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Can Transformers Learn Optimal Filtering
for Unknown Systems?

Zhe Du , Member, IEEE , Haldun Balim , Member, IEEE , Samet Oymak , Member, IEEE ,
and Necmiye Ozay , Senior Member, IEEE

Abstract—Transformer models have shown great
success in natural language processing; however, their
potential remains mostly unexplored for dynamical
systems. In this letter, we investigate the optimal output
estimation problem using transformers, which generate
output predictions using all the past ones. Particularly, we
train the transformer using various distinct systems and
then evaluate the performance on unseen systems with
unknown dynamics. Empirically, the trained transformer
adapts exceedingly well to different unseen systems
and even matches the optimal performance given by
the Kalman filter for linear systems. In more complex
settings with non-i.i.d. noise, time-varying dynamics, and
nonlinear dynamics like a quadrotor system with unknown
parameters, transformers also demonstrate promising
results. To support our experimental findings, we provide
statistical guarantees that quantify the amount of training
data required for the transformer to achieve a desired
excess risk. Finally, we point out some limitations by
identifying two classes of problems that lead to degraded
performance, highlighting the need for caution when using
transformers for control and estimation.

Index Terms—Filtering, neural networks, statistical
learning.

I. INTRODUCTION

MANY control problems such as model predictive con-
trol and safety analysis are built upon predictions of

system’s future trajectories. This prediction (or estimation)
problem is well studied and dates back to the classical
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Fig. 1. Training a transformer for dynamical system prediction.

Kalman filter [1], which is optimal for linear systems with
Gaussian noise. Methods are also developed for more complex
setups, e.g., extended Kalman filter [2] for nonlinear systems,
particle filters [3] when system dynamics can be sampled, and
adaptive filters and adaptive filters [4] for unknown systems.
Existing methods typically require the knowledge of system
dynamics, linearity, time-invariance, or Gaussian noise, which,
for more challenging and realistic settings, may yield degraded
performance.

Prediction, on the other hand, in the domain of natural lan-
guage processing, has witnessed recent success thanks to the
transformer models [5], which are deep learning architectures
that can generate text prediction after feeding into an input text
sequence. In this letter, we investigate the use of transformers
in predicting dynamical system’s outputs.

To begin with, we assume a priori access to a collection
of M systems drawn from some distribution Dsys and their
respective output trajectories {yt}. These are referred to as
source systems and trajectories respectively. We then train a
transformer using the source trajectories so that after feeding
into past outputs y0:t−1, the transformer is able to produce an
estimate ŷt of the true output yt (as in Fig. 1). During test-time,
given a previously unseen system from the same distribution
Dsys, we feed its observed trajectory to the trained transformer
and evaluate its prediction performance. As discussed in [6], in
this setting transformer acts like a data-driven adaptive algo-
rithm: given a system, the transformer is able to automatically
adapt to it and make predictions by leveraging past data. In
the remainder of this letter, we refer to a transformer trained
in this way as meta-output-predictor (MOP).

Contributions: Our first contribution is numerically demon-
strating the capabilities of MOP. The experiments show that
MOP matches the optimal performance given by the Kalman
filter for different unseen linear systems and is able to handle
challenging settings such as non-i.i.d. noise, time-varying
dynamics, and nonlinear quadrator systems. Complementing
our empirical contributions, we theoretically establish that the
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excess risk incurred by MOP decays with rate O(1/
√

MT)
where T is the prediction time horizon, under appropriate
assumptions. Motivated by our theoretical analysis, we identify
a class of systems with slow mixing properties, for which
MOP encounters difficulties in learning the optimal estimator.
Our experiments also indicate some limitations of MOP in the
presence of distribution shifts.

