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ABSTRACT

Modern web-facing applications such as e-commerce com-
prise tens or hundreds of distributed and loosely coupled
microservices that promise to facilitate high scalability.
While hardware resource scaling approaches [28] have been
proposed to address response time fluctuations in critical
microservices, little attention has been given to the scaling
of soft resources (e.g., threads or database connections),
which control hardware resource concurrency. This paper
demonstrates that optimal soft resource allocation for critical
microservices significantly impacts overall system perfor-
mance, particularly response time. This suggests the need
for fast and intelligent runtime reallocation of soft resources
as part of microservices scaling management. We introduce
pConAdapter, an intelligent and efficient framework for
managing concurrency adaptation. It quickly identifies opti-
mal soft resource allocations for critical microservices and
adjusts them to mitigate violations of service-level objectives
(SLOs). pConAdapter utilizes fine-grained online monitor-
ing metrics from both the system and application levels
and a Deep Q-Network (DQN) to quickly and adaptively
provide optimal concurrency settings for critical microser-
vices. Using six realistic bursty workload traces and two
representative microservices-based benchmarks (SockShop
and SocialNetwork), our experimental results show that
pConAdapter can effectively mitigate large response time
fluctuation and reduce the tail latency at the 99th percentile
by 3X on average when compared to the hardware-only
scaling strategies like Kubernetes Autoscaling and FIRM [28],
and by 1.6X to the state-of-the-art concurrency-aware sys-
tem scaling strategy like ConScale [21].
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1 INTRODUCTION

Modern web-facing applications have widely adopted mi-
croservices due to their superior scalability. Industry giants
such as Amazon [2], Twitter [1], and Netflix [3] have mi-
grated their core systems and architectures from traditional
monolithic designs to microservices. Microservices are de-
signed to efficiently handle naturally bursty workloads while
meeting stringent Service-Level Objectives (SLOs), such as
maintaining bounded response times. For instance, Ama-
zon. com reported that every additional 100 milliseconds in
page loading can lead to a 1% loss in sales [7]. An important
feature of the microservices-based architecture is that the
scalable fine-grained component microservices [26] can pro-
vide greater performance control by adding system resources
(e.g., vCPU) only to the sections that need extra capacity.
Existing approaches have made notable efforts in hard-
ware resource management to handle the variance in the
critical path of microservices, such as FIRM [28], which fo-
cuses on the shared low-level resource contention. However,
little attention has been given to scaling soft resources (e.g.,
threads or database connections) that control hardware re-
source concurrency. Previous studies [21, 34] revealed that
the mismatch between the soft and hardware resources is an
important factor contributing to SLO violations. For example,
Figure 1 shows a microservice application with FIRM [28]
encounters unexpected response time spikes over the scaling
phases. This is caused by the over-allocation of the thread
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Figure 1: Large latency spikes from thread pool over-
allocation. yConAdapter complements FIRM [28] with
intelligent concurrency adaptations during resource
scaling and microservice updates.

pool inside the critical microservices. Recent studies [20, 21]
introduced the concurrency-aware system scaling solutions
(e.g., ConScale) that employ online statistical models to ef-
ficiently adjust soft resource allocations of critical services
during system scaling. However, the dynamic nature of mi-
croservice environments, due to frequent runtime changes
(e.g., rolling updates of microservices in Figure 1), may cause
recurring human efforts for offline model reconstruction. The
online models face limitations in estimating short-term opti-
mal allocations based on past observations, which may lead
to a degraded performance caused by an unstable adaptation
process, as discussed in Section 3.1.

In this paper, we propose pConAdapter, an online Rein-
forcement Learning (RL)-based concurrency adaptation man-
agement framework designed to quickly recommend and
re-allocate soft resources (e.g., server threads and database
connections) for critical microservices to mitigate SLO viola-
tions. The RL approach models the concurrency adaptation
as a Markov decision process and recommends long-term
optimal actions with a tight feedback loop. In particular,
we use Deep Q-Network (DQN), a value-based method ef-
fective in solving problems with discrete action spaces, to
learn directly from the actual workload. pConAdapter lever-
ages fine-grained online monitoring metrics (e.g., resource
utilization, request rate, throughput, response time, and con-
currency) to describe the runtime system state and workload
characteristics and feeds them to DQN for optimal soft re-
sources estimation. This is primarily because soft resources,
such as server threads and database connections, control the
sharing of hardware resources in microservices through con-
currency. A conservative allocation (e.g., too small a thread
pool) often creates software bottlenecks that limit overall
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system throughput. In contrast, a liberal allocation often
wastes hardware resources such as CPU and memory. Fig-
ure 1 demonstrates the need for our pConAdapter. It enables
fast and intelligent runtime adaptation of the thread pool
size for a critical microservice when scaling the SockShop [4]
microservices benchmark application to achieve better per-
formance.

The first contribution of the paper is an empirical study
based on the microservices benchmark, SockShop [4]). This
study confirms that optimal concurrency settings can sig-
nificantly vary under different system state changes in a
microservices-based web application. For example, we show
that the optimal server thread pool size for one of the mi-
croservices (e.g., Cart service) exhibits a superlinear increase
from 5 to 30 after the CPU limit scales up from a 2-core to
a 4-core configuration (see Figure 3(a)). We also observed
that a sub-optimal thread allocation, given the same CPU
limit, could degrade the maximum achievable throughput of
a Cart service instance by up to 50% (see Figure 3(a)).

Our second contribution is a Reinforcement Learning (RL)-
based approach that enables fast and smart runtime concur-
rency adaptation for microservices in clouds. We feed the
runtime system and workload information (e.g., fine-grained
system and application-level metrics) to a Deep Q-Network
model, which makes frequent concurrency adaptation deci-
sions (Section 3). We further propose a mechanism to speed
up the training process of our DQN model through histori-
cal fine-grained sampling metrics. By continuously learning
from the rewards of various concurrency settings, the RL-
based model can avoid the low-efficiency problem for model
convergence and quickly adapt to optimal concurrency.

The third contribution is the design and implementation
of the pConAdapter framework, which leverages our RL-
based agent to coordinate the provisioning of both hardware
and soft resources in microservices (Section 4). Through
extensive experiments using six realistic bursty workload
traces [9] on two representative microservices-based bench-
mark applications (i.e., SockShop and SocialNetwork), we
demonstrate that yConAdapter can effectively alleviate large
response time fluctuations and reduce the 99th percentile
latencies by 3x on average. This is compared to hardware-
only scaling strategies like Kubernetes Autoscaling [16] and
FIRM [28], and it offers 1.6X improvement over the state-of-
the-art concurrency-aware scaling, ConScale [21].

