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Abstract—Due to severe societal and environmental impacts,
wildfire prediction using multi-modal sensing data has become a
highly sought-after data-analytical tool by various stakeholders
(such as state governments and power utility companies) to
achieve a more informed understanding of wildfire activities and
plan preventive measures. A desirable algorithm should precisely
predict fire risk and magnitude for a location in real time. In this
paper, we develop a flexible spatio-temporal wildfire prediction
framework using multi-modal time series data. We first predict
the wildfire risk (the chance of a wildfire event) in real-time,
considering the historical events using discrete mutually exciting
point process models. Then we further develop a wildfire magni-
tude prediction set method based on the flexible distribution-free
time-series conformal prediction (CP) approach. Theoretically,
we prove a risk model parameter recovery guarantee, as well
as coverage and set size guarantees for the CP sets. Through
extensive real-data experiments with wildfire data in California,
we demonstrate the effectiveness of our methods, as well as their
flexibility and scalability in large regions.

Index Terms—Spatial-temporal point process, conformal

prediction, multi-sensor network, fire safety.

I. INTRODUCTION

N RECENT years, widespread large-scale wildfire cause
I severe consequences, including direct property damage and
economic losses, community evacuation, and fatalities, as well
as impacts on nature such as higher CO; emissions [1]. To
monitor and prevent severe consequence caused by large-
scale wildfire, an imperative challenge was brought up: how
to utilize multi-modal data collected through various sens-
ing technologies, so as to precisely predict wildfire risk and
magnitude for a local region and monitor the predictions in
real-time.

Wild fire risk prediction is particularly important for power
utility companies to enhance their capability in making precise
location-wise wildfire risk predictions. To prevent damage and
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economic losses, the utility companies also perform schedule
utility shutdown for high wild-fire risk regions [2]. Despite
such urgent and essential need, utility companies often only
leverage simple models/metrics for risks assessment, such as
the burning index (BI) [3] and the fire load index [4], which
are static metrics that do not take into account the contribution
from historical wildfire incidents and auxiliary environmen-
tal information. Imprecise wildfire risk prediction is causing
sub-optimal power operator actions (such as unnecessary shut-
down) that significantly disrupt reliable power delivery to
customers.

Meanwhile, thanks to the development of sensing technol-
ogy, there have been abundant multi-modal data collected
through a variety of sensing mechanisms to gather wild-
fire information [5], which provides the unique opportunity
for using sensing to perform precise location-wise real-time
wildfire prediction. Common approaches to identify wildfire
incidents include reports from human observers, wireless sens-
ing [6], and infrared technology. Additional environmental
information (e.g., weather and environmental conditions) has
been integrated with each record, thus providing excellent
opportunities for subsequent statistical analyses. As a result,
each wildfire record is multi-modal: we know not only when
and where it occurred but also its magnitude, the condition
of the surrounding (e.g., infrastructure type), current weather
information, and so on. Nevertheless, most existing wildfire
modeling approaches [7], [8], [9], [10] have not been designed
to utilize such abundant multi-modal data.

In this paper, we present a framework for predicting wildfire
risk and magnitude using multi-modal sensing data, based on
a mutually exciting point process model and time series con-
formal prediction sets. Our model can capture the complex
spatial-temporal dependence of the multi-modal data through
mutually exciting point processes, which is a natural frame-
work for real-time prediction, since the conditional probability
can be used to capture fire risk given the past observations.
In addition, we present a fire magnitude prediction algo-
rithm through time-series CP sets. Theoretically, we first prove
model parameter recovery guarantees of the point process
model for risk prediction. We then present coverage guarantees
of fire magnitude prediction sets. Through extensive real-data
experiments, we verify our models’ competitive performances
against other baseline methods regarding the precision of
wildfire risk prediction.

Our prediction framework has the following features:
(i) Predicting the wildfire risk — the chance of binary fire
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event (no fire versus fire) at a given locations and times,
given historical observations and available multi-modal data
(which can be treated as marks of the point processes), using
a flexible marked spatio-temporal Hawkes process model [11].
Specifically, we model the mutual exciting property in that
historical and neighboring occurrences likely affect the occur-
rence likelihood, where certain occurrences may increase the
chance while others inhibit the chance. The model parame-
ters are efficiently estimated using an alternating optimization
approach, in contrast to the more expensive expectation-
maximization method [12]. (i) Exploiting interdependence
among different geographic regions and the mutually excit-
ing point process model is highly interpretable. (iii) Predicting
fire magnitude using time-series CP set, which can guaran-
tee to contain true fire magnitude with a user specified high
probability.

The rest of the paper is organized as follows.
Section II describes background on sensing and the
wildfire dataset. Section III contains our proposed meth-
ods. In particular, Section III-A introduces proposed
spatio-temporal Hawkes process models, which either
linearly (i.e., LinearSTHawkes) or nonlinearly (ie.,
NonLinearSTHawkes) quantify feature contributions to
fire hazards. Section III-B describes the objective function,
the estimation procedure, and how to yield binary predictions
based on predicted risks. Section III-C describes the CP
sets for wildfire magnitude prediction. Section IV has two
parts. We first present the theoretical analyses regarding the
accuracy of fire risk prediction as a result of model recovery
guarantee in Section IV-A. Section I'V-B then verifies coverage
guarantee of the prediction sets, whose size also converge
to the true fire sizes asymptotically. Section V first validates
the proposed model on a small-scale real-data experiment,
where Section V-B compares LinearSTHawkes  with
baseline methods and Section V-C demonstrates the further
advantage of NonLinearSTHawkes. Section VI then
shows the scalability of our methods on a significantly larger
region, where Section VI-B further examines the empirical
coverage of prediction sets by the CP method. Finally,
Section VII concludes the work with discussion on future
steps. The Appendix contains additional derivations and
algorithms.

A. Related Work

Wildfire prediction and modeling is an essential proce-
dure for analyzing the occurrence of wildfire events. There
have many indices, such as the BI [13] and the fire danger
index [14] for general awareness of fire risks. Despite their
popularity, these indices often fail to account for events’ inter-
actions. Meanwhile, regression-based approaches [9], [15],
[16] are more flexible and often yield satisfactory predictions.
However, their performance can be sensitive to the number
of available observations per location and thus not applica-
ble under arbitrary spatial granularity with a fixed amount
of training data. Lastly, stochastic point-process models [17],
[18], [19] have been leveraged to examine the conditional
fire risk given past data and allow a deeper understanding

of the underlying stochastic mechanism. However, most
current works focus on model evaluation through the akaike
information criterion (AIC) rather than predicting the binary
occurrence of wildfire events using one-class data. In practice,
making a binary prediction is essential for forestry managers
and utility owners to understand the fire risk.