Related Work: Compared with earlier neural sequence mod-
els, transformers [5] incorporate the attention mechanism that
is able to better keep longer memories thus can handle longer
input sequences. As a result, a transformer can be trained to
perform a variety of tasks rather than a single task [7], [8], [9],
which is known as in-context learning and serves as the foun-
dation of MOP training in our work. Particularly, transformers
are shown to be able to in-context learn linear functions [10];
in-context reinforcement learning is studied in [11]. Recent
work in [6] studies theoretical properties of transformer-based
in-context learning for both i.i.d. data and data with Markovian
temporal dependencies (i.e., state trajectories), and provides
guarantees in terms of excess risk and transfer risk. Compared
with [6], we (i) consider the system output prediction problem
with data being non-Markovian, (ii) demonstrate the versatility
of MOP through evaluations on several challenging scenarios,
and (iii) study scenarios that can lead to degradations in MOP
performance.

In terms of filtering/prediction for dynamical systems, there
have been many recent advances. When the system dynam-
ics is known, observer design for deterministic systems is
studied in [12] through contraction analysis. On the other
hand, data-driven adaptive methods have received growing
attention. For nonlinear system, techniques such as kernel
methods [13] and nonlinear splines [14] are studied. Linear
system setups allow for more principled methods such as
online optimization [15], explicit [16] or implicit [17], [18]
system identification, and policy optimization [19]. Given a
class of systems, existing works typically propose algorithms,
through which a predictor/filter is learned from data for a
specific system. This is in contrast to the framework in our
work: Training MOP with various source systems in a class
empower MOP the generalizability to the whole class. In other
words, the learned MOP is not a specific filter, but a prediction
algorithm that can filter any system in the class. And as long
as the source systems are representative for the system class,
the transformer performance is guaranteed, which is no longer
confined by common prerequisites such as dynamics linearity,
noise Gaussianity, etc.

II. PROBLEM SETUP

To solve the output estimation problem for an unknown
system, we will train a transformer model with data trajectories
generated by the following M source systems {Si}M

i=1 drawn
from the same distribution Dsys:

Si :
{

xi,t+1 = fi
(
xi,t

)
+ wi,t+1

yi,t = gi
(
xi,t

)
+ vi,t,

(1)

where xi,t ∈ Rn and yi,t ∈ Rm are the state and output at
time t in the ith system; fi(·) and gi(·) are the state dynamics
and output functions with fi(0) = 0 and gi(0) = 0; wi,t ∼
N(0, σ 2

w,iIn) and vi,t ∼ N(0, σ 2
v,iIm) are the process and

output noise, which are mutually independent for all i and t.
For simplicity, it is assumed that the initial state xi,0 = 0.
These source systems may be obtained through pre-existing

datasets or simulation environments. The target system under
evaluation is denoted by S0, which is drawn from the same
distribution Dsys and does not have to be contained within the
source systems.

We assume that there exists a constant Lg > 0 such that for
any i, x, x′, ‖gi(x) − gi(x′)‖ ≤ Lg‖x − x′‖. Let σw:= maxi σw,i
and σv:= maxi σv,i. Furthermore, we assume these systems
satisfy the following stability condition.

Assumption 1 (Stability): Let f (t)
i (·, ·) denote the t-step state

evolution function such that f (t)
i (xi,τ , wi,τ+1:τ+t) = xi,τ+t for

all τ ∈ N. Then, there exists constants ρ ∈ [0, 1) and Cρ > 0
such that for any system i and time step t, for any x, x′ and
noise sequence W := {w(τ )}τ∈[t], we have

‖f (t)
i (x,W) − f (t)

i

(
x′,W

)
‖ ≤ Cρρt‖x − x′‖. (2)

We define the notation Lρ := Cρ

1−ρ . When the class of
dynamical systems we are sampling from consists of linear
systems with fi(x) = Aix, then Assumption 1 is satisfied
when the spectral radius ρ(Ai) < 1 for all i. It is also
satisfied by systems that are contracting [20] or exponentially
incrementally input-to-state stable [21] with input w.

In this letter, we seek to predict system output using a
transformer [5], which is a deep sequence model TFθ (·) that
maps system output sequences Yt := y0:t to ŷt+1 := TFθ (Yt),
an estimation of the true output yt+1 at time t+1. The trainable
parameters of the transformer are denoted by θ ∈ % for some
parameter set %. The transformer structure allows the sequence
length t to be varying.