The rest of the paper is organized as follows. Section 2
presents experimental results showing that sub-optimal soft
resource allocation leads to significant performance degrada-
tion. Section 3 introduces our RL-based model. Section 4 il-
lustrates the design and implementation of our pConAdapter
framework. Section 5 shows the evaluation under six realistic
workloads. Section 6 and Section 7 summarize the limitations
and related work, and Section 8 concludes the paper.
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Figure 2: Service dependency graphs of SockShop and
SocialNetwork benchmark applications.

2 BACKGROUND AND MOTIVATION

2.1 Soft Resource Adaptation in
Microservice

Soft Resources. Unlike well-defined hardware resources
(such as CPU, memory, disk, and network) in performance
evaluation studies, soft resources refer to system software
components that consume hardware resources. For example,
threads consume CPU and memory while TCP connections
multiplex network I/O. For an Internet server, threads and
network connections (e.g., database connections or AJP con-
nections, typically on top of TCP) are the two most important
soft resources because they control the request processing
concurrency level and increase the hardware utilization effi-
ciency through the sharing of hardware resources.

Runtime Soft Resource Reallocation. Many service
providers explicitly expose the tuning knobs of middleware-
level soft resources (e.g., server threads and connections)
that can be easily reconfigured by changing hosting server
parameters (e.g., Tomcat thread pool) or third-party library
parameters (e.g., JDBC connection pool). For example, we
can adjust the thread pool size for the SpringBoot-based
service through remote JMX access via Jolokia and manage
the database connection pool size in the Golang-based ser-
vice through a manually extended service by calling APIs
in the Golang package “database/sql”. The cost of changing
configurations can be low, with many service implemen-
tations offering runtime-resizable APIs for a graceful exit.
However, there may exist other internal application-specific
soft resources (e.g., locks). Tuning such internal soft re-
sources requires additional engineering effort from cluster
orchestration, which is beyond this paper’s scope.

2.2 Experimental Setup

We adopt two open-sourced microservices benchmarks in
Figure 2: (i) SockShop [4], and (ii) SocialNetwork from the
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DeathStarBench [8] benchmark. SockShop is an e-commerce
website with 11 unique microservices, which allows cus-
tomers to navigate and purchase different socks. SocialNet-
work (with 36 unique microservices) implements a broadcast-
style social network with uni-directional follow relationships
whereby users can publish and read social media posts. We
use the RUBBoS workload generator [6] to simulate a num-
ber of concurrent users accessing the target microservices,
where the request rate follows a Poisson distribution.

We conducted experiments in our private VMware ESXi
cluster, which consists of 6 bare-metal servers equipped with
two Intel Xeon E5-2603v3 processors and 16GB of RAM. We
deployed 18 VMs in the cluster, and each VM was configured
with 4 vCPUs, 4GB RAM, and 30GB disk space. Furthermore,
we set up a Kubernetes cluster for container orchestration
and deployed containers uniformly among VMs. In this paper,
we use the terms “pod” and “container” interchangeably
since we use a standard one-container-per-pod model. Each
container runs one component microservice. In the following
motivation experiments, we evaluate two representative soft
resources from SockShop: the thread pool in a SpringBoot-
based service Cart and the database connection pool in a
Golang-based service Catalogue.

2.3 Performance Degradation with
Sub-Optimal Concurrency Settings

In this section, we show our empirical study on three runtime
system condition changes that affect the optimal concurrency
setting in a microservices-based web application.

1) Hardware Resource Scaling. The vertical scaling (e.g.,
adding or removing # of CPU cores) would affect the optimal
concurrency setting of a microservice instance. Figure 3(a)
shows that the optimal thread pool allocation shifts from 5 to
30 when the CPU limit for Cart service scales up from 2-core
to 4-core. This is because the original optimal concurrency
setting (i.e., five server threads) becomes an under-allocation
and cannot fully utilize four CPU cores after the system scal-
ing. We have observed consistent experimental results about
the shifts of optimal connection pool allocation in Catalogue
service as the CPU limit scales up, as shown in Figure 3(d).
These experimental results indicate that hardware resource
scaling would cause the original optimal concurrency setting
to be sub-optimal, resulting in performance degradation.

2) Upgrading of Microservices Business Logic. Fur-
thermore, we explore the impact of the upgrades to the busi-
ness logic for serving the same type of requests of a microser-
vice instance. For example, we update Cart and Catalogue
to employ an optimized business logic with fewer compu-
tations (i.e., less service time). Figure 3(b) shows that the
optimal thread pool allocation increases from 10 to 30 after
applying the optimized business logic for Cart service. This
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Figure 3: Performance variation at increasing soft resource allocation (e.g., thread pool and database connection
pool) for Cart and Catalogue service in Sock Shop benchmark application. Figures (a) and (d) show that scaling up
# of CPU cores could change the optimal soft resource allocation on microservices, Figures (b) and (e) show the
case of changing the business logic of microservices, and Figures (c) and (f) show system state variation case.

is because the degrees of computation for the business logic
for serving the same type of requests are proportional to the
CPU resource consumption — the fewer computations for
the business logic, the less CPU resource consumed. Thus,
the original optimal concurrency setting (i.e., ten threads)
becomes an under-allocation and cannot fully utilize all CPU
resources after applying the optimized business logic. Con-
sistent results are observed in Figure 3(e) for Catalogue.

3) Drifting of System State. The system state drift also
affects the optimal concurrency setting of a component mi-
croservice by affecting the degrees of computation for the
business logic for serving the same type of requests. For ex-
ample, the system state of the backend microservices could
drift over time due to continuous dataset updates, which
leads to variations of the service time of requests in up-
stream microservices accordingly. In this set of experiments,
we initially employed the original dataset for Cart-db and
Catalogue-db services and then manually enlarged the origi-
nal dataset. Figure 3(c) shows that the optimal thread pool
in Cart service increases from 5 to 10 after we enlarge the
dataset in Cart-db service. An interesting observation is that
Figure 3(f) shows the opposite results, where the optimal
database connection pool in Catalogue decreases from 15 to
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10 after enlarging the dataset in Catalogue-db. Such experi-
mental results show that the effect of system state drift on
different microservices can be heterogeneous due to complex
dependencies among these microservices.

Our three empirical observations demonstrate that the
runtime system condition changes have a significant im-
pact on the optimal concurrency in different microservices.
These runtime system condition changes, especially the hard-
ware resource scaling, are common for microservices-based
web applications in cloud environments due to the naturally
bursty workload. Hence, service providers need an online
approach to quickly and accurately identify the optimal con-
currency settings according to various system conditions.

