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ABSTRACT

In the context of multitask learning (MTL), representation

learning is often accomplished through a feature-extractor ϕ
that is shared across all tasks. This way, intuitively, the statisti-

cal cost of learning ϕ is collaboratively split across all tasks

which enables sample efficiency. In this work, we consider a

novel fairness scenario where T tasks can be split into majority

and minority groups of sizes Tmaj and Tmin respectively: The

group assignments are unknown during MTL and Tmin/Tmaj

ratio corresponds to the imbalance level of the problem. We

further assume that these groups admit r0, r1-dimensional lin-

ear representations which are orthogonal to each other, thus,

they would not benefit each other during MTL. Our main

finding is that misspecification disproportionately hurts the

minority tasks and over-parameterization is key to ensuring

fairness of MTL representations. Specifically, we prove that,

when we fit a R = r0 dimensional misspecified representation,

MTL model achieves small task-averaged risk however it has

vanishing explanatory power on minority tasks. Conversely,

when we fit a R = r0 + r1 dimensional well-specified repre-

sentation, MTL model achieves small risks on both majority

and minority tasks which are on par with the oracle baseline

of training each group individually with the hindsight knowl-

edge of assignments. Finally, we provide experimental results

which are consistent with our theoretical findings.

Index TermsÐ multitask learning, fairness, representation

learning, imbalanced data, upper/lower bounds

1. INTRODUCTION

Multitiask learning (MTL) aims to learn a broad representa-

tion for numerous tasks by leveraging the useful information

shared with different tasks. Many empirical and theoretical

evidences have shown that MTL can significantly improve the

task performance ([1, 2]). Here, a key consensus is that highly

similar tasks get more benefits from MTL than dissimilar tasks.

Based on this hypothesis, many data-dependent MTL methods

are presented, and show considerable improvement compared

to the vanilla MTL ([3, 4, 5]).

This work was supported by the NSF grants CCF-2046816 and CCF-

2212426, Google Research Scholar award, and ARO grant W911NF2110312.

Under-parameterization

Misspecified

R = r0

Over-parameterization

Well-specified

R = r0 + r1

Fig. 1. Illustration of MTL with imbalanced tasks. Here, orange

and gray dots are majority and minority tasks, which lie in r0 and

r1-dimensional uncorrelated subspaces; and the black ellipses are

R-dimensional subspaces the MTL models span. Top: Consider the

under-parameterized setting where R = r0. The representation is

misspecified and can not fit all majority and minority well. Bottom:

In the over-parameterization scenario where R = r0 + r1, MTL

representation is sufficient to cover all the tasks and each task can be

predicted well if trained properly.

However, most of the existing work focuses on the average

performance over all tasks without considering the single task’s

performance. As larger models arise, thousands of tasks are

trained together in MTL manner, while the minority/isolated

tasks might not get benefits from MTL due to their inability in

dominating the average performance. As depicted in Figure 1,

minority tasks (gray dots) are separable from majority tasks

(orange dots) and they do not share representations. This raises

a question: What is the performance of isolated minority tasks

when trained jointly with majority tasks? To answer it, in this

work, we establish a MTL scenario with T = Tmaj +Tmin tasks

in total, where Tmaj, Tmin are the sizes of majority and minority

groups (Tmaj ≥ Tmin), and they correspond to irrelevant linear

representations. We analyze the fairness in linear multitask

representation by assuming majority and minority tasks are in

two orthogonal subspaces and provide theoretical bounds for

each group when MTL representation (with dimension R) is

misspecified or well-specified. Our specific contributions are

as follows.

• The misspecified representation learned with the under-

parameterized model (R = r0) can significantly hurt

the minority tasks while performing well at average. InIC
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fact, explanatory power of the MTL model over the mi-

nority tasks is proportional to Tmin/Tmaj and vanishes as

Tmaj → ∞.

• In the overparameterized setting (R = r0 + r1), minor-

ity tasks are not (significantly) harmed by the majority

when trained jointly, and their performance is compara-

ble to training minority tasks via a separate MTL.

