to
the lower consumption of fossil
fuels, which is still conducive to
transportation carbon emission
reductions eventually. Thus, we

posit that alternative fuel incentives
would be negatively associated with
transportation carbon emissions,
indicating that the higher count of
alternative fuel incentives, the higher
the emission reductions.

Factor 3: Higher numbers of
alternative fuel incentives tend to
reduce local transportation carbon
emissions.

D. Population Growth and the
Effect of EV Incentive The
interaction between the impact
of EV incentives and population
size is captured on different levels
of incentives.EV incentives in
our study are measured by the
number of EV-related policies
regardless of type. We posit that,
while they contribute to promoting
EV adoption, the effectiveness of
EV incentives may be dampened
by population growth. On the one
hand, larger populations may wider
variety of consumer behavior
types [45]. For example, while the
IRA provides consumers a credit of
up to US$7,500,consumers need to
satisfy several requirements about
batteries or other characteristics to
redeem the tax credits. As population
increases, consumers may have
numerous types of preferences for
vehicle selections due to different
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types of cultural backgrounds

or personalities [46]. Various
purchase preferences may lead
consumers to be more willing to
purchase conventional vehicles if
EVs cannot satisfy their desires or

if consumers are not familiar with
EVs. Another study investigated
transportation structures associated
with transportation emissions to show
that a higher population would lead
to diverse motorization pathways,
which could escalate transportation
emissions [47],

Other existing efforts also found

that population growth is one of

the main factors driving transport
sector CO; emissions growth [48],
[49]. For example, one study applied
an econometric model to show that
an increase in population growth can
yield environmental degradation
and transportation emissions in
Pakistan [50]. Another empirical
study confirmed that population

size is positively correlated with
carbon emissions [51]. Population
growth is the most important factor
contributing to transportation carbon
emissions, which is negatively
associated with the impact of EV
incentives on emission reductions. In
addition, a larger population requires
a greater need for transportation,

no matter whether these people rely
on public transportation or private
conventional vehicles. While EV
incentives benefit CO, emission
reductions, population growth offsets
such reductions, yielding more CO,
emissions than would be the case
with stable population levels. Hence,
we posit that population growth
dampens the effect of EV incentives
on transportation emissions.

Hypothesis 1: Larger population sizes
tend to dampen the effects of carbon
emissions reduction incentives.

E. Electricity Price and the
Effect of EV Incentive The

interaction between the impact of

EV incentives and electricity price

is captured on different levels of
incentives. Prior work suggests

that electricity price would not only
influence the spatial distribution of
EV owners but also EV adoption
rates [52]. For example, one study
used questionnaire surveys and
structural equation modeling (SEM)
to investigate the factors affecting

EV adoption in India [53]. They found
that,in addition to incentives, such as
exemption of road taxes, registration
fees, free parking fees, and toll
charges, lower electricity tariffs, and
higher gasoline prices, may attract
more consumers to purchase EVs,
since consumers always need to
consider the fuel cost of the vehicle
in addition to the original purchase
cost. The electricity price significantly
impacts the willingness of consumers
to buy EVs. Similarly, electricity

price is considered one part of

the operational cost. The level of
maintenance cost also significantly
affects consumers’WTP [54]. This
study also highlighted that people
are more willing to purchase vehicles
with lower operational costs because
compared to the investment cost, the
operational cost is a big portion of the
total life-cycle cost for a vehicle.

Furthermore, a relatively low
electricity price is equivalent to
relatively high conventional fuel
prices for consumers. Some previous
studies confirm that fuel prices are
highly associated with commuting
behavior [55],[56]. For example, one
study used OLS regressions to show
that gasoline prices are one of the
most important factors to determine
commuting modes [57]. With higher
fuel costs, people are more willing

to use more public transportation
tools to save on commuting costs,
such as buses or metros, instead

of driving private vehicles. Similarly,
higher fuel prices may reduce the
usage of conventional vehicles,
which is reflected by the average fuel
consumption [58]. Consumers are
less motivated to use or purchase

an EV in a low fuel-price period.

Conversely,consumers are more
willing to purchase EVs when the
electricity price is low.Hence, we

posit that high electricity prices
reduce the effects of EV incentives on
transportation emission reductions,
indicating that EV incentives is
weakened.