3 RL-BASED MODEL FOR OPTIMAL
CONCURRENCY ADAPTATION

This section proposes a reinforcement learning-based model
for quickly adapting optimal concurrency settings for critical
microservice instances, which can address the limitations of
existing statistical approaches for online concurrency adapta-
tion (Section 3.1). Our model collects fine-grained contextual
metrics (e.g., system conditions) and inputs them into a Deep-
Q-Network (DQN), which recommends the optimal concur-
rency setting to achieve the highest reward (Section 3.2). We
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further introduce a mechanism to accelerate the training pro-
cess of our DQN-based model through the use of fine-grained
sampling metrics (Section 3.3).

3.1 Statistical Model Limitations

Existing approaches for determining optimal concurrency
mainly adopt statistical methods involving static offline mod-
els [12, 34] and dynamic online models [21, 39].

Static offline models identify optimal concurrency settings
using a brute-force search to model the relationships be-
tween performance metrics based on queuing theory. For ex-
ample, Figure 4(a) characterizes the theoretical relationship
(main sequence curve) between a microservice instance’s
throughput and concurrency based on the classic Utiliza-
tion Law [17]. The process of training model parameters is
very time-consuming since we need to tune concurrency
settings step-by-step and run corresponding experiments
for each step (e.g., from 3 to 200 in Figure 3(a)). In addition,
model reconstruction and retraining are required for the
static offline models when the system conditions change at
runtime (e.g., hardware resource reallocation and change
in system state such as dataset [34]). Thus, offline models
cannot quickly adapt to the optimal concurrency setting for
latency-sensitive microservices applications, which usually
have strict SLOs.

The dynamic online model [21] solves such time-consuming
problems by building and revising the performance model
during runtime. Unlike the brute-force search in offline
models, the online model estimates the optimal resource
allocations for each service based on the correlation among
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the real-time fine-grained monitoring metrics (e.g., through-
put and concurrency) within a short time window (e.g., 3
minutes). For example, Figure 4(b) uses a scatter graph to
characterize the correlation between a service’s throughput
and concurrency, measured at a 100ms time granularity
during a 3-minute time window.

However, such a correlation model suffers from two lim-
itations. First, extracting the main sequence curve from a
scatter graph is a non-trivial task since many factors could
affect the quality of the scatter graph. For example, an inap-
propriate time window could lead to large variations in the
concurrency-throughput pairs due to the complex system
dynamics, making the main sequence curve extraction ex-
tremely difficult from the scatter graph. Second, the online
model recommends the optimal concurrency setting every
once within a pre-defined time window (e.g., 3 minutes),
which is still considered to have a coarse time granularity for
the bursty workload in microservices [15]. For example, the
online model-based ConScale [21] framework only tunes the
optimal soft resource allocation every 3 minutes as model
correlation requires sufficient real-time metrics. Such coarse
concurrency adaptation cannot guarantee SLO requirements
for microservices because system condition changes (e.g.,
hardware resource reallocation and system state updates) are
far more frequent in microservices-based applications [37].

3.2 Concurrency Adaptation Using RL

Reinforcement Learning (RL)-based model inherits the bene-
fits of online models and further resolves their limitations.
First, the RL model improves the concurrency estimation by
adopting the historical data replay mechanism (e.g., Experi-
ence Replay [24]) and involving more contextual information
(e.g., system conditions and resource utilization) as model
input. The historical data replay mechanism can mitigate
large variations in updates by training the parameters with
a minibatch consisting of randomly selected historical data,
enabling a more stable learning procedure to provide valid
estimations continuously. Moreover, the RL model with more
contextual system information provides a more accurate es-
timation to handle system condition variations than does a
throughput-driven correlation model. This is because the RL
model can characterize the runtime environment more pre-
cisely by comprehensively considering throughput, resource
utilization, and changes in system conditions.

Second, the RL model can provide frequent concurrency
adaptations (e.g., 1s) based on a tight feedback loop. The RL
model determines the optimal actions directly based on the
states of the environment without relying on the correlations
between real-time metrics over a time window (e.g., 3 min).
Therefore, the RL model saves time during the data collec-
tion phase to provide fast concurrency adaptation to handle
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dynamic system conditions in a microservices-based system.
Besides, the RL model allows direct learning from the actual
workload without human intervention, which reduces the
significant efforts of experts compared to statistical models.

What is RL? RL refers to a trial-and-error learning mech-
anism. Concretely, the RL model learns to solve a sequen-
tial decision-making problem by interacting with the en-
vironment. The model observes a state (s; € S) from the
environment at each time step t. Then it performs an ac-
tion (a; € A) that can maximize the action-value function
Q(sy, as; 0), which records the estimated reward of available
actions mapped to the current state. After the action is taken
at t+1, the model observes a reward (r; € R) given by areward
function r(s;, a;) and forms a tuple (transition) (s;, ar, 1y, St41)-
The model’s goal is to optimize the action-value function to
maximize the expected cumulative discounted reward, where
the return from a state is defined as Zzzoykrﬁk. The discount
factor y € (0, 1] penalizes the predicted future rewards.

Deep Q-Learning Algorithm. In particular, we utilize
the deep Q-learning algorithm by adopting a DQN model
for optimal concurrency setting adaptation. The DQN model
directly learns from high-dimensional observed data using a
deep neural network to approximate the Q-value function
and performs actions with the highest expected Q-value.
Compared to other dynamic online models (e.g., Bayesian
Optimization (BO) [18], Contextual Bandits (CB) [31], and
Deep Deterministic Policy Gradient (DDPG) [28]), DQN pro-
vides two distinct advantages.

e DON models the concurrency adaptation as a Markov
decision process and optimizes for a long-term cumu-
lative reward in dynamic microservice environments.
BO and CB target short-term optimal actions based on
past observations without considering future states,
which may cause an unstable learning process and
incur SLO violations (see Figure 7(c)).

e DQN is a value-based method that can effectively solve
problems with a discrete action space by directly evalu-
ating the Q-value for each concurrency setting. DDPG,
based on an actor-critic approach, adds a policy-based
actor-network, which involves more hyperparameters
in training and would slow down the learning process
(see Figure 7(d)).