Since our proposed fire occurrence model is based on the
Hawkes process, we briefly survey existing methods in a wider
context. Initially proposed in [11], the Hawkes process is a
stochastic temporal point-process model for rates of events
conditioning on historical ones. There have been many exten-
sions that take into account spatial interactions [20], [21], [22]
and influences by auxiliary features (i.e., marks) [23], [24],
[25]. Neural-network-based Hawkes process models [26], [27],
[28] have also been proposed for greater model expressiveness.
These models have shown great promise in fields such as finan-
cial markets [29], social networks [30], disease modeling [31],
and neurophysiological studies [32]. Despite their emerging
popularity and flexibility, how to make a prediction based on
rate estimates and comparisons against predictive models has
been less well studied.

We briefly surveyed CP, the primary tool used for construct-
ing prediction sets that quantify uncertainty in fire magnitude
prediction. Originated in the seminal work [33], CP has
gained wide popularity for uncertainty quantification [34]. It
is particularly appealing as the methods are distribution-free,
model-agnostic, and easily implementable. The only assump-
tion is that observations are exchangeable (e.g., i.i.d.). On a
high level, CP methods assign non-conformity scores to poten-
tial outcomes of the response variable. The outcomes that have
small non-conformity scores are included in the prediction set.
Many methods follow this logic with promising results [35],
[36], [37], [38], [39]. More recently, works have also
relaxed the exchangeability assumption [40], [41], [42], [43],
[44], [45], but time-series CP methods are still limited,
and their applications to wildfire predictions remain largely
unexplored.

II. SENSING FOR WILDFIRE AND
REAL-DATA ILLUSTRATION

The latest technology provides multi-modal data for wildfire
risk prediction and monitoring. Below, we briefly describe a
few common sensing and data collection techniques [5], [46].

« Air patrols: Patrollers typically consist of a pilot and a
trained aerial observer. To identify and report observed
wildfire phenomena, the plane flies over predetermined
areas during periods associated with elevated fire dan-
ger. Wildfire activities are also commonly reported by
commercial or recreational pilots.

o Infrared technology: Thermal imaging technology is com-
monly used to detect fire risks hot spots. It is also used to
detect wildfire progression, contour the fire impact, and
identify residual fire during extinguishment.

o Computer technology: Various management systems are
used to obtain well-rounded multi-modal information.
Such systems obtain up-to-date weather information,
predict the fire probability and spread rate, and reports
moisture levels in the natural surrounding.
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A feature of our work is that we validate our model on a
large-scale multi-modal dataset, 2014-2019 fire incident data
collected by the California public utilities commission [46].
The wildfire occurrence dataset is publicly available and
associated with three large utility companies: PG&E, SCE,
and SDG&E. A total of 3191 fire incidents are recorded,
where the latitude-longitude coordinates of each incident are
enclosed within the coordinate rectangle [32.24, —124, 38] x
[41.28, —114.67].

The wildfire data is multi-modal and collecting using var-
ious sensing mechanism. Each incident is multi-modal with
additional information, which we call marks in our model.
Marks can be categorized as being discrete/continuous and
dynamic/static. Static marks do not change at a given loca-
tion, and all discrete marks are one-hot encoded to be utilized
in the model. Static and discrete marks include existing veg-
etation type and physiology (EVT_PHYS) [47], such as the
road condition and agricultural condition, the name of the
three utility companies, and the fire threat zone, which is clas-
sified into three levels indicating increasing levels of static
fire danger [46]. Dynamic and discrete marks include sea-
sonal information (e.g., spring, summer, autumn, and winter).
Dynamic and continuous marks include relative humidity in
% of the surrounding [48] temperature in celsius [48] large
fire probability (LFP) [49], and fire potential index (FPI) [49].
In particular, LFP and FPI are forecasted by the United States
geological survey (USGS) to indicate the risks associated with
a region.

To pre-process the multi-modal data, we interpolate miss-
ing entries of each continuous mark using the spline function
with degree 5. Each feature is also standardized to have unit
variance and zero mean and further scaled to lie within the
interval [0, 1] so that estimated parameters for different marks
are on the same scale. The unit for risk prediction is in days,
while we allow fractional time values during training where
the exact hour and minutes are recorded along each incident.

III. WILDFIRE PREDICTION FRAMEWORK

A. Wildfire Risk Prediction: Mutually Exciting
Spatio-Temporal Point Processes

We observe a sequence of n fire incidents over a time hori-
zon [0, T], where each observation consists of time #;, location
u;, and a mark m; € R? (where p is the number of features):

(D

Note that we specify u; € {1,..., K} for K locations under
space discretization.

We model these event data using a marked spatio-temporal
Hawkes process. Given the o-algebra H; that denotes all his-
torical fire occurrence before time ¢, the conditional intensity
function is the probability of an event occurring at time ¢ and
location k, with current mark m:

'xl'z(tivuiami)’ l=1,,n

At k, m|’H;) =
E[N([t, t + Af) x B(k, Ak) x Bom, Am)) | Hi]
At x B(k, AK) x B(m, Am)

lim
At,Au—0

’

2
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where B(a, r) is a ball centered at a with radius r and N is the
counting measure. For notation simplicity, we drop H; in (2)
from now on.

We can use the conditional intensity function above (2) to
quantify the fire risk. For mutually exciting point processes,
the conditional intensity function depend on the past events
and they typically increase the chance of a future event
in the neighborhood. This mutual excitation can be mod-
eled by representing the conditional intensity function (2) as
(see, e.g., [12]):

At k,m) = Mg (2, K)f (mlt, k)

k) + Y K(uj. k. 1. 1) |fGmlt. k), (3)

Jij<t

which factors the conditional intensity into product of ground
process Ag(t, k) and conditional density f(m|t, k). In (3), (k)
is the scalar baseline intensity and K(u;, k, t;, t) measures spa-
tial and temporal influence from event happening at #; in u;
till current time ¢ through a kernel function.

In general, functions w(k), K(u;, k, t;, 1), and f(m|t, k) can
take many possible forms. Such choices often depend on the
application of interest. For computation simplicity and model
interpretability, here we parametrize the model in (3) as

wk) = py Ky ko 17,1) = ag e PE0. (@)
In equation (4), the parameters w; represent the baseline rate
of fire risk at location k. The parameters oy, capture the
spatial influence of fire incidents that occurred at location u;
and time #; on the fire risk at location k and time 7. To simplify
the design of KC(u;, k, ¢;, t) in (4), we use a negative exponential
model. This choice is motivated by two key factors. Firstly,
it results in an optimization problem whose parameters can
be efficiently estimated with a performance guarantee (refer
to Section IV). Secondly, domain experts have observed that
past fire incidents can affect the risk of future fire incidents,
but the impact of past events diminishes quickly over time.