Hypothesis 2: Higher electricity prices
tend to dampen the effectiveness

of carbon emissions reduction
incentives.

F. Relationship Between Factors
and Hypotheses This study
sheds light on the effectiveness of
differing provisions of environmental
policy, such as direct and indirect
incentives that stimulate people
to use more clean energy. Fig. 1
presents an overview of the
hypotheses.

In the context of this article,

the factors are treated as
pseudohypotheses that are often
generally known facts, but are
required as substrates on which

the main hypotheses are based.

Thus, the development of charging
infrastructures is an important
external driver that helps us to reduce
transportation carbon emissions (F1).
The EV incentives contribute to the
reductions of transportation carbon
emissions (F2). Alternative fuels, such
as clean fuels, are also beneficial to
carbon emission reductions (F3).
However, as population grows, stable
levels of EV incentives are less
effective (H1). Similarly, the efficacy
of EV incentives is influenced by the
fluctuation of electricity price (H2).

lll. METHODOLOGY

In this section,emphasis is placed
on the data collection including
sources of data and the regression
model. In the regression model,

the variables are differentiated as
dependent, explanatory,and control.
The following sections provide more
details.
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A. DataCollection This study

applies empirical data to evaluate
the effect of different policies and
external environmental features

on the carbon emissions from the
transportation sector across 10 years,
from 2010 to 2019. We collected
data from various sources, such

as ElA, Office of Energy Efficiency
and Renewable Energy (EERE),
the US Census Bureau, and the
Transportation Energy Data Book
(TEDB). The policy data obtained
from TEDB indicates the number of
incentives in seven major provisions.
We do not rely on dummy variables
as do some previous studies, since
dummy variables cannot accurately
reflect the degree to which an ACT
can influence emission reductions.
Therefore, this study uses the

count of incentives to capture the
levels of the impacts of policy.
Since our analysis unitis the state,
the policy data are reflective of
state-level policies without taking
into account federal policies. The
dataset also contains the socio- and
macroeconomic features that are

Charging
Infrastructures
(F1)

highly associated with transportation
carbon emissions.

Data for the dependent variable,
transportation carbon emissions

by state (in millions of tons), were
collected from EIA. Explanatory
variables we considered include
policy data, socioeconomic features,
and other control variables. Policy
data include various types of
incentives, such as for hydrogen,
ethanol, natural gas,and EVs.
Socioeconomic factors include
population size, median household
income, electricity price, and gasoline
price. Population size represents

the size of the state, which has

a significant impact on carbon
emissions [59], so it is chosen

as a control variable. Median
household income, electricity price,
and gasoline price indicate the
citizens' consumption behavior,
which may influence commuting
behavior, ultimately impacting carbon
emissions. We also include the
number of charging stations and

the number of public vehicles, which

A = a - - 4
I Population Size VE VE Electricity Price i
(H1) (H2) '
-ve
EV Stimulus Policies
(F2)
Figure 1.  Snapshot of the hypotheses structure.

capture the impacts of external
drivers on transportation emissions.
The details of both dependent and
independent variables are presented
in Table 1,

B. Regression Models The
variables from Table 1 are
incorporated into an OLS regression
model to analyze the effectiveness
of different categories of incentives.
OLS regression is a type of linear
regression method for identifying
the unknown parameters in a linear
regression model by the principle

of least squares, which means
minimizing the sum of the squares
of the differences between the
observed dependent variable in the
input dataset and the output of the
function of the independent variable.
The equation of OLS regression is
shown below in

EM;: = iMHI;; + B EP; ;
+B3G P + B4 POP;
+85CSit + Be PV Ri
+B87:B10; + BsEVi 4
+B9NGi ¢ + B1oLPGi
+B811HY ¢ + B12ET ¢
+B13AFCy ¢ + fraEViy
* POP, ; + P1sEV;

* EP; 4+ €+ (1)

where E'M, , represents the amount
of carbon emissions for state i at year
t. The explanatory variables are C'S; ;,
EV, ,and HY; ;,while we control for
income, electricity and gas prices,
population, count of public vehicle,
and other types of incentives. The
vector of 3 are the coefficients of the
independent variables. EV; , x POP,; ,
and EV; , * EP; , represent the
interaction between EV incentives
and population,and EV incentives
and electricity price for Hypothesis
1and 2.¢is the error term to capture
the internal variations.