Algorithm 1 shows the pseudocode of the training algo-
rithm. To make our RL model explore better actions during
the training process, we add noise with a probability of e
to the action selected based on the Q-value (line 8). Such
a strategy makes the RL model exploit the rational actions
over the entire training process, as it can avoid bad trials for
allocating too much concurrency due to random strategy. On
the other hand, to eliminate oscillations of the update effect,
DON builds a target Q network O(sy, ar; é) which is a copy of
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Figure 5: Architecture of RL model with a Deep Q-
Network (DQN) for estimating optimal concurrency
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the value function Q(s;, a;; €). We synchronize the estimated
network with the target network every C steps to stabilize
learning. The value function Q(s;, a;; 0) with parameter 6
and its corresponding loss function L(0) are defined as:

Q(st, ar;0) = E[r(st, ar) + yQ(se41, are13 0)] (1)
L(0) = %Zi(ri +y0(si1, ain; 0)) — Osi,ai30))* (2)

Problem Formulation. We formulate the concurrency
settings (i.e., soft resource allocation) adaptation as a sequen-
tial decision-making problem that can be solved by the above
RL framework. At each time step t, we measure resource uti-
lization (e.g., CPU utilization) and request rate, throughput,
response time, and current system conditions, including com-
putational complexity of service business logic and dataset
size for database services (Section 2.3). The RL model calcu-
lates the states listed in Figure 5 with these measurements.
Throughput Ratio (TPR;) is defined as the current through-
put to request rate ratio. Latency Ratio (LR;) is defined as
SLO Latency/Response Time. If no messages arrive or the
response time is zero, it is assumed that there is no SLO vio-
lation (LR; = 1). Resource Utilization (RU; ) is defined as the
ratio of critical hardware resource utilization to its limit (e.g.,
CPU; = CPUutil./CPUlimit). System Condition (SC;) is an
array to summarize all microservices’ underlying hardware
resource limits and deployment within an execution path.
For example, the system condition for a “Cart” service can
be labeled as [code version:“Cart:Light-v1”, dataset:“Cart-
db:User-2K"]. We extract this information by referring to the
container status and further encode it for model input with-
out manual labeling. A better system conditions modeling
would further improve the performance of our RL model in
the future. Reward function design has non-trivial implica-
tions on the concurrency adaptation policy. The ultimate
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Algorithm 1 Deep Q-learning with Experience Replay

1: Init replay memory D

2: Init action-value function Q with random weights 6
3: Init target action-value function Q with weights 0
4: for episode =1, M do

5:  Receive initial observation state s;
6: fort=1,T do
7: Select action a; = argmaxqQ(s;, a; 0)
8: With probability € set Noise N = N(a;)
9: Execute action a; + N(ay)
10: Observe new state s;41
11: Generate and Store transition(s;, az, rs, S¢41) in D
12: Sample N transitions (s;, aj, 1, si+1) from D
13: Set y; = r; + ymax, Q(si+1, d; 9)
14: Perform a gradient descent step (y; — Q(s;, ai; 0))?
15: Every C steps reset Q =Q
16:  end for
17: end for

goal of our RL model is to learn to select the optimal ac-
tion that minimizes the latency (i.e., min,, LR;) while maxi-
mizing the throughput under high resource utilization (i.e.,
max,, TPR; - RU;). Based on both objectives, the reward func-
tion is defined as r, = @ - LR; + § - TPR; - RU;.

3.3 Speed up via Fine-grained Sampling
Metrics

DON adopts the e-greedy exploration strategy to choose
a random action with a probability of . However, it may
suffer from data inefficiency in environments with sparse
rewards, which slows down the learning process [10]. Be-
sides traditional boosting approaches (e.g., prioritized experi-
ence replay), we propose utilizing fine-grained sampling (e.g.,
100ms) reward-related metrics to generate more valid transi-
tions within limited physical time steps. The metrics include
request rate, throughput, response time, and concurrency.

Our idea is similar to the approaches that use a multi-
agent DQN to enhance the learning process by parallel train-
ing [33]. In contrast, we adopt a single agent and regard
the measured concurrency as the action trials from other
agents to generate multiple transitions and store them in
the memory buffer within a physical time step. Such an ap-
proach inherits the knowledge derived from the existing
online correlation model (Figure 4(b)) [21]. The correlations
between concurrency and performance reward serve as the
prior knowledge and help our RL agent quickly learn from
the experience. Moreover, using fine-grained concurrency as
actions can mitigate the reward fluctuations due to system
state variations during online exploration. Our approach en-
ables the DQN to perform 6 X faster than the vanilla DQN
under a single system condition training scenario. We will
show experimental validations in Section 5.2.
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Figure 6: yConAdapter framework for coordinating op-
timal concurrency adaptation with hardware scaling.

4 uCONADAPTER FRAMEWORK

So far, we have described our RL model that applies run-
time optimal concurrency adaptation to a microservice. Our
experimental results show that hardware-only scaling can-
not handle performance degradation caused by inappropri-
ate soft resource allocation (Figure 1); thus, runtime soft
resource adaptation management is required to complement
the hardware-only autoscalers to achieve better performance.
This section presents our pConAdapter framework, which
integrates the RL-based concurrency adaptation (Section 3)
to work with a hardware-only autoscaler. Figure 6 shows the
four main components of yConAdapter: Monitoring Module,
Critical Service Localization Module, DQN Optimal Concur-
rency Estimator, and Reallocation Module.

4.1 Module Design

Monitoring Module collects both application- and system-
level metrics (e.g., throughput and CPU). We use distributed
tracing and public monitoring tools to implement the mon-
itoring module. Distributed tracing is a popular method to
monitor microservices by recording the arrival and depar-
ture timestamps of a request as a span within a microservice.
We implement an OpenTracing-compliant tracing module in-
side each microservice to collect request spans and generate
application-level metrics by processing these spans. Addi-
tionally, the monitoring module also extracts system-level
metrics (e.g., container resource utilization) via cAdvisor.
Critical Microservice Localization Module is respon-
sible for identifying the bottlenecked microservice along an
execution path in the system triggered by an HTTP request.
This identification of critical microservices is crucial for pre-
venting invalid operations on non-critical microservice soft
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Parameter Value
Experience Replay Capacity (D) 10*
Minibatch 64
Learning Rate 1e-3
Reward Discount (y) 0.9
Target Model Update Frequency (C) 10
Exploration Noise Probability (€) 0.1

# Hidden Layers X # Hidden neurals 2X40
Speed Up Sampling Period 100ms

Table 1: DQN Training Parameters

resource reallocation within a large-scale system [19]. In-
spired by the approach in FIRM [28], we employ a two-step
method for localizing the critical service. Firstly, we assess
the resource utilization of each microservice. Secondly, we
calculate the Congestion Ratio, which is the ratio of the 99th
percentile latency to the 50th percentile latency. A high re-
source utilization indicates that the microservice has reached
its capacity, while a high Congestion Ratio suggests that
requests at the tail-end are congested within the current
microservice. In both cases, it is necessary to adjust the cor-
responding concurrency setting.