Furthermore, we assume the distribution of the mark is
either in linear form or, more generally, through a non-linear
function g

Famlt, k) = y'm,
Fmlt, k) = g(mlt, k)

(&)

(NonLinearSTHawkes) (6)

(LinearSTHawkes)

Even though (5) is linear, it implicitly incorporates the spatial-
temporal information through the mark m, which is collected
in location k at time . Meanwhile, g(m|t, k) in (6) can be any
feature extractor (e.g., neural networks) that outputs the score
of m. Regarding the formulation differences of (5) and (6),
note that LinearSTHawkes based on (5) is more inter-
pretable, and also leads to more computationally efficient
sequential convex optimization scheme with guarantees (see
Section IV-A). On the other hand, NonLinearSTHawkes
can be more expressive in terms of capturing the dependency
of fire risks on marks through the feature extractor g(m|t, k)
in (6).
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B. Point Process Parameter Estimation and Real-Time
Prediction

We estimate the parameters in the model through maximum
likelihood. For LinearSTHawkes, denote all parameters
using & = {u,A,B,y}, where u = {/Lk}sz1 and A =
[a,-,.,']szl. We can derive and simplify the log-likelihood of
X1, ...,x, as follows similar to [12] (the full derivation can

be found in Appendix G):

€O) = Y log(hg(ti, up))

i=1

n K T
+ ZIOg(f(milti, ui)) — Z/ Ag(z, k)dt
i=1 k=10

= Zlog w(u;) + Z auj!uiﬁe_ﬁ(t,-—tj)

i=1 Jii<ti

n K
+ ) log(Fmilti, u)) = > Tu(k)

i=1 k=1

n K
_ Z (Z au,-,k) (1 _ e_ﬁ(T—fi)). (7
i=1 \k=1

Note that the likelihood term of the marks decouples from
the rest. Thus, when using NonLinearSTHawkes based
on (6), we first fit a feature extractor on the marks and then
employ maximum likelihood estimation to estimate the rest
parameters. To achieve better model estimation stability (since
we believe few features should be effective in the model), we
further add ¢; regularization on y:

n
_ Zlog w(u;) + Z“u,—,u,—ﬂe_ﬂ(“_tj)

i=1 Jii<t

n K
= > log(ymi) + ) Tu)
i=1 k=1

n K
+2X2)m>0—fW%O+WM(&

i=1 \k=1
0;j=0if |i—jl > 7. ©)

lwllz < LAl = Lyl = 1, (10)
B >0, u(u;) >0 Vu,. (11)

The purpose of constraints (9)-(11) can be explained as
follows: (9) introduces sparsity in the interaction matrix and
reduces the total number of parameters in the model for com-
putational efficiency; (10) ensures the objective (8) is bounded
and is reasonable since the rate A(#, k, m) is typically very
small; (11) is introduced since baseline rates (i.e., @ (u;)) and
interaction propagation over time (i.e., ) are non-negative.
Note that the constraints define a convex feasible region.

In addition, we can show that £(6) is concave in all other
parameters with a fixed scalar B. Thus, we can device a
method to solve (8) to global optimal solution: for a grid
of B values, solve the corresponding convex optimization
problem using solvers such as [50] to high numerical accu-
racy, and then choose the optimal 8 that gives the best overall

min
0={w.A.B,y}

subject to

objective value. The description of the algorithm, as well its
computational efficiency, is in Algorithm 2 of Appendix H.
In our experiments, we observe that the algorithm usually
terminates in a small number of iterations (e.g., three), and
each iteration only takes a few seconds to minutes, depending
on the problem size. Hence, it is computationally friendly.

C. Fire Magnitude Prediction: Conformal Prediction Set

Besides predicting when and where fire occurs, fire magni-
tude prediction is also desirable—knowing the possible fire
magnitude can better inform decision-makers of potential
losses by such disasters and plan accordingly. The dataset
described in Section II treats fire magnitude as discrete cate-
gories in its catalog. In principle, this can thus be achieved by
variants of LinearSTHawkes and NonLinearSTHawkes
for categorical data. However, making categorical prediction
based on the estimated risks requires us to construct multi-
class thresholds, which can greatly increase model design com-
plexity. In addition, it is unclear how to quantify uncertainty
in the resulting categorical estimates.

Thus, we treat fire magnitude prediction as a classifica-
tion problem: given multi-modal features X; € R” as in (1),
we would like to build a multi-class classifier that outputs
Y; € {1,...,C} as the fire magnitude prediction (assuming
C magnitude levels). Denote 7; = Py,x; as the true con-
ditional distribution of Y;|X;, whose properties are unknown.
In a typical classification setting, we assume the first N data
are known to us as training data and the goal is to con-
struct an estimator 7 = A({(X;, Y,')}?’= 1), which satisfies
chzl 7x; () = 1,7x,(c) > 0 for any i > 1. Here, A is any
classification algorithm, from the simplest multinomial logis-
tic regression to a complex deep neural networks. Then, the
point prediction Y = arg max.c[c] Ty, (c) is obtained for any
test index i > N.

However, point predictions are often insufficient in such
settings—there are inherent uncertainties in these predictions,
which arise due to randomness in data generation, during
the collection of multi-modal data, and when fitting the
multi-class classifier. Therefore, a confident fire magnitude
prediction is essential, which quantifies uncertainties in the
point predictions and contains all the possible high-probability
outcomes. One way for uncertainty quantification in classifi-
cation is the construction of prediction sets around Y; that
contain actual observations Y; with high probability before its
realization. Formally, giver/l\ a significance level @ € (0, 1), we
construct a prediction set C(X;, @) C {1, ..., C} such that

P(Y; € CXij, @) = 1 —a. (12)

We note that the significance level « in conformal prediction
should be distinguished from the interaction parameters a;;
in the point-process model, the latter of which has double
subscripts as in (4). A set satisfying (12) thus confidently
predicts the actual fire magnitude Y; with high probability.
Note that a trivial construction that always satisfies (12) is
6(Xi,oz) = {1,...,C}, so we also want the prediction set
to be as small as possible. This is a challenging question
because fire incidents are highly correlated and non-stationary,
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and classifiers can be very complex (e.g., neural network
classifiers).

To build prediction sets that satisfy (12) in practice, we
produce uncertainty sets using recent advances in CP [36],
[42], [51]. CP methods requires two ingredients. First, they
define non-conformity scores, which quantify the dissimilar-
ity of a potential fire magnitude. Second, they specify the
prediction set based on non-conformity scores. As a result,
CP methods assign non-conformity scores to each possible
fire magnitude and the prediction set contains fire magnitude
whose non-conformity scores are small compared to past ones.