Model 1 describes and shows
the result of testing Factor 1,i.e.,
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evaluating the role of charging
infrastructure. The variable, number
of charging stations, is included

and other variables are used as
controls,i.e., median household
income, electricity price, gas price,
population, number of public vehicles,
number of biofuel incentives, number
of natural gas incentives, number

of LPG incentives,and number of
ethanol incentives. Model 2 tests
Factor 2,the role of EV incentives

on emission reductions, by adding an
EV incentives variable to Model 1.In
Model 3, alternative fuel incentives
variable is included to justify Factor
3.Model 4 sets up the test of the

first hypothesis whether population
growth dampens the effect of EV
incentives (H1) with the inclusion of
an interaction term, EV incentives
and population, to Model 1. Model

5 separately includes another
interaction term, EV incentives and

electricity price, to Model 1 to test the
second hypothesis on how different
levels of electricity price influence the
effect of EV incentives on emission
reductions (H2).

IV. RESULTS

Table 2 shows the correlation matrix
of the variables. Carbon emissions
strongly correlate with population
and the number of public vehicles.
Economic factors, such as household
median income, electricity price,and
gasoline prices, negatively correlate
with carbon emissions. In addition,
we also calculate the variance
inflation factor (VIF) for our selected
parameters. A VIF greater than ten
signals multicollinearity. We only have
one factor, gasoline price, which is
slightly greater than 10, which we
deemed to be acceptable [60]. Table 3
presents the outcomes of the OLS

regression model 1-5, indicating the
separate regression models that

test Factor 1-3 and Hypothesis 1-2,
respectively. We are able to assess
the magnitude of the effect based on
the sign and statistical significance of
the variables' coefficients.

A. Effects of Control Variables
We discuss control variables in
Table 3,Model 1,and compare
their effects with those in other
models. In Table 3, the coefficient
of population size (3 =4.415—
4.617,p < 0.01) and the number
of public vehicles (3 =0.094 —
0.099, p < 0.01) are both positive
with a p-value close to 0. This finding
implies that the population of a state
and the number of public vehicles
significantly affect the amount of
carbon emissions. Similarly, these
two factors that are positive and
significantin Models 2-5 indicate the

