Check for
Updates

Sora: A Latency Sensitive Approach for Microservice Soft
Resource Adaptation

Jianshu Liu
Louisiana State University
Baton Rouge, USA
jliug6@lsu.edu

Liting Hu
University of California Santa Cruz
Santa Cruz, USA
liting@ucsc.edu

ABSTRACT

Fast response time for modern web services that include numerous
distributed and lightweight microservices becomes increasingly
important due to its business impact. While hardware-only re-
source scaling approaches (e.g., FIRM [47] and PARSLO [40]) have
been proposed to mitigate response time fluctuations on critical
microservices, the re-adaptation of soft resources (e.g., threads or
connections) that control the concurrency of hardware resource
usage has been largely ignored. This paper shows that the soft re-
source adaptation of critical microservices has a significant impact
on system scalability because either under- or over-allocation of
soft resources can lead to inefficient usage of underlying hardware
resources. We present Sora, an intelligent, fast soft resource adapta-
tion management framework for quickly identifying and adjusting
the optimal concurrency level of critical microservices to mitigate
service-level objective (SLO) violations. Sora leverages online fine-
grained system metrics and the propagated deadline along the
critical path of request execution to quickly and accurately provide
optimal concurrency setting for critical microservices. Based on six
real-world bursty workload traces and two representative microser-
vices benchmarks (Sock Shop and Social Network), our experimental
results show that Sora can effectively mitigate large response time
fluctuations and reduce the 99th percentile latency by up to 2.5x
compared to the hardware-only scaling strategy FIRM [47] and 1.5x
to the state-of-the-art concurrency-aware system scaling strategy
ConScale.

CCS CONCEPTS

+» General and reference — Performance; Experimentation; «
Computer systems organization — Cloud computing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Middleware "23, December 11-15, 2023, Bologna, Italy

© 2023 Association for Computing Machinery.

ACM ISBN 979-8-4007-0177-1/23/12...$15.00
https://doi.org/10.1145/3590140.3592851

Qingyang Wang
Louisiana State University
Baton Rouge, USA
qwang26@lsu.edu

43

Shungeng Zhang
Augusta University
Augusta, USA
szhang2@augusta.edu

Dilma Da Silva
Texas A&M University
College Station, USA
dilma@cse.tamu.edu

KEYWORDS

Scalability, Microservices, Auto-scaling, Soft Resource

ACM Reference Format:

Jianshu Liu, Qingyang Wang, Shungeng Zhang, Liting Hu, and Dilma
Da Silva. 2023. Sora: A Latency Sensitive Approach for Microservice Soft
Resource Adaptation. In 24th International Middleware Conference (Middle-
ware "23), December 11-15, 2023, Bologna, Italy. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3590140.3592851

1 INTRODUCTION

In recent years, modern user-facing applications have witnessed a
wide adoption of microservices-based architecture. Many industry
practitioners, such as Twitter [1], Netflix [5], and Alibaba [36], have
migrated their applications from the classic monolithic design to
microservices. An important reason is that the microservices-based
architecture can decouple an application into tens or hundreds of
loosely-coupled microservices to provide superior scalability. The
scalable fine-grained component microservices [46] can provide
greater performance control by only adding system resources to
the components needing extra capacity. However, achieving effi-
cient resource scaling for microservices is challenging since the
applications must meet stringent Service-Level Objectives (SLOs)
like bounded response time while handling the naturally bursty
workload. For example, Amazon found that every 100ms of latency
cost them 1% in sales when facing 20X normal-traffic of peak load
over holidays (e.g., Black Friday) [15].

A recent study [47] explored the hardware-only resource scal-
ing approach for the critical microservice instances to handle the
bursty workload. A significant insight is that the transient con-
tention of low-level shared hardware resources such as caches and
memory is the major contributing factor to service-level objectives
(SLOs) violation. However, they barely discuss the complex soft re-
source (e.g., threads or database connections) re-adaptation of these
microservices to match the hardware resource changes after the
system scaling, which has been shown to impact the overall system
performance significantly [33, 64]. For example, Figure 1 shows
that the hardware-only Kubernetes Horizontal Pod Autoscaling [7]
cannot reduce the response time spikes due to over-allocation of the
database connection pool inside the critical microservice. Recent
work [33] has proposed a Concurrency-aware system Scaling (Con-
Scale) framework that can quickly adapt key servers’ soft resource
allocations after system scaling. However, ConScale is throughput

https://doi.org/10.1145/3590140.3592851
https://doi.org/10.1145/3590140.3592851
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3590140.3592851&domain=pdf&date_stamp=2023-11-27

Middleware *23, December 11-15, 2023, Bologna, Italy

| Kubernetes Autoscaling — Sora —

1600 f
O L

End-to-end
Latency [ms]
®
o

—_
o
o

Catalogue
CPU Util [%]

o

@

o

o
T

Established
DB Conn [#]
N
o
o o

w
3
—

90
Timeline [s]

Figure 1: Large response time fluctuations of microservices
due to over-allocation of soft resources (e.g., database connec-
tions) when Kubernetes Horizontal Pod Autoscaling (HPA)
scales out the bottleneck service.

120 150 180

centric and cannot adapt the soft resource allocations for latency-
sensitive microservices applications due to the lack of consideration
of the runtime deadline for critical microservices along the critical
paths in the system (Section 3.2).

In this paper, we propose Sora, an online soft resource adaptation
management framework to quickly recommend and reconfigure
soft resource allocations (e.g., server threads and database connec-
tions) for critical microservices to mitigate large response time
variations. Sora leverages online fine-grained monitoring metrics
(e.g., throughput, response time, and concurrency) to capture the
runtime state of each component microservice and then integrates
the runtime propagated deadline of critical microservices along the
critical paths in the system for the prediction of rational concur-
rency settings.

Our Sora approach is based on two key observations. First, con-
currency settings are controlled by soft resource allocations, which
greatly impact the effective use of underlying hardware resources.
For example, a conservative allocation (e.g., too small thread pool)
may choke concurrent request processing that creates long request
queues (thus longer delay), while a liberal allocation often wastes
hardware resources such as CPU and memory. Second, concurrency
settings have a large impact on the response time distribution of
each runtime microservice; thus, the optimal setting is sensitive
to the runtime deadline of critical microservices along the critical
path. Figure 1 shows the need for Sora, which is applied to the
runtime adaptation of a database connection pool size of the critical
microservice Catalogue when scaling the Sock Shop [6] microser-
vices benchmark application to achieve both good performance and
high efficiency.

The first contribution of the paper is an empirical demonstra-
tion (based on two representative microservice benchmarks, Sock
Shop [6] and Social Network [16]) that optimal concurrency settings
can shift significantly under varied deadline requirements and sys-
tem runtime conditions. For example, we show that a sub-optimal
allocation of threads under the same hardware provisioning (e.g.,
CPU limit) could become the optimal allocation once we change

44

Jianshu Liu, Qingyang Wang, Shungeng Zhang, Liting Hu, and Dilma Da Silva

the response time deadline from 250ms to 150ms (see Figures 3(a)
and 3(b)). We also observed that, given the same response time
deadline, the optimal thread pool size for a microservice instance
has a non-linear increase from 10 to 30 after the CPU limit scales
up from 2-core to 4-core (see Figures 3(a) and 3(c)).

The second contribution is our novel Scatter-Concurrency-
Goodput (SCG) model, which integrates response time deadline
into the runtime concurrency adaptation management when scal-
ing microservices in clouds. Our model takes fine-grained runtime
monitoring metrics (e.g., throughput, response time, and con-
currency) as input and makes dynamic concurrency adaptation
decisions based on a propagated deadline of the critical microser-
vice, which can capture each subtle change of system runtime
conditions (Section 3).

The third contribution is the design and implementation of the
Sora framework, which exploits our latency-sensitive SCG model
to coordinate the hardware and soft resources provisioning in mi-
croservices scaling management (Section 4). We conduct extensive
experiments using six real-world bursty workload traces [17] (see
Table 2), and our experimental results demonstrate that Sora can
effectively alleviate large response time fluctuations and reduce the
99th percentile latencies by up to 2.5x compared to state-of-the-art
hardware-only scaling strategy FIRM [47], and 1.5X to the state-of-
the-art concurrency-aware system scaling strategy ConScale [33].

The rest of the paper is organized as follows. Section 2 presents
experimental evidence that sub-optimal soft resource allocation
leads to significant performance loss. Section 3 introduces our
Scatter-Concurrency-Goodput (SCG) model. Section 4 illustrates
the design and implementation of our framework Sora. Section 5
shows the experimental results under six real-world workload
traces. Section 6 discusses the scalability and applicability of Sora.
Section 7 summarizes the related work, and Section 8 concludes
the paper.

2 BACKGROUND AND MOTIVATION
2.1 Soft Resources in Microservices

Hardware resources such as CPU, memory, and network are well-
defined components in the performance evaluation of computer sys-
tems. We use the term soft resources to refer to the system software
components such as threads and TCP connections that utilize hard-
ware resources. For example, threads use CPU and memory, and
TCP connections multiplex network I/O. In general, soft resources
are key system components that control the concurrency level of a
server and facilitate the sharing of hardware resources. Previous
studies [37, 38, 65] have demonstrated that optimal soft resource al-
location (e.g., thread pool and connection pool) plays an important
role in the scalability of traditional monolithic n-tier web-facing ap-
plications in clouds because either under- or over-allocation could
cause inefficient use of underlying hardware resources. Compared
to traditional monolithic n-tier architecture, finding the optimal
soft resource allocation for microservices-based applications is a
greater challenge due to the following three reasons:
Finer-grained resource management. Unlike traditional
monolithic n-tier architectures that deploy servers on physical ma-
chines or VMs, microservices adopt a more lightweight and more
agile container-based virtualization technique such as Docker [14],

Sora: A Latency Sensitive Approach for Microservice Soft Resource Adaptation

OpenVZ [62], and Linux Containers [12]. In this case, container-
based microservices can support even finer-grained resource man-
agement than VM-based applications. For example, the Kubernetes
container-orchestration system provides CPU quotas level resource
allocation among microservices [30]. Such finer-grained hardware
resource management makes precise matching of hardware and
soft resource allocations a great challenge.