We first specify a particular form of non-conformity score
recently developed in [36] using any estimator 7. The nota-
tions are very similar and we include the descriptions for a
self-contained exposition. Given the estimator 77, for each pos-
sible label ¢ at test feature X;,i > N, we make two other
definitions:

m@—Zm A(fx(¢) > #x(@).  (13)
=1
C

rxi(0) = | Y 1(Ax () > 7x, ()| + 1 (14)

where I is the indicator function. In other words, (13) calcu-
lates the total probability mass of labels deemed more likely
than ¢ by 7. It strictly increases as ¢ becomes less proba-
ble. Meanwhile, (14) calculates the rank of ¢ within the order
statistics. It is also larger for less probable c¢. Given a ran-
dom variable U; ~ Unif[0, 1] and pre-specified regularization
parameters {A, ky.z}, we define the non-conformity score as

#i(c) = myx,(c) + 7x,(¢) - Ui + A(rx, () — kreg) * .
(i) (i)

15)

We interpret terms (i) and (ii) in (15) as follows. Term
(i) randomizes the uncertainty set, accounts for discrete prob-
ability jumps when new labels are considered. A similar
randomization factor is used in [35, eq. (5)]. In term (ii),
(z)* := max(z, 0). Meanwhile, the regularization parameters
{A, kreg} force the non-conformity score to increase when A
increases and/or k., decreases. In words, A denotes the addi-
tional penalty when the label is less probable by one rank and
kreg denotes when this penalty takes place. This term ensures
that the sets are adaptive, by returning smaller sets for easier
cases and larger ones for harder cases.
Then, the prediction set based on (15) is

ZH

j=i—N

/C\'(X,-,oz) ={celC]: P < t,(c) /N <1—ay,(16)

where 7; := 7;(¥;). The set in (16) includes all the labels whose
non-conformity scores are no greater than (1 — «) fraction of
previous N non-conformity scores. Following (15) and (16),
we thus propose ensemble regularized adaptive prediction set
(ERAPS) in Algorithm 1. In particular, ERAPS aggregates
probability predictions from bootstrap multi-class classifiers
to yield more accurate point prediction and leverage new
feedback of Y; to ensure adaptiveness in the prediction sets.

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

Algorithm 1 Ensemble Regularized Adaptive Prediction Set

Require: Training data{(X;, ¥;)}Y izq» Classification algorithm
A, o, regularization parameters {A,k,}, aggregation
function ¢ (e.g., mean), number of bootstrap models B, the
batch size s, and test data {(X;, Y; )}fvaj\ﬁl, with Y; revealed
only after the batch of s prediction intervals with i in the
batch are constructed.

Ensure: Ensemble uncertainty sets {C Xi, )}y 1

1: forb=1,...,Bdo > Train Bootstrap Estimators
2: Sample with replacement an index set Sp
(b1, ..., by) from indices (1,...,N).
Compute 77 = A{(X;, Y)) | i € Sp)).

: end for

. Initialize T = {} and sample {U;};_ Unif[0, 1].

c:fori=1,...,Ndo >LOO Ensemble Estimators and

Scores
7: Compute JT
cefl,...,C}
ﬁqxg@==¢aﬁ%@>:i¢smy

8: Compute f¢ = Tx,(Y¥;) using (15) and frfi

9: T=1U {‘L’ }

. end for

:fori=N+1,...,N+ N; do > Build Uncertainty Sets
Compute ffml ‘= gr,1-o(7) as the (1 — «)-empirical

quantile of .
Compute TL’

{1,....C}
tm@:¢wﬂﬂmgy
Compute 6(Xi, a) in (16) using n
if t— T = 0 mod s then

forj:i—s,...,i—ldo
Compute f = 7x;(¥;) using (15) and 7%

N-+Np

1\].,.1\]1 zzd

o v oA W

= ¢({A% : i ¢ Sp}) such that for each

= ¢((?)Y)) so that for each ¢ €

; and ‘L’l cal”
> Shde Scores Forward

T=(1— {‘L’l Hu {‘C¢} and reset index of T.
end for
end if

: end for

IV. THEORETICAL GUARANTEE

In this section, we establish some theoretical performance
guarantees for the proposed algorithms. Section (IV-A)
provides parameter recovery guarantee for the point-process
model defined in (3). Section (IV-B) provides coverage
guarantee (see Eq. (12)) and the tightness of the fire magnitude
prediction set by ERAPS.

A. Parameter Recovery for Point Process Model

Note that for fixed g, the problem for estimating the rest
of the parameters in 6 via (7) for LinearSTHawkes is
convex (it can be shown that the objective function is con-
cave in 6 other than f, and constraints induce convex feasible
domain). We can establish the following bound using a similar
technique as in [52], [53]. We do not consider the bound for
NonLinearSTHawkes in (6) because it is impossible to
verify convexity for a generic feature extractor g.
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We first obtain parameter recovery bound for minimizing
a generic continuously differentiable strictly convex function
f@) : ® - R, where ® C R’ is a convex set. Let
F(0) = Vf(0) be the gradient of f on ®. We know that
F(0) is monotone [52]:

[F6) - F(6")]'[6 —0'] = 0V6,6 € O.

Let 6* € ® be the unique global minimizer of f, which exists
as f is strictly convex. To estimate 8%, we use the projected
gradient descent procedure, starting at an arbitrary 6y € ©:

Ok == Projg (Bk—1 — txF (6k—1)), (17)

where f; > 0 determines the step size and Proj@(é) =
arg mingeo |6 — 6]|2. To analyze the error [|6y — 6*||» after
k iterations, we need the following conditions:

Assumption 1: Assume that there exist D, x, M > 0 where

(@ 10—0". <DV, 6 €0, (18)
(i) [F©) - F(@’)]T[e —0'] > «ll6 — 0|13 V0,0 € O,
(19)
(iii) (20)
We now have the following lemma that yields the error
bound in (22). The proof is contained in Appendix A.
Lemma 1: Under Assumptions 1:(18)—(20) and with the
step sizes

IF@)|l <M V0 € O.

o=k + D], 1)

Estimates 6; obtained through (17) obey the error bound
2

k2(k+1)°

We can now use Lemma 1 to obtain the parameter recovery

guarantee for minimizing ¢(0) via solving (7). For a fixed
B >0, let

16 — 0%]13 < (22)

0181 =0 —{B}

contain all the model parameters except 8 when solving (7).
We thus know that under Lemma 1, the estimate é[,B] con-
verges to the global minimum 6*[8] at rate 1/k. Meanwhile,
since the optimal parameter 8* is non-negative scalar, we can
estimate it up to arbitrary precision using one one-dimensional
grid search. In particular, assume B* € [By, 1] with known
values of fg, B1. For a fixed integer J > 1, divide the region
[Bo, B1] into J + 1 points By, ..., By, where

ﬂj:=ﬂo+§(ﬂ1—ﬂo>,j=o,...,J.