TABLE 1. Variables Summary
Variables Description Unit Source
Dependent Transportation sector Carbon emissions (EM) Million Tons EIA
Independent  Median Household Income (MHI) thousand § US Census Bureau
Transport Electricity Retail Price (EP) &cent;/kwh  EIA
Cas Price (GP) $/M M Btu ElA
Population (POP) Million US Census Bureau
Number of Charging Station (CS) Count US DOE
Public Vehicle Registration (PVR) Count TEDB
Incentives on Biodiesel (BIO) Count TEDB
Incentives on EV (EV) Count TEDB
Incentives on Natural Cas (NG) Count TEDB
Incentives on Liguefied Petroleum Gas (LPG) Count TEDB
Incentives on Alternative Fuel (ALF) Count TEDB
Incentives on Ethanol (ET) Count TEDB
Incentives on Aftermarket Conversions (AFC) Count TEDB
TABLE 2. Correlation Analysis
EP MHI EP GpP POP cs BIO ET NG LPG EV ALF AFC PUB
EP 1.00
MHI  -0.03 1.00
EP -0.02 0.46 1.00
GP -0.06 -0.12 0.7 1.00
POP  0.97 0.01 0.05 -0.03 1.00
Ccs 0.44 0.13 0.10 0.03 049 1.00
BIO 0.34 -0.12 -0.13 0.06 035 0.21 1.00
ET 0.31 -0.16  -0.13 0.10 032 0.18 0.84 1.00
NG 0.61 0.04 -0.07 -0.05 061 042 046 04 1.00
LPG 0.52 -0.02 -0.09 -004 0.53 037 0.53 044 091 1.00
EV 0.55 0.37 0.19 0.01 0.62 052 0.41 0.33 0.72 0.67 1.00
ALF 0.55 0.13 0.17 0.10 0.62 048 0.53 042 0.8] 0.80 0.84 1.00
AFC  0.43 0.10 -0.06 -0.09 042 031 033 039 066 053 046 047 1.00
PUB  0.91 -0.01  -0.01 -002 091 0.56 039 033 062 0.55 0.6] 0.63 0.39 1.00
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785 importance of the levels of population the EV incentives and interaction with (3= —0.0024,p < 0.05) in Model 1, 841
786  and quantities of vehicle in reducing electricity price. We also find that the demonstrating Factor 1. This means 842
787  carbon emissions. With a lower level variable, aftermarket conversion anincrease in charging stations leads 843
788  of population or public vehicles, the (8=1.011-1.198,p < 0.051),is to carbon emission reductions from 844
789 emissions from the transportation positive with a low p-value in all five the transportation sector. This result 845
790  sector are reduced, which confirms models. This finding implies that holds true in Models 1-5 by providing 846
791 the findings of existing literature. the behavior of vehicle or engine a negative regression coefficient and 847
792 The economic factors, such as, modification would significantly p-values less than 0.05. 848
793 income (3 = —0.073——0.015,p > influence transportation carbon 849
794  0.1) electricity price (3 = —0.145— emissions since people who like Factor 2 states that EV incentives 850
795 0.0778,p > 0.7),and gasoline conversions always convert their would have a positive impact on 851
796  prices (8 = —0.792—-0.183,p > engines to a higher horsepower, transportation carbon emission 852
797 (.1) are negatively related to the which may increase the level of reductions.As shown in Table 3, 853
798 emissions in the models, except emissions [61]. This result also the EV incentives have a negative 854
799 for electricity price in Model 3 suggests that policies benefiting regression coefficient with a low p- 855
soo  (electricity price is insignificant in engine conversions are not favorable  valuecloseto 0 (3= —-0.53,p < 0.05).  ss6
so1  all 5 models). This might be caused to emission reductions. This result demonstrates Factor 857
soz by the implementation of EV and 2 that more EV-related incentives 858
8oz alternative fuel incentives, which B. The Significance of Factors would reduce transportation 859
go4 leads to a change in the economic and Hypotheses Factor 1 carbon emissions. In other words, 860
805 environment. However, electricity predicts that an increase in EV- enacting more EV incentives can 861
soe  price does not have significance in related infrastructure would reduce effectively reduce transportation 862
807 any models. Forincome (3 = 0.026, transportation emissions.We find that  carbon emissions, indicating that EV 863
gos  p> 0.1)in Model 2 and 5,the positive  the number of charging stations hasa incentives could be effective tools 864
809  coefficient is caused by considering negative coefficient and is significant  to mitigate the impacts of climate 865
810 866
811 867
812 TABLE 3. Regression Results 868
813 Variables Model 1 Model 2 Model 3 Model 4 Model 5 869
Bl Median Household Income  -0.073 0.026 -0.015 -0.015 0.026 —
815 (0.05) (0.05) (0.05) (0.05) (0.05) 871
816 Electricity Price -0.145 -0.156 0.0778 -0.164 -0.156 872
i (0.12) (0.12) (0.12) (0.12) (0.12) o
Gasoline Price -0.792%+ -0.30 -0.192 -0.183 -0.300
818 (0.27) (0.28) (0.27) (0.28) (0.26) 874
819 Population 4.415%%  450]%%  4.579%* 4617+  4.59]%~ 875
820 (0.14) (0.14) (0.14) (0.14) (0.13) a76
: Public vehlcles 0.095%*  0.094***  0.098*** 0.0995***  0,094**
821 (0.01) (0.01) (0.01) (0.01) (0.01) 877
822 Biofuel -0.431* -0.292 -0.0391 -0.319% -0.292 ar8
i (0.19) (0.19) (0.19) (0.19) (0.18) o
Natural Gas -0.084 0.237 0.49* 0.354 0.237
824 (0.24) (0.24) (0.24) (0.24) (0.23) 880
825 LPG -0.010 0.158 0.657* -0.069 0.158 881
e 0.31) (0.30) (0.32) (0.32) (0.30) i
Ethanol 0.141 0.170 0.010 0.149 0.170
827 (0.19) (0.18) (0.18) (0.18) (0.18) 883
828 AF-Conversions 1.198%* 1.075%¢ 1.011** 1.069** 1.075%* 884
829 (0.35) (0.34) (0.34) (0.34) (0.33) a85
Charging Stations -0.0024***  -0.0019***  .0.00184*** -0.001***  -0.00196***
830 (0.0004) (0.0004) (0.0004) (0.0004)  (0.0004) 886
231 EV -0.5317**  -0.1955%* -0.3231%  -0.5311** a8y
(0.086) (0.099) (0.123) (0.26)
a32 Alternative Fuel -1.421 % ass
833 (0.23) 889
834 EV * POP -0.0077** 890
(0.003)
039 EV * EP -0.000002 9
836 (0.014) 892
837 R? 0.955 0.958 0.964 0.958 0.962 893
a38 N 510 510 510 510 510 g04
839 Standard Errors in parentheses; *p < 0.1, **p < 0.05, ***p < 0.01. 895