Assuming the access to M length-T output trajectories
{yi,0:T}M

i=1 generated by each of the M source systems, the
goal in this letter is to train a transformer model that, at
each time t, can predict the output y0,t+1 of the target system
S0 only using the past outputs y0,0:t. Let Yi,t := yi,0:t
denote the outputs up to time t, which is also known as the
prompt (to predict yi,t+1), then the transformer is trained by
solving

T̂F = arg min
TF∈A

1
MT

M∑

i=1

T∑

t=1

&
(
yi,t,TF(Yi,t−1)

)
, (3)

where A := {TFθ :θ ∈ %} and &(·, ·) ≥ 0 is the loss function.
To apply T̂F(·) to the target systems S0, we simply take
T̂F(Y0,t) as the prediction for y0,t+1.

Training a model as in (3) where the data comes from a
diversity of sources is also known as in-context learning. As
a result of the training diversity, the transformer can achieve
good performance on any of the source systems as well as
demonstrate generalization ability for the unseen target system
S0. Hence, we refer to the obtained transformer T̂F as meta-
output-predictor (MOP).

In what follows, we first empirically demonstrate the
performance of MOP in Section III under various setups,
which is followed by theoretical analysis in Section IV.

III. EXPERIMENTS

In this section, we present the experimental results for
the transformer-based MOP in different scenarios. In each
scenario, during the training, we fix the number of source
systems M = 20000 and training trajectory length T = 50.
To evaluate the performance of MOP on different unseen test
systems, for each experimental setup, we randomly generate
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Fig. 2. Output predictions for linear systems: (a) with i.i.d. Gaussian noise; (b) with colored (non-i.i.d.) noise; (c) with dynamics changes at t = T/2.
MOP performs as well as or better than Kalman filter even though it does not have access to the system dynamics.

N = 1000 systems and record the prediction error ‖ŷt − yt‖
over trajectories each with length T = 50, where ŷt denotes
the prediction for yt. We use GPT-2 [22] architecture with
12 layers, 8 attention heads and 256 embedding dimensions.
In each experimental setup, the transformer model is trained
for 10000 training steps with batch size 64. The &2-norm is
selected as the training loss function. The code we use to
produce the figures and execute our algorithm can be accessed
at https://github.com/haldunbalim/Meta-Output-Predictor.

A. Linear Systems
We first consider the simplest setting with linear systems

and i.i.d. Gaussian noise, i.e., f (x) = Ax and g(x) = Cx
in (1). The state dimension is n = 10 and the output dimension
is m = 5. For each source and test system, we generate
matrix A with entries sampled uniformly between [−1, 1],
which is then followed by scaling so that the largest eigenvalue
is 0.95. The C matrix is generated with entries sampled
uniformly between [0, 1]. The noise covariance are σ 2

w =
0.01 and σ 2

v = 0.01. Kalman filter and linear autoregressive
predictor are used as baselines, where the latter is given by
ŷt+1 = α1yt + α2yt−1 and the matrix parameters (α1,α2)
are updated in an online fashion using the ordinary least
squares (OLS). The results are presented in Fig. 2(a). We see
that after some burn-in time (∼ 20 steps), MOP eventually
matches the performance of Kalman filter. This is because the
transformer needs to collect certain amount (O(n+m)) of data
to implicitly learn the system dynamics, while Kalman filter,
designed with the exact system knowledge, reaches optimality
immediately.

In the next experiment, we consider the case where the noise
process {wt} is non-i.i.d. Specifically, we let wt = ∑t

t′=t−4 ηt′

and vt = ∑t
t′=t−4 γt′ where ηt

i.i.d.∼ N(0, 0.01) and γt
i.i.d.∼

N(0, 0.01). When applying the Kalman filter in this case, we
disregard the fact that wt and vt each are temporally correlated
and simply use the variances of wt and vt for prediction. We
note that for non-i.i.d. noise Kalman filter is no longer optimal.
Fig. 2(b) shows the results for this case. We can observe the
advantage of MOP over Kalman filter as Kalman filter has lost
its optimality whereas MOP has learned the non-i.i.d noise
prior during training.

