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Problem definition: For isolated, densely populated facilities, such as prisons and nursing homes, it is

difficult to enact social distancing measures when catastrophic epidemiological outbreaks occur. In such

facilities, strategic releases can enhance social distancing, yet have inherent costs, e.g., the potential for

recidivism in crime for prisons, or the financial cost of incentives for residents to break contracts in nursing

homes. In this paper, we examine how to structure these releases over time to de-densify isolated facilities

under several competing objectives. Methodology: We model the impact of strategic releases on infection

transmission with a quadratic function that relates population size and daily interaction rate, which we call

the de-densification function. Then, we formulate the decision problem as a multi-criteria MDP and develop

dynamic solution methods that employ Monte Carlo simulations, k-means clustering, and Q learning with

linear function approximation. Results: We consider a 100-person facility experiencing an outbreak described

by a Susceptible-Infectious-Recovered epidemiological model. Under this framework, we derive theoretical

conditions for the de-densification function, to ensure it has an intuitive impact on infection transmission.

We also test our dynamic solution methods under a number of parameter settings, and demonstrate that our

cluster-based method outperforms a static benchmark by up to 13.3% under three different de-densification

functions and two priority weights. Managerial implications: Dynamic release policies can improve long-

term cost over single, one-time release actions. The use of k-means clustering in Monte Carlo simulations

can improve objective performance while maintaining similar computational time.

Key words : Markov Decision Processes (MDPs), epidemiological modeling, sequential decision making,

uncertainty quantification (UQ), multi-objective optimization

1. Introduction

Overcrowding is associated with the fast spread of a variety of infectious diseases, from tuberculosis

to rheumatic heart disease to respiratory syncytial virus (RSV). During the initial lockdown neces-

sitated by the SARS-CoV-2 (COVID-19) pandemic, many deadly outbreaks occurred in crowded

facilities, including prisons and nursing homes (Jackson and Tanner 2020a,b). In 2020, a study of

618 nursing homes in Ontario, Canada found that deaths from COVID-19 were more than doubled

in facilities with high crowding conditions compared to those with low crowding conditions (Brown
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et al. 2020). To combat overcrowding and enable social distancing, prisons throughout the United

States released individuals with high health risk who were near the end of their sentences early

in 2020 (Cohen and Eisen 2022). Other types of densely populated facilities, like nursing homes,

also may have benefited from temporary releases – with financial incentives for residents to stay

with family or move to annex housing to reduce crowding conditions. While early prison release

decisions tend to be ad hoc, determining those eligible for release and at greatest risk, Operations

Research tools can help us better plan for future pandemics in our globalized world. This is key,

as the world is experiencing an increase in the rate of pandemics, with Severe Acute Respiratory

Syndrome (SARS), Influenza A H1N5, H1N1, Middle East Respiratory Syndrome (MERS), and

Ebola, for example, all taking place over the decade from 2003-2014. In this paper, we consider how

to de-densify a space to best mitigate systemic health and release-related risk, as well as develop

convenient sequential decision making tools for broader pandemic containment applications.

1.1. Problem Formulation

There are a few key features to this problem that should be captured by any decision-making tool.

First, epidemiological outbreaks are dynamic phenomena with stochastic trajectories. Intuitively,

the intervals at which facilities can release individuals, e.g., weekly or monthly, are discrete, each

with immediate costs associated with infection and release. The decisions made at the beginning

of each interval only need to consider the current state of the system, in terms of the outbreak and

population demographics, without knowledge of previous states or decisions, in order to optimize

some statistical measure of future cost. Eventually, an outbreak will subside. These features make

the problem a good candidate for a discrete, finite-time Markov Decision Process (MDP).

When modeling de-densification for pandemic containment as an MDP, we need to operationalize

the state space, action space, and reward structure. One common formulation of epidemiological

outbreaks is the Susceptible-Infectious-Recovered (SIR) compartmental model, where each individ-

ual in a population is assumed to have S, I, or R status at any given time (Kermack and McKendrick

1927). In our problem, as we balance epidemiological and release-related risk, we consider the state

of the system to be a multidimensional vector with each entry the number of individuals with

particular status, health risk, and release risk features. The actions are the number of susceptible

individuals with particular health risk or release risk features released, and the reward is based on

costs associated with release and costs associated with new infections for those who remain.

When we model the transition to a new epidemic state after a certain release action is taken, we

use a generic underlying epidemiological model, but adaptively include the effect of the strategic

release. Intuitively, reduced overcrowding enhances social distancing, which in turn, reduces daily

interactions and finally, new infections. Thus, the epidemiological parameter directly affected by
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releases is the daily contact rate. For this reason, we model the release effect indirectly by modeling

the contact rate as a function of population size, in what we call the de-densification function. We

will formally define the concept and examine its properties for a particular epidemiological model.

While generating the entire state space and transition probability matrix for a large-scale epi-

demiological MDP would be a Herculean task, constructing what Kearns et al. (2002) call a gener-

ative model of an epidemic is generally much more straightforward. A generative model is a black

box that randomly samples reward and next state from any state-action pair, following the reward

and transition probability distributions of the MDP. Any epidemiological simulator can be used as

a generative model for the MDP developed later in this paper, with the initial SIR composition

of the population given by subtracting the release action from the state. The simulator provides a

new state at the end of the epoch, which includes information about the number of new infections,

that can be used to calculate epidemiological cost.

This property of the strategic release problem leads us to the two solution approaches we consider

in this paper. The first, based on a sparse sampling algorithm developed by Kearns et al. (2002),

uses a lookahead tree to estimate the optimal action at a particular state. This method takes

advantage of the fact that we have a generative model of the MDP available, sampling repeatedly

from a single state, action pair in a way that purely model-free methods cannot, without requiring

the full state-action transition probability matrix. This approach also does not require the same

level of tuning of hyperparameters that an on-policy neural network would require. The second, Q

learning with linear function approximation, estimates the Q function. While this offline method

does not take advantage of the generative model in the same way, it has the benefit of producing

a full policy, estimating the optimal action at any state. Like the sparse sampling method, it

produces actions without having to construct the entire feasible state space or estimate state-

action transition probabilities. This approach also can benefit from tailored basis functions that

take advantage of domain knowledge. We demonstrate how the basis function can be formulated

to mimic the generative model, incorporating the epidemiological dynamics in a different way.

1.2. Methodological Contributions

In this work, in addition to developing an MDP model for the de-densification problem and imple-

menting solution methods, we provide three main methodological contributions.

• First, the sparse sampling algorithm has strong theoretical properties but only provides a

single action, rather than the policy for an entire trajectory, which makes it difficult to test the

performance of the policy on independent out-of-sample trajectories. To mitigate this, we build an

algorithm called Split-Trajectory Sparse Sampling that uses k-means clustering and multiple calls

to the sparse sampling algorithm to evaluate the policy derived by the lookahead tree on a large

number of independent samples.
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• Second, the theoretical properties promised by the sparse sampling algorithm require sampling

fewer child nodes for each node than algorithms that estimate more than one optimal action, but

the number of child nodes is still large in a practical sense. For this reason, we develop an adaptation

of the baseline sparse sampling algorithm also using k-means clustering. In our computational tests,

we find the Split-Trajectory Sparse Sampling with Clusters adaptation that uses this version of the

sparse sampling algorithm outperforms the Split-Trajectory Sparse Sampling method while taking

similar computational time. Both of these methodological advances can be applied to other generic

generative MDPs.

• Our final methodological contribution is specific to epidemiological MDPs and involves the

definition of basis functions for Q learning with linear function approximation. We demonstrate the

effectiveness of our basis functions under particular contact rate assumptions and priority weights.

1.3. Broader Contributions

In addition to methodological advances, we develop open-source R code, freely available on Github,

that acts as a generic framework for generative MDP analysis and solution approaches. Our frame-

work allows the public to define their own generative MDPs, including state, action, and reward

components and state-action transition simulators. Our open-source code includes implementations

of the Split-Trajectory Sparse Sampling algorithms with and without clusters that we introduce

in Section 5.1, as well as tools to simulate out-of-sample trajectories that result from applying

different types of policies.

We also develop a set of epidemiological test instances, adapted from stochastic individual con-

tact models in the peer-reviewed EpiModel package in R (Jenness et al. 2018) that can be used

as benchmark for further methodological development in the solution of multi-objective epidemi-

ological MDPs. Our test instances simulate homogeneous mixing of heterogeneous health risk

populations with non-health features (that do not impact infection transmission but impact other

aspects of the reward function).

Finally, in our numerical studies, we demonstrate the effectiveness of Split-Trajectory Sparse

Sampling with Clusters at improving long-term cost over a static benchmark. We note the test

instances for which the Q learning with linear function approximation method improves the objec-

tive over the static benchmark, as well as the method’s shorter relative runtime. We delve into the

dynamic policies and resulting cost breakdown derived from the cluster method, demonstrating

the ability of the priority weights to yield differentiated policies.