DON Optimal Concurrency Estimator selects the ac-
tion with the highest expected reward based on the RL model
and triggers the Concurrency Adapter to execute the action.
Our DON has a moderate feedback loop (i.e., the timestep
is 1s), which is sufficient for action execution. A too-long
control loop will prolong the convergence of DQN and incur
a longer SLO mitigation time. On the other hand, a too-short
control loop (e.g., 0.2s) would introduce around 10% CPU
overhead due to frequent concurrency adaptation.

Reallocation Module includes an autoscaler to man-
age system hardware resource scaling and a Concurrency
Adapter to execute the action command from the DQN Op-
timal Concurrency Estimator. Unlike previous thread adap-
tation frameworks (e.g., DCM [34] and ConScale [21]), our
Concurrency Adapter works independently from the hard-
ware autoscaler. This is because soft resource re-adaptation
depends on the current runtime system condition through
continuous monitoring, independent of hardware resource
provisioning. Moreover, an optimal soft resource allocation
would update when some runtime changes happen in reality,
such as hardware scaling and deployment of new code ver-
sions of a microservice, requiring decoupling of RL decisions
from hardware resource scaling.

4.2 Implementation Details

Request Tracing Management. Our DON relies on dis-
tributed tracing (inspired by FIRM [28]) to collect detailed
request information to generate fine-grained performance
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metrics to update optimal soft resource allocation. However,
efficient management of real-time trace data in a large-scale
microservice system is a great challenge [14]. To mitigate
this problem, we first use a graph database, Neo4j, to effi-
ciently store and query the complex invocations of services.
Furthermore, we prepare a separate lightweight database
(e.g., MongoDB) for each microservice to store the request
timestamp records of the current service, which enables the
overhead removal of the heavy filtering and aggregation
tasks due to the large-scale microservices. On the other hand,
we isolate the resource (e.g., CPU) for the monitoring agent
and microservices in each VM to avoid interference with
monitoring. Our overhead analysis shows a maximum CPU
overhead of 5% of all loads when enabling metrics collec-
tion/tracing in pConAdapter. On the other hand, the fine-
grained application-level metrics are calculated in dedicated
machines, which does not add any additional overhead to
the target runtime system.

DON Agent Implementations. We implemented the
DOQN framework using PyTorch [27]. Inspired by existing RL
resource management research (e.g., FIRM [28] and Deep-
Scaling [36]), we designed the Q-network to contain two
fully connected hidden layers with 40 hidden units, all using
the ReLU activation function. This setup can achieve good
learning efficiency and performance in our microservice
benchmark applications. Adding more layers and hidden
layers may slow down the training speed. Hyperparame-
ters of the DQN model are listed in Table 1. Furthermore,
the Q-network has four inputs for environment states and
a restricted output space for different services. Target soft
resource allocation has a rational range. For example, we
can set 200 outputs for thread pool allocation in Cart as
the enabled Tomcat in SpringBoot has a default of 200 max-
threads. Limiting the action space with profiling knowledge
can mitigate the impact of sub-optimal actions during RL
explorations.

Independent Hardware and Soft Resource Control
Flow. We have implemented concurrency adaptation and
hardware resource autoscaler separately to make our work
easily coordinated with existing hardware-only resource
management solutions. The two-model solution increases
the interpretability of each model due to its simplicity. In con-
trast, adding soft resource adaptation actions to the existing
hardware controller (e.g., FIRM) could lead to a state-action
space explosion issue, which significantly increases the train-
ing overhead of the RL model. This is because soft resources
usually have a large configuration space due to the heteroge-
neous service implementation (recall from Section 2.1), and
the parameters and performance usually have a nonlinear
relationship. For example, liberal allocation of threads or con-
nections would degrade the service performance instead of
improving it (see Figure 3). A unified controller might be the
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Execution Path Critical Service Accuracy
Home-Timeline 95%
ReadHomePost
Post-Storage 90%
Home-Timeline 93%
ReadHomeTimeline  Home-Timeline-
85%
mongodb
Home-Timeline 92%
GetFollower -
Social-Graph 95%

Table 2: Accuracy of critical service localization for
three execution paths in SocialNetwork application.

ideal solution for this joint optimization problem, assuming
the training overhead can be significantly reduced.

5 EXPERIMENTAL EVALUATION

In this section, we first evaluate the accuracy of our criti-
cal service localization during a single-bottleneck test (Sec-
tion 5.1). We then examine the efficiency of our proposed
Speed Up mechanism in accelerating the DQN model’s train-
ing process (Section 5.2). We evaluate the effectiveness of
pConAdapter in assisting the hardware-only autoscaler (i.e.,
Kubernetes Autoscaling [16] and FIRM [28]) in stabilizing
performance fluctuations under six realistic bursty work-
load scenarios [9] (Section 5.3). Furthermore, we compare
our pConAdapter with the state-of-the-art soft resource re-
adaptation framework, ConScale [21], when faced with vari-
ous runtime system conditions changes (Section 5.4).

5.1 Critical Service Localization

To assess the accuracy of our critical service localization mod-
ule, we tested three execution paths within the SocialNetwork
application and configured a single bottleneck service along
the path by limiting CPU resources (e.g., 1 vCPU). For each
path, we tested the accuracy of two critical service estimation
cases. For example, we examined Home-Timeline and Post-
Storage as the critical services when composing requests
"ReadHomePost". We gradually increased the workload and
recorded the resource utilization and congestion ratio of each
service for critical service estimation. We selected workloads
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uniformly at random within a range where the workload
can cause the 95th percentile end-to-end latency in [0.5s, 2s].
Table 2 reveals that the average accuracy is 91.6%, supporting
the effectiveness of our critical service localization module.

5.2 Fast Convergence of Online
Concurrency Adaptation Using DQN
with Speed Up

To understand the convergence behavior of our DQN model,
we conducted extensive experiments using a realistic work-
load with a fixed number of concurrent users (i.e., 1500) to
train our RL model during runtime, and the model would
converge and generate the optimal resource allocation for
the static system condition. We set the think time in our RUB-
BoS workload generator to be 1s between two consecutive
requests and allocate the bottleneck service Cart with a 2-
core CPU limit. The model will converge and recommend the
optimal soft resource allocation to reach the highest reward
with a stable learning process.

