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ABSTRACT

In the context of multitask learning (MTL), representation
learning is often accomplished through a feature-extractor ¢
that is shared across all tasks. This way, intuitively, the statisti-
cal cost of learning ¢ is collaboratively split across all tasks
which enables sample efficiency. In this work, we consider a
novel fairness scenario where 7 tasks can be split into majority
and minority groups of sizes T, and Tiy, respectively: The
group assignments are unknown during MTL and T,/ Tinaj
ratio corresponds to the imbalance level of the problem. We
further assume that these groups admit r(, 71-dimensional lin-
ear representations which are orthogonal to each other, thus,
they would not benefit each other during MTL. Our main
finding is that misspecification disproportionately hurts the
minority tasks and over-parameterization is key to ensuring
fairness of MTL representations. Specifically, we prove that,
when we fita R = r( dimensional misspecified representation,
MTL model achieves small task-averaged risk however it has
vanishing explanatory power on minority tasks. Conversely,
when we fit a R = rg + r; dimensional well-specified repre-
sentation, MTL model achieves small risks on both majority
and minority tasks which are on par with the oracle baseline
of training each group individually with the hindsight knowl-
edge of assignments. Finally, we provide experimental results
which are consistent with our theoretical findings.

Index Terms— multitask learning, fairness, representation
learning, imbalanced data, upper/lower bounds

1. INTRODUCTION

Multitiask learning (MTL) aims to learn a broad representa-
tion for numerous tasks by leveraging the useful information
shared with different tasks. Many empirical and theoretical
evidences have shown that MTL can significantly improve the
task performance ([1, 2]). Here, a key consensus is that highly
similar tasks get more benefits from MTL than dissimilar tasks.
Based on this hypothesis, many data-dependent MTL methods
are presented, and show considerable improvement compared
to the vanilla MTL ([3, 4, 5]).
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Fig. 1. Ilustration of MTL with imbalanced tasks. Here, orange
and gray dots are majority and minority tasks, which lie in 7o and
r1-dimensional uncorrelated subspaces; and the black ellipses are
R-dimensional subspaces the MTL models span. Top: Consider the
under-parameterized setting where R = r¢. The representation is
misspecified and can not fit all majority and minority well. Bottom:
In the over-parameterization scenario where R = 7o + r1, MTL
representation is sufficient to cover all the tasks and each task can be
predicted well if trained properly.

However, most of the existing work focuses on the average
performance over all tasks without considering the single task’s
performance. As larger models arise, thousands of tasks are
trained together in MTL manner, while the minority/isolated
tasks might not get benefits from MTL due to their inability in
dominating the average performance. As depicted in Figure 1,
minority tasks (gray dots) are separable from majority tasks
(orange dots) and they do not share representations. This raises
a question: What is the performance of isolated minority tasks
when trained jointly with majority tasks? To answer it, in this
work, we establish a MTL scenario with T" = T, + Tinin tasks
in total, where Tiy,5, Tinin are the sizes of majority and minority
groups (Tinaj = Thmin), and they correspond to irrelevant linear
representations. We analyze the fairness in linear multitask
representation by assuming majority and minority tasks are in
two orthogonal subspaces and provide theoretical bounds for
each group when MTL representation (with dimension R) is
misspecified or well-specified. Our specific contributions are
as follows.

» The misspecified representation learned with the under-
parameterized model (R = rg) can significantly hurt
the minority tasks while performing well at average. In
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fact, explanatory power of the MTL model over the mi-
nority tasks is proportional to Tryi/ Thnaj and vanishes as
T:naj — O0.

¢ In the overparameterized setting (R = rg + 1), minor-
ity tasks are not (significantly) harmed by the majority
when trained jointly, and their performance is compara-
ble to training minority tasks via a separate MTL.

1.1. Prior Art

Our work is most related to the literature on multitask and
fairness representation learning.

Multitask representation learning. Generally, the goal of
MTL is to train a task-shared feature extractor ¢ which maps
the high-dimensional inputs to lower-dimensional features,
and tasks are learned in a sample efficient fashion ([6, 7, 8, 9,
10, 11]) by utilizing the latent features. Moreover, task similar-
ity also plays a role, since intuitively, highly correlated tasks
benefit more from jointly training and representation sharing,
and many existing methods ([3, 4, 5, 12, 13, 14]) significantly
improve MTL performance by taking data into consideration.
To the best of our knowledge, though evidences are shown that
task relations are important in MTL, little focus on the theoret-
ical analysis of isolated and minority tasks’ performance. In
this work, we address this challenge in the linear representa-
tion setting by setting ¢ to be a linear projection, and training
with imbalanced and uncorrelated data (majority/minority).
Fairness and Imbalanced Data. As machine learning is in-
creasingly used in a wide range of applications, fair learning
has witnessed growing interest due to potential biases in the
data ([15, 16, 17]). Prior works ([18, 19, 20]) have studied
the trade-offs between accuracy and fairness in MTL. Another
fairness-related literature is imbalanced classification prob-
lems ([21, 22]). However, most of the existing work focuses
on the class-imbalance and provides methods that improve per-
formance under imbalanced setting. Importantly, these don’t
discuss the impact of representation learning, where groups
of tasks admit different optimal representations resulting in
fairness challenges.