Next, we evaluate the ability of MOP to adapt to run-time
changes in the dynamics. Specifically, when generating the test
trajectories, we change the underlying dynamics to a randomly
generated new one at time t = T/2 = 50. The results are
presented in Fig. 2(c). We see that when dynamics changes
occur, there are sudden jumps in prediction error for both
MOP and the Kalman filter; as we collect more data from the
new dynamics, MOP quickly adapts, and achieves the same
performance as before at around t = 100. The convergence of
MOP after dynamics changes is much slower than the one at

Fig. 3. Output predictions for planar quadrotor systems.

the beginning because the prompt always contains data from
the original system.

B. Planar Quadrotor Systems
We consider the underactuated 6D planar quadrotor systems

as in [23] with the following discrete-time dynamics:




xt+1
zt+1
φt+1
ẋt+1
żt+1
φ̇t+1





︸ ︷︷ ︸
=:xt+1

=





xt + (ẋt cos(φt) − żt sin(φt))τ

zt + (ẋt sin(φt) + żt cos(φt))τ

φt + φ̇tτ

ẋt +
(
żtφ̇t − g sin(φt)

)
τ

żt +
(
−ẋtφ̇t − g cos(φt) + (u0t + u1t )/m

)
τ(

u0t − u1t

)
lτ/J




+ wt

yt = Cxt + vt.

The mass, length and moment of inertia parameters (m, l, J)
are chosen uniformly from [0.5, 2], g is set to be constant
10. For each system a trajectory is generated by randomly
sampled actions. The noise w, v are sampled from N(0, 0.01).
The discretization time τ = 0.1. The matrix C ∈ R3x6 has
elements uniformly sampled in [0, 1]. The results are provided
in Fig. 3. We see that MOP significantly outperforms the
extended Kalman filter.

IV. THEORETICAL GUARANTEES

Before analyzing the performance of MOP T̂F, we first
introduce a few notions and assumptions. The analysis in this
section generalizes that in [6], which studies a special case
where state is observed (i.e., g is known and equal to the
identity map and there is no measurement noise).

A. Preliminaries
Definition 1 (Covering Number): Consider a set Q and a

distance metric d(·, ·) on Q. For a set Q̄N := {q1, . . . , qN},
we say it is an ε-cover of Q if for any q ∈ Q, there exists
qi ∈ Q̄N such that d(q, qi) ≤ ε. The number N(Q, d, ε) is the
smallest N ∈ N such that Q̄N is an ε-cover of Q.
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We will analyze the set A through its ε-cover. To do so, we
define the following distance on A.

Definition 2 (Distance Metric): Let YT := y0:T denote
a trajectory of some system i under the noise sequence
{w0:T , v0:T}. For any two transformers TF,TF′ ∈ A,
define the distance metric µ(TF,TF′) :=
supt≤T supw0:t,v0:t

‖TF(Yt−1)−TF′(Yt−1)‖
maxτ≤t ‖wτ−1‖+maxτ≤t ‖vτ−1‖ .

Though this metric is regarding the transformers TF,TF′
in the transformer space A, it can be viewed as a metric
between their respective parameters θ, θ ′ in the parameter set
%. When the noise is bounded, the distance can also be defined
without using the normalization factor in the denominator,
e.g., [6]. Next, we quantify the robustness of the transformer
in terms of how much the prediction changes with respect
to the perturbations of its prompt. This will help us establish
generalization bounds for the transformer trained in (3).

Assumption 2 (Transformer Robustness): Consider a tra-
jectory {y0:t} generated by some system i under the noise
sequence {w0:t, v0:t}. Let {y′

0:t} denote another trajectory under
the same noise except that at time τ , {wτ , vτ } is replaced
by {w′

τ , v′
τ }. Let Yt := y0:t and Y ′

t := y′
0:t. Suppose the

loss function &(y, ·) is L&-Lipschitz. Let B := ∩t
j=0{‖wj‖ ≤

w̄, ‖vj‖ ≤ v̄} for some w̄, v̄ ≥ 0 and E′[ · ] := E[· | B]. Then,
there exist constants K ≥ 0 such that for any system i, any t
and {w0:t−1, v0:t−1}, any τ < t and {w′

τ , v′
τ }, and any TF ∈ A,

we have

E′
wt,vt

[∣∣&
(
yt,TF(Yt−1)

)
− &

(
yt,TF(Y′

t−1)
)∣∣]

≤ KL&

t − τ

t−1∑

j=τ

‖yj − y′
j‖.