Figure 7(a) shows that the reward for our DQN model
rapidly increases at the beginning of the training process and
becomes stable (reaches about 0.9) at around 50 timesteps.
For comparison, Figure 7(b) shows that the reward for vanilla
DON converges at around 320 timesteps, which is 6x slower
than our DQN model with the Speed Up mechanism. This is
because our DQON model has more sampling data for training
(10x) than the vanilla DQN model due to the fine-grained
sampling interval (100ms in our DQN model vs. 1s in the
vanilla DQN model). Our Speed Up mechanism helps the
DQN model exploit 10 virtual interactions with the runtime
system within one physical timestep. These virtual interac-
tions can provide actual knowledge of the current system
state since actions and rewards are derived from runtime
correlations between concurrency and performance metrics
(Recall Figure 4). Hence, the DQN model with Speed Up al-
ready has 500 interactions experienced at 50 timesteps, and
the vanilla DQN starts to converge until it accumulates the
actual 320 interactions. However, such a benefit of sampling
is not a free lunch. Due to large variations in measurement, A
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(d) Catalogue scales out along with Pod CPU utilization at 68s, 239s,
and 542s. pConAdapter helps maintain a limited number of database
connections during the whole period.

Figure 8: Performance comparison between Kubernetes HPA (Figures (a)(c)) and pConAdapter (Figures (b)(d)) under
the same “Large Variation” workload. Our ;ConAdapter outperforms Kubernetes HPA in stabilizing response
time fluctuations due to the DQN agent limiting the database connection pool size to around 10.

low sampling rate (e.g., 20ms) may not contribute to accurate
concurrency and performance metrics. Our Speed Up mecha-
nism boosts the process of exploration, standing orthogonal
to existing exploration strategies (e.g., e-greedy).

We further compare the training process of our DQN with
a BO model and a DDPG model under the same static work-
load scenario to validate the benefits of DQN for concur-
rency adaptation. Figure 7(a) and Figure 7(c) show that our
DON with Speed Up can converge faster and have a more
stable learning process than the BO model since BO only
recommends short-term optimal actions based on prior ob-
servations. The frequent sub-optimal trials caused by system
state variations would incur frequent SLO violations dur-
ing the online learning process. Figure 7(d) shows that the
DDPG model has a much longer training convergence time
(650 timesteps), which is 13X longer than our DQN with the
Speed Up mechanism. This is because DDPG involves more
hyper-parameters by adopting an actor-critic approach con-
sisting of an actor-network and a critic-network (DQN uses
one network). Moreover, DDPG determines actions based
on the actor-network and sometimes incurs action skew to
degrade the performance. The reward curve fluctuations in
Figure 7(c) and 7(d) are caused by unstable action policies. By
contrast, DQN is more stable as it directly tunes the Q-value
for the available concurrency settings.

5.3 Complementing Hardware-only
Autoscaling Solutions

Autoscaler Setup. We deploy pConAdapter, Kubernetes Au-
toscaling, and FIRM in our private cluster. The Kubernetes
Autoscaling employs a rule-based scaling policy by monitor-
ing resource utilization of microservice instances (e.g., Pod
CPU utilization > 80%) and supports both horizontal (HPA)
and vertical scaling (VPA). FIRM offers an RL-based fine-
grained hardware resource management for microservices.
We conduct evaluation experiments using three representa-
tive microservices (i.e., Catalogue, Cart, and Home-timeline
services) from two benchmark applications. We configure the
bursty workload that adjusts the number of concurrent users
every 30 seconds by following six real-world traces [9]. Each
user follows a Markov chain model to navigate the target
benchmark applications with an average of 1-second think
time between consecutive HTTP requests. The maximum
concurrent users for Catalogue, Cart, and Home-Timeline ser-
vices are 3000, 3500, and 5200, respectively, and the duration
of each workload trace is 12 minutes.

Horizontal Scaling. Figure 8 compares the system per-
formance (i.e., throughput and response time) between Ku-
bernetes HPA and pConAdapter under the same “Large Vari-
ation” workload trace for a Catalogue service. Catalogue
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(d) FIRM manages the CPU limit for Cart service. The Pod CPU
resources can be fully utilized after Cart scales up to 4-core due to
optimal thread pool reallocation conducted by pConAdapter.

Figure 9: Performance comparison between FIRM (Figures (a)(c)) and pConAdapter (Figures (b)(d)) under the same
“Large Variation” workload. Our yConAdapter can help FIRM to stabilize response time fluctuation by re-adapting

thread pool allocation to match the bursty workload.

adopts an on-demand database connection strategy by de-
fault, which establishes new connections as needed. Our
pConAdapter achieves a relatively stable response time and
throughput in a 12-minute experiment than that in the Ku-
bernetes HPA case (see Figures 8(a) and 8(b)). For example,
large response time fluctuations and throughput drops ap-
pear in the Kubernetes HPA case during the peak workload
phases (40s~82s, 210s~250s, and 520s~555s). Taking the pe-
riod 520s~555s in Figures 8(a) and 8(c) as an example, before
adding the new Catalogue instance at 542s, we note that the
number of database connections starts to accumulate and sig-
nificantly affects the system performance. Once the second
Catalogue serves new incoming requests, the downstream
Catalogue-db would receive double concurrent requests. The
high concurrent requests would further degrade the CPU
efficiency of the database service (i.e., 542s~555s). On the
other hand, our pConAdapter can stabilize response time
and throughput during the whole experiment runtime, as
shown in Figure 8(b). This is because yConAdapter limits
the database connection pool size to 10 based on our DQN
model (see Figure 8(d)), which helps avoid large response
time spikes during the temporary overloading.

Vertical Scaling. We then validate the effectiveness of
our gConAdapter when adopting vertical scaling for stateful
microservices (e.g., Cart). Unlike horizontal scaling, verti-
cal scaling (i.e., adding or removing vCPU) would mitigate
the impact of the complex dependencies between upstream
and downstream microservices. However, it still requires

concurrency adaptation to avoid performance degradation
due to the lack of coordination between hardware and soft
resources. We initially set Cart thread pool to be 6, which is
optimal for Cart with 2-core vCPU through pre-profiling.