840 896
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change. This result stays consistent
in other models. These findings thus
illustrate the impact of Factor 2.

Factor 3 predicts that policies on
alternative fuel reduce transportation
emissions. For Model 3, we add an
explanatory variable, compared with
Model 2, representing the number

of alternative fuel incentives. The
regression result reflects a negative
coefficient and p-value close to 0
(8=—-1.421,p < 0.05). This finding
implies that the effect of clean

fuel incentives would significantly
influence transportation carbon
emissions, demonstrating Factor
3.Compared with the results from
Model 2, we obtain one interesting
finding, that is the coefficient of EV
incentives becomes higher but still
negative. This result shows that an
increase in the count of EV incentives
would result in emission reductions,
which implies the impact of EV
incentives on emission reductions

is weakened by the implementation
of alternative fuel incentives. This is
because people might choose to use
alternative fuel vehicles instead of
EVs.

Hypothesis 1 indicates that
population growth dampens the
effect of EV incentives.We add an
interaction term, EV incentives, and
population, based on Model 2 to
develop Model 4. The coefficient
of the interaction termis negative
and significant (5 = —0.0077,p <
0.05).We also compare the value of
EV incentives in Model 2 with that
in Model 4 (3= —0.323,p < 0.05).
The coefficient of EV incentives

in Model 4 is greater without
considering population interaction,
indicating that an increase in the
count of EV incentives would
resultin less emission reductions.
This result implies considering

the interplay between EV
incentives and the population
would lead to a weakened

effect of EV incentives on
emissions reductions. This

observation demonstrates

These two lines intersect with each

Hypothesis 1. other at the moderate population

Moreover, we graphed the interaction

level. When the population size is

effect,as shownin Fig.2. Accordingto  above the low-countling, indicating
the figure below, for both high-count that more count of incentives can
and low-count incentives lines, reduce more carbon emissions. In
populations are positively related to contrast, the high-count line goes

transportation emissions. In other
words, regardless of the count of

incentives, as the population grows, is dampened by the population
transportation emissions increase. growth. In other words, a higher
50 -
Count of EV Incentives
= Low Count
20 = High Count
30 4
o
s
£ 20
2
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Figure2. Interaction effect between the count of EV incentives and the
population growth.
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140 —— Low Count
= High Count
120 1
100 1
g
w 801
c
S
a
E 60 1
w
40 -
?O -
0 : . T : : : )
6 8 10 12 14 16 18 20
Electricity Price (¢/Kwh)
Figure 3.  Interaction effect between the count of EV incentives and the Electricity
Price.

low, the high count incentives line is

above the lower count line, This result
shows that the effect of EV incentives
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count of incentives does not reduce
carbon emissions as it is supposed
to. This result also demonstrates
Hypothesis 1.

Hypothesis 2 states that higher
electricity prices dampen the effect of

EV incentives on emission reductions.

In Model 5, we test our hypothesis

by interacting the EV incentives with
electricity price, indicated by adding
another interaction term to Model
3.The coefficient of the interaction
term is negative but insignificant (3
=—0.000002, p > 0.7). Comparing
the value of the coefficient of EV
incentives between the two models,
the coefficient of EV incentives in
Model 5 is higher than the one in
Model 2. This finding implies an
increase in the count of EV incentives
would result in less emission
reductions. This result also indicates
a high count of EV incentives does
not maintain the same level of carbon

emission reductions, considering

the effect of higher electricity prices.
This result supports this hypothesis,
indicating that higher electricity prices
would lead to more conventional
vehicle usage, ultimately increasing
transportation emissions.

In addition, according to the
interaction plot shown in Fig. 3,the
low count line has a negative slope.