(23)

(24)

Then, we can obtain estimates 6 [B;] via solving (7) using the
projected gradient descent procedure (17) at the fixed B;. Given
J pairs of estimates (8;, 6[8;]), we define

6= (Br.6[8]) (25)
o= org Hn;l z([ﬁj, b [ﬁ,]]), (26)

which denotes the estimate that reaches the smallest log-
likelihood out of these M estimates. We then bound in the

following theorem the parameter estimation error of 6 in (25).
The proof is contained in Appendix B.

Theorem 1 (LinearSTHawkes Parameter  Recovery
Guarantee): Let 0* be a minimizer of £(0) in (7) under
LinearSTHawkes in (5). Under Assumption 1:(18)—20,
the estimate 6 in (25) obeys the bound

A 1 1
16 —6%113 = O(— + —)

27
J2 O k+1 @7

In (27), J is the number of grid searches for 8* in [By, B1]
and k is the number of projected gradient descent step (17) of
0[B;] in (23) at each search point B;.

The implication of Theorem 1 is that we can recover the true
model of \L(t, k, m) in (3) for LinearSTHawkes in (5). This
is because LinearSTHawkes reaches the smallest negative
log-likelihood under 6* and log likelihood is also the highest
under the true model. Thus, when estimates @ approach true
parameters 0* in ¢, norm, the corresponding model estimate
also recover the true model.

B. Conformal Prediction Set Guarantee

Note that in existing CP literature, it is typically assumed
that observations (X;, ¥;) are exchangeable. This assumption is
unrealistic in our setting when strong correlation exists within
data. Instead, we impose assumptions on the quality of esti-
mating the non-conformity scores and on the dependency of
non-conformity scores in order to bound coverage gap of (12).
Most of the assumptions and proof techniques extends our ear-
lier work [42], but we extend it to the classification setting
under arbitrary definitions of non-conformity scores. In par-
ticular, we allow arbitrary dependency to exist within features
X; or responses Y;.

Given any feature X, a possible label ¢, and a probability
mapping p such that chzl px(c) = 1, px(c) = 0, we denote
G : (X,c,p) — R as an arbitrary non-conformity mapping
and ‘L')[()(C) = G(X, ¢, p) as the non-conformity score at label
c. For instance, we may consider

C
GX.c.p) =Y px() - I{px(c) > pxi (@)}, (28)
=1

which computes the total probability mass of labels that are
deemed more likely than ¢ by p. The less likely c is, the greater
tl-p (c) is, indicating the non-conformity of label c¢. For notation
simplicity, the oracle (resp. estimated) non-conformity score
of each training datum (Xj, Y;),i = 1,..., N under the true
conditional distribution 7 := Py|x (resp. any estimator 7) is
abbreviated as t; = r)’gi (Y;) (resp. Tp).

We now impose these two assumptions that are sufficient for
bounding coverage gap of (12). First, we make assumptions
about the quality of estimation by the chosen classifier:

Assumption 2 (Error Bound on Estimation): Assume there
is a real sequence {¥;} where % /’;}_N(fj — rj)2 < 191%,.

Then we make assumptions about to the property of true
non-conformity scores:

Assumption 3 (Regularity of Non-Conformity Scores):
Assume {fj}j.:i_ y are independent and identically distributed
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(i.i.d.) according to a common cumulative density function
(CDF) F with Lipschitz continuity constant L > 0.

We brief remark on implications of the Assumptions above.
Note that Assumption 2 essentially reduces to the point-wise
estimation quality of 7 by 7, which may fail under data
overfitting—all N training data are used to train the estima-
tor. In this case, 7 tends to over-concentrate on the empirical
conditional distribution under (Xj, Y;),i = 1,..., N, which
may not be representative of the true conditional distribution
Pyix. A common way to avoid this in the CP literature is
through data-splitting—train the estimator on a subset of train-
ing data and compute the estimated non-conformity scores T
only on the rest training data (i.e., calibration data). However,
doing so likely results in a poor estimate of w and as we
will see, the theoretical guarantee heavily depends on the
size of estimated non-conformity scores. On the other hand,
Assumption 3 can be relaxed as stated in [42]. For instance, the
oracle non-conformity scores can either follow linear processes
with additional regularity conditions [42, Corollary 1] or be
strongly mixing with bounded sum of mixing coefficients
[42, Corollary 2]. The proof techniques directly carry over,
except for slower convergence rates.

Lastly, define the empirical distributions using oracle and
estimated non-conformity scores:

i—1

~ 1
F(x) = N Z ]I(rj < x), [Oracle]
Jj=i—N
=
F(x) = Nj:;NH(fj <x). [Estimated]

We then have the following coverage results at the
prediction index ¢t > T.

Lemma 2 [42, Lemma 2]: Suppose Assumptions 2 and 3
hold. Then,

sup |[F(x) — F(o)| < (L+ 1oy
X

+ 2sup |[F(x) — F(x)|.
X

The proof of Lemma 2 appears in Appendix C.

Lemma 3 [42, Lemma 1]: Suppose Assumption 3 holds.
Then, for any training size N, there is an event A within the
probability space of non-conformity scores {rj}jN: 1> such that
when A occurs,

sup |[F(x) — F(x)| < /log(16N)/N.

In addition, the complement of event A occurs with probability
PAC) < /log(16N)/N.

The proof of Lemma 3 appears in Appendix D.

As a consequence of Lemmas 2 and 3, the following bound
of coverage gap of (12) holds:

Theorem 2 (Coverage Guarantee, [42, Th. 1]): Suppose
Assumptions 2 and 3 hold. For any training size N and
significance level o € (0, 1), we have

IP(Y; ¢ C(Xi, @) — a| < 24y/1og(1I6N)/N + 4(L + 1)9y/".
(29)

The proof of Theorem 2 appears in Appendix E. Note
that Theorem 2 holds uniformly over all @ € [0, 1] because
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Lemmas 2 and 3 bound the sup-norm of differences of distribu-
tions. Hence, users in practice can select desired parameters «
after constructing the non-conformity scores. Such a bound is
also useful when building multiple prediction intervals simul-
taneously, under which « is corrected to reach nearly valid
coverage [54].