We compare our pConAdapter with both the Kubernetes
VPA and FIRM [28]. Figure 9 shows the comparison between
FIRM and pConAdapter under the same “Large Variation”
workload trace for a Cart service. Figure 9(c) shows that FIRM
can tune CPU limit with fine granularity and provide faster
scaling to help reduce SLO violations. However, it still cannot
avoid the large response time spikes during the temporary
overload phase (180s~260s and 500s~570s) in Figure 9(a). A
response time spike appears even though FIRM scales up the
CPU limit to 4-core (maximum allocation) from 180s to 260s
(see Figures 9(a) and 9(c)). FIRM did not adapt the thread
pool accordingly after scaling hardware resources, making
the original optimal threads allocation insufficient to fully
utilize the hardware resources (e.g., CPU) as we studied in
Section 2.3. The CPU utilization of Cart is about 310% even
though the CPU limit is scaled up to 4-core, leading to Cart
CPU’s low efficiency and sub-optimal system performance.
On the other hand, our pConAdapter dynamically adapts
Cart thread pool from 6 to 25 after several trials to match
the updated vCPU allocations in Figure 9(d).

We further compare the average throughput and tail la-
tency (i.e., 95th and 99th percentile) between the hardware-
only scaling frameworks and our pConAdapter under other
types of workload traces in Table 1. Our pConAdapter can
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Cart service in Sock Shop

Home Timeline service in Social Network

99th Percentile
Response Time [ms]

95t Percentile
Response Time [ms]

Workload Trace

Throughput
[regs/s]

99" Percentile
Response Time [ms]

95 Percentile
Response Time [ms]

Throughput
[regs/s]

K8s VPA/FIRM/uConAdapter

K8s VPA/FIRM/uConAdapter K8s VPA/FIRM/puConAdapter

K8s HPA/ uConAdapter K8s HPA/ uConAdapter K8s HPA/ uConAdapter

Large

Variation M 659 / 501/ 203 768 /592 / 315 1142 / 1185/ 1261 499 /189 1027/ 354 1673 /1938
Quick

Varying | pa WV 726 / 500 / 214 808 / 553 / 303 1651/ 1732 / 1990 469 /185 860 / 305 2082 / 2579
Slowl

Varging |/ \ 704/ 663 / 326 748 [ 749 / 472 1078 / 1196 / 1246 461/ 164 1047/ 414 1809 / 2050
p

sowe | S 498/ 535/ 186 600 /642 /297 702/ 731 / 741 520/ 219 1171/ 403 1230 / 1438
Dual

phase | ST 687/ 551/ 268 753 /633 /358 1421/ 1472/ 1699 314/ 84 1122/ 334 2120 / 2334
St

Ti Phase J\/\ 744/ 624 [ 288 803 /687 / 432 1283 / 1318 / 1466 283/ 68 1045 / 188 1481/ 1705

Table 3: Tail response time (i.e., 95th and 99th percentile) and throughput comparison between Kubernetes HPA,
Kubernetes VPA, FIRM, and pConAdapter under six realistic bursty workload traces for two representative services

from SockShop and SocialNetwork.

significantly reduce the 95th and 99th percentile latency by
2% than Kubernetes VPA and FIRM. We further evaluate
the effectiveness of pConAdapter in a more sophisticated
benchmark, SocialNetwork. Our pConAdpater achieves 3x
lower on average 95th and 99th percentile latency for the
Home-Timeline service than Kubernetes HPA.

5.4 Performance Comparison between
pConAdapter and ConScale

ConScale [21] is a state-of-the-art framework that coordi-
nates fast concurrency adaptation with autoscaling to sta-
bilize the system response time, which performs similarly
to pConAdapter when optimal concurrency remains stable
due to little runtime changes (e.g., vertical scaling and mi-
croservice rolling updates). We argue that our pConAdapter
shows better adaptability due to the RL model compared to
ConScale’s online statistical SCT model. Our pConAdapter
adjusts soft resources every second, while ConScale reallo-
cates soft resources only after hardware resource scaling.
Moreover, the SCT model needs a coarse 3-minute time win-
dow to reconstruct the correlation model and recommend a
new optimal setting. Such a reaction window highly affects
the quality of model estimation. This is because ConScale
employs online regression using a batch of recent observa-
tions. A short reaction window with insufficient new data
would degrade ConScale’s decision. Figure 10 validates that
pConAdapter can provide better concurrency adapting un-
der the same “Large Variation” workload trace facing the
system condition changes (e.g., upgrading of microservices
business logic and drifting of system state).

Upgrading of Microservices Business Logic. We start
our experiments with the original Catalogue service, then
upgrade the code to an optimized version with fewer com-
putations for organizing the socks, which reduces the ser-
vice time of the corresponding requests. Figure 10 shows
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that pConAdapter and ConScale have comparable response
time performance before Catalogue version upgrade at 401s
since both frameworks adopt optimal database connections.
However, pConAdapter outperforms ConScale in achieving
a much more stable low response time during the period
540s~570s in Figure 10(a). This is because ConScale updates
the new optimal database connections at 581s, and Catalogue
scales out at 565s in Figure 10(b)). The delay of database
connection reallocation causes a response time spike (period
540s~565s) since the previous optimal setting for the original
Catalogue is no longer valid (Figure 10(c)).

We apply Pareto analysis [18] to evaluate whether
pConAdapter does optimal soft resource allocation. A Pareto
optimal solution to a multi-objective optimization problem
should be equally good or better in all objective functions
(at least one). We apply a Pareto analysis on the perfor-
mance/cost tradeoffs of pConAdapter after microservice
updates (i.e., 401s~701s) in Figure 10. We first extract the
performance reward of each action of pConAdapter every
second. Then we measure the sum of normalized CPU and
memory utilization as the resource cost. Figure 11(a) shows
that pyConAdapter’s database connections adaptation fol-
lows the Pareto frontier (i.e., 0.14 deviation from the Pareto
front of every decision), and resource cost and performance
reward are linearly dependent, indicating that pConAdapter
helps Catalogue fully utilize the hardware resources and
achieve optimal performance. By contrast, ConScale’s sub-
optimal actions cause a low-performance reward (e.g., < 0.8)
while incurring high resource cost (e.g., > 1.5). This is far
from the Pareto frontier and also exhibits a larger deviation
of 0.213 (see Figure 11(b)).