In this assumption, trajectories y′
j = yj for j < τ and

possibly differ afterward due to the perturbation at time τ ,
which explains the summation term in the upper bound. It is
shown in [6, Lemma B.5] that this assumption holds for a
wide class of transformers.

B. Performance Guarantees
For a transformer TF ∈ A, we define the following risk to

evaluate its performance on the target system S0 over the time
horizon T

L(TF) := 1
T

T∑

t=1

E[&
(
y0,t,TF(Y0,t−1)

)
], (4)

where the expectation is over the target system S0 and noise
terms {w0,t, v0,t}. Let TF) ∈ A denote an optimal transformer
that minimizes L(TF). Define the excess risk for T̂F obtained
via minimizing the loss in (3) as

Risk
(
T̂F

)
:= L

(
T̂F

)
− L

(
TF)

)
. (5)

Then, we have the following performance guarantees on T̂F.
Theorem 1: Suppose Assumptions 1 and 2 hold, and the

loss function &(y, ·) is L&-Lipschitz and &(·, ·) ≤ B for some
B ≥ 0. Then, when MT ≥ 3 max(

√
n,

√
m), for all ε > 0, with

probability at least 1 − δ,

Risk
(
T̂F

)
≤ 12Bδ + 4L&ε + B̄

√
log(4N(A, µ, ε′)/δ)

cMT
,

where B̄:=2B+7KL&(LgLρσw+σv)
√

log(4MT/δ) log(T); ε′ :=
ε/((σw + σv)

√
log(4MT/δ)); c is some absolute constant;

N(·, ·, ·) and µ are the covering number and distance metric
from Definitions 1 and 2.

For fixed failure probability δ and distance ε, the upper
bound decays with rate O(1/

√
MT). When the transformer

mapping is Lipschitz, the covering number term can be upper
bounded by logN(A, µ, ε′) ≤ O(n% log(%̄

√
n%/ε′)), where

n% and %̄ are respectively the dimension and magnitude of
the transformer parameter set %.

C. Proof of the Main Theorem
In this section, we provide the proof for Theorem 1.

Extending Assumption 2, the following lemma tells how the
noise {w, v} would affect the loss performance.

Lemma 1: Suppose Assumptions 1 and 2 hold. Under the
same setup as in Assumption 2, let ȳ := LgLρw̄ + v̄. Then,

E′
wt,vt

[∣∣&
(
yt,TF(Yt−1)

)
− &

(
yt,TF(Y′

t−1)
)∣∣] ≤ 2KL&ȳ

t − τ
.

Proof: From Assumption 2, it only suffices to show∑t−1
j=τ ‖yj − y′

j‖ ≤ 2ȳ. In Assumption 2, as a result of
perturbing the noise sequence {w0:t, v0:t} at time τ , the
original sequence {x0:t, y0:t} and the perturbed sequence
{x′

0:t, y′
0:t} are the same up to time τ − 1 and possibly

differ afterward. For j = τ, . . . , t, according to the stability
in Assumption 1, we have ‖xj − x′

j‖ ≤ Cρρj−τ‖wτ − w′
τ‖.

Since, for all i, gi(·) is assumed Lipschitz, for j =
τ , we have ‖yj − y′

j‖ ≤ Lg‖xj − x′
j‖ + ‖vτ − v′

τ‖ ≤
LgCρρj−τ‖wτ − w′

τ‖ + ‖vτ − v′
τ‖; similarly for j > τ , we

have ‖yj − y′
j‖ ≤ LgCρρj−τ‖wτ − w′

τ‖. Taking the summation
gives that

∑t−1
j=τ ‖yj − y′

j‖ ≤ LgLρ‖wτ − w′
τ‖ + ‖vτ − v′

τ‖ ≤
2(LgLρw̄ + v̄) = 2ȳ.