2. Literature Review

This work is interdisciplinary, situated in both epidemiological modeling and mathematical opti-

mization fields. In this section, we begin with a review of epidemiological models, including the com-

partmental framework that we use, the stochastic individual contact model in our test instances,
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and their application in pandemic settings. Then, we move into a discussion of optimal control

models in epidemiology, and review the related work in the control of pandemics. Finally, we dis-

cuss the particular framework that we utilize for our decision-making model, MDPs, in the context

of dynamic control, and notable solution approaches previously developed in the literature.

2.1. Epidemiological Models

To use our multi-objective, epidemiological MDP framework, the underlying disease model should

include a susceptible compartment and heterogeneous health risk levels, as well as a random sim-

ulator. The model should assume homogeneous mixing. In our epidemiological test instances, we

utilize agent-based stochastic individual contact models (ICMs). Stochastic ICMs are random ana-

logues of deterministic compartmental models (DCMs), benchmark formulations that date back to

Kermack and McKendrick (1927). DCMs use ordinary differential equations (ODEs) to describe

disease spread in a population with homogeneous mixing as a function of a set of epidemiological

parameters (Brauer 2008). While DCMs are inherently deterministic, they are used in our MDP

by randomly drawing epidemiological parameters from a stochastic distribution each epoch.

Many researchers utilize DCMs to model the spread of the COVID-19 pandemic, fitting out-

break data to curves by estimating epidemiological parameters (Fanelli and Piazza 2020), modeling

distinct stages of the pandemic (Mishra et al. 2020), and testing the effectiveness of quarantine

(Hou et al. 2020). Wang et al. (2020) use deterministic ODEs to describe their model, and then

perform stochastic simulations using the τ -leaping method (Keeling and Rohani 2011) to consider

the effects of different social distancing measures. Moreover, stochastic ICMs are utilized to model

the COVID-19 pandemic by Churches et al. (2020), who extend the stochastic ICM in open-source,

peer-reviewed EpiModel (Jenness et al. 2018) from SIR to seven compartments, including compart-

ments representing isolation, hospitalization, and death. In this paper, we also extend the stochastic

ICM in EpiModel. However, in line with our objectives, we consider heterogeneous health risk and

a simpler generative model, SIR compartments with homogeneous mixing.

2.2. Optimal Control in Epidemiology

While epidemiological models can be utilized to predict disease spread and compare the effects of

various interventions, they do not necessarily find optimal courses of action. Work in mathematical

optimization aims to bridge this gap, with disease control models that aim to identify strategies

to minimize new infections (Mbah and Gilligan 2011) or the exponential decay rate of infections

(Nowzari et al. 2015). Two central strains of research in this field are resource allocation models

and network interdiction models.

Resource allocation models find optimal epidemiological interventions under the constraint of

limited resources. The cost of an intervention may be represented as a function of a particular
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epidemiological parameter, such as the sufficient contact rate (Brandeau et al. 2003), recovery

rate, or rate of movement into a protected state, like vaccination or quarantine (Nowzari et al.

2015). The cost function can also be a function of the number of individuals treated, with that

treatment number affecting the epidemiological dynamics (Goldman and Lightwood 2002). The

solution methods utilized in epidemiological resource allocation problems are often analytical (see,

e.g, Brandeau et al. 2003, Mbah and Gilligan 2011). Zaric and Brandeau (2001) use Taylor series

approximations to find solutions for a resource allocation model with an underlying SI model and

linear production functions.

Yin et al. (2023) consider allocation of ventilators using a multi-stage stochastic model. Basciftci

et al. (2023) compare stochastic programming and distributionally robust optimization approaches

to balance cost and quality of service in COVID-19 test kit and vaccine distribution. Generally,

problems related to supply, demand, and matching the two in vaccine distribution amenable to

operations research models are outlined by Dai and Song (2021). Resource allocation models are also

utilized in pandemic settings to ensure resources are used wisely while satisfying social distancing

requirements (see, e.g., Barnhart et al. 2022, Navabi-Shirazi et al. 2022, Gore et al. 2022)

On the other hand, network interdiction models focus on the control of disease spread, and

assume that the population has a graphical structure. The epidemiological optimization models are

an example of general work that mitigates the spread of contagions by removing nodes (Albert et al.

2000) or edges (Kimura et al. 2009) from a network. Enns et al. (2012) formulate the epidemiological

edge removal problem as a nonconvex quadratically constrained quadratic program (QCQP) and

develop a related QCQP algorithm. Nandi and Medal (2016) use mixed-integer linear programs for

formulating their epidemiological network interdiction models. Koch et al. (2013) consider how the

basic reproductive number changes when edges are randomly removed from a contact network.

In addition to basic disease control, a number of studies consider multi-criteria decision making

in pandemic conditions, generally examining the interplay between economic and health condi-

tions (see, e.g., Akbarpour et al. 2020, Silva et al. 2020, Thunström et al. 2020, Birge et al. 2020,

Fajgelbaum et al. 2020). Duque et al. (2020) use a stochastic optimization model with the detailed

epidemiological dynamics mentioned in the previous section (Wang et al. 2020) to determine lock-

down thresholds, minimizing the total number of days in lockdown while ensuring hospital resources

remain available. Some works

2.3. Dynamic Control and Uncertain Parameters

One advantage of our model is its ability to consider policy over time, at different phases of an

outbreak. The dynamic nature of this decision making is present in a few different papers in

epidemiological resource allocation. For instance, Zaric and Brandeau (2002) consider a finite-

horizon problem, with investment decisions made over a finite number of time periods, in order to
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maximize quality-adjusted life years or avoided infections, using heuristic methods for the general

problem. Blount et al. (1997) use nonlinear programming and dynamic programming approaches

to consider control of an SIS epidemic with limited resources. Du et al. (2021) use a data-driven

optimization approach for multiperiod resource allocation. At each epoch, they estimate parameters

with new information, and make an multiperiod decision based on current parameter estimates,

though this decision is only used in the next epoch.

Our MDP model for strategic discharges for de-densification is also dynamic. MDPs have a rich

theoretical foundation, with a number of methods to optimize long-run discounted cost when the

state space and transition probabilities are known. Unfortunately, due to the size of the state space,

these parameters are difficult to estimate. In the literature, a few papers formulate epidemiological

problems as MDPs. In a paper by Reluga (2009), continuous-time MDP theory is used to describe

individual strategy in one epidemiological game theoretic setting. The emphasis of the work is on

equilibrium behavior, rather than systemic decision making, however. Bisset et al. (2009) apply

Partially Observable Markov Decision Processes (POMDPs) to infectious outbreaks; on the other

hand, their experiments simulate and compare a set of prescribed policies with a main goal of disease

control, while we estimate the optimal policy weighing both epidemiological and release costs in

this paper. Yaesoubi and Cohen (2011) apply the MDP framework to serialized compartmental

models, where individuals flow from disease state to disease state in a single direction (e.g., from

Susceptible to Infectious, then from Infectious to Removed).

One application of our multi-criteria MDP framework is de-densification of nursing homes. Con-

trol of COVID-19 outbreaks is studied in the nursing home setting by Smith et al. (2020), who

simulate the distribution of COVID-19 tests using a variety of strategies, to compare their effec-

tiveness and cost. Barak et al. (2020) also consider the testing policy problem, using network-based

SEIR simulations and analysis of an exponential infection model. Another application of our MDP

is early prison release. Baycik et al. (2020) apply MDPs in the criminal justice setting, mitigat-

ing city-level drug trafficking. However, the strategic release problem and its inherent competing

objectives is not considered for the nursing home, cruise ship, or prison case.

3. Strategic Releases and the De-Densification Effect

Central to the formulation of the strategic release problem is the representation of the effects of

social distancing. Recall that in this paper, we assume the facility outbreak is represented by a

generic epidemiological model with homogeneous mixing and a susceptible compartment. In this

section, we introduce the concept of a de-densification function, a way to model the effects of

reduced overcrowding, in such a model. We derive necessary conditions for a quadratic function

to be a de-densification function. Then, we consider a particular epidemiological model – an SIR
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DCM with two health-risk levels – and derive sufficient conditions for a quadratic de-densification

function to have protective cross-group effects.

Definition 1. Let E be an epidemiological model with homogeneous mixing, a susceptible

compartment, total population size N , and contact rate parameter α= α(N). The function α(N)

is a de-densification function if α(N)≥ 0 and α(N) increases as population size N increases.

Here, increased population size implies decreased social distancing and in turn, higher contact

rate. In our numerical studies, we assume the contact rate is a quadratic function of population

size. Taking the first derivative, the next theorem about quadratic functions follows directly from

the definition.

Theorem 1. Suppose the contact rate parameter is a quadratic function of population size,

N ∈ [0,Nmax], of the form

α(N) = κ2N
2 +κ1N +κ0. (1)

If the contact rate is a de-densification function, then the following are true.

• κ0 ≥ 0.

• If κ1 = 0, then κ2 ≥ 0. If κ2 = 0, then κ1 ≥ 0. Otherwise, κ1/2κ2 ≥ 0.