Drifting of System State. In this set of experiments, we
initially launch Cart-db service with the original dataset
and then manually enlarge the dataset to compare the
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Figure 10: yConAdapter achieves more stable response
time than that in ConScale case after Catalogue service

upgrades to use fewer computations (i.e., 401s~720s).
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cost and a low-performance reward.
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Figure 11: Pareto analysis on performance/cost trade-
offs of yConAdapter and ConScale from 401s~701s
in Figure 10. yConAdapter does Pareto-optimal soft
resources allocation while ConScale suffers from re-
source inefficiency due to sub-optimal allocations.

performance differences between pConAdapter and Con-
Scale. Figure 12 shows a consistent experimental result that
pConAdapter outperforms ConScale in stabilizing response
time spikes after Cart-db database update (i.e., enlarging
Cart-db dataset) at 401s. ConScale has encountered higher
response time spikes than those in the pConAdapter case
during the period 500s~600s in Figure 12(a). ConScale fails
to adjust the thread pool since no hardware resource scaling
was triggered after Cart-db updates and previous optimal
server threads cannot fully utilize all 4-core CPU resources
(e.g., about 340%). In contrast, yConAdapter captures fine-
grained system state data with a tight feedback loop and
quickly generates new server thread recommendations.
Therefore, our experimental results demonstrate our pro-
posed puConAdapter can effectively provide better adaptivity
and reliability to fast and accurately adapt the optimal soft
resource allocation to various system condition changes.
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Figure 12: Our zConAdapter achieves more stable re-
sponse time than that in ConScale case after Cart-db
service upgrades to persist an enlarged dataset (i.e.,
401s~720s).

5.5 Runtime Overhead Analysis

Overhead Imposed by RL Update. We used PyTorch to
implement a DQN-based model for optimal concurrency
adaptation. Initially, we fine-tuned each microservice’s DQN
model by considering a specific hardware resource alloca-
tion and learning from diverse system states resulting from
bursty workloads. Take the Cart service as an example. In
the initialization phase, thanks to the small number of hyper-
parameters and our Speed Up mechanism, our DQN model
took just 50 timesteps to identify the optimal concurrency.
Meanwhile, the minimal cost of soft resource adaptation op-
erations ensures tight feedback from RL agents. For example,
thread pool adaptation in the Cart service required an aver-
age latency of 62ms in all workloads, which is considered
an acceptable delay in practice. Moreover, the frequency of
RL model updates depends on the runtime changes in the
system/workload. Since RL online training operates through
trial and error, it can produce sub-optimal decisions, particu-
larly during the initial stages of workload changes.

Metrics Collection/Tracing Overhead. Similar to FIRM,
we utilize the distributed tracing method to record the ar-
rival and departure timestamps of individual requests within
the target microservice at millisecond granularity. Enabling
metrics collection/tracing in pConAdapter results in a maxi-
mum of 5% CPU overhead under all workloads. Subsequently,
we generate fine-grained application-level metrics for the
critical service by processing the arrival and departure times-
tamps of each request it serves, which are logged in every
component service. The overhead of generating the required
application-level metrics at a 100ms sampling interval is
recorded in Table 4, which were obtained from a dedicated



SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

server equipped with 8 cores of Intel Xeon E5-2603v3 pro-
cessors and 8GB of RAM in the SockShop application. Con-
sequently, the collection of application-level metrics has a
negligible impact on the runtime system of the target.

6 LIMITATIONS

pConAdapter has several limitations that we plan to address
in future work. Firstly, pConAdapter currently focuses on
two generic soft resources (i.e., server threads and connec-
tion) adaptations among most mid-tier and database services.
More types of soft resources (e.g., heap region size for mem-
ory management) and services (e.g., Memcache) are still
under investigation. Secondly, pConAdapter is designed for
closed-loop workloads that emulate the behaviors of concur-
rent users for web applications. Evaluating ConAdapter’s
performance with open-loop workloads can improve the gen-
erality of pyConAdapter for modern cloud systems. Thirdly,
we plan to refine pConAdapter’s input state design to ensure
precise detection of runtime changes and model retraining. A
recent study [29] inspires us to consider using meta-learning
to facilitate model adaptation in dynamic environments.

7 RELATED WORK

Autoscaling frameworks for microservices mainly focus
on elasticizing computing resources (e.g., CPU and memory)
in clouds [11, 13, 22, 25, 28, 30, 38] For example, Autopi-
lot [30] uses machine learning algorithms applied to histor-
ical data about the prior execution of a job to predict the
CPU/memory usage of jobs. FIRM [28] leverages fine-grained
measurement data and machine-learning methods to fast and
dynamically provision hardware resources to mitigate SLO
violations caused by low-level resource contention. However,
these approaches barely discuss the scaling of soft resources
(e.g., threads or connections) that control the concurrent
use of hardware resources, which could become significant
sources of performance fluctuations (see Section 2.3).
Critical service localization in microservices is challeng-
ing, and many works have studied critical path analysis from
different perspectives [14, 23, 28, 41]. For example, Kaldor et
al. [14] track requests from web browsers/mobile to backend
services by developing an end-to-end tracing system, Canopy,
which can handle billions of traces. Liu et al. [23] detect the
performance anomaly using a Deep Bayesian Network in
an unsupervised manner. Zhang et al. [41] use critical path
analysis over RPC traces to bubble up interesting activities
and discard noisy events. These works provide insights into
utilizing distributed request traces for automated anomaly
detection, which provides a good foundation for critical ser-
vice localization.

Software reconfiguration to mitigate SLO violations for
cloud applications has been studied extensively before [5,
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Num Requests | Request Size | Processing Time | Memory Usage
10K 0.5MB 0.694 sec 49MB
20K 1.1MB 0.971 sec 65MB
40K 2.1MB 1.291 sec 81MB
80K 4.2MB 1.941 sec 90MB

Table 4: Overhead of generating application-level met-
rics at 100ms sampling interval in SockShop.

20, 21, 32, 35]. For example, Sriraman et al. [32] develop
pTune, which automatically chooses load-optimal thread-
ing models for microservices based on various offered loads
to improve tail latency. Zhang et al. [40] leverage machine
learning models to automatically recommend new config-
urations for database management systems to improve the
system performance. ConScale [21] and Sora [20] adopt sta-
tistical correlation models to quickly estimate the optimal
soft resource configurations of key servers during the sys-
tem scaling process. Our work complements their work by
integrating a reinforcement learning-based model, capable
of capturing each subtle change in system conditions and
better adapting soft resource allocations for microservices.

8 CONCLUSION

We present pConAdapter, a framework for optimal concur-
rency adaptation that integrates fast and dynamic soft re-
source reallocation for critical microservices with existing
hardware-only autoscalers. Our experiments, conducted on
two representative microservices benchmarks (SockShop and
SocialNetwork) using six realistic bursty workload traces,
demonstrate the effectiveness of pConAdapter in reducing
tail latency at the 99th percentile compared to hardware-only
scaling strategies like Kubernetes Autoscaling and FIRM. Ad-
ditionally, pConAdapter outperforms the concurrency adap-
tation framework, ConScale, facing microservices updates.
Overall, pConAdapter enables swift mitigation of system
response time fluctuations by combining efficient hardware
and soft resource provisioning. It contributes to high re-
source efficiency and optimal performance in meeting the
demands of modern cloud applications.
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