Heterogeneous service implementation. Microservices-
based applications are typically integrated with component services
implemented in different programming languages and platforms.
For example, the Cart service in the Sock Shop application [6] is
built upon SpringBoot [57], which adopts an embedded thread pool
to manage connections. On the other hand, the Catalogue service
is written in Golang [19], which delegates connection management
to asynchronous goroutines (Figure 2). The heterogeneity of com-
ponent services in microservices-based applications complicates
the overall optimal soft resource allocations since each component
service may have its own unique characteristics and demand for
optimal soft resource allocation.

Complex inter-service dependency. Compared to traditional
monolithic n-tier architectures, microservices-based applications
generally have a more complex inter-service dependency [36]. This
is because microservices decompose the application into small, sin-
gular, and discrete services that implement business logic, resulting
in a significantly large number of microservices components. For
example, JD.com, China’s largest e-commerce site, runs approx-
imately 34,000 microservices on a 500,000-container cluster [32].
Each microservice typically interacts with hundreds or even thou-
sands of other microservices, sometimes forming a long invocation
chain. Such complex inter-service dependency makes it difficult
to identify critical component services and conduct corresponding
soft resource allocation tuning.

2.2 Experimental Setup

We adopt two representative open-sourced microservice bench-
marks: Sock Shop [6] with 11 component microservices and Social
Network with 36 microservices from DeathStarBench Suite [16]
(see Figure 2). Sock Shop is an e-commerce website that allows
customers to navigate and purchase different types of socks. So-
cial Network is a broadcast-style social network website that al-
lows users to publish and read social media posts. To illustrate
the complexity of optimal soft resource allocations for heteroge-
neous component services, we evaluate three representative soft
resources from the two benchmark applications — the thread pool
in a SpringBoot-based microservice (i.e., Cart), the database connec-
tion pool in a Golang-based microservice (i.e., Catalogue), and the
request connection pool in an Apache Thrift-based microservice
(i.e., Home-Timeline). To simulate normal user access to the appli-
cations, we use the classic RUBBoS workload generator [11] to send
HTTP requests. The request rate follows a Poisson distribution
with the mean determined by the number of simulated users.

We run experiments in our private VMware ESXi cluster [63].
Our cluster consists of 6 bare metal servers equipped with two
Intel Xeon E5-2603v3 processors (6 cores each @ 1.6GHz) and 16GB
of RAM. We deployed 18 VMs in the cluster, and each VM was

45

Middleware *23, December 11-15, 2023, Bologna, Italy

& User-db
€ Order-db |
£ shipping }—» £¥ Queue-

master

(i) Sock Shop

Front-end

QCatangueD—EgCataloguevdb]
B Thread pool E] [:s Caredb) () suilt using Golang
[Connection pool =) suit using Spring Boot

(if) Social Network {&¥Recommender],{£¥ Social Graph)

(£ Text | {3 User]
o

///

D Read Home, Post
ke
) suilt using C++ imeling ST
Figure 2: Architecture of Sock Shop and Social Network mi-
croservice benchmark applications.

User
Timeline

|

configured with 4 vCPUs, 4GB RAM, and 30GB disk space. Further-
more, we set up a Kubernetes cluster for container orchestration
and management. We run each microservice in one container and
further distribute the containers on the cluster. Docker (version
19.03.13) was used as the container runtime engine, and the Flannel
network was used for Kubernetes pod networking. In this paper,
we use the terms “pod” and “container” interchangeably since we
use the most common one-container-per-pod model [49].

2.3 Shifting of Optimal Soft Resource
Allocation during Runtime

Industry practitioners usually conduct offline parameter tuning [65]
or sandboxing [25] to identify the appropriate soft resource allo-
cations (i.e., concurrency settings) in microservices to improve
resource efficiency and meet their performance expectations. Web-
based e-commerce applications are typically latency-sensitive,
whereas Service Level Agreements (SLAs) are commonly used
to specify the desired response time of user requests to avoid
potential revenue loss. In this paper, we use a simplified SLA
model to illustrate the revenue tradeoffs between throughput and
response time and further evaluate the appropriate concurrency
settings. Our results suggest that static soft resource allocations are
not efficacious forever in the production phase. Fast and accurate
runtime optimal soft resource adaptation is critical to realizing
stable system performance.

For our simplified SLA model, we set a single threshold for the
end-to-end response time of requests (e.g., 250ms). We only count
requests with a response time equal to or below the threshold, de-
fined as goodput. On the contrary, the sum of requests with their
response time higher than the threshold is defined as badput. The
sum of goodput and badput amounts is the traditional definition of
throughput. The goodput model provides a better quantitative per-
formance evaluation of latency-sensitive web applications than the
throughput model since it considers the potential revenue loss due
to long response time. Then we rely on the goodput model to tune
the soft resource allocations in the benchmark applications and ob-
serve factors that may lead to the shifting of “optimal” concurrency
settings during system runtime.

Response Time Threshold Changing. We initially set a 250ms
response time threshold for requests accessing the Cart service from

Middleware *23, December 11-15, 2023, Bologna, Italy

Thread pool Size [#]

(a) 4-core Cart service with a 250ms
threshold. 30 threads allocation
achieves the highest goodput.

g_ 1 "Optimal" Thréads Alloc. | g_ ’ "Optimal" Thrlads Allod. !
§o.75 (850.75

° 0.5 © 0.5

No25 No0.25

£ o E 0

g 3 5 10 30 80 200 <Z3 3 5 10 30 80 200

Thread pool Size [#]

(b) 4-core Cart service with a 150ms
threshold. 80 threads allocation
achieves the highest goodput.

g_ 1 “Op\im " Thréads Alloc. ! g_ 1 "Opiim I" Thréads Alloc. !

§ 0.75 § 0.75

- 05 - 05

So.2s N0.25

E 0 g o

S 3 5 10 30 80 200 o 3 5 10 30 80 200
= Thread pool Size [#] z Thread pool Size [#]

(c) 2-core Cart service with a 250ms (d) 2-core Cart service with a 350ms

threshold. 10 threads allocation
achieves the highest goodput.

threshold. 5 threads allocation
achieves the highest goodput.

Regs Connection Size [#]

(e) Post Storage service serving light
requests. 10 connections allocation

g 1 "Optimal" Conin Allbc. | ! é 1 "Optimal" Corln Allbe. ' '
50.75 §o.75
] 0.5] 0.5
NO0.25 NO0.25
g€ o g o
g 5 10 15 30 80 200 g 5 10 15 30 80 200

Regs Connection Size [#]

(f) Post Storage service serving heavy
requests. 30 connections allocation

achieves the highest goodput. achieves the highest goodput.

Figure 3: “Optimal” soft resource allocation shifts for Cart
and Post Storage as response time threshold, hardware provi-
sioning, or system state changes.

Sock Shop. Figure 3(a) shows that 30 threads allocation can achieve
the highest goodput in a 3-minute experiment since too few threads
cannot fully utilize the hardware resources (e.g., the 4-core CPU or
4 vCPU). In the meantime, too many threads result in performance
degradation due to non-trivial multithreading overhead [65]. How-
ever, in Figure 3(b), the “optimal” threads setting shifts to 80 when
we reset the response time threshold to 150ms. Such a shifting of
“optimal” threads setting is also observed in the 2-core Cart service
once we change the response time threshold from 250ms to 350ms,
shown in Figures 3(c) and 3(d).

The response time threshold affects the goodput measurement
because different threads allocation may lead to different response
time distributions. Figures 4(a) and 4(b) show the response time
distribution graphs when the 4-core Cart service was allocated 30
and 80 threads, respectively. By comparing the two distributions,
the 80-thread case clearly achieves a higher goodput than the 30-
thread with the response time threshold of 150ms. However, the
performance order is reversed once we reset the response time
threshold to 250ms since more requests fall within 250ms in the
30-thread case than that in the 80-thread case. Such experimen-
tal results have two implications: (1) the response time threshold
has a large impact on the optimal concurrency setting based on
goodput; (2) adapting concurrency settings according to changing

46

Jianshu Liu, Qingyang Wang, Shungeng Zhang, Liting Hu, and Dilma Da Silva

Response time [ms]
(a) 30 threads allocation

E 1

> i 1

[3) I

& 1000 I !

&L

(0]

g o i,
0 100 200 300 400 500

Response time [ms]
(b) 80 threads allocation

Figure 4: Semi-log graphs of request response time distri-
bution of the 4-core Cart service configured with different
threads allocations. The 80-thread case outperforms the 30-thread
case with a response time threshold (RTT) of 150ms since the peak
dominates the total amounts of requests, but the performance order
reverses with RTT 250ms.

600 700

response time thresholds for microservices in the production phase
is necessary.

Hardware Resource Scaling. The vertical scaling (e.g., adding
or removing # of CPU cores) would affect the optimal concurrency
setting of a microservice instance. Figures 3(a) and 3(c) show that
the “optimal” thread pool allocation to reach the highest goodput
(with 250ms response time threshold) shifts from 10 to 30 when
the CPU limit for the Cart service scales up from 2-core to 4-core.
This is because the original optimal concurrency setting (i.e., 10
server threads) becomes under-allocation and cannot fully utilize 4
CPU cores after the system scaling. We have observed consistent
experimental results about the shift of optimal database connection
pool allocation in the Catalogue service as the CPU limit scales up.

System State Drifting. The system state of the backend ser-
vices could drift over runtime due to continuous dataset updates or
software upgrades, which leads to variations of the service time of
the involved service accordingly. Here we evaluate the Post Storage
service from Social Network and manually control the number of
posts accessed by the users to evaluate the impact of requests with a
light (retrieve 2 posts) and heavy (retrieve 10 posts) computation on
the optimal soft resource allocation. The computation for each user
request is proportional to the number of accessed posts. Figures 3(e)
and 3(f) show the optimal connections to the Post Storage service
(from the upstream Home Timeline service) shift from 10 to 30 once
the same type of requests changes from light to heavy due to the
state drifting of the dataset.

The above empirical observations demonstrate that different
soft resource allocations incur large performance variations. The
optimal soft resource allocation is always changing during system
runtime, depending on factors such as response time threshold se-
lection and runtime system conditions. Due to the naturally bursty
workload and the frequent hardware resource scaling in cloud envi-
ronments, service providers need an online model that can quickly

Sora: A Latency Sensitive Approach for Microservice Soft Resource Adaptation

HTTP Request Timeline HTTP Response
\ 7
[Front-end] l Y h T 4 |r
[Cart] | X < ‘\) 1] critical Path 1
\éE/
Catalogue *I h{ ‘”,

Catalogue-db

Figure 5: An illustration of the execution path of a Catalogue
request in the Sock Shop benchmark.

and accurately provide appropriate soft resource allocations during
runtime.