While the definition ensures that the de-densification function captures the social distancing

effect of strategic releases, not all de-densification functions may lead to reduced infection trans-

mission rates. Consider an SIR DCM with health risk levels H= {h1, h2}, governed by the following

ODEs.

dSh
dt

=−βhα(N)

∑
h′∈H Ih′

N
Sh, h∈H, (2)

dIh
dt

= βhα(N)

∑
h′∈H Ih′

N
Sh− ξhIh, h∈H, (3)

dRh
dt

= ξhIh, h∈H. (4)

Here, βh represents the probability a susceptible person with health risk level h becomes infected,

given contact with an infectious person, and ξh is the recovery rate for an infectious person with

health risk level h. The rate of new infections for health risk level h is −dSh/dt. Intuitively, the

proportion of susceptible individuals with health level h that become infected is the product of the

average number of contacts per person α(N), the probability a contact is infectious
∑

h′∈H Ih′/N ,

and the probability of becoming infected given contact with an infectious person, βh.

While strategic releases reduce the contact rate α(N) and may reduce the number of susceptible

individuals with that health risk level, Sh, they also increase the proportion of the population that

is infected,
∑

h′∈H Ih′/N . (Recall that we assume only susceptible individuals are released in this
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paper.) Thus, even if contact rate is a de-densification function, the rate of new infections may not

decrease with decreased population size.

We are particularly interested in de-densification functions for which the opposite is true, how-

ever. What are outbreaks for which social distancing “slows the spread,” in terms of epidemiological

model and de-densification function? This is a complex question worthy of further study. We con-

sider a specific model, as well as a particular kind of cross-group spread in the final theorem in

this section.

Releasing individuals from a particular health risk level generally has a protective effect for

at least some of that subpopulation – the ones that leave the facility. For this reason, we are

specifically interested in epidemiological test cases where cross-group protective effects exist. When

does releasing individuals from one health-risk level help reduce infection transmission in another

health risk level? We consider this question for the SIR DCM with heterogeneous health risk levels,

in the following theorem.

Theorem 2. Consider an SIR DCM with heterogeneous health risk levels H and de-densification

function α(N), as described in Theorem 1. Suppose there is at least one infection in the facility

and at least one susceptible individual with health risk level h∈H. Assume all releases involve only

susceptible individuals in other health risk levels. Then, the rate of new infections for health risk

level h increases as population size N increases if and only if

κ2−κ0/N
2 > 0.

Proof. Consider
−dSh
dt

= βhα(N)

∑
h′∈H Ih′

N
Sh.

Note that the release action does not change the value of the susceptible population with health risk

level h, by assumption. In general, the release action does not involve any infectious population.

This implies that

C = βh
∑
h′∈H

Ih′Sh

is a positive constant, regardless of the action taken, and

−dSh
dt

=C
κ2N

2 +κ1N +κ0

N
.

Taking the derivative with respect to N and noting that C > 0 yields the result. Q.E.D.

The following corollaries are immediate.

Corollary 1. Under the SIR DCM, if de-densification function α is a linear function of pop-

ulation size N and release actions do not involve health risk level h, then rate of new infections for

h does not increase with population size.
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Corollary 2. Under the SIR DCM, if de-densification function α is a concave quadratic func-

tion of population size N and release actions do not involve health risk level h, then rate of new

infections for h does not increase with population size.

4. Decision Making Models

Now that we have considered how epidemiological dynamics are impacted by strategic releases, we

can explore how those decisions should be structured. We do so by formulating the epidemiological

and demographic state of the system as an MDP. In this section, we give a brief overview of discrete

time MDPs, then present the set of parameters that we utilize in our finite-horizon, multi-criteria

formulation, followed by the details of the model. While all notation is described within the text,

Table 14 in Online Supplement Section A also provides a quick reference for interested readers.

4.1. Markov Decision Processes

An MDP can be described by a tuple (Ω,A, P, ρ). The set Ω contains the states of the system, while

A(i) contains the actions available for each state i ∈Ω, with the set of all actions A=
⋃
i∈ΩA(i).

For all states, we assume A(i) ⊇ {a0}, where a0 is the null release action. In the discrete time,

finite-horizon setting, we have T epochs, each of length `. Every epoch, t = 0, . . . , T − 1, a state

i ∈ Ω is observed, an action a ∈ A(i) is taken, and the system transitions to a new state j with

probability Pij(a), defined for all j ∈Ω. An immediate cost is accrued at this time, given by function

ρ(i, a) : Ω×A→R−. This represents the expected cost of taking action a while in state i over the

course of one epoch.

jt jt+1 . . .. . .

at

Choose at = π̂(jt)
Transition Pjtjt+1

(at)

Cost ρ(jt, at)

Figure 1 Example of an MDP transition during epoch t= 0, . . . , T − 1, with current state jt, action at chosen by

policy π̂(jt), and transition to next state jt+1 governed by probability distribution Pjt·(at). Cost ρ(jt, at)

is accrued immediately.

The purpose of an MDP is to find a policy function π : Ω→A that assigns actions to states in a

way that minimizes some cost criterion over time. We consider the expected total discounted cost

criterion. Because it is common practice to maximize rewards in the MDP setting, we represent the
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costs as negative “rewards,” and aim to maximize these rewards. In alignment with the application

setting, though, we refer to them as costs when describing the meanings of our parameters.

For any policy π̂ : Ω→A, and all states i ∈ Ω, the expected total discounted cost over time is

given by

Wπ̂(i) = E

[
T−1∑
t=0

γtρ(jt, π̂(jt))|j0 = i

]
,

where γ ∈ (0,1) is the discount and j0 is the initial state at time t= 0. The goal is to find a policy

π such that for all i∈Ω,

Wπ(i) = max
π̂
Wπ̂(i).

For this optimal policy π, we denote the value function W : Ω→R− as W (i) =Wπ(i) for all i∈Ω.

We illustrate an example of an MDP transition in Figure 1.

4.2. Model Parameters

In our model, the state space describes the phase and demographic composition of a facility out-

break. Each epoch, the facility is divided into virus compartments V (e.g., {S, I,R}), that are

further divided by demographic characteristics. Within the facility, we assume that there is a het-

erogeneous population consisting of individuals with discrete health risk level h ∈H and discrete

release category r ∈R, with r∗ ∈R representing the category that is ineligible for release (e.g., due

to length of sentence served, or lack of alternatives to the nursing home).

Table 1 The table below shows an example state i∈Ω with virus states V = {S, I,R}, health risk levels

H= {h1, h2}, and release categories R= {r1, r2, r
∗}. This is the initial state in our numerical studies.

S I R

r1 r2 r∗ R R
h1 15 15 29 1 0
h2 10 10 20 0 0

The states of the system, Ω, are a subset of Z|V|×|H|×|R|, with each component of state i ∈ Ω,

denoted vihr, equal to the number of individuals that have health risk level h and release category

r and are currently in virus state v, for all h∈H, r ∈R, and v ∈ V . An example state, later used as

the initial state of the system in our numerical studies, can be viewed in Table 1. Notice that some

components of the state are aggregated in this representation – with
∑

r∈R v
i
hr given for v ∈ {I,R}

and h ∈ H, while the susceptible population is divided into components by both health risk and

release risk level. This is because no releases can occur for infectious or recovered individuals,

and release category does not affect epidemiological dynamics. Thus, the value function W (i) is
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not affected by the release category of infectious or recovered individuals, and the aggregated

representation is sufficient.

Release decisions occur at regular intervals of length `. At the beginning of an epoch, the decision

maker observes the state of the system, i, and makes a release decision a, in the set of permissible

release decisions A(i) ⊆ Z|H|×(|R|−1), with each component, denoted ahr, equal to the number of

releases in each category h ∈ H and r ∈ R \ {r∗}. An example action is provided in Table 2 and

corresponds to the high health, low recidivism action in our numerical studies.

Table 2 Example action a∈A(i) for state i∈Ω, given in Table 1. This corresponds to the high health, low

recidivism action in our numerical studies.

r1 r2

h1 0 0
h2 10 0

Expected epidemiological costs, ρep(i, a), and expected release costs, ρrel(i, a), for the epoch are

accrued. With weight λep ∈ [0,1], we define the overall cost (reward) function as

ρ(i, a) = λepρep(i, a) + (1−λep)ρrel(i, a), i ∈Ω, a∈A(i).

After cost is incurred, there is a transition from the resulting state after release to next epoch

state, j, with probability Pij(a). One possible transition for the state and action given in Tables

1–2 is given in Table 3. This state is taken from a trajectory in our static benchmark simulations.

Table 3 Example next state j ∈Ω with virus states V = {S, I,R}, health risk levels H= {h1, h2}, and release

categories R= {r1, r2, r
∗}, taken from a static benchmark simulation trajectory.