It shows that the electricity price is
negatively, but very slightly, related

to carbon emissions. Even as the
electricity price increases from
$0.06/kWh to $0.20/kWh in 3, the
amount of emissions barely changes.
This finding also demonstrates
Factor 2 indirectly,showing that a low
count of incentives is not effectively
beneficial to emission reductions.
Conversely, the high count line has

a positive slope. The higher the
electricity price, the higher the carbon
emissions. When the electricity price

is low, high-count incentives reduce
more emissions than low-count
incentives. When electricity price
increases, the impacts of low count
of incentives one carbon emissions
are not sensitive to high electricity
price, but the high-count incentives
do not reduce emissions as they
perform when electricity price is

low. This finding implies that as

the electricity price increases, the
effect of EV incentives is dampened,
demonstrating Hypothesis 2. These
results provide information to policy
makers that increasing the amount
of EV incentives is most effective in
reducing emissions when electricity is
relatively cheap for consumers.

C. Robustness Test We

estimate several robustness tests

as presented in Table 4 for Models
1-5.First, we re-estimate each model
using only the subsample chosen
randomly from the whole dataset [62].

TABLE 4. Robustness Test Results
Variables Model 1 Model 2 Model 3 Model 4 Model 5
Median Household Income  -0.103 0.015 -0.048 -0.040 0.015
(0.06) (0.07) (0.07) (0.07) (0.06)
Electricity Price -0.141 -0.266 0.086 -0.176 -0.284
(0.16) (0.15) (0.15) (0.24) (0.15)
Gasoline Price -0.654* -0.05 -0.081 -0.088 -0.144
(0.34) (0.35) (0.35) (0.35) (0.33)
Population 4.290%** 4.78]*** 44717 4.477%** 4,479+
(0.17) (0.17) (0.17) (0.17) (0.16)
Public vehicles 0.1715%** 0.1712%%* 0.1712%** 0.116%** (VAR B Rl
(0.01) (0.01) (0.01) (0.01) (0.01)
Bio-fuel -0.569** -0.424 -0.132 -0.422** -0.361
(0.24) (0.24) (0.24) (0.24) (0.23)
Natural Gas -0.405 0.749 0.293 0.076 -0.033
(0.29) (0.30) (0.30) (0.30) (0.29)
LPG -0.334 0.383 0.969*** -0.202 0.456
(0.39) (0.37) (0.39) (0.39) (0.37)
Ethanol -0.037 0.116 0.144 0.276 0.129
(0.23) (0.23) (0.23) (0.23) (0.22)
AF-Conversions 1.832%** 1.607%%* 1.501%** 1.604%** 1.624%**
(0.43) (0.42) (0.42) (0.42) (0.40)
Charging Stations -0.0027***  .0,0022%**  .0.002***  -0.002***  -0.0022***
(0.0004) (0.0004) (0.0004) (0.0004) (0.0004)
EV -0.483%** -0.093 -0.292*%* -0.680%*
(0.086) (0.120) (0.104) (0.337)
Alternative Fuel -1.607%**
(0.28)
EV * POP -0.0066**
(0.004)
EV * EP 0.01
(0.017)
R? 0.957 0.961 0.964 0.962 0.961
N 375 375 375 375 375

Standard Errors in parentheses; *p < 0.1, **p < 0.05, ***p < 0.01.
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The results presented in Model 1

and Model 2 are consistent with
those in the main model, showing
that all coefficients remain in the
same direction and significance. In
Model 3, all the results are consistent
with the outcomes from the main
model. In Model 4,the results are
mostly consistent with those in

the main model. Only the p-value

of biofuel incentives becomes

lower, so it still remains significant.
Besides, the p-value of EV incentives
becomes smaller,which indicates the
significance level of EV increases.
Similarly,in Model 5, only the
coefficient of incentives for natural
gas changes from negative to slightly
negative. This might be caused by
the random selection of samples.
Overall, only the coefficients of
incentives for natural gas are slightly
sensitive to the sample size, but their
insignificance remains consistent
through all models. This finding
indicates that this predictor does not
seem to influence the transportation
emissions in our sample.

V. DISCUSSION

In this section, we discuss our
findings and their implications. The
interpretation of results is presented
based on the order of factors and
hypotheses. We also provide some
insights and recommendations for
policy-making.