3 SCATTER-CONCURRENCY-GOODPUT
MODEL

This section introduces an online Scatter-Concurrency-Goodput
(SCG) Model for optimal concurrency setting estimation for critical
microservice instances, which can resolve the limitations of existing
online approaches for concurrency adaptation (Section 3.1). Our
model correlates fine-grained application-level metrics (i.e., request
processing concurrency and goodput) within a short time window
(e.g., 3 minutes) and quickly recommends a concurrency setting
that can achieve the highest goodput (Section 3.2). We further
provide a sensitivity analysis of our SCG model (Section 3.3). Our
model aims to guarantee the response time requirements of critical
microservices with concurrency settings adaptation.

3.1 Limitations of Existing Online Models

Existing online models identify optimal concurrency settings by
building and revising the performance model during runtime [25, 33,
58] or applying a step-by-step heuristic approach such as Bayesian
optimization [10, 55, 75]. One big limitation is that these models
are throughput oriented. For example, ConScale [33] adopts an
online model to estimate the optimal resource allocations for each
service based on the correlation between the real-time fine-grained
throughput and concurrency of component servers within a 3-
minute time window. However, such a latency-agnostic throughput-
based model may not satisfy the SLOs of the microservices-based
applications. Nevertheless, fast adapting concurrency in microser-
vices to avoid SLO violations suffers from two challenges.

First, response time variation can be significantly amplified
due to the long invocation chain of service dependencies in
microservices-based applications. Compared to the traditional
monolithic architecture, the granularity of each microservice is
much smaller, and the depth of the call invocation chain becomes
much deeper than that in monolithic systems, leading to complex
inter-service dependency (call graphs) and further incurring the
latency long-tail phenomenon [36, 50, 58].

Second, microservice call graphs can be highly dynamic during
runtime [36, 47]. Specifically, microservices-based applications can
present significant topological differences during runtime (even for
the same online service), leading to variances in critical paths !.

LA critical path to a call graph (triggered by a user request) is defined as the path of
maximal duration that starts with the user request and ends with the final response.

47

Middleware *23, December 11-15, 2023, Bologna, Italy

For example, either Cart or Catalogue can become the critical path
in the execution of a Catalogue request (see Figure 5), depending on
the underlying resource contention and external user inputs. The
dynamic behavior of critical paths would amplify the end-to-end
response time variations, which impacts the goodput measurement
and decreases the accuracy of model estimation.

3.2 Model Description

Our Scatter-Concurrency Goodput (SCG) model addresses the lim-
itations of classic online throughput-based models in two ways.
First, the SCG model uses goodput to improve the model sensitivity.
This is because the goodput measurement requires a response time
threshold, which takes response time into account. For example,
Figure 6(a) (in phase (@) characterizes the theoretical relationship
(known as the main sequence curve) between the goodput and the
concurrency of a microservice instance. The server goodput in-
creases almost linearly as the concurrency increases until it reaches
the maximum. As the concurrency continues to increase, the server
goodput starts to decrease because the increasing response time ex-
ceeds the pre-defined threshold, and the requests with long response
times do not count into the goodput measurement. Therefore, the
maximum goodput is highly related to the response time threshold.

Second, the SCG model can handle large variations of metrics
measurement by filtering out partial “noisy” requests with long
response times. Due to the complex system dynamics, large varia-
tions of the classic concurrency-throughput pairs adopted by online
throughput models (without filtering out “noisy” requests) make
the main sequence curve extraction extremely difficult from the
scatter graph [33]. On the other hand, the goodput model can easily
localize the knee point from the scatter graph after filtering the
requests with bounded response time (see Figure 6(b) in phase ®).

Our SCG model identifies the optimal concurrency setting based
on a statistical analysis of each microservice’s real-time goodput
and concurrency. Figure 6 shows an overview of the SCG model and
illustrates the four major phases in the online optimal concurrency
estimation workflow.

Critical Service Localization Phase aims to quickly and accu-
rately identify the critical path in the request call graph and further
localize the critical service for concurrency adaptation. The crit-
ical path should be the path with the longest processing time in
the request execution graph, which occupies a significant portion
of the end-to-end response time. The critical service refers to the
bottlenecked microservice on the identified critical path. Inspired
by FIRM [47], we adopt a two-step method to localize the critical
service. First, we evaluate the resource utilization of each microser-
vice. The high resource utilization indicates a candidate critical
microservice reaches its capacity, which possibly leads to request
congestion. Second, we profile the processing time of the i-th mi-
croservice PT;, and the end-to-end response time of the critical
path RTcp, based on the arrival and departure timestamps of each
request. We further calculate the Pearson correlation coefficient [9]
of each microservice’s processing time and the end-to-end response
time of the critical path (i.e., PCC(PTy;, RIcp)). We consider the
microservice that has the largest value as a candidate critical service
since a large value indicates that the corresponding microservice
contributes more to the end-to-end latency variation. In fact, the

Middleware *23, December 11-15, 2023, Bologna, Italy

@ Critical Service Localization Phase

1 I
Service 1

I—-l H Service N I
<

@ RT Threshold Propagation Phase

Service 2

@ Estimation Phase

Service0 Service i-1 Service i
— : T
2 Treaso [Hpr,. . [T = Main Sequence Curve,
Processing Time: PTy,_ = PTyoqs . + Plross, 2 g8
i-1 S I)
RT Threshold: RTTs, < SLA— Zk:ﬂ PTy, 8 :
@ :/Oplimal Seﬂipg
. 1 ® Metrics Collection Phase ConcUEncy
2 (a) Theoretical Model
8 —_—
s} Real-time Metrics T T
S . :
O 6P t1:[Q1, GPy] = .
-4t timeline t2: [Q4,GP,] |:> ar ... 1
2 8 B8,
o tn: [0, GP, | o I Mty
5 Qi — 0GR] P [0y, TP 1
g . Concurrency
o 1 timeline (b) Experimental Scatter Graph

Figure 6: Overview of SCG Model and its workflow for opti-
mal concurrency estimation in microservices.

critical services recommended by both steps overlap most of the
time in our experiments.

RT Threshold Propagation Phase determines the response
time threshold (i.e., deadline) for critical service goodput measure-
ment. We apply a deadline propagation algorithm [50] to the critical
path. The key idea of deadline propagation is to allow local ser-
vices to perceive the global deadline information within a critical
path and leverage the information to adjust soft resources to re-
duce latency variation. Since requests flow among microservices by
following parent-child relationship chains and each microservice
would call its child downstream microservices when handling a
parent call from its upstream microservice, we use i to denote the
depth of service and consider the front-end service as service 0.
For any service s; in the path, we regard the parent service s;_1 as
the upstream service and the child service s;;1 as the downstream
service. Suppose the network latency between services is negligible
and the critical service is s;, the end-to-end response time RT is
composed of the request processing time of all upstream services
Zi;hPTreq,sk, the response time of current service RT;, and the

response processing time of upstream services ZL;%)PT,-eS,Sk. Then
according to the SLA requirements, we have

2 _oPTreqs + RTs; + 21 _{ PTress,, < SLA (1)

Considering that the sum of request processing time PTyeq,s; and
response processing time PTyes. s, is the total processing time of the
i-th service PTy;, we further simplify the equation as

2 _4PTy, +RTs; < SLA ()
The response time threshold (RTT) for service i should be
RTT;, < SLA -3 _{PTy, 3)

We notice that the response time threshold of the critical service
iis only determined by the processing time of upstream services.
We record the timestamps of each message (including requests
and responses) that arrives/leaves each service, so the sum of the

48

Jianshu Liu, Qingyang Wang, Shungeng Zhang, Liting Hu, and Dilma Da Silva

processing time of all upstream services can be calculated. Then the
response time threshold of critical service will not be affected by
the inter-dependency of upstream services. Take the Cart service
as an example (see critical path 1 in Figure 5), suppose the SLA
requirement of the Cart request is 150ms, and we identify the Cart
service as the critical service. We then measure the processing time
of the front-end service (i.e., upstream of Cart) as 10ms, so the
response time threshold of the Cart service should be 140ms.
Metrics Collection Phase calculates goodput through 1) the
fine-grained measured throughput (e.g., at 100ms granularity) and
2) the deadline information of the critical service extracted in the
previous phase. We collect a series of pairs < Qp, GP,, > sampled
at 100ms granularity within a short period (e.g., 3 mins) to generate
the scatter graph, shown in Figure 6(b). For a specific server concur-
rency Qp, we calculate the average goodput GPy,. After that, a series
of pairs < Oy, GP,, > are prepared for the next phase. We note that
we do not need to specifically configure the range of goodput and
concurrency since the real-time concurrency of each microservice
varies significantly due to dynamic workload. Due to the naturally
bursty workload, the shape of the detailed goodput-concurrency
curve of the critical service would naturally appear within a few
seconds. We notice that too-conservative concurrency settings may
affect knee point detection since insufficient concurrency cannot
fully utilize the hardware resources (e.g., CPU) to reach the maxi-
mum goodput and further blurs the knee point. Hence, we gradually
increase the allocation to find a new optimal value. Some advanced
exploration policies will be explored in our future work.
Estimation Phase finds the optimal concurrency setting
(knee point) from a discrete data set (e.g., a series of data pairs

< Qpn,GPp, > from the metric collection phase). We consider the
knee point of the Main Sequence Curve (see Figure 6(a)) to be the
optimal concurrency of the corresponding critical service, which
can achieve the highest goodput within the requested deadline
(from the RT threshold propagation phase). For example, Figure 72
shows the correlations of Cart concurrency and goodput measured
at the 100ms time granularity over the same 3-minute runtime
under a bursty workload with a 5ms and a 50ms response time
threshold, respectively. We observe that a high response time
threshold (i.e., 50ms) leads to a different knee point from that
with a low response time threshold (e.g., 5ms) since the goodput
measurement is highly sensitive to the response time threshold
selection.