S I R

r1 r2 r∗ R R
h1 15 14 28 1 2
h2 0 7 16 5 2

4.3. Generative Markov Decision Processes

If the complete state space and state-action transition probability matrix of an MDP is known,

a linear program can be utilized to find the optimal policy (Ross 2014). Because it is difficult to

construct the entire state space, which suffers from the curse of dimensionality, in this paper, we

consider solution approaches for an MDP that includes what Kearns et al. (2002) call a generative

model, a black box that simulates transitions from any state-action pair in the space, by randomly

sampling the next state and reward from the appropriate distributions, and Q learning with linear

function approximation. We describe these approaches in Sections 5.1 and 5.2.
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5. Solution Methods

We describe the algorithms that we utilize to solve the multi-objective de-densification problem

for pandemic containment. We begin with sparse sampling-based methods and conclude with Q

learning with linear function approximation.

5.1. Sparse Sampling-Based Methods

The first approach we consider is based on a sparse sampling algorithm developed by Kearns et al.

(2002). Their algorithm identifies a near-optimal action at the current state, without constructing

a full policy table, by constructing a sparse lookahead tree. By focusing on the current state, this

approach provides theoretical guarantees of running time based only on a desired approximation

error bound and size of the sampling tree, without respect to the number of states in the MDP.

We first describe the algorithm and discuss the basic adaptations we make for scalability in

Section 5.1.1. Then, we describe the Split-Trajectory Sparse Sampling algorithm we construct for

out-of-sample testing in Section 5.1.2, followed by the cluster adaptation of both algorithms in

Section 5.1.3.

5.1.1. Baseline Sparse Sampling Algorithm with Adaptations for Scalability The

sparse sampling method constructs a sampling tree with the current state i ∈Ω as the root node.

For each action a∈A(i) available for current state i, the generative model draws a set of samples

C from state-action pair (i, a). Each sampled state j becomes a child of the root node, with arc

(i, j) labeled with action a and sampled reward ρij. This process is repeated for each child node of

i, with |A(j)||C| children of state j at a node are sampled to create new child nodes. This process

continues until the tree reaches height H, the horizon size. The value function at the root node is

estimated recursively, with the following formulas.

Ŵπ(j) =

{
0, if j is a leaf,

maxa∈A(j)
1
|C|

∑
c∈C(j,a)(ρjc + γŴπ(c)), otherwise.

We incorporate a few changes to the sparse sampling algorithm to reduce computational time.

First, we adapt the algorithm to stop branching the sampling tree from any node that represents

an absorbing state, reducing the size of the lookahead tree. Second, in our adapted sparse sampling

algorithm, we introduce the concept of an action horizon, Ha. Here, actions only can be taken

during the first Ha epochs of horizon T . During the final epochs Hfinal = T −Ha, no actions are

taken but the system continues to evolve. This allows us to limit exponential tree growth to horizon

Ha. Calculating the value function estimate for the leaf nodes then requires sampling a number

of trajectories of length Hfinal, rather than simply assuming each action has value 0. Intuitively,
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the longer the action horizon, the better the algorithm will estimate Q for different initial actions.

When T =Ha, we recover the original sparse sampling algorithm.

This adaptation applies to generic generative MDPs. In our problem, this assumption allows us

to consider the impact of different timing of dynamic decisions early in an epidemic – as granular

as week 1 to 2 to 3 – while taking into account the long-term effects of those release decisions

in the final epochs of the horizon. Adapting the algorithms developed by Kearns et al. (2002)

to include these features, we obtain the sparse sampling (SpSa) algorithm, Algorithm 1, given in

Online Supplement Section B. This algorithm calls a number of helper functions, each an algorithm

itself. These algorithms, Algorithms 2–4, also can be found in Online Supplement Section B.

5.1.2. Split-Trajectory Sparse Sampling Algorithm The sparse sampling algorithm is

an online method, meant to be applied in real time as a trajectory unfolds. The algorithm produces

an estimate of the optimal action to take at a particular time, knowing that more actions can be

taken in the future as the state of the system evolves. How do policies derived by this method

perform over time, in terms of total mean discounted reward? How does this compare to objective

values obtained by other MDP solution methods? Out-of-sample trajectory simulations can help

answer these questions. Following the law of large numbers, the greater the number of trajectories

Ntraj, the better the expected estimation. Unfortunately, applying the algorithm to each trajectory

for every epoch requires NtrajHa calls of the SpSa algorithm, with lookahead trees with horizon

Ha− t for t= 0,1, . . . ,Ha− 1. In practical terms, this limits the number of trajectories that can be

examined, or forces a decision maker to shorten the action horizon Ha.

To consider the performance of the SpSa algorithm on a large number of new trajectories, we

develop the Split-Trajectory Sparse Sampling (ST-SpSa) algorithm. In ST-SpSa, at time t= 0, all

trajectories share the same initial state and the algorithm only needs to be performed once. After

the estimated optimal action is taken, the transition for each trajectory can produce up to Ntraj

unique states at t = 1. Testing the performance of the online method without adaptation would

require performing the sparse sampling algorithm for each unique state. This would be the case

for Ha− 1 action epochs. Instead, to reduce computational time while considering a large number

of trajectories, we perform cluster analysis of the current states at each action epoch after t= 0

to identify ω representative states. We add an extra dimension to the current states describing

which actions are available at that state to ensure clusters include only states that share an action

set. We call these clusters trajectory groups, to distinguish them from clusters used in the cluster

adaptation. We then perform the sparse sampling algorithm on the ω representative states and

apply the action to all states in the respective trajectory group. The full description and algorithmic

details can be found in Algorithm 5, in Online Supplement Section B.
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5.1.3. Cluster Adaptation of Sparse Sampling-Based Methods While trajectories con-

structed by the ST-SpSa algorithm demonstrate improvement of at least 7.3% over a static bench-

mark in 4 of 9 test cases in Section 7.2, in five of the test cases, we find the static benchmark

performs better. Delving into some of those instances, we notice that the performance of SpSa can

be sensitive to the number of absorbing states sampled at the root for a particular action. The

children of the root node are random samples, subject to variance. If the number of absorbing

states sampled for a particular action at the root is different enough from the expected number of

absorbing states, this can impact the action chosen. On the other hand, expanding the number of

children near the root of the tree has a multiplicative effect on runtime, even if |C| is only changed

at the first level of the tree.

For this reason, we develop an adaptation of SpSa, that utilizes large samples and associated

clusters to estimate the children of nodes in the sparse lookahead tree. We demonstrate the effec-

tiveness of this method in our numerical studies, with improvement over SpSa for all 9 instances

and improvement over the static benchmark for 8 of 9 instances. We call this algorithm Sparse

Sampling with Clusters (SpSa-C) and the corresponding out-of-sample test Split-Trajectory Sparse

Sampling with Clusters (ST-SpSa-C).

SpSa-C works by sampling a large number of next states C and corresponding rewards everywhere

that SpSa samples smaller number |C| children. The mean immediate reward associated with node

i and action a is estimated using set C. The children of node i, C, are calculated using cluster

analysis of the nonabsorbing states in C. The centers of the |C| clusters become children. Each

child c has associated cluster of states Cc. When calculating the Q function for node i and action

a, we use empirical probability associated with each cluster, |Cc|
|C| .

The SpSa-C algorithm steps are the same as those found in Algorithms 1–4 except for a few

changes. First, |C| becomes an input parameter to any algorithm that requires |C|, to satisfy the

recursion properties. Second, Algorithm 2, EstimateQ, has the lines given in Algorithm 6, found

in Online Supplement Section B, that replace lines 7–8.

5.2. Q Learning with Linear Function Approximation

The second type of approach that we consider is Q learning with linear function approximation,

which estimates the state-action value function, or Q function,

Qπ̂(i, a) = E

[
T−1∑
t=0

γtρ(it, π̂(it))|i0 = i, a0 = a

]
.

5.2.1. Background This approach is situated in the field of reinforcement learning. With

the large instance size inherent in stochastic epidemiological environments, function approxima-

tion (Baird 1995) can be utilized with reinforcement learning, to ensure computationally feasible
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algorithms. Libin et al. (2020) apply deep reinforcement learning, which uses neural networks as

the function approximators, to an influenza epidemic control problem. While neural networks are

powerful approximators, they also are known to be sensitive to hyperparameter tuning and require

environment interaction. The Q learning algorithm with linear function approximation (Chen et al.

2019) is a method that utilizes previously simulated trajectories, and is more easily adaptable to

epidemiological settings, allowing historical data or separately generated trajectories to be used to

learn the optimal policy. The generative model used in the sparse sampling method can also be

applied to create trajectories. The basis functions we develop specific to our test instances can be

seen in Section 5.2.3.

5.2.2. Overview The Q function represents the total expected discounted reward of taking

action a, then following generic policy π̂. By subtracting the value function from the Q function,

we get the advantage of taking action a over following policy π̂ in state i. The goal of Q learning

is to learn the optimal Q function, Q(i, a) =Qπ(i, a) for optimal policy π, which satisfies

Q(i, a) = ρ(i, a) + γ
∑
j

Pij(a
′)max

a′
Q(j, a′).

If we take a sample trajectory {(ik, ak)}T−1
k=0 created by following the optimal policy, then we have

the following unbiased estimate:

Q̂(it, at) = ρ(it, at) + γmax
a′

Q(it+1, a
′).