The density of charging stations, as
an important factor in improving the
adoption of EVs, has a significant
impact on transportation CO5
emissions. Increasing the number
of charging stations properly
addresses the consumer concerns
about the distance an electric
vehicle (EV) can travel on a single
charge, called “range anxiety.”

This is one of the biggest barriers
that prevent consumers from
purchasing EVs, since consumers
worry about the maximum distance
an EV can travel and fear getting
stranded. Consequently, our results

demonstrate a significant negative
relationship between the density of
charging stations and CO, emissions.

Alternative fuels or clean fuels,

such as hydrogen, are important
components in efforts to mitigate
climate change. Clean fuels do not
affect the adoption of EVs directly,
but they do contribute to emission
reductions in that their usage leads to
less GHG emissions than fossil fuels.
Providing tax credits for alternative
fuels can motivate consumers to use
more clean energy and rely less on
conventional vehicles, ultimately
leading to reductions in carbon
emissions. Our results show that the
number of alternative fuel incentives
has a negative relationship with

CO; emissions and is statistically
significant. However, policymakers
should realize that the effectiveness
of EV incentives, as shown in Model
3,is reduced. This indicates that

the impact of EV incentives on
mitigating CO; emissions might be
dampened in the face of alternative
fuel incentives since consumers then
would be willing to use alternative
fuel vehicles instead of EVs.The
mitigation impacts of EV incentives
on transportation emissions can be
dampened by population growth

as we have shown. While the
interaction between EV incentives
and population affects emission
reductions, the positive impact of EV
incentives on emission reductions is
dampened by population growth. The
higher the population, the higher the
need for transportation, resulting in
higher carbon emissions. Therefore,
policymakers are encouraged

to adjust policy enactments in
correlation with population growth.

Our findings also imply that the
positive impact of EV incentives on
emission reductions is reduced by
higher electricity prices. Electricity
price is one of the major factors
that affect consumers’ preferences
when choosing between EVs and
conventional vehicles. Consumers

are also more willing to purchase EVs
when the electricity price is low or
gasoline prices are high. Therefore,
the guidance for policymaking is

to enact EV incentives with the
knowledge of the dampening effect
of higher electricity prices.

VI. CONCLUSION

This article sheds light on how
climate change mitigation policies
and socioeconomic factors interact
to influence emissions in the
transportation sector. While prior
research has explored the impact
of EV incentives on EV market
shares, less is known about the mixed
outcome related to whether an EV
incentive can ultimately achieve the
goal of emission reductions. We
link the policies’ effectiveness to the
ultimate goal of carbon emission
reductions directly.

First,according to the outcomes from
Model 1, we find that the number

of charging infrastructures has a
mitigation impact on transportation
emissions. A reason for this finding is
that building more charging stations
would mitigate EV consumers'
concerns,improving their willingness
to buy an EV.As more EVs are
adopted, less GHG is emitted due to
the reduced usage of conventional
vehicles. This finding suggests

to policymakers that developing
charging infrastructures can
significantly reduce transportation
carbon emissions. Besides initiating
more EV incentives, building more
charging stations is also a necessary
step to mitigate carbon emissions
from the transportation sector.

Second, we find that alternative fuel
incentives are negatively related to
transportation emissions. This result
suggests a higher count of incentives
for clean fuel can lower the carbon
emissions from the transportation
sector. The reason for this finding is
that alternative fuels are clean fuels,
that have low or zero emissions when

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232



1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288

12

IEEE ENGINEERING MANAGEMENT REVIEW, VOL. 00, NO. 0, 2023

combusting in vehicle engines. In
addition, alternative fuel incentives
also promote alternative fuel
vehicle adoption, which can reduce
transportation emissions compared
to conventional vehicles. Even though
the implementation of alternative
fuel incentives may dampen the
effectiveness of EV incentives, they
both still contribute to reductions

in transportation emissions, if

combining these two types of policies.

Third, the results indicate that EV
incentives have a beneficial impact on
transportation emission reductions.
This finding implies that a higher
number of EV incentives would
effectively reduce transportation
emissions. However, based on the
results from Model 4,the effect is
dampened by population growth. Due
to the qualified vehicle limitations
under EV incentives, a larger variety
of options on vehicle purchase
negatively influences the adoption of
EVs, that is unfavorable to emission
reductions. Furthermore, population
growth itself always has a positive
and significant relationship with
transportation emissions. Hence,
population growth dampens the
positive impact of EV incentives on
emission reductions. This suggests
that with a low population size, a high
count of incentives can effectively
reduce carbon emissions. However,
in a larger population environment,
the effectiveness of EV incentives is
reduced.