3.3 Sensitivity Analysis of SCG Model

To provide a fast and accurate optimal concurrency estimation, we
apply a simple statistical approach, Kneedle [53], to detect the knee
point of the correlation between concurrency and goodput. The
knee point is defined as the local maximum of curvature, which may
occur when a curve becomes more “flat”. In practice, we need to
tune the polynomial_degree for each service to provide an accurate
estimation. Kneedle uses a smoothing spline to preserve the shape
of the original data set, so the degree of polynomial fit will affect the
accuracy of knee point estimation. A too-low polynomial degree
cannot provide a valid knee point while a too-high polynomial

2We use Gnuplot [60] smooth function for data smoothing with the Bezier or the
cubic-splines curves

Sora: A Latency Sensitive Approach for Microservice Soft Resource Adaptation

2000 T T T T T 2000 T T T T T
— 1600 1 w1600
E— 9
2 1200 8 1200
=1 -
3 5
g 800 £ 800
o o
& o
400 O 400
0 L | | ! ! o L ! ! L .
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Cart Concurrency [#] Cart Concurrency [#]

(a) Correlation between Cart concur- (b) Correlations between Cart concur-
rency and goodput with 5ms threshold. rency and goodput with 50ms thresh-
old.
Figure 7: The correlations between Cart concurrency and
goodput were measured at 100ms granularity during a 3-
minute experiment with different response time thresholds.
The red line is the trend line for each scatter graph.

Table 1: Optimal concurrency estimation accuracy of SCG
model with various sampling intervals for Cart, Catalogue,
and Post Storage.

Sampling Interval 10ms 20ms 50ms 100mS 200ms 500ms
Cart 16.67 15.00 13.33 5.83 10.83 15.00
MAPE[%] Catalogue 14.67 10.67 7.99 533 1333 17.33
Post Storage ~ 19.48 18.18 17.69 12.04 13.07 15.38

degree (e.g., 20) would lead to overfitting (i.e., fitting the data noise),
thus degrading the quality of estimation. We adopt an incremental
tuning strategy to quickly identify the minimum polynomial degree
to generate an estimation that matches the profiling data. In our
case, a polynomial degree ranging from 5 to 8 can fit our profiling
data (e.g., 1-minute data) quite well with the sub-second time cost.

Besides, goodput and concurrency sampling interval (e.g., 100ms)
is another important parameter affecting the model estimation ac-
curacy. Too long a sampling interval cannot capture the transient
variation of concurrency while too short a sampling interval may
incur large variations for goodput and concurrency measurements
that degrade the knee point estimation. In addition, extensive data
points due to short sampling intervals may lead to additional CPU
and memory overhead for online estimation. We evaluate the esti-
mation accuracy of our SCG model with various sampling intervals
on three services and compare their Mean Absolute Percentage
Errors (MAPE [2]), shown in Table 1. We observe that 100ms can
achieve the best estimation accuracy with the minimum MAPE
for all three services. An automatic way to choose a proper time
interval that minimizes the MAPE for all types of microservices is
our future research.

4 SORA FRAMEWORK

In this section, we describe the design and implementation of our
framework Sora, which integrates our SCG model to work with
a hardware-only autoscaler to mitigate the large response time
fluctuations when handling bursty workloads (see Figure 8). Sora
first detects critical services based on runtime metrics (e.g., CPU
utilization, request/response timestamps) collected by Monitoring
Module and evokes hardware-only autoscaler inside Reallocation
Module to arrange hardware resource scaling. Then the autoscaler
signals the Concurrency Estimator to query the optimal soft

49

Middleware *23, December 11-15, 2023, Bologna, Italy

@ Reallocation Module ® Concurrency Estimator

- Concurrency Adapter e %| &5 _Concurrency Settings_|
_ T Online
5y, Hardware-only AutoScaler ¥, i Update
N Estimation |
= . Model
ﬁt Agent

\ Metrics Collection ¢+«
| Resource Utilization]
| Jaeger Agent ! | Jaeger Collector | B -|g

[Data transfer ssssss=«. >

Monitoring Module
Deadline Propagation

‘»] Critical Service Loc. I‘

Trace Warehouse |***

Actuation —— |

Figure 8: Sora framework for runtime adapting of optimal
concurrency settings for critical microservices.

resources allocation for corresponding services and further trig-
gers soft resource adaptation. Meanwhile, the Concurrency Estima-
tor updates the optimal soft resources settings during runtime by
extracting the fine-grained application-level metrics for the SCG
model (Section 3) to conduct online estimation. We further describe
the design of each module in the following text.

4.1 Module Design

Monitoring Module collects both system-level and performance
metrics through a monitoring agent installed in each microser-
vice instance. The system-level metrics include hardware resource
utilizations (e.g., CPU, network I/O, memory) for the hardware-
only autoscaler inside Reallocation Module since many cloud and
service providers (e.g., Amazon EC2 AutoScaling and Kubernetes
HPA/VPA) use these metrics as the scaling indicator [48]. Mean-
while, the Monitoring Module also adopts distributed tracing tools
to record individual requests’ arrival and departure timestamps
within each microservice at millisecond granularity. We implement
an OpenTracing-compliant tracing module inside each microser-
vice inspired by Jaeger [24] and Zipkin [77]. We stored the request
traces in Trace Warehouse for fine-grained performance metrics
extraction.

Concurrency Estimator is to update optimal soft resource al-
location based on our SCG model estimation during runtime. It
continuously pulls trace data from the Trace Warehouse for critical
service localization and RT threshold propagation phases inside of
SCG model asynchronously. Processing these request timestamps
can further generate fine-grained concurrency and goodput within
the time window for model estimation. Such a time window should
keep a balance between long enough to have sufficient metrics for
generating the entire trend line and short enough to keep the model
agile to the changes in workload characteristics and system condi-
tions. Based on the 100ms sampling interval and control period of
hardware-only autoscaler (e.g., default 15s in Kubernetes HPA [7]),
we configure a 60s time window setting, which can accumulate 600
data points for knee point estimation.

Reallocation Module includes a hardware-only autoscaler to
manage system hardware resources and the Concurrency Adapter
to reallocate the soft resources recommended by the Concurrency
Estimator. Once the hardware-only autoscaler is triggered, it sig-
nals the SCG Model to identify the critical services and respond
to the autoscaler for scheduling the hardware resource scaling.
The Concurrency Adapter then queries the concurrency settings
of critical services from the Concurrency Estimator and applies

Middleware *23, December 11-15, 2023, Bologna, Italy

soft resource reallocation after hardware resource scaling. The in-
dependent design of applying hardware scaling and concurrency
adaptation is to easily integrate our SCG model to the state-of-the-
art hardware-only scaling solutions (e.g., Kubernetes HPA/VPA (7]
and FIRM [47]). A unified controller can potentially be an ideal
solution for this joint optimization problem, which is subject to our
future work.

4.2 Implementation Details

Request Tracing Management. Our SCG model relies on dis-
tributed tracing to collect detailed request information to generate
fine-grained performance metrics to update optimal soft resource
allocation. However, efficient management of real-time trace data
in a large-scale microservice system is a great challenge [21, 28, 74].
To mitigate this problem, we first use a graph database, Neo4;j [4],
to efficiently store and query the complex invocations of services.
Furthermore, we prepare a separate lightweight database (e.g., Mon-
goDB [3]) for each microservice to store the request/response times-
tamps of the current service, which removes the overhead of heavy
filtering and aggregation that occurs in centralized storage. Mean-
while, we isolate the resource (e.g., CPU) for the monitoring agent
with microservices in each VM to avoid interference.

Runtime Soft Resource Reallocation. Soft resources such as
threads and network connections can be dynamically reallocated
during runtime via flexible APIs provided by open-sourced software
and third-party libraries. For example, we can adjust the thread
pool size for the SpringBoot-based Cart service through remote
JMX access via Jolokia [26] and manage the database connection
pool size in the Golang-based Catalogue service through a manually
extended service via calling APIs in Golang package “database/sql”.
On the other hand, some applications tend to provide generic inter-
faces for dynamically configuring service parameters. For example,
the Apache Thrift-based Social Network employs a ClientPool class
to configure the settings of connections among services, such as the
number of connections and timeout. Other internal (or deep) soft
resources such as locks are more application-specific, and exposing
these internal soft resources to the autoscaler requires extra effort
by service developers.

5 EXPERIMENTAL EVALUATION

In this section, we first validate the generality of our SCG model on
different types of soft resources (e.g., threads and network connec-
tions) using two representative benchmark applications (i.e., Sock
Shop and Social Network) (Section 5.1). We then evaluate the effec-
tiveness of Sora in assisting the hardware-only autoscaler in stabiliz-
ing performance fluctuations under six real-world bursty workload
scenarios [17] (see Table 2). Concretely, we present that Sora in-
tegrated a state-of-the-art hardware-only autoscaler FIRM [47],
which can effectively mitigate the response time fluctuations due
to runtime system condition variations (Section 5.2 and 5.3). We
also compare Sora with the state-of-the-art concurrency-aware
concurrency adaptation framework ConScale [33], confirming that
Sora can achieve higher goodput than the classic throughput-based
model scaling management (Section 5.2). In this section, we use the
same experimental setup in Section 2.2.

50

Jianshu Liu, Qingyang Wang, Shungeng Zhang, Liting Hu, and Dilma Da Silva

(i) Model Estimation (ii) Model Validation
LI B B T

2000 T 1800

o @

g_ 1600 E" 1500 z

=1200 £ 1200

2 } 3 Thread Pool-3 —

o .

B 800 ! § 900, Thread Pool-5 ~ —&—

S 400 ! 8 600 Thread Pool-15 x:

(0] ' Thread Pool-25 ~ —&— *
s L ! L L L)
5

o
=)

300
30 800 1000 1200 1400 1600 1800 2000

10 15 20 25
Cart Concurrency [#] Workload [# Users]

(a) SCG model recommends 5 threads for Cart can achieve the highest goodput with
10ms threshold.

4000 glz Model IEs(lmatu:m 3200 (ii) Model Validation
232001 . . & 2800
g g
== 2400 £.2400
a L 3 DBconn Pool-10 *
3 1600 § 2000 DBconn Pool-15 —&—
Q800 HE 8 1600 DBconn Pool-20 —%—
© DBconn Pool-25 —&—

0 I I 1200 I 1 I L I)
30 2200 2400 2600 2800 3000 3200 3400

0 5 10 15 20 25
Catalogue-db Concurrency [#] Workload [# Users]

(b) SCG model recommends 15 database connections for Catalogue can achieve the
highest goodput with 10ms threshold.

(i) Model Validation

@ 3600

& 3200

22800 ReqsConn Pool-10 —&—

G 2400 RegsConn Pool-15 — ¥

=3 RegsConn Pool-20 X

G 2000 ReqsConn Pool-25 —&—

1600 L | h L L 1
15 20 2 30 3000 3200 3400 3600 3800 4000 4200

0 5 10 5
PostStorage Concurrency [#]

Workload [# Users]

(c) SCG model recommends 10 request connections to Post Storage can achieve the
highest goodput with 15ms threshold.