This motivates the iterative Q learning algorithm, with Q estimate Qk at each iteration k. After

randomly initializing the function Q0, we perform the following update based on a sample trajectory

generated with randomized behavior policy π̂.

Qk+1(i, a) =

{
Qk(i, a) + ζ((i, a) + γmaxa′Qk(ik+1, a

′)−Qk(i, a)), if (i, a) = (ik, ak),

Qk(i, a), otherwise.

Here, we take the difference between the newest estimate of Q∗ and the previous estimate, and

move toward it with step size ζ for the current state-action pair (and do not update any other

state-action pair). The ability to only update one state-action pair at a time means that this tabular

method requires a large number of samples.

Linear function approximation addresses this computational challenge by assuming that Q(i, a) is

a weighted sum of basis functions, φ(i, a), with components m= 1, . . . ,M (Chen et al. 2019). With

weight vector θ ∈ RM , we have Q ≈ φ(i, a)T θ. In Q learning with linear function approximation,

rather than learning the Q function, we learn the weight parameters θ. One benefit of this method

is that the basis functions can incorporate domain knowledge.
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We present the algorithmic details of Q learning with linear function approximation in Algorithm

7 in Online Supplement Section B. We add a convergence criterion that ensures if the distance

between θk and θk+1 falls below parameter ε times the magnitude of θk, the algorithm stops. In

the algorithm, again, we have the difference between the current Q estimate and the previous one,

and step size ζ. But now, because we are ascending on θ, we multiply by the gradient of Qθ, which

equals φ(sk, ak).

5.2.3. Basis Functions Incorporating domain knowledge into the basis functions in the Q

learning method with linear function approximation can improve the algorithm’s performance,

allowing the functions to better approximate Q. Regardless of epidemiological outbreak or facility

type, the Q function for the strategic release problem should include aspects related to epidemio-

logical cost and release cost. In this section, we give an example of how to develop basis functions

for the strategic release problem that incorporate these two cost types. We consider the prison

release problem and SIR stochastic ICM with homogeneous mixing that we utilize in our com-

putational tests. First, we describe the epidemiological basis components, and then we give the

recidivism-related components.

Suppose the state of the facility at the start of epoch t is i, and we plan to take action a.

Because the basis function is meant to help us estimate the Q function for the entire trajectory,

not just immediate reward, we construct epidemiological components that estimate the number of

new infections in each future epoch t+ w for w = 0, . . . ,w− 1, given that action a is taken at time

t, and the null action is taken later. Number of epochs to estimate w is a hyperparameter that has

to be tuned.

In order to construct these components, we develop a set of recursive functions that estimate

the number of new infections for health risk level h ∈H over w` days of the epochs, denoted τ =

0, . . . ,w`−1. We define Sh(τ) and Ih(τ) to be the number of susceptible and infectious individuals

in the facility at the start of day τ and Ihnew(τ) to be the number of new infections that take place

that day. These three functions all depend on state i and action a, though we omit them from the

notation for ease of reading.

At the start of the first epoch, the first two functions are defined by the population after release

– the number of susceptible and infectious individuals that remain.

Sh(0) =
∑
r∈R

Sihr−
∑
r∈Rrel

ahr (5)

Ih(0) = I ih. (6)
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The number of new infections during day τ = 0, . . . ,w`− 1 is estimated using a formula based

on the deterministic compartmental analogue of the stochastic ICM, given in equations (2)–(4), as

follows.

Ihnew(τ) = min

{
βh
(
κ2N(i, a)2 +κ1N(i, a) +κ0

) ∑
h′∈H I

h′(τ)

N(i, a)
,1

}
Sh(τ). (7)

Recall that κ2N(i, a)2 + κ1N(i, a) + κ0 is the contact rate for the current facility,

while βh is the probability of transmission for health risk level h ∈ H. Intuitively,

βh (κ2N(i, a)2 +κ1N(i, a) +κ0)
∑

h′∈H Ih′
N(i,a)

estimates the expected number of infection transmission

events one individual will have in the next time period – the product of their probability of infec-

tion given contact, the number of contacts they expect to have, and the probability that a contact

will be infected. If this value is less than 1, it is multiplied by the total number of susceptible

individuals present in the facility with that health risk level, h, to estimate the total expected

number of infectious contacts. Otherwise, we estimate that all susceptible individuals with health

risk level h are infected.

To update the number of susceptible individuals for the next day, we subtract those we estimated

were infected:

Sh(τ) = Sh(τ − 1)− Ihnew(τ − 1). (8)

To update the number of infectious individuals in the next day, we add those we estimated were

infected and then multiply by the probability of not recovering that day.

Ih(τ) = (1− ξh)(Ih(τ − 1) + Ihnew(τ − 1)). (9)

Then, for each epoch, t+ w for w = 0, . . . ,w− 1, and each health risk level h ∈H, we construct

the following basis components.

φw
h (i, a) =

1√
MN

(w+1)`−1∑
τ=w`

Ihnew(τ), (10a)

φw,quad
h (i, a) =

√
M (φw

h (i, a))
2
. (10b)

Our recidivism-related components, linear and quadratic functions of the number released, and

bias component are as follows.

φlin
r (i, a) =

1√
MN

·
∑
h∈H

ahr, r ∈R\{r∗} (11a)

φquad
r (i, a) =

√
M
(
φlin
r (i, a)

)2
, r ∈R\{r∗} (11b)

φbias(i, a) =
1√
M
. (11c)

Recall that M is the number of components of φ. Here, the leading coefficients ensure that ||φ|| ≤ 1.
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6. Benchmark De-Densification Test Instances

To test our models, we examine the early prison release problem described in Section 1, with two

health risk levels and three recidivism risk levels (including one ineligible for release), as well as

virus states V = {S, I,R}.

6.1. Epidemiological Outbreak Test Instances

We develop benchmark epidemiological outbreak test instances that can be used in future multi-

objective epidemiological MDP work using an extension of the basic stochastic ICM built in to

EpiModel. We adapt the existing one-group homogeneous and two-group heterogeneous mixing SIR

models to a two-group homogeneous mixing SIR model with option to track individual non-health

features.

6.1.1. One-Group SIR Model In the basic one-group model included in EpiModel, each

day, random encounters occur between individuals in the facility, labeled {1, . . . ,N}, based on

the contact rate α (e.g., 5 contacts per person). The total expected number of contact pairs z̄ is

calculated using the following formula:

z̄ =

[
αN

2

]
.

Then, two random samples of size z̄ are taken from individuals {1, . . . ,N}, with replacement, to

form vectors e1 and e2 of length z̄. If any component i = 1, . . . , z̄ of vectors e1 and e2 has the

property that e1
i = e2

i , entry e2
i is resampled until that is no longer the case. The ith component of

each vector then represents an encounter between individual e1
i and e2

i , for i= 1, . . . , z̄.

For each encounter, the current status of each individual is checked. If one individual is susceptible

and another infectious, a random binomial draw determines whether the susceptible individual is

infected. Finally, among the infected, random binomial draws determine whether recovery takes

place. The random encounter, infection, and recovery steps repeat for each day of the simulation.

This one-group model assumes that probability of transmission and recovery rate are the same

for the whole population. This is not ideal for our problem, in which we are interested in balancing

various levels of health risk and recidivism risk.

6.1.2. Two-Group Heterogeneous Mixing SIR Model The two-group heterogeneous

mixing model built into EpiModel expands upon the one-group model. The basic structure remains

the same, with each day composed of random encounters, infection transmission, and recovery. In

contrast to the basic model, however, the extension assumes the facility has two distinct groups,

each with their own probability of infection and recovery rate. (In particular, when a susceptible

individual in group 1 has contact with an infectious individual in group 2, the random binomial

draw uses the group 1 probability of infection.) This property is a better fit for our problem, where
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we are interested in considering the effect of releasing individuals from a facility with different

health and recidivism risk levels.

On the other hand, this built-in extension assumes the groups mix purely heterogeneously, mean-

ing a person from group 1 only interacts with people in group 2, and vice versa. The EpiModel

programmers mention this type of model can be appropriate for a sexually transmitted disease

under simplifying assumptions about gender and sexual orientation (EpiModel 2022).

For our problem, on the other hand, where we are interested in exploring the effects of de-

densification of crowded facilities on epidemiological outbreaks, the homogeneous mixing used in

the one-group model is a better fit. For this reason, we adapt the code from the two models to

create a new two-group homogeneous mixing model.

6.1.3. Two-Group Homogeneous Mixing SIR Model with Non-Health Features In

our adaptation of the stochastic ICM, we simulate random encounters using the one-group model

method described in Section 6.1.1. The random binomial draws that simulate infection and recovery,

however, use group-specific probability and rate, respectively, like the two-group heterogeneous

mixing model described in Section 6.1.2. This code can be used to simulate two-group homogeneous

mixing in general.

In addition, more specific to our problem, the adaptation includes the option to label each

initial susceptible individual with one of three release categories. Then, as these labeled individuals

randomly interact and are infected, we keep track of how many susceptible individuals remain in

each health and release category. Because release category is no longer relevant for infected and

recovered individuals, who are not eligible for release, we only keep track of release category for

susceptible individuals. This ensures that we do not consider two states to be different when, in

essence, they are the same.