Proof for Theorem 1: To bound the excess risk Risk(T̂F) :=
L(T̂F)−L(TF)) in (5), we first define the following empirical
risk on the M source systems

L̂(TF) := 1
MT

M∑

i=1

T∑

t=1

&
(
yi,t,TF(Yi,t−1)

)
︸ ︷︷ ︸

=:&i,t

, (6)

Noticing that T̂F = arg minTF∈A L̂(TF), the decom-
position Risk(T̂F) = (L(T̂F) − L̂(T̂F)) + (L̂(T̂F) −
L̂(TF)))+ (L̂(TF))−L(TF))) becomes Risk(T̂F) ≤ (L(T̂F)−
L̂(T̂F)) + (L̂(TF)) − L(TF))). This further gives

Risk
(
T̂F

)
≤ 2 sup

TF∈A
|L̂(TF) − L(TF)|. (7)

In the following, we proceed as follows: (i) assume the
noise sequence {wi,t, vi,t} is bounded and show that for any
TF ∈ A, |L̂(TF) − L(TF)| is bounded; (ii) use a covering
number argument to bound supTF∈A |L̂(TF) − L(TF)|; (iii)
show {wi,t, vi,t} can be bounded with high probability.

Step (i): Upper bound |L̂(TF) − L(TF)|.
Define the following risks for the system i = 0, 1, . . . , M

L̂i(TF) := T−1
T∑

t=1

&i,t, Li(TF) := T−1
T∑

t=1

E
[
&i,t

]
.

This gives L̂(TF)=M−1 ∑M
i=1 L̂i(TF) and L(TF)=L0(TF)

=M−1 ∑M
i=1 Li(TF) since Li(TF) i.i.d. for all i. We then

have |L̂(TF) −L(TF)| = |M−1 ∑M
i=1(L̂i(TF) −Li(TF))|. We
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will bound each individual L̂i(TF) − Li(TF) and then apply
concentration result to bound |L̂(TF) − L(TF)|.

Define the event BM := ∩M
i=0 ∩T

j=0 {‖wi,j‖ ≤ w̄, ‖vi,j‖ ≤ v̄}
for some w̄, v̄ ≥ 0, and Let P′(·) := P( · | BM) and E′[ · ] :=
E[ · | BM] denote the probability measure and expectation
conditioning on the event BM . Let Si,t := {wi,0:t, vi,0:t} for
t ≥ 1 and Si,0 := φ. Define Xi,t := E′[L̂i(TF) | Si,t], then
the process {Xi,t}T

t=0 forms a Doob’s martingale. Particularly,
note that Xi,T = L̂i(TF) and Xi,0 = E′[L̂i(TF)]. Consider the
martingale difference Xi,τ − Xi,τ−1, we have

|Xi,τ − Xi,τ−1|

=
∣∣∣T−1

T∑

t=1

E′[&i,t | Si,τ
]
− E′[&i,t | Si,τ−1

]∣∣∣

=
∣∣∣T−1

T∑

t=τ

E′[&i,t | Si,τ
]
− E′[&i,t | Si,τ−1

]∣∣∣

≤ B/T + T−1
T∑

t=τ+1

∣∣∣E′[&i,t | Si,τ
]
− E′[&i,t | Si,τ−1

]∣∣∣,

where the last line used the fact &(·, ·) ≤ B. Note that each
summand in the above summation can be upper bounded by
2KL&ȳ
t−τ according to Lemma 1. The equation above then gives

|Xi,τ −Xi,τ−1| ≤ T−1(B + 2KL&ȳ log(T)). With this martingale
difference bound, applying the Azuma-Hoeffding’s inequality
to {Xi,t}T

t=0 gives

P′(|Xi,T − Xi,0| ≥ ε
)

= P
(
|L̂i(TF) − Li(TF) − +i| ≥ ε | BM

)

≤ 2e
− Tε2

(B+2KL& ȳ log(T))2
.