1.1. Prior Art

Our work is most related to the literature on multitask and

fairness representation learning.

Multitask representation learning. Generally, the goal of

MTL is to train a task-shared feature extractor ϕ which maps

the high-dimensional inputs to lower-dimensional features,

and tasks are learned in a sample efficient fashion ([6, 7, 8, 9,

10, 11]) by utilizing the latent features. Moreover, task similar-

ity also plays a role, since intuitively, highly correlated tasks

benefit more from jointly training and representation sharing,

and many existing methods ([3, 4, 5, 12, 13, 14]) significantly

improve MTL performance by taking data into consideration.

To the best of our knowledge, though evidences are shown that

task relations are important in MTL, little focus on the theoret-

ical analysis of isolated and minority tasks’ performance. In

this work, we address this challenge in the linear representa-

tion setting by setting ϕ to be a linear projection, and training

with imbalanced and uncorrelated data (majority/minority).

Fairness and Imbalanced Data. As machine learning is in-

creasingly used in a wide range of applications, fair learning

has witnessed growing interest due to potential biases in the

data ([15, 16, 17]). Prior works ([18, 19, 20]) have studied

the trade-offs between accuracy and fairness in MTL. Another

fairness-related literature is imbalanced classification prob-

lems ([21, 22]). However, most of the existing work focuses

on the class-imbalance and provides methods that improve per-

formance under imbalanced setting. Importantly, these don’t

discuss the impact of representation learning, where groups

of tasks admit different optimal representations resulting in

fairness challenges.

2. PROBLEM SETUP

Notation. Let [n] denote set ¶1, · · · , n♢, ∥x∥ denote the ℓ2-

norm of a vector x, and Id denote the identity d × d matrix.

Let λmax(A), λmin(A) return the maximal and minimal eigen-

values of positive semi-definite matrix A. We use O(·) to

denote a equality up to a constant and Õ (·) hides constant and

logarithmic factors.

Consider a linear multitask learning problem with T tasks

and each task has N samples, denoted by ¶(xti, yti)♢
N
i=1 ∈

R
d × R, t ∈ [T ]. Assume tasks are partitioned into two groups,

majority and minority, each with Tmaj and Tmin tasks respec-

tively, where T = Tmaj + Tmin, Tmaj ≥ Tmin. Let us assume

that the groups lie in two orthogonal subspaces, so that their

representations are helpless to each other. Different to standard

MTL analysis where task-averaged performance is evaluated,

in this work, we aim to quantify the performance bounds for

each group. To this end, we first formulate a subspace-based

MTL problem via introducing linear representation matrices.

Let B⋆
maj ∈ R

r0×d, B⋆
min ∈ R

r1×d denote the two represen-

tations corresponding to the two groups where we assume

B⋆
majB

⋆
maj

⊤ = Ir0
, B⋆

minB⋆
min

⊤ = Ir1
and B⋆

majB
⋆
min

⊤ = 0.

Here, rows of B⋆
maj span the r0-dimensional subspace of ma-

jority groups, and similar for B⋆
min. To clean notations, let

Tmaj and Tmin be the sets of majority and minority task iden-

tifiers, where ♣Tmaj♣ = Tmaj, ♣Tmin♣ = Tmin and Tmaj

⋃
Tmin =

[T ]. We assume linear labeling function. Specifically, for

t ∈ Tmaj, data is generated by yti = h⋆
t B⋆

majxti + zti where

(h⋆
t )t∈Tmaj

∈ R
r0 ; whereas for t ∈ Tmin, yti = h⋆

t B⋆
minxti +zti

where (h⋆
t )t∈Tmin

∈ R
r1 . Here we assume ∥h⋆

t ∥ ≤ C for some

constant C ≥ 1, and inputs xti ∈ R
d and noise zti ∈ R are

zero-mean and independent with O(1) and O(σ) sub-Gaussian

norm. In this work, we assume inputs have identity covariance

where E[xx
⊤] = Id, and noise level E[z2] = σ2.