In our code, we refer to release category more generically as a feature. In this way, we dis-

tinguish non-health feature from group, which in EpiModel refers to a designation that impacts

epidemiological parameters.

6.2. Epidemiological Parameters

Because we have low- and high-risk health levels in our experiments, we assume that the high-

risk susceptible population has a higher probability of becoming infected when they come into

contact with the pathogen than the low-risk susceptible population. We also assume that the rate

of recovery (or the inverse of recovery time) is smaller for the high-risk infected population, as

shown in Table 4.

We assume 60% of the 100-person facility is low-health risk level (h1), and 50% are ineligible for

release (r3). Of those eligible for release, we assume an equal proportion are low recidivism risk
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Table 4 Epidemiological Parameters

Low health-risk group h1 High health-risk group h2

Probability of infection 0.01 0.1
Recovery rate 0.5 0.125

(a) Release Priority
(b) Action Space

Figure 2 (a) Priority for prisoner release. Darker boxes are higher priority. (b) Available actions in each epoch.

For each action, all currently susceptible prisoners in the shaded categories are released.

(r1) and high recidivism risk (r2). We assume that one person is initially infected. Table 1 depicts

the full initial state of the system. We assume that at full capacity, the average daily contact rate

is 10.

6.3. Action Space Definition

In order to test the multi-criteria MDP with these test instances, we need to define an action

space for releases. To limit the size of the lookahead tree in the sparse sampling algorithm, we

restrict our action space to six possible release actions, illustrated in Figure 2. We choose these

actions to reflect a prioritization of higher health risk and lower recidivism risk individuals for

release, as shown in Figure 2a. In each of actions {a0, . . . , a5}, we release all currently susceptible

individuals in particular (h, r) risk categories, as pictured in Figure 2b. In action a0, no one is

released; in a1, only the highest priority individuals are released – those with high health risk and

low recidivism risk. In actions a2 and a3, we allow either all high health risk or all low recidivism

risk populations to be released, which allows us to compare the weight of health versus recidivism

risk in the resulting optimal policy. Finally, in a4, we release all but the lowest priority individuals

– those with high recidivism and low health risk, and in a5, we release all eligible individuals who

are currently susceptible.

Note that not all actions are available in every state. In order to release susceptible individuals

in a certain category, there must be currently susceptible individuals in that category. In Table 5,
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Table 5 Categories that must have currently susceptible individuals for each action to be taken.

Action Category
a0

a1 (high health, low rec)
a2 (high health, high rec)
a3 (low health, low rec)
a4 (low health, low rec), (high health, high rec)
a5 (low health, high rec)

we list the categories that must have currently susceptible individuals in order for an action to be

available. For instance, to take action a4, both (low health, low rec) and (high health, high rec)

must have currently susceptible individuals. Otherwise, the appropriate equivalent action to a4 is

either a2 or a3. This table ensures that the effect of each action is unique for every state.

Our choice of action space takes advantage of a natural prioritization of individuals for release,

and allows us to limit the size of lookahead tree. There are two key characteristics of this action

space that help with this. First, there are only six actions, which limits the action-driven growth

of the sparse sampling algorithm tree at each epoch to multiplication by six. Second, and more

importantly, by releasing all susceptible individuals in a particular (h, r) category at state i, we

further limit the set of actions available in the next epoch.

To maintain consistency across methods, we use these six actions in our benchmark tests and Q

learning with linear function approximation tests as well.

6.4. Contact Rate Assumptions

The final epidemiological parameter that we need to define is the de-densification function, or

how the contact rate changes as the crowding level decreases. We consider three functions with

quadratic form (1), with coefficients given in Table 6. Notice that at full capacity, the contact rate

is 10. All three satisfy the conditions in Theorem 1 for de-densification functions, and the first two

satisfy the conditions given by Theorem 2, ensuring that release actions affecting one health risk

level lower the new infection rate for the other health risk level.

Table 6 Quadratic coefficients for de-densification functions.

Contact Rate Assumption κ2 κ1 κ0

Polynomial 0.00044 0.046 1
Quadratic 0.001 0 0

Proportional 0 0 0.1
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6.5. Multiobjective Parameters

A key aspect of the strategic release problem is the balancing of competing objectives. We test

three reward functions, that either (a) prioritize health, (b) prioritize crime reduction, or (c) give

equal priority.

We define health cost ρep(i, a) as the expected number of long-term health consequences from

newly infected individuals. Given probability of long-term health effect ph for h ∈H and number

of newly infected individuals Ihnew, we have

ρep(i, a) =
∑
h∈H

phI
h
new. (12)

We define release cost ρrel(i, a) as the expected number of crimes committed by newly released

individuals. Given probability of recidivism pr for r ∈ R \ {r3} and number of newly released

individuals arnew, we have

ρrel(i, a) =
∑

r=r1,r2

pra
r
new. (13)

We assume the probability is larger for high risk than low risk in both cases, as seen in Table 7.

Table 7 Reward Parameters

Low risk High risk

Probability of recidivism (pr1 , pr2) 0.1 0.25
Probability of long-term health effect (ph1

, ph2
) 0.1 0.25

For each of the different cost functions, the cost is defined using priority weights λrel and λhealth

as

ρ(i, a) =−λrelρrel(i, a)−λhealthρhealth(i, a).

The weights we use are shown in Table 8. Here, we assume when we prioritize health that one

Table 8 Weight Parameters

Prioritize γrel γhealth

Health 1 2
Crime Reduction 2 1
Both Equally 1 1

long-term effect is as costly as two crimes, while one crime is as costly as two long-term effects

when we prioritize crime reduction.
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7. Computational Experiments

In this paper, we introduce three methods, from sparse sampling-based approaches with and with-

out clusters to Q learning with linear function approximation. We also develop nine test instances,

taking into account de-densification and reward functions. In this section, we describe the exper-

imental setup and delve into the results, comparing the reward and computational performance

associated with each of the three methods across the nine test cases. In general, we find that the

cluster method outperforms the baseline SpSa in all cases, as well as Q learning with linear function

approximation methods for crime reduction prioritization. The Q learning method yields similar

objective values to ST-SpSa-C for the other two priority weights, with shorter runtimes.

7.1. Experimental Setup

For each test instance, we compare the performance of the three different types of policies on a

set of 1000 trajectories of 10 epochs each. These trajectories share an initial state, and each has

a fixed seed associated with every epoch transition. This ensures that when an action is shared

across policies for a specific trajectory, epoch, and state, the transition to the next state is also the

same. We consider discount γ = 0.9.

As a benchmark to evaluate the policies generated by our dynamic methods, we consider static,

single-action policies that take place before the first epoch. We consider each of the six actions,

running 1000 trajectories after each action is applied, and choose the action with the best mean

discounted reward as the benchmark for each test.

We implement ST-SpSa with and without clusters in R, using a generic Markov simulation

framework we describe in Online Supplement Section C. For our experiments, we use the following

parameters, shown in Table 9.

Table 9 ST-SpSa Parameters

Parameter Value

Action horizon Ha 3
Number of trajectories to estimate leaf node Q Nfinal 10
Trajectory groups ω 10

Baseline Children |C| 10
Clusters Children |C| 5
Clusters Samples |C| 100

Like the sparse sampling methods, we implement the trajectory sampling portion of Algorithm

7 in R, using the generic Markov simulation framework. The randomized policy works as follows.

At the start of each new trajectory, we choose three random epochs in which an action can be

taken. Then, when an action epoch arrives, an action is randomly chosen from available actions.
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In some cases, only the null action will be available at future action epochs. We use this policy

to encourage the agent to “wait and see” during epoch 0 in a high number of trajectories. The

number of environmental interactions that we require is 100,000.

We implement the remainder of Q learning with linear function approximation in Python with

convergence criteria ε= 1× 10−6. For each test instance, we consider the set of hyperparameters

seen in Table 10.

Table 10 Q learning with linear function approximation Hyperparameters Tested

Initial θ Seed Step Type Step Size w

0 div root 0.5 1
1 div linear 0.75 2

1 3

The step ζ is a function of algorithm iteration k and step size. When the step type is div root

and step size is .75, ζ = 0.75/
√
k; when step type is div linear, ζ = 0.75/k. The initial weight θ0 is

randomly initialized to values in [−1, 0] using random seeds 0 or 1.

Because reinforcement learning methods are known to be sensitive to hyperparameters, we tune

them for each of the 9 test instances separately, and choose the resulting θ that gives the best

out-of-sample value.

7.2. Comparison Across Methods

Table 11 Percentage improvement in total mean discounted reward for different methods over static

benchmark, for different contact assumptions and priority weights.