Figure 9: Validating our SCG model estimation of threads in
Cart (a) and connections in Catalogue (b) and Home Timeline
(c) using realistic system configuration. These results demon-
strate that our model estimation outperforms the other three
adjacent allocations in all three services.

5.1 Model Validation for Different Soft
Resources Estimation

We show three case studies on the effectiveness of our SCG model
in providing accurate optimal concurrency estimation for different
critical soft resources (e.g., threads and connections). In this set of
experiments, we first apply our SCG model to different services (left
column of Figure 9) to estimate the optimal concurrency settings for
different critical soft resources. We then validate the soft resource
allocations recommended by SCG through extensive experiments
(right column of Figure 9).

Case 1: Threads in Cart. Our first case study is to estimate
the thread pool size for the SpringBoot-based Cart service from
Sock Shop. To correctly obtain the optimal allocation of thread
pool in Cart service using our SCG model, we correlate the runtime
goodput and request processing concurrency in Cart to generate
a scatter graph for optimal concurrency estimation as shown in
Figure 9(a)(i). The figure shows that the SCG model recommends
5 threads as the optimal thread allocation in Cart service, which
is sufficient to fully utilize CPU and guarantee SLAs. We validate
the Cart thread pool size recommendation in Figure 9(a)(ii). In this
evaluation, we gradually increase the Cart thread pool size from 3
to 25. The figure shows that the Thread Pool-5 achieves the highest

Sora: A Latency Sensitive Approach for Microservice Soft Resource Adaptation

FIRM

1200 Goodput (RTT=400ms) 3000 2
s Response Time

900 2250 8
1500 3

E

300 750 3
0 o ©

CPU Pod Limit
=400 [= CPU Util.

Response Time [ms]
)
=]
o

(i

Pod CPU Uil
art
n
o
[S]

] = Running Threads
S %
EE
(”I).E’E 0
£° 10
« 0]
0 120 240 360 480 600 720
Timeline [s]

(a) The system response time spikes appear during 269s~412s, 480s~610s under
the “Steep Tri Phase” workload. The goodput drops during 307s~345s, 512s~583s.
FIRM manages the CPU limit for the Cart service. The Pod CPU resources are under-
utilized after Cart scales up to 4-core due to the under-allocation of server threads.

Middleware *23, December 11-15, 2023, Bologna, Italy

g 150 Goodput (RTT=400ms) Sora 8750
= oodput =400ms) o
2 1200 Response Time 3000 2
(i) = 900 2250 2
8 600 1500 2
2 300 p\ A A 750 8
& 0 0 (6}
_ S0 CPU Pod Limit
S 400 CPU Util.
D =300
(il % e 200
vO
& <100
0
g a ig Running Threads
L€ =030
=
(”I).E’§ po
£ 10
2 of
0 120 240 360 480 600 720
Timeline [s]

(b) Relatively stable system response time under the same workload trace in (a) with
Sora. Response time spikes appear during 269s~412s, 480s~590s. The goodput only
drops at 333s and 513s. The Pod CPU resources can be fully utilized after Cart scales
up to 4-core due to optimal thread pool reallocation conducted by Sora.

Figure 10: Performance comparison between FIRM and Sora under the same “Steep Tri Phase” workload. Figure 10(a) is for FIRM
and Figure 10(b) is for Sora. Our framework Sora can help FIRM stabilize response time fluctuation by re-adapting thread pool allocation to

match the bursty workload.

goodput, suggesting that either under- or over-allocation of the
thread pool could lead to inefficient usage of underlying hardware
resources.

Case 2: Database Connections in Catalogue. Our second
case study is to estimate the database connection pool size for the
Golang-based Catalogue service from Sock Shop. In Figure 9(b)(i),
our SCG model suggests that 15 database connections in the Cata-
logue service can achieve the highest goodput while the response
time threshold for goodput is 10ms. Such a recommendation is also
validated through our extensive evaluation in Figure 9(b)(ii).

Case 3: Request Connections in Post Storage. Our third case
study is to estimate the ClientPool (request connections) size for
the Apache Thrift-based Post Storage service from Social Network.
Figure 9(c)(i) shows the correlation of goodput and concurrency
in Post Storage during a 3-minute experimental period. Our SCG
model recommends 10 request connections in Post Storage as the
optimal concurrency setting with a 15ms response time thresh-
old. Our validation in Figure 9(c)(ii) confirms that such request
connection pool allocation to Post Storage is indeed the optimal
concurrency setting compared to other candidates.

5.2 Mitigating Response Time Fluctuations in
Autoscaling

We validate our design by deploying Sora, FIRM, and ConScale in
our private testbed (see Section 2.2). We implement a prototype
of Sora that uses FIRM as the underlying hardware-only manage-
ment framework. FIRM [47] provides an RL-based fine-grained
hardware resource management for microservices. ConScale [33]
is the state-of-the-art online concurrency adaptation framework,
which correlates the runtime service throughput and concurrency
for fast concurrency adaptation with autoscaling to stabilize the
system’s response time during runtime. In this evaluation, we use
the Cart service from the benchmark application Sock Shop, and
the maximum number of concurrent users for the Cart service is

Table 2: Tail response time (i.e., 95th and 99th percentile) and
average goodput comparison between FIRM and Sora under
six real-world bursty workload traces. The results show Sora
helps FIRM improve the goodput and reduce the tail response time.

95t Percentile 99th Percentile Goodput-400ms
Response Time [ms] Response Time [ms] [reqs/s]
Workload Trace

FIRM / Sora FIRM / Sora FIRM / Sora
%:ﬁzm M| 501/ 230 592 / 278 013 / 1172
Quick
Varging |~ WW| 500 / 247 553/ 314 1222 / 1518
Slowl
Varying |/~ | 663/303 749 / 400 589/ 730
.
sphe | ~—S\| 535/218 642 / 358 618/ 659
Dual
e |7 s51/319 633/ 354 705/ 870
s
trithase| /"~ \| 624/ 286 687/ 321 819/ 1012

3500. The duration of each workload trace is 12 minutes. Our ex-
perimental results demonstrate that scaling microservices in clouds
to achieve good performance and high efficiency requires careful
runtime concurrency adaptation.

FIRM vs. Sora. Figure 10 shows the performance (e.g., goodput
and response time) comparison between FIRM and Sora under the
same “Steep Tri Phase” workload trace for the Cart service. The left
three figures (Figure 10(a)) show the FIRM case and the right figures
(Figure 10(b)) show Sora case. In this set of experiments, we initially
set the thread pool size in Cart to be 5, which is reasonable for the
2-core CPU limit scenario through pre-profiling in Section 5.1.

Sora achieves a relatively stable response time and goodput in a
12-minute experiment than that in the FIRM case (see Figure 10(a)(i)
and 10(b)(i)). For example, large response time fluctuations and
goodput drops in the FIRM case during the temporary overload
phase (307s~345s and 512s~583s). Taking the period 512s~583s in
Figure 10(a) as an example, as the workload continues to increase
at 520s, we note that the number of incoming requests accumulates
and significantly affects the system performance. After the Pod

51

Middleware *23, December 11-15, 2023, Bologna, Italy

ConScale 3750
1500 Goodput (RTT=400ms))
1200 [=== Response Time 3000 :,)
f 900 2250 &
(i) 600 M 1500 g_
300 f\ 750
) 1 1 | R

CPU Pod Limit
—— CPU Util.

I TN LALLM

me=RuNNing Threads

m..‘u...lh...mhu‘..u.

(ii)

Pod CPU Util Response Time [ms]

(iil)

=
3
e

Running Threads

. . . .
0 120 240 480 600 720

360
Timeline [s]

(a) The system response time spikes appear during 180s~260s, 500s~570s under

(ii)

(i

(b)

Jianshu Liu, Qingyang Wang, Shungeng Zhang, Liting Hu, and Dilma Da Silva

Sora

= 3750
£ 1500 Goodput (RTT=400ms) 3000
@ 1200 | —— Response Time g
= 900 2250%
8 600 1500 ¢
§ 300 750 §
g o . ,“"\ N | o ©
_ 600 CPU Pod Limit

5 :igg e GPU ULl

S8

& £300

38200

a 100

0

§ ig s Running Threads

£=
JE S %0

2§ 20

€= 10

e

120 240 480 600

Timeline [s]

Relatively stable system response time under the same workload trace in (a)

the “Large Variation” workload. ConScale adapts 40 threads when Cart scales to with Sora. Sora only limits 30 threads after Cart scales to 4-core based on the SCG
model estimation with the latency constraint.

4-core to maximize throughput. However, such a liberal allocation leads to goodput
drops due to SLO violations.

Figure 11: Performance comparison between ConScale and Sora under the same “Large Variation” workload. Figure 11(a) is for
ConScale and Figure 11(b) is for Sora. Our framework Sora outperforms ConScale with a higher goodput since Sora adopts a latency-sensitive

concurrency adaptation.

Table 3: Average goodput comparison between ConScale and
Sora under six real-world bursty workload traces. The results
show Sora outperforms ConScale to achieve higher goodput.

Large Quick Slowly Big Dual SteepTri

Goodput [reqs/s] - . . ;
Variation ~ Varying Varying Spike Phase Phase
eshota | ConScate 985 1426 657 636 1066 934
250ms Sora 1207 1686 1007 677 1251 1222
A g ComScale 1122 1712 860 669 1379 1151
sooms Sora 1283 1886 1190 711 1498 1395

CPU resources for the Cart instance scales up to 4-core, we found
that the newly added CPU core cannot efficiently process a high
volume of concurrent requests. This is because FIRM lacks the
capability of adapting the thread pool accordingly after reallocating
hardware resources, making the original optimal allocation of the
thread pool insufficient to fully utilize the hardware resources (e.g.,
CPU utilization in Figure 10(a)(ii)) as we studied in Section 5.1. For
example, the CPU utilization of Cart is about 310% even though
the CPU limit is scaled up to 4-core, leading to the Cart CPU’s low
efficiency and sub-optimal system performance. On the other hand,
Sora can easily cooperate with FIRM as the concurrency adapter
inside Reallocation Module coordinates with the hardware-only
autoscaler. It dynamically adapts the thread pool within the Cart
service to a rational level along with various vCPU allocations in
Figure 10(b)(ii).