2. PROBLEM SETUP

Notation. Let [n] denote set {1,--- ,n}, |x]|| denote the ¢o-
norm of a vector x, and I; denote the identity d x d matrix.
Let Amax(A), Amin(A) return the maximal and minimal eigen-
values of positive semi-definite matrix A. We use O(-) to
denote a equality up to a constant and @) (+) hides constant and
logarithmic factors.

Consider a linear multitask learning problem with 7 tasks
and each task has N samples, denoted by {(x¢;, ysi) 1, €
RY x R, ¢ € [T]. Assume tasks are partitioned into two groups,
majority and minority, each with T},,; and T}, tasks respec-
tively, where T = Tinaj + Tin» Tinaj = Tmin. Let us assume

that the groups lie in two orthogonal subspaces, so that their
representations are helpless to each other. Different to standard
MTL analysis where task-averaged performance is evaluated,
in this work, we aim to quantify the performance bounds for
each group. To this end, we first formulate a subspace-based
MTL problem via introducing linear representation matrices.
Let By, € Rroxd, Bx. € R™*4 denote the two represen-
tations correspondlng to the two groups where we assume
Bl’t‘la]Bl‘T‘laJ - I7"0’ BT;]DB;IH - I7‘1 and B;ajB;mT =0.
Here, rows of By, span the ro-dimensional subspace of ma-
jority groups, and similar for B}; . To clean notations, let
Timaj and Tnin be the sets of majority and minority task iden-
tiﬁers, where |7;naj‘ = Tmaj’ |7;nin‘ = Tmin and 7;naj U 7:nin =
[T]. We assume linear labeling function. Specifically, for
t € Tmaj, data is generated by y;; = h} Bmajxtl + z¢; where
(R} )teTn, € R"; whereas fort € Tiin, yri = hy Bl Xei + 24
where (R} )T, € R™. Here we assume ||h}| < C for some
constant C' > 1, and inputs xy; € R? and noise z;; € R are
zero-mean and independent with O(1) and O(o) sub-Gaussian
norm. In this work, we assume inputs have identity covariance
where E[xx ] = I, and noise level E[2?] = o2.

Next, let us consider training a linear model which maps
inputs to R-dimensional features using representation B €
R%x4_ and each task has its specific-head h; € R:. Then after
applying quadratic loss function, we can define the empirical

risk minimization problem as follows.

f = argmin Eavg(f) (D
feF
1 K 2
~ T
where Laye(f = TN ; ; (yi — b} Bxy;)

Here, f := ((h:)L_,, B) and we define hypothesis set of f
by F = {((h1)i1, B)|[BB" = Ig, ||l < C}. Given
finite samples, Lavg( f) defines the task-averaged training risk.
Let Lo (f) := [E[Cavg( f)] be the population risk, and define
the task-averaged excess test risk: Ravg(f) = Lave(f) — 0.
While instead of focusing on the average risk where how ma-
jority and minority contribute is unclear, we study the fairness
of MTL representation over each group. To this goal, define
the population excess risks of majority and minority tasks as:

1
Ronai () = T t; E [(ye; — heBxy)?] — 02,
maj
1
Ruin(f) = Z E [(yu — htBXti)Z] -0
min t€7Tmn

Intuitively, we have Ravg(f) = 22 Rongi () + 28 Ronin(f).
In the following, we will present our main theoretical re-
sults of fairness analysis in linear MTL representation for both
underparameterized and overparameterized settings in Sec-
tion 3, and Section 4 presents our experimental evaluations.

Here, minimal population risk obeys arg minge r Lavg(f) > o2 and
equality holds when R > rg 4 r1.
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3. MAIN RESULTS

In this section, we consider both underparameterized (mis-
specified) and overparameterized (well-specified) scenarios
and establish generalization bounds for excess test risks of
majority and minority tasks.