In addition to coverage guarantee, we can analyze the con-
vergence of 6‘(X,-, «) to the oracle prediction set C*(X;, @)
under further assumptions. Given the true conditional distri-
bution function 7w := Py|x, we first order the labels so that
wx, (i) > mx,(j) if i <j. Then, we have

C*'X;,a) = {1,...,6*},

where ¢* = mincejc) Yy 7x, (k) > 1 —a.

Theorem 3 (Set Size Convergence Guarantee): Suppose
Lemmas 2 and 3 hold and denote F~! as the inverse CDF
of {tj}!_; - Further assume that

€} c]‘{ = ¢} where

i = argmin Y j_; mx, (k) = 1 —a},
5 = argmaxc{ri(c) <F'(1 - a)}.

(2) There exists a sequence 1/ converging to zero with
respect to N such that || 7;—7;||cc < 19,.’ , where the co-norm
is taken over class labels.

Then, there exists N large enough such that for all i > N,

C(Xi, ) AC* (X, ) < 1, (30)

where A in (30) denotes set difference.

The proof of Theorem 3 appears in Appendix F. Note that
if the non-conformity score at any label c is defined in (28),
which is the total probability mass of labels ¢’ # ¢ that are
more likely than ¢ based on a conditional probability map-
ping p, then the first additional assumption (i,e., ¢] = ¢3) in
Theorem 3 can be verified to hold. In general, whether this
assumption is satisfied depends on the particular form of the
non-conformity score.

V. MODEL VALIDATION BY REAL-DATA

We apply the proposed models on the 2014-2019 California
wildfire data described in Section II. The experiment is orga-
nized as follows. Section V-A describes the setup details,
including the dataset and evaluation metrics. Section V-B
compares LinearSTHawkes with competing baselines
on data from a small region. Section V-C compares
LinearSTHawkes and NonLinearSTHawkes on the
same region to highlight their performance differences.

A. Evaluation Metrics

We use the F score for performance assessment, which
is a standard metric for classification when data are imbal-
anced—note that the number of no occurrence of fire incidents
(denoted as 0) significantly outweighs the other (denoted as 1).
The goal is to predict as many fire occurrences as possible
without making too many false positives. In our case, false
positives measured at each location refers to be a prediction
of fire incidents at a specific date r when there is no fire inci-
dent. Quantitatively, we define the set of fire occurrences as
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Fig. 1. Visualize data and grid discretization on data from different years.
There are grid-wise shifts in data distribution—for instance, fire incidents
cluster more closely around grid 12 in 2018 (validation) than in 2014—2017
(training) or in 2019 (test).

U and our predicted set as V. Then the precision P and recall
R are defined as

P=|UNV|/|V], R=|UNV|/|U|, (31)
where the notation | - | denotes the size of the set. In the defi-
nition (31), we write P and/or R to be 1 if the ratio is 0/0 (i.e.,
there is no fire incident at a specific location and the model
correct predicts none). The F; score is thus a combination:
Fi=2/(P"' +R™1Y) = 2PR/(P + R), where a high F; score
indicates both a large of true detection and a small number
of false positives. In general, when one of P and R is more
important, one can consider a weighted F that assigns imbal-
anced weights to precision and recall. We use non-weighted
F scores in all our experiments.

We construct dynamic thresholds to make binary prediction
based on estimated fire risk i(t, k, m) defined in Eq. (3). The
detailed Algorithm 3 is provided in Appendix I. In particular,
we observe that rate estimates i(t, k, m) have clear seasonality
(e.g., a sharp drop from summer to fall and a sharp rise from
spring to summer). At the same time, fire incidents often occur
when rate estimates suddenly increase on certain days. For
instance, Figure 4 illustrates the performance of our model
based on the observations above.

B. LinearSTHawkes vs. Baselines

We first focus on a small region because the distribution
of fire incidents within the region and the performance of
our model can be visualized clearly. The model is trained
with incidents between 2014 and 2017 and examined on
validation data in 2018. There were 238 fire occurrences
in 2014-2017 and 70 in 2018. Upon consulting domain
experts, we set the sides of discretized cells to be 0.24-
degree in both longitude and latitude directions so that
36 non-overlapping cells cover the region. Figure 1 visual-
izes both the training and validation data, from which it is
clear that the validation data have a much less number of
actual fires; only a few grids have fires that occurred near
them.

Estimated parameters. In practice, our feature m; includes
both temporal dynamic features m, (e.g., weather information)
and location-specific information my; (e.g., road condition), so
that we re-write y'm as

yim=ylmq+ vy m, (32)

TABLE I
ESTIMATED PARAMETERS OF STATIC MARKS y; AND DYNAMIC MARKS
¥4 DEFINED IN (32). “PHYS="" INDICATES ROAD TYPE OR EXISTING
VEGETATION TYPE. A LARGER PARAMETER ESTIMATE INDICATES MORE
CONTRIBUTION OF THE FEATURE TO FIRE HAZARDS. NOTE THAT
Temperature AND Relative Humidity IN y; ALSO DEFINE THE
WIDELY-USED FIRE DANGER INDEX SO THAT LINEARSTHAWKES
SELECTS PHYSICALLY MEANINGFUL FEATURES

Three Largest Estimates Three Smallest Estimates

TOT ey T

T T2 TR
Fire Tier Fire Tier3 PHYS=Developed-Roads PHYS=Developed
217 o0

£
Relaive Humidity g Spring Winter

,,,,,,,,,,

30 31 32 33 34 35 0.08

0.06

24 25 26«27 28 29
18 19 20 21 22 23 e
0.00

12 13 14 15 16 17
—-0.02

—-0.04

—-0.06

Fig. 2. The distribution of «;; closely follows the data distribution in Figure 1.

which decompose the contribution of m into the sum of both
terms.
Based on (32), we interpret the feature and interaction
parameters of LinearSTHawkes, estimated via
Algorithm 2. First, Table I shows the estimated parame-
ters for features (i.e., marks), whose magnitude indicates
feature importance. Higher magnitude of estimates contribute
more significantly to the growth of fire risk. Noticeably, the
top two features in y,; (excluding summer, the seasonality
parameter) are also factors in defining the Fire Danger
Index, which is a most commonly used index for fire
hazard monitoring [55]. Therefore, the model estimates of
feature parameters are physically meaningful. Next, Figure 2
examines the location-to-location interaction parameters
a;j, which is forced to be zero if centroids of two cells
exceeds 4x0.24 degrees. Values of o;; above or below zero
indicate excitatory or inhibitory effects from nearby and
past events. The distribution of interaction effects closely
aligns with the 2014—2017 training data in Figure 1. For
instance, we see clusters of fire incidents in 2014-2017
training data in Figure 1 around location 20 and as a
result, location 20 in Figure 2 also interacts intensively
with its nearby neighbors. Quantitatively, if we use «;; to
roughly measure the amount of influence of location i on
location j:
e« The amount of positive influence into location 20
(.e., Zjiaj,20>0 aj20) is 0.40.

o The amount of negative influence into location 20
(i.e., Zjiotj,zo<0 Olj,ZO) is —0.30.

e The amount of positive influence from location 20
(.e., Zj:azo,po a0,;) is 0.29.
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o The amount of negative influence from location 20
(.e., Zj:azo,j<0 ao,;) is —1.44.