Similarly, high electricity prices tend
to reduce the positive influence of EV
incentives on emission reductions

as well. This finding is because
higher electricity prices tend to shift
consumers’preferences toward
conventional vehicles. High electricity
prices increase the operational cost
of using an EV, which reduces the
adoption of EVs since consumers
might feel the energy cost of EVs

is too high to afford. Moreover, the
interaction effects also suggest that
effective incentives need to combine

with the low level of electricity prices.
To be more specific, high-count
incentives coupled with low electricity
prices can be effective tools to reduce
transportation carbon emissions.

Furthermore, the effectiveness

of such CO; reduction policies,

in terms of cost, is still of crucial
importance that must be factored
into consideration. This is because
transportation policies promoting
EVs generally tend to come with cost
implications either to the individual
consumer or the government [63].
Some contemporary studies

show that by 2030, the cost of

CO, abatement of EVs would

have significantly increased to
approximately $200 per ton [64],
[65]. This cost implication has been
examined relative to the effectiveness
of the policy as a function of the cost
per unit CO, reduction in a metric
referred to as “policy effectiveness
index”[66]. This index is the ratio

of the relative reduction in CO,
emissions to the value of the
incentive. There is no doubt that
there are ample opportunities for
research to further shed lights on
the relative cost effectiveness of

the policies and/or incentives as
electrified mobility continues to rise.

Moreover, it is worth noting that

prior research has examined the
influence of incentives using different
approaches. For instance, some
studies assessed the effects of
electric vehicle incentives, such

as rebates, subsidies, income tax
credits, excise tax credits, or sales
tax exemptions, by quantifying

their monetary value [11],[67].
Other studies treat incentives as a
binary variable where the variable

is taken as 1 if incentive is present
or as 0if incentive is absent (12,
[43],[68]). In addition,as done in

this study, some use the count of
different incentives [8],[21]. This
research examines the effects of EV
incentives using the count approach
based on the number of EV-related

incentives. This option was adopted
in this article because of the diverse
characteristics of these incentives for
two main reasons. First, some local
governments offer EV incentives
through tax credits for EV consumers,
while others implement policies that
indirectly support EV adoption, such
as providing production or investment
tax credits for EV charging stations.
Second, this model employs panel
data spanning a decade, therefore,
the effects of monetary incentives
vary depending on time and the
prevailing economic conditions. Thus,
determining a suitable reference
point for the actual incentive amounts
is challenging. While the count of
incentives approach in this article

did not account for the relative dollar
amounts of the incentives, it does

not diminish the aim of investigating
the influence of such incentives

given that there is time value of
money differences, and the countis
proportional to the magnitude of the
incentives.

Our study obviously has practical
implications for policymakers: Our
findings imply that any incentives

for EVs and alternative fuels

could significantly contribute to
transportation emission reductions.
An increase in the amount of these
incentives can lead to greater CO»
emission reductions. However, the
positive impact of such EV incentives
on the reductions in CO5 emissions
can be dampened by population
growth and high electricity prices.

In addition, the development of

clean energy infrastructure, such

as constructing more charging
stations, could also effectively reduce
transportation emissions, since the
primary concern of consumers,range
anxiety, is properly addressed by
increasing the charging density. This
is consistent with the extant literature
that demonstrates how policy

could impact investments in clean
technologies or provide accessories
for the implementation of such
technologies [35],[69],[70]. Finally,
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1345 besides focusing on the policies the dampening effects of external (NSF) under Grant 1847077. Any 1401
1346 surrounding EVs, alternative fuel drivers need to be considered in the opinions, findings, conclusions, or 1402
1347  incentives can also be an effective implementation of such policies. recommendations expressed in this 1403
1348 tool to mitigate transportation material are those of the authors and 1404
1349 emissions. Overall, our findings do not necessarily reflect the views of 1405
1350  suggest that, while EV incentives ACKNOWLEDGMENTS the NSE. 1406
1351 foster climate change mitigation This work was partially supported by 1407
1352 in the U.S.transportation sector, the U.S. National Science Foundation 1408
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