We further compare the average goodput and tail response time
(i.e., 95th and 99th percentile) between the hardware-only scaling
frameworks and our framework Sora under other workload traces
in Table 2. Our results indicate that Sora can significantly reduce
the 95th and 99th percentile response time by 2.2x on average
than FIRM. In the meantime, Sora can assist hardware-only scaling
frameworks in achieving a goodput improvement as the goal of our
SCG model.

ConScale vs. Sora. We also validate the effectiveness of our
proposed Sora framework in mitigating response time fluctuations

52

compared with the state-of-the-art concurrency-aware system scal-
ing framework, ConScale. We configure both ConScale and Sora
to adopt a simple threshold-based hardware scaling solution (i.e.,
Kubernetes VPA). Table 3 shows a goodput comparison between
ConScale and Sora under the same six real-world bursty work-
load traces, demonstrating that Sora can provide higher goodput
than the ConScale framework. The goodput observed in Table 3 is
higher than that in Table 2 since Kubernetes VPA allocates much
more hardware resources to react to the bursty workloads. Take
the “Large Variation” case as an example, Figure 11(a)(i) shows the
performance comparison between ConScale and Sora under the
“Large Variation” workload trace [17]. For example, Figure 11(a)(i)
shows that ConScale with runtime concurrency adaptation still ex-
periences large response time spikes during the temporary overload
phase (e.g., periods 180s~260s and 500s~570s). This is because Con-
Scale uses a latency-agnostic throughput-based model (i.e., Scatter-
Concurrency-Throughput (SCT) model) without taking response
time into account, leading to the over-allocation of the thread pool
and inefficient CPU utilization as shown in Figure 11(a)(iii) and
(ii), respectively. In contrast to the SCT model, our goodput-based
SCG model takes the response time constraints of Cart into con-
sideration and recommends more rational concurrency allocations
(i.e., 30 threads), which can also fully utilize the CPU resources and
reduce SLO violations (see Figure 11(b)).

Readers may wonder whether we can simply replace the through-
put with goodput to enable ConScale for SLA-based soft resource
adaptation. The answer is no because goodput calculation requires
appropriate latency threshold selection during runtime, as shown
in Section 2.3. In a large-scale microservices-based system, the
latency requirements of critical services may change over time
due to the dynamic nature of microservices. Hence, one important
contribution of our SCG goodput model is to dynamically identify
the critical service and its runtime latency requirements and then
nicely integrate both the throughput and latency requirements into
a simple model.

Sora: A Latency Sensitive Approach for Microservice Soft Resource Adaptation

Kubernetes HPA

% 1500 5000
2 Request Type —
% 1200 Soodput (RTTZAOO"‘S) Change\ 4000 3
2 = Response Time g
L £ 900 3000 £
()% 2000 5
g 1000 §
& 0
K= —— CPU Pod Limit
= §500 1 cpy il
(i) 2 £400
2 300
S 200
§ 2100
0
§ %‘1‘23 = _Running Connections
i) € 90
mnm)s <
G 42 2
S 30 “ hadbia. nd . ‘ll
= 0 N n n n n
0 120 240 480 600 720

360
Timeline [s]

(a) The system response time spikes appear during 45s~82s, 222s~295s, 5085~578s
under the “Large Variation” workload even with a threshold-based autoscaler to
scale the critical service horizontally. The static 50 connections to Post Storage
would become insufficient and cause performance degradation after the system
state drifting at 451s.

Middleware *23, December 11-15, 2023, Bologna, Italy

Sora
7 1500 Request Type 5000
E Goodput (RTT=400ms) qa yp z
2 12000 Response Time Change\ 4000 3
. £ 900 3000 £
U 8 600 2000 &
$
& 300 n 4 m“ m 1000 §
& 0 0o ©
Sy CPU Pod Limit
= 8500 1 Gpy ui.
i 5 £400
(i) S £300
S 5200
82100
S0
=0150 .
E§, 50| — Running Connections
iy 23 90
(iii) $% a0
Ed
8e ¥
= 0

0 120 240 480 600 720

360
Timeline [s]
(b) Relatively stable system response time under the same workload trace in (a)
with Sora. Sora dynamically adjusts connection pool size based on the current
parallelism of Post Storage and updates the optimal connections based on SCG
model estimation after system state drifting.

Figure 12: Performance comparison between Kubernetes HPA and Sora under the same “Large Variation” workload. Figure 12(a)
is for Kubernetes HPA and Figure 12(b) is for Sora. Our framework Sora can dynamically adjust soft resources (e.g., request connections) to
adapt to the new system state due to request type change and stabilize the response time.

5.3 Mitigating Response Time Fluctuations in
System State Drifting

In this section, we validate the effectiveness of Sora in mitigating
response time fluctuations when the microservices-based applica-
tions face the system state drifting (e.g., request type change). To
avoid the impact of vertical scaling on optimal soft resource allo-
cation, we deploy the Kubernetes Horizontal Pod Autoscaling (i.e.,
HPA) [7] in our private testbed to maintain the quality of service
during runtime. The Kubernetes Autoscaling employs a rule-based
scaling policy by monitoring resource utilization of microservice
instances (e.g., Pod CPU utilization > 80%). We conduct evaluation
experiments using the Post Storage service from the benchmark
application Social Network, and we set the maximum number of
concurrent users for the Read HomeTimeline service to 4500.

Figure 12 shows the performance comparison between Kuber-
netes HPA and Sora under the same “Large Variation” workload
trace for the Read HomeTimeline service. The left three figures
(Figure 12(a)) show the Kubernetes HPA case, and the right figures
(Figure 12(b)) show Sora case. In this set of experiments, we initially
set the request connection pool size to be 10 for each Post Storage
replica, which is the optimal concurrency setting for the 2-core
CPU limit scenario in Section 5.1. We start our experiments with all
light requests for the first 450s, then we change the request type
to heavy (see Figure 3(e) and 3(f)).

Sora achieves a relatively stable response time and goodput in a
12-minute experiment than that in the Kubernetes HPA case (see
Figure 12(a)(i) and 12(b)(i)). For example, large response time fluc-
tuations and goodput drops in the Kubernetes HPA case during the
temporary overload phase after the request type changes (45s~82s,
222s~295s, and 508s~578s). Before the request type changes from
light to heavy at 451s, Figures 12(a)(i) and 12(b)(i) show that Sora
achieves lower response time and higher goodput than Kubernetes
HPA (e.g., 45s~82s and 222s~295s). This is because Sora can dy-
namically adjust the request connection pool size according to the
number of Post Storage replicas. In contrast, Kubernetes HPA only

53

adjusts the number of Post Storage replicas. The workload imbal-
ance between existing replicas and newly-added replicas would
cause a sub-optimal soft resource allocation among replicas and fur-
ther degrade performance. Furthermore, we notice a large response
time spike appears during period 508s~578s in Figure 12(a)(i), and
the current 50 connections allocation becomes the bottleneck (see
Figure 12(a)(iii)). This is because serving heavy requests stresses
downstream database services, making the Post Storage replicas
route more requests to downstream services. The optimal connec-
tions to Post Storage should change from 10 to 30 (see Section 2.3).
On the other hand, Figure 12(b)(iii) shows that Sora dynamically
reallocates 120 connections for 4 Post Storage replicas, which can
effectively stabilize the response time fluctuations caused by the
system state drifting.

6 DISCUSSIONS

Scalability of Sora. Sora would work based on the assumption
that our monitoring infrastructure can identify the critical ser-
vices along the critical path in a large-scale system. We learn from
FIRM [47] and implement an online distributed tracing but an of-
fline data analysis on a centralized graph database, which stores the
request/response timestamps of each microservice. Specifically, our
SCG model estimates runtime service goodput and concurrency
based on the request/response timestamps stored in the dedicated
graph database, which does not add additional computational over-
head to the target runtime system. We observed the collection of
telemetry data and execution history graphs for critical service
identification leads to a maximum CPU overhead of 5% and a 50ms
computational overhead for all loads in our private testbed. How-
ever, Sora has two limitations that are subject to our future research:
First, the efficiency of the centralized graph database determines
the latency overhead of critical service extraction, which would
limit the scalability of Sora. Second, the accuracy of critical service
identification in the large-scale system would limit the effectiveness

Middleware *23, December 11-15, 2023, Bologna, Italy

of Sora. The state-of-the-art ML approach in FIRM [47] admits a
93% accuracy in a large-scale system.

Applicability of Sora. Unlike hardware resources, soft re-
sources usually have a large configuration space due to the hetero-
geneous service implementation (Section 2.1). We notice not all soft
resources are suitable for being runtime reconfigured by autoscaling
solutions. For example, exposing some internal application-specific
soft resources (e.g., locks) requires a significant engineering effort
by service providers, which may limit the applicability of autoscaler.
Hence, we target server threads and connections since they are
the most generic soft resources for heterogeneous microservices
and can directly control the request processing concurrency of
each microservice. Fortunately, most service providers explicitly
expose the tuning knobs of these two types of soft resources so that
administrators can easily reconfigure them by changing hosting
server parameters (e.g., Tomcat threads pool) or third-party library
parameters (e.g., JDBC connection pool).

7 RELATED WORK

Previous research on stabilizing performance fluctuations to meet
strict SLOs for microservices-based applications in clouds can be
broadly divided into three categories:

Autoscaling microservices-based applications adopt tech-
niques to elasticize computing resources in clouds [27, 45, 48].
These techniques can be further categorized into four groups: (a)
threshold-based (or rule-based) [31, 42, 44], (b) statistical profiling-
based [17, 54], (c) analytical model-based [8, 13, 40, 76], and (d)
machine learning-based [23, 39, 51, 66, 71]. For example, Kuber-
netes Horizontal Pod Autoscaler [7] adopts a straightforward
rule-based approach to elasticize computing resources (e.g., CPU
and memory) based on observed resource utilization (e.g., CPU
utilization > 80%). SHOWAR [8] adopts basic ideas from control
theory and kernel-level performance metrics to determine the
optimal hardware resource allocations (e.g., CPU and memory).
FIRM [47] and Fifer [20] combine statistical profiling and machine
learning-based approaches to reprovision hardware resources to re-
duce SLO violations adaptively. However, none of these approaches
can correspondingly scale the soft resources (e.g., threads and
TCP connections) in microservices-based applications, which con-
trols the concurrent use of hardware resources and could become
significant sources of performance instability (see Section 2.3).
Analytical performance model for microservices-based ap-
plications has been widely used to estimate the microservice ca-
pacity and performance gains [22, 25, 29, 35, 41, 49, 52, 56, 59, 73].
For example, ATOM [18] leverages queueing network model to
estimate the computational optimization to maximize the system
performance with minimal CPU shares. Alibaba group [36] con-
ducts in-depth anatomy of microservices call-dependency based
on a production trace analysis to optimize microservice designs for
SLOs. MicroRCA [67] can locate root causes of performance issues
in microservices by correlating application performance symptoms
with corresponding system resource utilization. However, these
approaches require significant human effort and expert knowledge
to conduct performance tuning. Their work inspires us to improve
our work to be more agile when handling runtime system condition
variations.