Polynomial Quadratic Proportional

Method Health Equal Crime Health Equal Crime Health Equal Crime

ST-SpSa -22.9 -10.3 9.0 -27.0 -10.5 11.6 9.7 -2.2 7.3
ST-SpSa-C 13.3 1.3 10.0 5.0 -0.4 13.0 11.4 0.2 8.7
QLLFA 13.3 0.9 -0.9 5.7 0.5 2.5 11.6 0 -0.6

Table 11 shows how the out-of-sample objective changes when the policies given by each method

are followed, rather than the best single release action. Notice that the sparse sampling algorithm

with clusters and Q learning method lead to the highest percentage improvement in the health

prioritization cases, as well as similar performance to the static benchmark in the equal priority

cases. When crime reduction is highest priority, ST-SpSa-C performs best. In Section 7.3, we delve

into the polynomial case and demonstrate that the dynamic ST-SpSa-C method chooses a largely

static policy for equal priority weight, explaining its lack of improvement.
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Without the cluster adaptation, ST-SpSa yields varying results – with improvement as high as

11.6% and decrement as high as 27%. Incorporating k-means clustering to the algorithm improves

consistency. In Table 12, we explore why this may be the case. Here, we note the probability of

the epidemic dying out in the first epoch after a particular release action is taken, over the 1000

out-of-sample benchmark trajectories. Because of the large number of trajectories, we expect that

this empirical probability is our best estimate of the true probability. We then examine the sparse

Table 12 Probability of epidemic dying out after one epoch for each action in static benchmark trajectories

and sparse sampling lookahead trees, with and without clusters.

Polynomial Quadratic

Action Benchmark ST-SpSa-C ST-SpSa Benchmark ST-SpSa-C ST-SpSa

a0 0.616 0.590 0.600 0.616 0.590 0.600
a1 0.722 0.710 0.600 0.702 0.780 0.400
a2 0.801 0.780 0.900 0.839 0.870 0.900
a3 0.729 0.730 0.900 0.764 0.750 0.700
a4 0.806 0.820 0.800 0.857 0.870 1
a5 0.814 0.840 0.700 0.890 0.880 0.900

lookahead trees for each of the two methods, comparing the sampled child nodes at the initial

state root. For the quadratic contact rate assumption and high health, low recidivism action a1, for

example, 702 out-of-sample trajectories had 0 infections after 1 epoch. For the baseline ST-SpSa

sparse lookahead tree, after action a1 was taken, 4 of 10 sampled child nodes had 0 infections,

yielding a probability of .400 of the epidemic dying out. With the cluster adaptation, on the

other hand, 78 of 100 sampled children had 0 infections, yielding a much better estimation of the

empirical probability of the epidemic dying out, of .780. Here, we see that using a larger sample

size with k-means clustering to generate the child nodes better estimates this probability. In turn,

the clustering method more consistently outperforms a static benchmark in out-of-sample mean

total discounted cost.

Table 13 Runtime (hours) for each computational method.

Polynomial Quadratic Proportional
Method Health Equal Crime Health Equal Crime Health Equal Crime

ST-SpSa 7.04 15.89 16.52 6.76 12.58 12.92 10.6 11.98 13.19
ST-SpSa-C 9.42 9.31 11.63 9.16 9.35 10.99 10.03 10.08 11.87
QLLFA 8.39 8.48 8.35 7.82 7.70 7.68 5.99 6.08 6.03

At the same time, the computational runtime of ST-SpSa-C is generally similar or better than

ST-SpSa, as seen in Table 13. Only in the cases where ST-SpSa strongly underperforms in terms of
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objective – the polynomial and quadratic prioritize health instances – is the runtime slightly shorter.

Thus, adding the cluster adaptation generally improves objective performance while maintaining

runtime. The runtime for Q learning with linear function approximation is shorter than both other

methods, though the objective performance is more variable for this method across priority weights.

7.3. Comparison Across Policy Weights

To analyze how the policy changes for different priority objectives, we consider the polynomial

contact rate assumption. Because the cluster method outperforms the baseline sparse simulator

algorithm and shows more consistent performance over Q learning with linear function approxi-

mation across priority weights, we consider the policies given by this method.

Figure 3 Number of 1000 out-of-sample trajectory policies given by cluster method of each type, for polynomial

contact rate assumption and three priority weights.

We illustrate the distribution of the 1000 out-of-sample trajectory policies for each priority

weight in Figure 3. Notice that the instances with greater improvement over the static benchmark,

prioritize health and crime reduction, benefit most from the dynamic nature of the cluster method,

with at least 20% of trajectories utilizing a release action after one or two epochs. In line with

intuition, the initial action is most aggressive for the health prioritization and equal priority cases,

a1, where all individuals with high health and low recidivism risk are released, as opposed to no

initial action taken for crime reduction prioritization.

Another point of interest in this figure is that releasing all low recidivism risk individuals (a3) is

never a chosen action. When more individuals than the high health and low recidivism risk group

are released, the policies release all high health risk (a2).

Next, we examine the costs associated with the chosen policies for each prioritization type. Figure

4 shows the mean infection and crime cost each epoch for out-of-sample tests of the cluster algorithm

policy for the polynomial contact rate assumption, under different priority weights. Notice that

long-term health effects exceed crime throughout the planning horizon when we prioritize crime

reduction. For the equal priority weight, crime exceeds long-term health effects for one epoch, and

when we prioritize health, this is the case for two epochs.
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Figure 4 Mean cost by cost type over planning horizon for different priority weights under polynomial contact

rate assumption for out-of-sample tests using cluster algorithm policy.

Figure 5 Total mean discounted cost by cost type for different priority weights under polynomial contact rate

assumption for cluster algorithm out-of-sample tests.

In Figure 5, we illustrate the mean total discounted cost for each priority weight for the entire

planning horizon. The total discounted crimes committed exceed total discounted long-term health

effects for the health prioritization and equal priority objectives. This trend is reversed for the

crime reduction prioritization. Here, the priority weights are able to produce distinct policies with

the desired differentiated effects.

8. Conclusion

In this paper, we considered the novel de-densification for pandemic containment problem, devel-

oping models and solution methods to implement strategic releases that weigh epidemiological and

release-related risk. We introduced the problem, noted its key features, and constructed a multi-

criteria, multidimensional MDP to model facility population, decisions, and associated costs. We

modeled the social distancing effect of reduced crowding with the concept of a de-densification func-

tion, and derived theoretical properties under particular assumptions. We also developed general

approaches with open-source software implementations for epidemiological MDPs.

In particular, we formulated a cluster-based algorithm to perform large out-of-sample tests of an

online sparse sampling policy. We also improved the online sparse sampling algorithm itself, using

k-means clustering to create more representative sample nodes in the lookahead tree. These two

contributions allowed us to develop a policy that demonstrably improves objective performance
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over a static benchmark on a large set of multi-epoch trajectories under a range of contact rate

assumptions and two priority weights.

As part of our numerical studies, we also constructed freely available benchmark epidemiological

test instances, that can be used in future research. We developed basis functions for Q learning with

linear function approximation specific to these test instances and demonstrate their effectiveness

in health prioritization cases.

This area of research is new, and provides many opportunities for innovation. One area that could

benefit from future study is the de-densification function. The basis functions could also be adapted

to try to better approximate the Q function in crime reduction prioritization cases. Additionally,

it could be interesting to apply neural networks to the problem, to see how computational runtime

and out-of-sample objective performance compare to the online sparse sampling algorithm.
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Yin X, Büyüktahtakın İE, Patel BP (2023) Covid-19: Data-driven optimal allocation of ventilator supply

under uncertainty and risk. European journal of operational research 304(1):255–275.

Zaric GS, Brandeau ML (2001) Resource allocation for epidemic control over short time horizons. Mathe-

matical Biosciences 171(1):33–58.

Zaric GS, Brandeau ML (2002) Dynamic resource allocation for epidemic control in multiple populations.

Mathematical Medicine and Biology 19(4):235–255.

Electronic copy available at: https://ssrn.com/abstract=4340528



33

Online Supplement of the Paper:

“The Costs of Overcrowding (and Release): Strategic Discharges

for Isolated Facilities During Epidemiological Outbreaks”

Appendix A: Notation

Category Symbol Meaning
MDP Ω MDP State Space

A MDP Action Space
Pij(a) Probability of transition from i to j if action a is taken
ρep(i, a) Expected epidemiological cost of i∈Ω, a∈A(i)
ρrel(i, a) Expected release cost of i∈Ω, a∈A(i)
λep Weight in [0,1] of epidemiological costs
ρ(i, a) Weighted cost function
` Length of epoch
T finite-horizon length
H Set of health risk levels
R Set of release categories

r∗ ∈R Category ineligible for release
V Set of virus states, e.g., S, I, R
vihr Number of individuals in population with h∈H, r ∈R, v ∈ V
W (i) Value function for i∈Ω
Q(i, a) State-action value function for i∈Ω, a∈A(i)
π(i) Optimal action taken in state i∈Ω

SpSa G Generative model of the MDP
d Current depth of lookahead tree
Ha Action horizon length
Hfinal Number of epochs no action is taken
|C| Number of children for each node, action pair
Nfinal Number of trajectories to estimate value function of leaves

SpSa-C |C| Number of samples to form representative children
ST-SpSa(-C) ω Number of trajectory groups

QLLFA θ Weight parameters learned by the algorithm
k Iteration of the algorithm
θk Estimate of θ during iteration k

φ(i, a) Basis functions to estimate Q(i, a) for i∈Ω, a∈A(i)
ε Convergence criterion

Epi Instance α Average contact rate per day, whole population
βh Probability of transmission for invidividual with health risk h∈H
ξh Rate of recovery from infection for invidividual with health risk h∈H
N Total facility population

N(i, a) Population size after release action a occurs in state i
κ2, κ1, κ0 Constants for quadratic de-densification function (1)

Release Action a0 none
a1 high health, low recidivism only
a2 high health only
a3 low recidivism only
a4 only exclude low health, high recidivism
a5 all eligible

Table 14 Summary of Notation and Key Parameter
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Appendix B: Algorithms

Algorithm 1 Sparse Sampling (SpSa)

Input: Action horizon Ha, initial state i, discount γ, MDP generative model G, number of children

|C|, number of final epochs Hfinal, number of trajectories to estimate value function of leaves

Nfinal.