Next, let us consider training a linear model which maps

inputs to R-dimensional features using representation B ∈
R

R×d, and each task has its specific-head ht ∈ R
R. Then after

applying quadratic loss function, we can define the empirical

risk minimization problem as follows.

f̂ = arg min
f∈F

L̂avg(f) (1)

where L̂avg(f) =
1

TN

T∑

t=1

N∑

i=1

(
yti − h⊤

t Bxti

)2
.

Here, f := ((ht)
T
t=1, B) and we define hypothesis set of f

by F = ¶((ht)
T
t=1, B)

∣∣BB⊤ = IR, ∥ht∥ ≤ C♢. Given

finite samples, L̂avg(f) defines the task-averaged training risk.

Let Lavg(f) := E[L̂avg(f)] be the population risk, and define

the task-averaged excess test risk: Ravg(f) = Lavg(f) − σ2.

While instead of focusing on the average risk where how ma-

jority and minority contribute is unclear, we study the fairness

of MTL representation over each group. To this goal, define

the population excess risks of majority and minority tasks as:

Rmaj(f) =
1

Tmaj

∑

t∈Tmaj

E
[
(yti − htBxti)

2
]

− σ2,

Rmin(f) =
1

Tmin

∑

t∈Tmin

E
[
(yti − htBxti)

2
]

− σ2.

Intuitively, we have Ravg(f) =
Tmaj

T Rmaj(f) + Tmin

T Rmin(f).

In the following, we will present our main theoretical re-

sults of fairness analysis in linear MTL representation for both

underparameterized and overparameterized settings in Sec-

tion 3, and Section 4 presents our experimental evaluations.

Here, minimal population risk obeys arg minf∈F Lavg(f) ≥ σ
2 and

equality holds when R ≥ r0 + r1.
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3. MAIN RESULTS

In this section, we consider both underparameterized (mis-

specified) and overparameterized (well-specified) scenarios

and establish generalization bounds for excess test risks of

majority and minority tasks.

3.1. Underparameterized MTL Representations

Recall that all majority tasks lie in a r0-dimensional sub-

space denoted by B⋆
maj ∈ R

r0×d whereas minority lie in a

r1-dimensional subspace (orthogonal to B⋆
maj) denoted by

B⋆
min ∈ R

r1×d. In this subsection, we consider the underpa-

rameterized setting where R = r0, and present generalization

risk bounds for majority and minority by introducing group

covariances generating from the ground-truth heads.

Theorem 1 Consider the MTL problem in (1) (without the

∥h⋆
t ∥ ≤ C constraints). For majority and minority tasks,

define group covariances based on the heads

Hmaj =
1

Tmaj

∑

t∈Tmaj

h⋆
t h⋆

t
⊤, Hmin =

1

Tmin

∑

t∈Tmin

h⋆
t h⋆

t
⊤.

Assume λmin(Hmaj) > 0 and define κ0 =
λmax(Hmaj)
λmin(Hmaj)

and κ1 =
λmax(Hmin)
λmin(Hmaj)

. Also assume prediction heads are normalized to be

unit norm, that is, ∥h⋆
t ∥ = 1 for all t. Let f̄ = ¶B̄, (h̄t)

T
t=1♢

be the population minima obtained as N → ∞. Then, the

majority/minority excess risks obey

Majority: Rmaj(f̄) ≤ κ0
Tmin

Tmaj

,

Minority: Rmin(f̄) ≥ 1 − κ1
Tmin

Tmaj

.

Here in Theorem 1, we obtain upper and lower excess risk

bounds for majority and minority tasks respectively. We ob-

serve that both bounds are corresponding to the imbalance

level of the data, denoted as Tmin/Tmaj. Specifically, as the

ratio decreases, we prove that optimal representation is less

and less aligned with minority subspace. The observation can

be easily interpreted as follows: If the model is given more

majority tasks (or less minority tasks), the majority tasks then

dominate the average performance (L̂avg), and learning ma-

jority benefits more in reducing the training risk compared

to the minority. Therefore, the underdetermined model tends

to learn the representation that aligned with majority tasks.

Since majority and minority are uncorrelated, it in turn hurts

minority.