54

Jianshu Liu, Qingyang Wang, Shungeng Zhang, Liting Hu, and Dilma Da Silva

Experimental software reconfiguration approaches for
microservices-based applications have been studied extensively [34,
38, 43, 68-70, 72]. For example, BestConfig [75] automates the con-
figuration tuning for general systems by combining the divide-and-
diverge sampling method and the recursive bound-and-search al-
gorithm. ConScale [33] utilizes a Scatter-Concurrency-Throughput
(SCT) model based on statistical correlations between each server’s
throughput and concurrency to quickly adapt the optimal soft
resource configurations of key servers during the system scaling
process. Iter8 [61] adopts online Bayesian learning and multi-
armed bandit algorithms to enable microservices-based applications
tailored for SLOs in the cloud. Our work complements their work by
integrating an online Scatter-Concurrency-Goodput (SCG) Model
with more fine-grained runtime contextual information, which can
capture each subtle change in system conditions and better adapt
soft resource allocations for microservices-based applications.

8 CONCLUSION

We propose Sora, an online concurrency adapting framework that
integrates latency constraints and fast concurrency adaptation
for critical microservices and works together with other popu-
lar hardware-only autoscalers. Sora uses SCG, an online goodput-
based model which collects fine-grained metrics extracted from
various microservice instances to quickly determine an optimal
soft resource setting for critical microservices during runtime. Our
experiments using six real-world bursty workloads show that Sora
can effectively reduce the tail response time of our microservices
benchmark application at the 99th percentile by an average of 2.5x
compared to the FIRM, and 1.5X to the state-of-the-art concurrency-
aware system scaling strategy ConScale. Overall, Sora enables fast
mitigation of user-perceived response time fluctuations by combin-
ing efficient hardware and soft resource provisioning, contributing
to both high resource efficiency and high performance of modern
cloud requirements.

9 ACKNOWLEDGEMENTS

We thank the anonymous reviewers and our shepherd Dr. Arpan
Gujarati for their feedback on improving this paper. This research
has been partially funded by National Science Foundation by CNS
(2000681), CNS (2245827), CNS (2212256), and contracts from Fujitsu
Limited. Any opinions, findings, and conclusions are those of the
author(s) and do not necessarily reflect the views of the National
Science Foundation or other funding agencies mentioned above.

REFERENCES

[1] Decomposing twitter: Adventures in service-oriented architecture.
www.infoq.com/presentations/twitter-soa/.
Mean absolute percentage error.
Mean_absolute_percentage_error.
mongodb. https://www.mongodb.com.
Neodj:native graph database. https://github.com/neo4j/neo4j.

Tony mauro. adopting microservices at netflix: Lessons for architectural de-
sign. https://www.nginx.com/blog/microservices-at-netflix-architectural-best-
practices/.

[6] Sock shop microservice demo application. https://microservices-demo.github.io/,
2016.

Kubernetes horizontal pod auto-scaling. https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/, 2019.

BaAarzr, A. F., aND Kesipis, G. SHOWAR: Right-sizing and efficient scheduling
of microservices. In SoCC "21: ACM Symposium on Cloud Computing, Seattle, WA,

https://
[2]
[3

[4
[5]

https://en.wikipedia.org/wiki/

https://www.infoq.com/presentations/twitter-soa/
https://www.infoq.com/presentations/twitter-soa/
https://en.wikipedia.org/wiki/Mean_absolute_percentage_error
https://en.wikipedia.org/wiki/Mean_absolute_percentage_error
https://www.mongodb.com
https://github.com/neo4j/neo4j
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://microservices-demo.github.io/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

Sora:

[9

=

[10

(1]

[12]
[13]

[14]

[15]

[16]

(17

[18

[19]
[20

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28

[33]

[34]

A Latency Sensitive Approach for Microservice Soft Resource Adaptation

USA, November 1 - 4, 2021, C. Curino, G. Koutrika, and R. Netravali, Eds., ACM,
pp. 427-441.

BENESTY, J., CHEN,]J., HUANG, Y., AND COHEN, L. Pearson correlation coefficient.
In Noise reduction in speech processing. Springer, 2009, pp. 1-4.

CHiBa, T.,, Nakazawa, R., Horir, H., SUNEJA, S., AND SEELAM, S. Confadvisor: A
performance-centric configuration tuning framework for containers on kuber-
netes. In 2019 IEEE International Conference on Cloud Engineering (IC2E) (2019),
IEEE, pp. 168-178.

ConsorTiUM, O. Rubbos: Bulletin board benchmark. http://jmob.ow2.org/
rubbos.html, 2005.

CONTAINER, L. Infrastructure for container projects. https://linuxcontainers.org/.
CusAck, G., Nazar1, M., GOODARzY, S., HUNHOFF, E., OBERAL P., KELLER, E.,
ROZNER, E., AND HAN, R. Escra: Event-driven, Sub-second Container Resource
Allocation. In 2022 IEEE 42nd International Conference on Distributed Computing
Systems (ICDCS) (July 2022), pp. 313-324.

Docker. Docker. https://www.docker.com/.

ENav, Y. Amazon found every 100ms of latency cost them 1
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-
cost-them- 1-in-sales/.

GAN, Y., ZHANG, Y., CHENG, D., SHETTY, A., RaTHIL, P., KaTARKI, N., BRUNO, A.,
Hu, J., RITCHKEN, B., JACKSON, B., ET AL. An open-source benchmark suite for
microservices and their hardware-software implications for cloud & edge systems.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (2019), pp. 3-18.
GANDHI, A., HARCHOL-BALTER, M., RAGHUNATHAN, R., AND KozucH, M. A. Au-
toscale: Dynamic, robust capacity management for multi-tier data centers. ACM
Transactions on Computer Systems (TOCS) 30, 4 (2012), 14.

Gias, A. U, CasALE, G., AND WoODSIDE, M. Atom: Model-driven autoscaling
for microservices. In 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS) (2019), IEEE, pp. 1994-2004.

GOLANG. Go official website. https://golang.org/.

GUNASEKARAN, J. R,, THINAKARAN, P., NacHIAPPAN, N. C., KANDEMIR, M. T., AND
Das, C. R. Fifer: Tackling resource underutilization in the serverless era. In
Proceedings of the 21st International Middleware Conference (New York, NY, USA,
2020), Middleware ’20, Association for Computing Machinery, p. 280-295.
Guo, X., PENG, X., WANG, H., L1, W,, JiaNnG, H.,, DING, D., X1E, T., AND Su, L.
Graph-based trace analysis for microservice architecture understanding and
problem diagnosis. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (2020), pp. 1387-1397.

HuaNg, L., AND ZHU, T. Tprof: Performance profiling via structural aggregation
and automated analysis of distributed systems traces. In SoCC "21: ACM Sym-
posium on Cloud Computing, Seattle, WA, USA, November 1 - 4, 2021, C. Curino,
G. Koutrika, and R. Netravali, Eds., ACM, pp. 76-91.

Hwang, C., Kim, T., KM, S., SHIN, J., AND PARK, K. Elastic resource sharing for
distributed deep learning. In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21) (2021), pp. 721-739.

JAEGER. Jaeger: open source, end-to-end distributed tracing.
www.jaegertracing.io/.

JINDAL, A., PopOLsK1Y, V., AND GERNDT, M. Performance modeling for cloud
microservice applications. In Proceedings of the 2019 ACM/SPEC International
Conference on Performance Engineering (2019), pp. 25-32.

JoLokIA. Jolokia official website. https://jolokia.org/.

JyorHr S. A., CuriNo, C., MENACHE, ., NARAYANAMURTHY, S. M., TuMANOV, A.,
Yan1v, J., MaviyuTov, R., GoIry, I, KRISHNAN, S., KULKARNT, J., ET AL. Morpheus:
Towards automated {SLOs} for enterprise clusters. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16) (2016), pp. 117-134.
KALDOR, J., MACE, J., BEjpA, M., Gao, E., KuroraTwa, W., O’NEILL,]., ONG, K. W.,
SCHALLER, B., SHAN, P., Viscomy, B., ET AL. Canopy: An end-to-end performance
tracing and analysis system. In Proceedings of the 26th symposium on operating
systems principles (2017), pp. 34-50.

KaNnNAN, R. S., SUBRAMANIAN, L., RAJu, A., AHN, J., MARS, J., AND TANG, L. Grand-
SLAm: Guaranteeing SLAs for Jobs in Microservices Execution Frameworks. In
Proceedings of the Fourteenth EuroSys Conference 2019 (New York, NY, USA, Mar.
2019), EuroSys ’19, Association for Computing Machinery, pp. 1-16.
KuBERNETES. Kubernetes. https://kubernetes.io/.

KwaN, A., WONG, J., JAcoBSEN, H.-A., AND MuTHUSAMY, V. Hyscale: Hybrid and
network scaling of dockerized microservices in cloud data centres. In 2019 IEEE
39th International Conference on Distributed Computing Systems (ICDCS) (2019),
pp- 80-90.

Liu, H.,, ZHANG,]., SHAN, H., L1, M., CHEN, Y., HE, X, AND L1, X. Jeallgraph: tracing
microservices in very large scale container cloud platforms. In International
Conference on Cloud Computing (2019), Springer, pp. 287-302.

Liu, J., ZHANG, S., WANG, Q., AND WEL]. Mitigating large response time fluctu-
ations through fast concurrency adapting in clouds. In 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS) (2020), IEEE, pp. 368-377.
L1v, J., ZHANG, S., WANG, Q., AND WEL J. Coordinating fast concurrency adapting
with autoscaling for slo-oriented web applications. IEEE Transactions on Parallel

https://

55

(35]

(36]

(37]

(38]

(39]

[40

[41

[42

[43

[44

[46

[47]

(48

[50]

[51

[52

[55

[56]

Middleware *23, December 11-15, 2023, Bologna, Italy

and Distributed Systems 33, 12 (2022), 3349-3362.