where +i := Li(TF) − E′[L̂i(TF)]. Let Yi := L̂i(TF) −
Li(TF) − +i, then the above equation tells that Yi is sub-
Gaussian conditioning on BM . Following from sub-Gaussian
concentration bound, we have

P(M−1∣∣
M∑

i=1

Yi
∣∣ ≥ ε

∣∣∣BM) ≤ e
− cMTε2

(B+2KL& ȳ log(T))2
, (8)

for some absolute constant c. This further translates to,
conditioning on BM , with probability at least 1 − δ,

∣∣M−1
M∑

i=1

Yi
∣∣ ≤ (B + 2KL&ȳ log(T))

√
log(2/δ)/(cMT).

The definition of Yi gives |M−1 ∑M
i=1 Yi| = |L̂(TF) − L(TF)

−M−1 ∑M
i=1 +i| ≥ |L̂(TF) − L(TF)| − |M−1 ∑M

i=1 +i|. This
implies, conditioning on BM , with probability at least 1 − δ,

∣∣L̂(TF) − L(TF)
∣∣ ≤

∣∣M−1
M∑

i=1

+i
∣∣

+ (B + 2KL&ȳ log(T))
√

log(2/δ)/(cMT). (9)

Step (ii): Upper bound supTF∈A |L̂(TF) − L(TF)|.
Let h(TF) := L̂(TF)−L(TF), here we seek to upper bound

supTF∈A |h(TF)|. For ε > 0, let ε′ := ε/(w̄ + v̄) and let Aε′

denote the minimal ε′-covering of A, under the distance µ in
Definition 2. Note that |Aε′ | = N(A, µ, ε′). This gives that,

sup
TF∈A

|h(TF)|≤ max
TF∈Aε′

|h(TF)|+ sup
TF∈A

min
TF′∈Aε′

|h(TF)−h
(
TF′)|. (10)

For the term maxTF∈Aε′ |h(TF)|, applying the union bound
to (7) for all TF ∈ Aε′ , we obtain that conditioning on BM ,
with probability at least 1 − δ,

max
TF∈Aε′

|h(TF)| ≤
∣∣M−1

M∑

i=1

+i
∣∣

+ (B+2KL&ȳ log(T))
√

log(2N(A, µ, ε′)/δ)/(cMT). (11)

Next we consider the term supTF∈A minTF′∈Aε′ |h(TF) −
h(TF′)| in (10). Let L′(TF) := E[L̂0(TF) | BM], +h,1 :=
|L̂(TF) − L̂(TF′)|, +h,2 := |L′(TF) − L′(TF′)|, and +h,3 :=
|L(TF)−L′(TF)|+|L(TF′)−L′(TF′)|. Using the definition of
h(·) and the triangular inequality, we have |h(TF)−h(TF′)| ≤
+h,1 + +h,2 + +h,3. By the Lipschitzness of the loss function
& and the bound on the distance between TF and TF′, i.e.,
µ(TF,TF′) ≤ ε/(w̄ + v̄), we obtain that, conditioning on BM ,
both +h,1, +h,2 can be upper bounded by L&ε. This gives

sup
TF∈A

min
TF′∈Aε′

|h(TF) − h
(
TF′)| ≤ 2L&ε + +h,3. (12)

Plugging (12) and (11) into (10) followed by invoking
Risk(T̂F) ≤ 2 supTF∈A |h(TF)| in (7) gives that, conditioning
on BM , with probability at least 1 − δ

Risk
(
T̂F

)
≤ 4L&ε + 2+h,3 + 2

∣∣M−1
M∑

i=1

+i
∣∣

+ 2(B+2KL&ȳ log(T))

√
log

(
2N(A, µ, ε′)/δ

)
/(cMT). (13)

Step (iii): Upper bound the noise sequence {wi,t, vi,t}.
Let E denote the event in (13), then we have P(E | BM) ≥

1 − δ. In the event BM , we now set w̄ =
√

3σw
√

log(2MT/δ)

and v̄ =
√

3σv
√

log(2MT/δ). Using the Gaussian concentra-
tion bound and the union bound, we obtain that P(BM) ≥ 1−δ,
when MT ≥ 3 max(