The following corollary draws bounds considering the

special case where Tmin/Tmaj → 0.

Corollary 1 Consider the setting of Theorem 1. We have that

lim
Tmin/Tmaj→0

Rmaj(f̄) = 0, lim
r0Tmin/r1Tmaj→0

Rmin(f̄) ≥ 1.

This corollary states that, in the proper limit, minority tasks

achieve the trivial risk Rmin(f̄) = 1 that corresponds

to making zero prediction ŷ = 0. The limit condition

r0Tmin/r1Tmaj → 0 can be interpreted as follows: Majority

tasks have Tmaj/r0 label energy per subspace dimension. In

contrast, minority tasks have Tmin/r1 label energy per di-

mension. When majority energy-per-dimension dominates

minority, all subspace dimensions of the representations are

assigned to majority to minimize task-averaged risk.

3.2. Overparameterized MTL Representations

Different to the underdertermined problem where optimal solu-

tion (Ravg = 0) is not feasible, in this subsection we consider

the overparameterized setting where R = r0 + r1. Now if

consider the case where N → ∞, the population solution of

MTL problem (1) f⋆ satisfies Ravg(f⋆) = 0 which concludes

Rmaj(f
⋆) = Rmin(f⋆) = 0. To formalize this under the finite-

sample setting, we provide a generalization bound which will

help us accurately control the excess risk on minority tasks.

Theorem 2 Let f̂ = ((ĥt)
T
t=1, B̂) be the empirical solution

of problem (1) with R = r0 + r1. Assume per-task sample size

obeys N ≳ d + log(T/δ). Then with probability at least 1 − δ,

the task-averaged test excess risk obeys

Ravg(f̂) ≲ σ2 dR + TR + log(1/δ)

NT
.

Here ≲ subsumes constant and logarithmic factors. This result

is obtained as a variation of Theorem 4.1 in [8]. In our techni-

cal report [23], we also provide an additional theorem that can

circumvent the per-task sample size requirement N ≳ d. Com-

bining Theorem 2 with the fact Rmin(f) ≤ T
Tmin

Ravg directly

obtains a generalization bound for minority tasks as follows.

Corollary 2 Consider the setting of Theorem 2. We have that

with probability at least 1 − δ, the excess minority risk obeys

Rmin(f̂) ≲ σ2 dR + TR + log(1/δ)

NTmin

.

This corollary demonstrates fairness benefits of the overpa-

rameterized setting as the excess risk on minority tasks

is at most
(T +d)R

(Tmin+d)r1

times larger than training the mi-

nority group individually: Following Theorem 2, excess

risk of individually training minority tasks is bounded by

Õ (dr1 + Tminr1 + log(1/δ)) /NTmin. Hence, once dr1 +
Tminr1 is proportional to dR + TR, well-specified joint MTL

training is as good as individual MTL training up to a constant

factor. Fortunately, this holds under mild conditions, namely,

when R ≲ r1 and T ≲ min(Tmin, d).

4. SIMULATIONS

In this section, we discuss our experiments for both underpa-

rameterized and overparameterized settings, and results are
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Fig. 2. We evaluate the performance of majority/minority tasks in

MTL manner using underparameterized linear model (R = r0 = 8).

Here, blue, orange and green curves are test risks of majority, minority

and all T tasks (average) respectively. Left: Fix Tmaj = 100 and

Tmin = 10, while change the per-task sample size from 5 to 100.

Right: Fix N = 40 and Tmin = 10, while change Tmaj from 10 to 100.

Each marker is obtained by averaging 20 independent realizations.

displayed in Fig. 2 and Fig. 3. We begin with our data genera-

tion model and hyperparameter selections for both settings.