In addition, we can perform counterfactual analyses using
the estimated parameters: suppose a decision-maker wants to
know the increase in risk when an external condition changes
from A to B (e.g., Fire tier zone shift, changes in vegeta-
tion types, etc.). Then, the change in risk at a certain location
and time is A(A, B) = A(t,k,B) — A(t, k,A). Similar anal-
yses can be performed for a change in location from k to
k1. Such analyses can help one better study the effect of dif-
ferent factors on fire risks, making risk management more
effective.

Prediction results. We first compare LinearSTHawkes
with several one-class classification baselines. We choose
isolation forest [56], one-class SVM [57], local outlier fac-
tor [58], and elliptic envelope [59] due to their popularity
and generality. These classifiers, including static and dynamic
marks, use the same data as LinearSTHawkes. Figure 3(a)
visualizes the histograms of F| scores by each method, which
show that LinearSTHawkes outperforms competing meth-
ods by yielding less zero F scores and more one F| scores.
Note that zero (resp. one) F scores appear at locations that are
the easiest (resp. hardest) to predict discussed earlier. In addi-
tion, LinearSTHawkes can yield non-trivial fractional F
scores at other locations by capturing a decent number of true
positives. Nevertheless, our model also yields many zero F
scores because the task is inherently challenging: it makes 365
daily predictions at each of 36 locations, in a total of 13140
predictions, when there are only 70 actual fire occurrences
across all 36 locations.

We now illustrate the location-wise prediction results of
LinearSTHawkes. Figure 3(b)—3(d) visualizes F; score,
recall, and precision on each of the 36 location. The result
helps us assess the prediction difficulty at various locations,
where we suspect the difficulty arises partially due to the distri-
bution shift of data in 2018 comparing to data in 2014-17 (cf.
Figure 1). To better illustrate how LinearSTHawkes makes
a prediction, we further visualize in Figure 4 the trajectory of
rate prediction on top of actual incidents. Dynamic thresh-
olds are obtained by using Algorithm 3. The figure shows that
sharp increases in predicted fire risks tend to occur near true
fire events, which helps us make correct predictions. In the
future, to reduce the number of false positives, we may refit
the model parameters during validation using newly observed
incidents.

C. Compare LinearSTHawkes vs. NonLinearSTHawkes

We now compare LinearSTHawkes and
NonLinearSTHawkes on 2019 test data (cf. Figure 1
right), where we train the feature extractor g(ml|t, k) in (6)
using the one-class SVM. In principle, one can use any
feature extractor, but we choose SVM due to the flexibility
of the kernel function. Based on earlier results, we only
include seasonal and weather information, LFP, and FPI in
the dynamic marks.

Figure 5 compares
ods and there are

the performance of both meth-
several observations. First, the
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Fig. 3. Comparison across methods (top) and LinearSTHawkes
performance per location (bottom). Histograms of F| scores over all loca-
tions on the top row show that our LinearSTHawkes outperforms other
methods by yielding fewer zero F scores, a moderate number of fractional
F scores, and more one F scores. The bottom row visualizes the F score,
recall, and precision of LinearSTHawkes at each location.
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Fig. 4. Real-time prediction of fire risks and incidents on top of actual
incidents and dynamic thresholds. The prediction by LinearSTHawkes can
closely match the actual data.
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Fig. 5. Compare LinearSTHawkes with NonLinearSTHawkes on
2019 test data. Both models are trained on 2014-2018 data. The top row shows
results under LinearSTHawkes, and the bottom row shows those under
NonLinearSTHawkes. In comparison, NonLinearSTHawkes shows
improved performance because of a more flexible feature extractor and the
ability to yield less zero F scores.

histograms of F; scores (cf. Figure 5(a) & 5(b)) show
that NonLinearSTHawkes performs better than
LinearSTHawkes, as the former yields more non-zero F
scores. To explain the improvement, we found the empirical
distribution of estimates g(m/|t, k) by NonLinearSTHawkes
to closely match the Frechet distribution, a classic example
from extreme value theory [60]. Although the Frechet
distribution is not used to aid modeling, the connection
allows NonLinearSTHawkes to make a more accurate
prediction because many rare events (e.g., fire incidents)
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(a) Raw data

(b) Grid
discretization

(c) Interaction ov;;

Fig. 6. Data visualization. (a) shows fire events colored by season as in
Figure 1, (b) shows the grid discretization, and (c) visualizes the location-
location interaction matrix parameters o;.

follow the Frechet distribution. Further discussions appear in
Appendix J. Second, the trajectory of predicted fire risks by
NonLinearSTHawkes (cf. Figure 5, lower right) fluctuates
much more than LinearSTHawkes (cf. Figure 5, top
right). For this prediction task, such fluctuation enables better
detection because actual fire incidents are often associated
with sudden risk increases.

Remark 1 History-Dependent Mark in
NonLinearSTHawkes): Accumulated weather condi-
tions can often induce fire events (e.g., several dry days
earlier can lead to elevated fire risks). Thus, it seems natural
to include in each m; additional spatio-temporal marks to
account for accumulation effects. However, doing so has two
drawbacks:

1) Data acquisition and storage are much more expensive.
One must collect a complete record of historical marks
at each grid to fit the models. The issue mainly arises
when the number of grids is large (e.g., hundreds) and
marks frequently arrive (e.g., hourly).

2) The curse of dimensionality rises when each mark
contains longer historical values. Note that the total
number of fire incidents is fixed and typically small (e.g.,
hundreds over multiple years). Therefore, parameter esti-
mation can be more difficult as the feature dimension
increases. How to choose historical values appropriately
to reduce the effect of this issue would increase difficulty
in training.