Output: Action that maximizes estimated Q function at state i.

1: Define {(a, Q̂Ha(i, a)) : a∈A(i)}=EstimateQ(Ha, i, γ, G, |C|, Hfinal, Nfinal)

2: return arg maxa∈A(i){Q̂Ha(i, a))}

Algorithm 2 EstimateQ

Input: Current depth of lookahead tree d, current state i, discount γ, MDP generative model G,

number of children |C|, number of final epochs Hfinal, number of trajectories to estimate value

function of leaves Nfinal.

Output: Estimated Q function for current state i and all allowable actions.

1: if State i is absorbing then

2: return {(a0,0)}

3: else if Depth d= 0 then

4: return EstimateFinalW(i, γ, G, Hfinal, Nfinal)

5: else

6: for Action a∈A(i) do

7: Using generative model G, generate |C| samples of next states C and calculate mean

sampled cost ρ̂(i, a)

8: Estimate Q̂d(i, a) as follows:

Q̂d(i, a) = ρ̂(i, a) + γ
1

|C|
∑
j∈C

EstimateW(d− 1, j, γ,G, |C|,Hfinal,Nfinal)

9: end for

10: end if

11: return {(a, Q̂d(i, a)) : a∈A(i)}
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Algorithm 3 EstimateFinalW

Input: Current state i, discount γ, MDP generative model G, number of final epochs Hfinal, number

of trajectories to estimate value function of leaves Nfinal.

Output: Estimated value function for state i during final Hfinal epochs.

1: Using generative model G, generate Nfinal trajectories of Hfinal epochs each from state i, taking

null action a0 each epoch t and noting reward rnt, for n= 1, . . . ,Nfinal.

2: Calculate mean total discounted reward

Ŵ0(i, a0) =
1

Nfinal

Nfinal∑
n=1

Hfinal−1∑
t=0

γtρ̂nt

3: return {(a0, Ŵ0(i, a0))}

Algorithm 4 EstimateW

Input: Current depth of lookahead tree d, current state i, discount γ, MDP generative model G,

number of children |C|, number of final epochs Hfinal, number of trajectories to estimate value

function of leaves Nfinal.

Output: Estimated value function for current state i.

1: Define {(a, Q̂d(i, a)) : a∈A(i)}=EstimateQ(d, i, γ, G, |C|, Hfinal, Nfinal)

2: return maxa∈A(i){Q̂d(i, a))}

Appendix C: Open-Source Generic Markov Simulation Code

To test our methods, we develop a generic Markov simulation framework in R that can be used for other

generative MDP problems. This framework includes a number of objects that work together to simulate and

analyze discrete Markov chains, including the following.

• GlobalMarkovParameters. This class contains attributes that describe the Markov chain, such as

num epochs (length of horizon) and state components (labels for components associated with a state, e.g.,

Infectious, h1).

• TransitionSimulator. This class simulates the transition from a state, action pair, generating a reward

and next state.

• ActionGenerator. This class generates the set of actions available at a particular state.

• ActionSimulator. This class determines the action to take at a particular state.

• MarkovTrajSimulator. This class generates a Markov trajectory of particular length, using Global-

MarkovParameters, TransitionSimulator, and ActionSimulator objects.

• MarkovResults. This class analyzes a dataframe of Markov trajectories, calculating useful metrics

such as mean total discounted reward for a given set of discounts and weights.

We also implement generic subclasses of ActionSimulator that can be used with discrete Markov chains.
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Algorithm 5 Split-Trajectory Sparse Sampling (ST-SpSa)

Input: Action horizon Ha, initial state i, discount γ, MDP generative model G, number of children

|C|, number of final epochs Hfinal, number of trajectories to estimate value function of leaves

Nfinal, number of out-of-sample trajectories Ntraj, number of trajectory groups ω.

Output: Set of Ntraj trajectories of length Ha +Hfinal with actions taken in first Ha epochs.

1: Obtain estimated optimal initial action with SpSa(Ha, i, γ, G, |C|, Hfinal, Nfinal).

2: Generate reward and next states Ω̂1 from i and estimated optimal action for Ntraj trajectories.

3: for t= 1, . . . ,Ha− 1 do

4: Identify actions available in each state j ∈ Ω̂t. Add dimension with index to separate states

with different actions available.

5: Perform cluster analysis on Ω̂t to determine ω representative states and corresponding

trajectory groups (clusters).

6: Obtain estimated optimal action for each representative state j with SpSa(Ha− t, j, γ, G,

|C|, Hfinal, Nfinal).

7: Generate reward and next state for each trajectory using the estimated optimal action from

its trajectory group. Record set of next states Ω̂t.

8: end for

9: For each trajectory, generate reward and next state for Hfinal final epochs.

10: return Trajectories.

Algorithm 6 Cluster Adaptation of EstimateQ – Lines 7–8

1: Using generative model G, generate |C| samples of next states C and calculate mean sampled

cost ρ̂(i, a)

2: Perform cluster analysis of nonabsorbing states in C to construct |C| children C

3: For c∈C, denote the states in its cluster as Cc

4: Estimate Q̂d(i, a) as follows:

Q̂d(i, a) = ρ̂(i, a) + γ
|Cc|
|C|

EstimateW(d− 1, j, γ,G, |C|,Hfinal,Nfinal, |C|)

• ZeroActionSimulator. This class assigns a zero action, regardless of state. For example, the subclass

for our experiments, EpiRelZeroActionSimulator, releases no one from the facility.

• FixedActionSimulator. This class takes as input a list of fixed actions to take at particular epochs,

regardless of state. For any unspecified epoch, the zero action is taken.
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Algorithm 7 Q Learning with Linear Function Approximation for Epidemiological Control.

Input: Total environmental actions K, initial state i0, randomized behavioral policy π̂, conver-

gence criterion ε, step size ζ, generative model for the MDP G.

Output: Estimate of weight parameter θ.

Initialize j := 1, k := 1, i1 := i0. Generate randomized trajectory as follows.

while j ≤K do

if ik is absorbing state then

Define ak := a0, the null action. Define ik+1 := i0 and ρ(ik, ak) = 0.

Increment k by 1.

else

Sample action ak from π̂(ik, ·). Sample reward ρ(ik, ak) and next state ik+1 from G.

Increment j and k by 1.

end if

end while

Let K̄ denote the total number of state-action pairs in the trajectory.

Initialize parameter θ= θ0.

while k≤ K̄ and and ‖θk+1− θk‖ ≥ ε‖θk‖ do

Update θ with gradient ascent as follows (Chen et al. 2019)

if ik is not absorbing then

θk+1 = θk + ζφ(ik, ak) (ρ(ik, ak) + γmaxa φ(ik+1, a)T θk−φ(ik, ak)
T θk)

else

Set θk+1 = θk.

end if

end while

Set θ= θk.

• RandomActionSimulator. This class chooses a random action from available actions. The class

requires an ActionGenerator object to determine available actions. Options to limit the epochs when actions

can be taken or to set a probability of no action taken are available.

• QActionSimulator. Given a function φ : Ω×A→ Rn and weights θ ∈ Rn, this class determines the

action that maximizes φ(i, a)T θ for particular state i.

The benefit of this generic framework, available on Github, is that it allows practitioners to adapt the

dynamic methods that we utilize to other problems that can be modeled with MDPs. For instance, we

implement Algorithm 5, ST-SpSa, in R, taking these generic classes as input. By creating subclasses specific

to new MDPs, the ST-SpSa can be easily utilized for new problems. In addition, MarkovTrajSimulator and

RandomActionSimulator can be used to create random trajectories, to be utilized in the Q learning algorithm
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with linear function approximation, Algorithm 7. When an optimal θ is determined for particular function

φ, out-of-sample tests can implemented using MarkovTrajSimulator and QActionSimulator.

As an aside, because Algorithm 7 does not require online generation of trajectories via EpiModel, an

R program, we implement this Q learning with linear function approximation algorithm in our preferred

language, Python. While this code is more tailored to our problem, slight adjustments to the functions that

read trajectories and define phi can be made to utilize the algorithm in other contexts.
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