Data generation. Following Section 2, we generate B⋆
maj ∈

R
r0×d and B⋆

min ∈ R
r1×d with orthonormal rows and

B⋆
majB

⋆
min

⊤ = 0 (which implies d ≥ (r1 + r2)). Specifi-

cally, we first generate r0 + r1 d-dimensional orthonormal

vectors uniformly at random independently, and then without

losing generality and randomness, build B⋆
maj with the first r0

vectors and B⋆
min with the latter. We also generate h⋆

t , t ∈ [T ]
uniformly at random over the unit sphere independently with

proper r0 and r1 dimensions. The task t is generated by

y = h⋆
t

⊤
B̃x where x ∈ N (0, Id),

without label noise. Here, B̃ = B⋆
maj for t ∈ Tmaj, and

B̃ = B⋆
min for t ∈ Tmin. In all experiments, we set ambi-

ent dimension d = 32 and local representation dimensions

r0 = r1 = 8. Both under/over-parameterized settings are

evaluated with two experiments showing in Fig. 2&3. On the

left, we fix the numbers of majority and minority tasks, where

Tmaj = 100, Tmin = 10, while change sample size of each task.

Whereas on the right, sample size and minority size are fixed to

be N = 40, Tmin = 10, and Tmaj varies from 10 to 100, and we

can observe that at beginning points where Tmaj = Tmin = 10,

majority and minority groups have similar performance. Blue,

orange, and green solid curves display the test risks of majority,

minority, and all T tasks respectively, and the dashed curves in

Fig. 3 presents the corresponded individual results of training

single model for tasks in the majority/minority group only.

In Fig. 2, we set R = 8 and evaluate the underdeter-

mined model where zero average risk is not achievable even

with noiseless labels. We observe that on the left, given suf-

ficiently small imbalance ratio (Tmin/Tmaj = 0.1), the test

risk of minority is strictly bigger than one even more train-

ing samples are added, which shows that representation of

minority tasks is never learned when they are trained jointly

with majority tasks, and the R-dimensional representation

tends to align with the subspace majority tasks span. Here

Lavg ≈ TminLmin/T ≈ 0.1. Similar phenomenon appears on
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Fig. 3. We compare the performances of majority/minority groups,

jointly/separately training in the overparameterized setting. Here,

same as Fig. 2, blue, orange and green solid curves are corresponded

test risks trained with overparameterized model (R = r0 + r1 = 16).

Dashed curves present the results of training majority/minority tasks

separately in MTL manner with R = 8. Left/Right: Follow the same

settings in Fig. 2. The sample size varies form 1 to 40 on the left.

the right. On the leftmost where Tmaj = Tmin, the learned

representation is shared equally to both majority and minority

tasks and therefore, Lmaj ≈ Lmin ≈ Lavg < 1. However, as

Tmaj grows, same as the left, the misspecified representation

tends to fit the majority subspace, which in turn hurts minority

tasks. We can observe that for Tmin/Tmaj < 0.2, Lmin ≥ 1.

We consider overparameterized setting in Fig. 3 by setting

R = 16, where instead zero risk is feasible under noiseless

assumption (e.g., B = [B⋆
maj

⊤ B⋆
min

⊤]⊤). Therefore on the

left, performances of both majority and minority tasks get im-

proved and are approaching zero risks when training with more

and more samples. While different to the underparameterized

setting where enlarging size of majority group hurts minority

tasks (Orange curve on the right of Fig. 2 increases.), ignor-

ing some perturbations from randomness, orange solid curve

on the right of Fig. 3 stays at the same level. It shows that

once the representation is sufficient, the minority can never be

harmed by the majority tasks. The decreasing of the blue curve

is from the fact that the size of majority group is increased

and more samples in training results in better performance.

In these experiments, we also provide individually training

results where majority/minority groups are trained in separate

MTL with representation dimension R = 8 and results are

displayed in dashed curves. Both sub-figures in Fig. 3 show

that though trained with majority tasks, minority performs as

good as individually training.

5. DISCUSSION

During recent years, there has been growing research on identi-

fying and understanding the benefits of over-parameterization.

Most of these research focus on either optimization benefits or

statistical benefits through the lens of linearized models such as

random feature regression. In this work, we identified and rig-

orously characterized a novel benefit of over-parameterization

for representational fairness. As future directions, it would

be of interest to empirically verify our theory through experi-

ments on real datasets and also extending our theory to more

realistic nonlinear settings.
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