VI. LARGE-SCALE DATA VALIDATION

We now show that our LinearSTHawkes and
NonLinearSTHawkes are scalable to a large region with
much more fire incidents and locations. There are a total of
2011 fire occurrences in this region, comprising 63% of total
wildfire incidents in California from 2014 to 2019. Figure 6(a)
visualizes fire incidents within the region on the map, and
Figure 6(b) illustrates the resulting 453 grids after discretiza-
tion into squares with side lengths equal to 0.24 degrees; we
remove regions that lie inside the ocean. Most grids have no
fire in the 5-year horizon since fire incidents seem to cluster
near the coastal line with large populations. We remark that
the setup and hyperparameter choices are the same as those in

NonLinearSTHawkes LinearSTHawkes IForest OneClassSVM

ol

8.00 025 050 0.75 1.000.00 0.25 050 0.75 1.000.00 0.25 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00

(a) LinearSTHawkes and NonLinearSTHawkes F} score
comparison with baselines
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a0 e Aol LU P

Winter Spring
% Risks when model predicts fire - Risks when model predicts no fire

Summer Winter

Threshold  x  Actual Days when fire happens

(b) NonLinearSTHawkes real-time prediction

Fig. 7. On 2019 test data: The top row compares the histograms of F| score
under various methods. The leftmost NonLinearSTHawkes has the most
number of non-zero F; scores, with many being 1. The bottom row visualizes
the temporal predicted risks by NonLinearSTHawkes at one grid. Overall,
NonLinearSTHawkes yields the best performance among all models.

Section V-B. The distribution of estimated interaction param-
eters a;; (cf. Figure 6(c)) still closely align with that of the
actual data. For instance, Figure 6(a) shows there are clusters
of true fire incidents around the coastal line on the west side
and few incidents in the mid-south side. As a result, estimates
in Figure 6(c) are much denser in distribution around the west
side than around the mid-south side. As a concrete example,
location 140 is on the west side along the coastal line, where
there are clusters of fire incidents. Quantitatively, if we use o;;
to roughly measure the amount of influence of location i on
location j:
o The amount of positive influence into location 140 (i.e.,
Z/iaj,l40>0 Olj,140) is 0.17.
o The amount of negative influence into location 140 (i.e.,
Zj:(x|40<0 a;j 140) is —0.30.
o The amount of positive influence from location 140 (i.e.,
Zjia140,j>0 0[1404') is 0.23.
o The amount of negative influence from location 140 (i.e.,
Zj:a14o,,'<0 a140,5) is —0.47.
In comparison, location 20 is in the mid-south region of
few clusters of fire incidents. Quantitatively, if we use o;; to
roughly measure the total influence of location i on location j:
o The amount of positive influence into location 20 (i.e.,
Zjiaj,20>0 Olj,z()) is 0.00.
o The amount of negative influence into location 20 (i.e.,
Zj:oz_,,20<o aj20) is —0.09.
o The amount of positive influence from location 20 (i.e.,
Zj30520.j>0 azo,;) is 0.00.
o The amount of negative influence from location 20 (i.e.,

ZjZ(XQO.-<() a20,j) is 0.00.

J

A. Real-Time Fire Risk Prediction

Figure 7(a) compares the prediction performances of
NonLinearSTHawkes, LinearSTHawkes, IForest,
and OneClassSVM. We see that NonLinearSTHawkes
performs better than both the LinearSTHawkes and
the isolation forest by yielding more non-zero Fj scores
and a large number of F; scores being one. Due to its
flexible feature extractor, the NonlLinearSTHawkes is
also competitive against the one-class SVM; importantly,
it yields more Fj scores between zero and one, making it
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Fig. 8. Marginal coverage (12) and size of prediction sets by ERAPS and
SRAPS under the random forest classifier and the neural network classifier.
ERAPS always maintains desired coverage, whereas competing methods can
fail to do so.

more informative than the one-class SVM on certain loca-
tions. Hence, NonLinearSTHawkes maintains improved
performance than other models even if the number of grids
significantly increases. Figure 7(b) further visualizes the
real-time prediction behavior of NonLinearSTHawkes,
where the peaks identified as fire incidents closely align with
the actual incidents.

B. Fire Magnitude Conformal Prediction Sets

We show that prediction sets by ERAPS maintain desired
coverage defined in (12). Data in 2014-2018 are training data,
and data in 2019 are test data, where there are a total of
five possible fire magnitude. Both the random forest clas-
sifier (RF) and the neural network classifier (NN) are used
as prediction algorithms; their setup is the same as those
in [51]. We let regularization parameters (A, kreg) = (1,2)
as suggested in [51]. Figure 8 shows marginal coverage under
both classifiers, where we also compare ERAPS against a
competing method titled split regularized adaptive prediction
set (SRAPS) [36]. The details of SRAPS are described
in [51, Algorithm 1]. We have two findings. First, ERAPS
performs very similarly under both classifiers and always
maintains 1 — o« coverage, whereas SRAPS tends to lose cov-
erage at different values of «. Thus, ERAPS is more robust
and consistent in terms of coverage. Second, both methods
return prediction sets with almost the same sizes, but ERAPS
is preferable due to its ability to maintain near 1 —« coverage.

VII. CONCLUSION AND DISCUSSIONS

We have developed a predictive framework for wildfire
risk and magnitude using multi-modal sensing data, based on
a mutually exciting spatio-temporal point process model as
well as time series CP set. We established performance guar-
antees of the proposed methods, and demonstrate the good
performance on large-scale real data experiments. Overall, our
method is efficient in model parameter, enjoys interpretabil-
ity, accurate prediction against existing methods. There are
several future works. Regarding the point process model, we
can consider beyond the parametric forms in (4) and (5),
such as the more general neural network-based formulations.
The development of dynamic marks in Algorithm 3 can also
be refined. Regarding conformal uncertainty quantification,
remaining questions include how to better utilize the exist-
ing time-series method when data have an additional spatial
dimension.

From our numerical results, we observe that distribution
shifts may exist sometime for wildfire prediction. Although
our LinearSTHawkes and NonLinearSTHawkes are not
designed to explicitly consider distribution shift, they still yield
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improved performance against baseline models on real data.
In particular, as shown in Fig. 3(a) on small-scale data and
Fig. 7 on large-scale data, our proposed models always out-
perform the baseline one-class classifiers. As a result, although
the performance of our proposed framework may vary from
year to year, it is still preferable in terms of predictive abil-
ity. We believe this is due to the model design to capture
spatial-temporal information (e.g., past fire incidents around
neighbors) and mark contribution (e.g., how multi-modal sen-
sor information contributes to fire risks). To mitigate the
adverse effects of distribution shifts, one approach is to intro-
duce uncertainty into model parameters. For instance, instead
of specifying the parameters in the optimization problem (8)
as unknown constants in our models, one could allow them to
vary within a pre-specified range (or even treat them as random
variables). With accurate parameter estimation, the estimated
model could better address model shifts that arise from dis-
tribution shifts in test data. However, we do not explore this
model design in this work, as our goal is to propose simple yet
effective models for capturing fire risks using multi-modal data
and establishing theoretical guarantees based on the proposed
models (see Theorem IV-A).
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