3.1. Underparameterized MTL Representations

Recall that all majority tasks lie in a rg-dimensional sub-
space denoted by By, € R7o*d whereas minority lie in a
r1-dimensional subspace (orthogonal to By ) denoted by
By, € R*4 In this subsection, we consider the underpa-
rameterized setting where R = r(, and present generalization
risk bounds for majority and minority by introducing group

covariances generating from the ground-truth heads.

Theorem 1 Consider the MTL problem in (1) (without the
lhy|] < C constraints). For majority and minority tasks,
define group covariances based on the heads

1 *px T 1 *p ok T
Hyyj = > hih; Hyin = > hin;'.

MU €T e t € Tinin
A )\ H 0 dd _ )\nmx(Hma/) d i
ssume Apin(Hpaj) > 0 and define ko = Sy and Ky =
Aax (i .. .
% Also assume prediction heads are normalized to be
min (FLnaj

unit norm, that is, |h}|| = 1forall t. Let f = {B, (h)_,}
be the population minima obtained as N — oco. Then, the
majority/minority excess risks obey
.o r T;nin
Majority: Ruqj(f) < ko,

maj

r Tmin
Minority: Rpyin(f) > 1 — k1 —.

maj

Here in Theorem 1, we obtain upper and lower excess risk
bounds for majority and minority tasks respectively. We ob-
serve that both bounds are corresponding to the imbalance
level of the data, denoted as Tinin/Timaj. Specifically, as the
ratio decreases, we prove that optimal representation is less
and less aligned with minority subspace. The observation can
be easily interpreted as follows: If the model is given more
majority tasks (or less minority tasks), the majority tasks then
dominate the average performance (L), and learning ma-
jority benefits more in reducing the training risk compared
to the minority. Therefore, the underdetermined model tends
to learn the representation that aligned with majority tasks.
Since majority and minority are uncorrelated, it in turn hurts
minority.

The following corollary draws bounds considering the
special case where Tinin/Tmaj — 0.

Corollary 1 Consider the setting of Theorem 1. We have that

lim R =0 lim Roni > 1.
Tonin/ Tnaj—0 ma_/(.f) ’ 70 Tonin /1 Tingj—0 mm(.f) -

This corollary states that, in the proper limit, minority tasks
achieve the trivial risk Rpin(f) = 1 that corresponds
to making zero prediction § = 0. The limit condition
70T min/T1 T, maj — 0 can be interpreted as follows: Majority
tasks have T,/ label energy per subspace dimension. In
contrast, minority tasks have Tp,/r1 label energy per di-
mension. When majority energy-per-dimension dominates
minority, all subspace dimensions of the representations are
assigned to majority to minimize task-averaged risk.

3.2. Overparameterized MTL Representations

Different to the underdertermined problem where optimal solu-
tion (Raye = 0) is not feasible, in this subsection we consider
the overparameterized setting where R = roy + ;. Now if
consider the case where N — oo, the population solution of
MTL problem (1) f* satisfies Ravg(f*) = 0 which concludes
Rumaj(f*) = Rumin(f*) = 0. To formalize this under the finite-
sample setting, we provide a generalization bound which will
help us accurately control the excess risk on minority tasks.

Theorem 2 Let f = ((hy)T_,, B) be the empirical solution
of problem (1) with R = ro + r1. Assume per-task sample size
obeys N Z d+log(T'/§). Then with probability at least 1 — 6,
the task-averaged test excess risk obeys

A dR + TR + log(1/5)
Ravg(f) S 0 NT :

Here < subsumes constant and logarithmic factors. This result
is obtained as a variation of Theorem 4.1 in [8]. In our techni-
cal report [23], we also provide an additional theorem that can
circumvent the per-task sample size requirement N 2 d. Com-
bining Theorem 2 with the fact Ry, (f) < %Ra\,g directly
obtains a generalization bound for minority tasks as follows.

Corollary 2 Consider the setting of Theorem 2. We have that
with probability at least 1 — 0, the excess minority risk obeys
9odR+ TR +1log(1/6)

7?/min f S .
(f> ~7 NT;nin

This corollary demonstrates fairness benefits of the overpa-
rameterized setting as the excess risk on minority tasks
is at most % times larger than training the mi-
nority group individually: Following Theorem 2, excess
risk of individually training minority tasks is bounded by
O (dr1 + Tminr1 +1og(1/0)) /NTin. Hence, once dry +
TminT1 1s proportional to dR + TR, well-specified joint MTL
training is as good as individual MTL training up to a constant
factor. Fortunately, this holds under mild conditions, namely,
when R < rq and T < min(Thin, d).