√
n,

√
m). This further yields

P(E) ≥ P(E,BM) ≥ P(E|BM)P(BM) ≥ (1−δ)2 ≥ 1−2δ. (14)

Now we inspect the term |M−1 ∑M
i=1 +i| in the defini-

tion of E, i.e., (13). Note that by definition |+i| =
|E[L̂i(TF)]−E[L̂i(TF)|BM]| ≤ |E[L̂i(TF)|BM](P(BM)−1)|+
|E[L̂i(TF)|Bc

M]P(Bc
M)| ≤ 2Bδ, where the facts &(·, ·) ≤ B and

complement probability P(Bc
M) ≤ δ are used. Hence, we have

|M−1 ∑M
i=1 +i| ≤ 2Bδ. Similarly, we can show +h,3 ≤ 4Bδ.

With these bounds, invoking (14) gives, with probability at
least 1 − 2δ,

Risk
(
T̂F

)
≤ +4L&ε + 12Bδ

2(B + 2KL&ȳ log(T))
√

log(2N(A, µ, ε′)/δ)/(cMT).

Finally, plugging in the definition ȳ := LgLρw̄ + v̄ and ε′ :=
ε/(w̄ + v̄) concludes the proof.

V. SYSTEMS THAT ARE HARD TO LEARN IN-CONTEXT

In this section, we investigate two limitations of MOP, one
explained by our theoretical guarantees, the other regarding
the performance degradation in the face of distribution shifts.

To illustrate the first challenge, consider two distinct classes
of linear systems. The first class employs the same generation
procedure as described in Section III-A. In the second class,
we follow a similar generation procedure, except for the A
matrices, which are generated as upper-triangular matrices.
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Fig. 4. Comparison between dense and upper-triangular A matrices:
(a) prediction error ratio between MOP and Kalman filter; (b) matrix
powers averaged over all source systems.

Fig. 5. Performance of MOP compared to Kalman Filter when noise
level in test is different than train.

Here, the diagonal entries are sampled from the interval
[−0.95, 0.95], while the upper triangular entries are sampled
from the range [−1, 1]. The experimental results, presented in
Fig. 4, demonstrate that, compared with the densely generated
A matrices, the upper-triangular A matrices make it harder for
MOP to learn the optimal Kalman filter. As depicted in Fig. 4,
the powers of the upper-triangular A matrices exhibit a slower
decay rate and even initial overshoot in comparison to those of
the dense A matrices. Noticing that yt = ∑t

i=1 CAiwt−i + vt,
this implies that upper triangular A establishes stronger and
longer temporal correlation between yt and past y’s, i.e., slow
mixing. This poses challenges to MOP but can be potentially
mitigated by feeding MOP longer prompts, i.e., the time
horizon T . Theoretically, the slow decay rate implies larger
Lρ := Cρ/(1 − ρ), which consequentially gives a looser risk
upper bound in Theorem 1.

In our experiments in Section III, the distribution the source
and target systems are drawn from is the same. Here we run
an experiment to illustrate how MOP behaves if the target
distribution is different than the source one. In particular, under
the experimental setup of Section III-A, we train the MOP
with noise covariances σ 2

w = σ 2
v = 0.1In and test on systems

subject to a different noise covariance. As shown in Fig. 5,
MOP’s performance degrades when the target systems are
subject to a different noise distribution, especially when the
noise covariance increases.

VI. CONCLUSION

In conclusion, this letter has demonstrated the potential of
transformers in addressing prediction problems for dynamical
systems. The proposed MOP exhibits remarkable performance
by adapting to unseen settings, non-i.i.d. noise, and time-
varying dynamics.

This letter motivates new avenues for the application of
transformers in continuous control and dynamical systems.
Future work could extend the MOP approach to closed-loop
control problems to meta-learn policies for problems such as
the optimal quadratic control. It is also of interest to explore
new training strategies to promote robustness (e.g., against
distribution shifts) and safety of this approach in control
problems.
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