4. SIMULATIONS

In this section, we discuss our experiments for both underpa-
rameterized and overparameterized settings, and results are
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Fig. 2. We evaluate the performance of majority/minority tasks in
MTL manner using underparameterized linear model (R = ro = 8).
Here, blue, orange and green curves are test risks of majority, minority
and all T tasks (average) respectively. Left: Fix Ty, = 100 and
Twin = 10, while change the per-task sample size from 5 to 100.
Right: Fix N = 40 and T, = 10, while change Thn,j from 10 to 100.
Each marker is obtained by averaging 20 independent realizations.

displayed in Fig. 2 and Fig. 3. We begin with our data genera-
tion model and hyperparameter selections for both settings.

Data generation. Following Section 2, we generate B, €
Rroxd and By, € R™*¢ with orthonormal rows and
BB, = 0 (which implies d > (ry + r2)). Specifi-
cally, we first generate 7y + r; d-dimensional orthonormal
vectors uniformly at random independently, and then without
losing generality and randomness, build By, with the first rg
vectors and B, with the latter. We also generate h}, ¢t € [T]
uniformly at random over the unit sphere independently with

proper 1y and r; dimensions. The task ¢ is generated by
Y = h;TBx where x € N(0, 1),

without label noise. Here, B = B;;aj for t € T, and
B = B}, fort € Tmn. In all experiments, we set ambi-
ent dimension d = 32 and local representation dimensions
ro = 71 = 8. Both under/over-parameterized settings are
evaluated with two experiments showing in Fig. 2&3. On the
left, we fix the numbers of majority and minority tasks, where
Taj = 100, Tiyin = 10, while change sample size of each task.
Whereas on the right, sample size and minority size are fixed to
be N = 40, Tiyin = 10, and Tpp,j varies from 10 to 100, and we
can observe that at beginning points where T, = Tiin = 10,
majority and minority groups have similar performance. Blue,
orange, and green solid curves display the test risks of majority,
minority, and all 7" tasks respectively, and the dashed curves in
Fig. 3 presents the corresponded individual results of training
single model for tasks in the majority/minority group only.

In Fig. 2, we set R = 8 and evaluate the underdeter-
mined model where zero average risk is not achievable even
with noiseless labels. We observe that on the left, given suf-
ficiently small imbalance ratio (Tmin/Tmsj = 0.1), the test
risk of minority is strictly bigger than one even more train-
ing samples are added, which shows that representation of
minority tasks is never learned when they are trained jointly
with majority tasks, and the R-dimensional representation
tends to align with the subspace majority tasks span. Here
Lavg = ThinLmin/T ~ 0.1. Similar phenomenon appears on

Fig. 3. We compare the performances of majority/minority groups,
jointly/separately training in the overparameterized setting. Here,
same as Fig. 2, blue, orange and green solid curves are corresponded
test risks trained with overparameterized model (R = ro + r1 = 16).
Dashed curves present the results of training majority/minority tasks
separately in MTL manner with R = 8. Left/Right: Follow the same
settings in Fig. 2. The sample size varies form 1 to 40 on the left.

the right. On the leftmost where T, = Tin, the learned
representation is shared equally to both majority and minority
tasks and therefore, Ly = Lmin & Lavg < 1. However, as
T'naj grows, same as the left, the misspecified representation
tends to fit the majority subspace, which in turn hurts minority
tasks. We can observe that for Ti, / Tnaj < 0.2, Linin > 1.

We consider overparameterized setting in Fig. 3 by setting
R = 16, where instead zero risk is feasible under noiseless
assumption (e.g., B = [Br’;aj—r B*. "]T). Therefore on the
left, performances of both majority and minority tasks get im-
proved and are approaching zero risks when training with more
and more samples. While different to the underparameterized
setting where enlarging size of majority group hurts minority
tasks (Orange curve on the right of Fig. 2 increases.), ignor-
ing some perturbations from randomness, orange solid curve
on the right of Fig. 3 stays at the same level. It shows that
once the representation is sufficient, the minority can never be
harmed by the majority tasks. The decreasing of the blue curve
is from the fact that the size of majority group is increased
and more samples in training results in better performance.
In these experiments, we also provide individually training
results where majority/minority groups are trained in separate
MTL with representation dimension R = 8 and results are
displayed in dashed curves. Both sub-figures in Fig. 3 show
that though trained with majority tasks, minority performs as
good as individually training.

5. DISCUSSION

During recent years, there has been growing research on identi-
fying and understanding the benefits of over-parameterization.
Most of these research focus on either optimization benefits or
statistical benefits through the lens of linearized models such as
random feature regression. In this work, we identified and rig-
orously characterized a novel benefit of over-parameterization
for representational fairness. As future directions, it would
be of interest to empirically verify our theory through experi-
ments on real datasets and also extending our theory to more
realistic nonlinear settings.
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