Liu, L., WANG, H., WANG, A., X140, M., CHENG, Y., AND CHEN, S. Mind the gap:
Broken promises of CPU reservations in containerized multi-tenant clouds. In
SoCC °21: ACM Symposium on Cloud Computing, Seattle, WA, USA, November 1 -
4, 2021, C. Curino, G. Koutrika, and R. Netravali, Eds., ACM, pp. 243-257.

Luo, S., Xu, H,, Lu, C,, YE, K., Xu, G., ZHANG, L., DING, Y., HE, J., AND Xu, C.
Characterizing microservice dependency and performance: Alibaba trace analysis.
In SoCC "21: ACM Symposium on Cloud Computing, Seattle, WA, USA, November 1
- 4, 2021, C. Curino, G. Koutrika, and R. Netravali, Eds., ACM, pp. 412-426.
MaHGoUB, A., Woob, P., GANESH, S., MITRA, S., GERLACH, W., HARRISON, T.,
MEYER, F., GRAMA, A., BaccHl, S., AND CHATER]L, S. Rafiki: a middleware for
parameter tuning of nosql datastores for dynamic metagenomics workloads. In
Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference (2017), pp. 28-40.
Maj1, A. K., MITRA, S., ZHOU, B, BAGcHI, S., AND VERMA, A. Mitigating interfer-
ence in cloud services by middleware reconfiguration. In Proceedings of the 15th
International Middleware Conference (2014), pp. 277-288.

Mao, H., ALIZADEH, M., MENACHE, I, AND KANDULA, S. Resource management
with deep reinforcement learning. In Proceedings of the 15th ACM workshop on
hot topics in networks (2016), pp. 50-56.

MIRHOSSEINI, A., ELNIKETY, S., AND WENIscH, T. F. Parslo: A gradient descent-
based approach for near-optimal partial SLO allotment in microservices. In SoCC
'21: ACM Symposium on Cloud Computing, Seattle, WA, USA, November 1 - 4, 2021,
C. Curino, G. Koutrika, and R. Netravali, Eds., ACM, pp. 442-457.
MIRHOSSEINI, A., WEST, B. L., BLAKE, G. W., AND WENIscH, T. F. Express-lane
scheduling and multithreading to minimize the tail latency of microservices. In
2019 IEEE International Conference on Autonomic Computing (ICAC) (2019), IEEE,
pp. 194-199

MitTAL, V., QI, S., BHATTACHARYA, R, Lyu, X,, L1, J., KuLkarng, S. G, L1, D,
HwANG, J., RamakrisuNaN, K. K., AND Woob, T. Mu: An efficient, fair and
responsive serverless framework for resource-constrained edge clouds. In SoCC
"21: ACM Symposium on Cloud Computing, Seattle, WA, USA, November 1 - 4, 2021,
C. Curino, G. Koutrika, and R. Netravali, Eds., ACM, pp. 168-181.

MvoNDo, D., BARBALACE, A., TCHANA, A., AND MULLER, G. Tell me when you
are sleepy and what may wake you up! In SoCC °21: ACM Symposium on Cloud
Computing, Seattle, WA, USA, November 1 - 4, 2021, C. Curino, G. Koutrika, and
R. Netravali, Eds., ACM, pp. 562-569.

NETTO, M. A., CARDONHA, C., CUNHA, R. L., AND Assuncao, M. D. Evaluating
auto-scaling strategies for cloud computing environments. In 2014 IEEE 22nd
International Symposium on Modelling, Analysis & Simulation of Computer and
Telecommunication Systems (2014), IEEE, pp. 187-196.

OUSTERHOUT, A., FRIED, J., BEHRENS, J., BELAY, A., AND BALAKRISHNAN, H.
Shenango: Achieving high CPU efficiency for latency-sensitive datacenter work-
loads. In 16th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 19) (2019), pp. 361-378.

PauTasso, C., ZIMMERMANN, O., AMUNDSEN, M., LEwIs, J., AND JosuTTis, N.
Microservices in practice, part 1: Reality check and service design. IEEE Annals
of the History of Computing 34, 01 (2017), 91-98.

Q1u, H., BANERJEE, S. S., JHA, S., KALBARCZYK, Z. T., AND IYER, R. K. {FIRM}:
An intelligent fine-grained resource management framework for SLO-oriented
microservices. In 14th { USENIX} Symposium on Operating Systems Design and
Implementation (OSDI 20) (2020), pp. 805-825.

Qu, C., CALHEIROS, R. N, AND Buyya, R. Auto-scaling web applications in clouds:
A taxonomy and survey. ACM Computing Surveys (CSUR) 51, 4 (2018), 73.
RAHMAN, J., AND LAMA, P. Predicting the end-to-end tail latency of container-
ized microservices in the cloud. In 2019 IEEE International Conference on Cloud
Engineering (IC2E) (2019), IEEE, pp. 200-210.

REN, R., M4, J,, Sul, X., AND Bao, Y. D2p: a distributed deadline propagation
approach to tolerate long-tail latency in datacenters. In Proceedings of 5th Asia-
Pacific Workshop on Systems (2014), pp. 1-6.

Rzapca, K., FINDEISEN, P., SWIDERSK], J., ZyCH, P., BRONIEK, P., KUSMIEREK,
J., Nowak, P., STRACK, B., WiTusowskI, P., HAND, S., AND WILKES, J. Autopi-
lot: Workload autoscaling at Google. In Proceedings of the Fifteenth European
Conference on Computer Systems (New York, NY, USA, Apr. 2020), EuroSys 20,
Association for Computing Machinery, pp. 1-16.

SAMANTA, A., J1A0, L., MUHLHAUSER, M., AND WANG, L. Incentivizing Microser-
vices for Online Resource Sharing in Edge Clouds. In 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), pp. 420-430.

SATOPAA, V., ALBRECHT, J., IRWIN, D., AND RAGHAVAN, B. Finding a" kneedle" in
a haystack: Detecting knee points in system behavior. In 2011 31st international
conference on distributed computing systems workshops (2011), IEEE, pp. 166-171.
SHARMA, U., SHENOY, P., SAHU, S., AND SHAIKH, A. A cost-aware elasticity
provisioning system for the cloud. In 2011 31st International Conference on
Distributed Computing Systems (2011), IEEE, pp. 559-570.

SOMASHEKAR, G., AND GANDHI, A. Towards optimal configuration of microser-
vices. In Proceedings of the 1st Workshop on Machine Learning and Systems (2021),
pp. 7-14.

SonG, W., X140, Z., CHEN, Q., AND Luo, H. Adaptive Resource Provisioning for
the Cloud Using Online Bin Packing. 2647-2660.

http://jmob.ow2.org/rubbos.html
http://jmob.ow2.org/rubbos.html
https://linuxcontainers.org/
https://www.docker.com/
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://golang.org/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://jolokia.org/
https://kubernetes.io/

Middleware *23, December 11-15, 2023, Bologna, Italy

[57]
[58]

[59]

[60]
[61]

[62

[63]

[64]

[65]

[66]

[67]

SPRING. Spring boot overview. https://spring.io/projects/spring-boot.
SRIRAMAN, A., AND WENIscH, T. F. ptune: Auto-tuned threading for {OLDI}
microservices. In 13th { USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18) (2018), pp. 177-194.

TENNAGE, P., PERERA, S., JAYASINGHE, M., AND JAYASENA, S. An analysis of holis-
tic tail latency behaviors of java microservices. In 2019 IEEE 21st International
Conference on High Performance Computing and Communications; IEEE 17th In-
ternational Conference on Smart City; IEEE 5th International Conference on Data
Science and Systems (HPCC/SmartCity/DSS) (2019), IEEE, pp. 697-705.

Traomas, W., AND CoLIN, K. gnuplot homepage. http://www.gnuplot.info/, 2019.
TosLALL, M., PARTHASARATHY, S., OLIVEIRA, F., HuANG, H., AND CoskUN, A. K.
Iter8: Online experimentation in the cloud. In SoCC "21: ACM Symposium on
Cloud Computing, Seattle, WA, USA, November 1 - 4, 2021, C. Curino, G. Koutrika,
and R. Netravali, Eds., ACM, pp. 289-304.

VirTUOZZO. Open source container-based virtualization for linux.
//openvz.org/.

VMWARE. Vmware esxi: The purpose-built bare metal hypervisor. https://
www.vmware.com/products/esxi-and-esx.html, 2019.

WANG, Q., CHEN, H., ZHANG, S., Hu, L., AND PALANISAMY, B. Integrating con-
currency control in n-tier application scaling management in the cloud. IEEE
Transactions on Parallel and Distributed Systems 30, 4 (2018), 855-869.

WANG, Q., ZHANG, S., KANEMASA, Y., Pu, C., PALANISAMY, B., HARADA, L., AND
KawaBa, M. Optimizing n-tier application scalability in the cloud: A study of soft
resource allocation. ACM Transactions on Modeling and Performance Evaluation
of Computing Systems (TOMPECS) 4, 2 (2019), 1-27.

WANG, Z., ZHU, S., L1, ., JIANG, W., RAMAKRISHNAN, K. K., ZHENG, Y., YAN, M.,
ZHANG, X., AND L1U, A. X. DeepScaling: Microservices autoscaling for stable CPU
utilization in large scale cloud systems. In Proceedings of the 13th Symposium
on Cloud Computing (New York, NY, USA, Nov. 2022), SoCC ’22, Association for
Computing Machinery, pp. 16-30.

Wu, L., TORDSSON, J., ELMROTH, E., AND Ka0, O. Microrca: Root cause localization
of performance issues in microservices. In NOMS 2020-2020 IEEE/IFIP Network
Operations and Management Symposium (2020), IEEE, pp. 1-9.

https:

56

[68]

[69]

[70]

(72

[73

[74]

[75]

[76]

(7]

Jianshu Liu, Qingyang Wang, Shungeng Zhang, Liting Hu, and Dilma Da Silva

X140, Z., SONG, W., AND CHEN, Q. Dynamic Resource Allocation Using Virtual
Machines for Cloud Computing Environment. 1107-1117.

Xu, T, JiN, X,, HUANG, P., ZHoUu, Y, Lu, S, JiN, L., AND PAsuPATHY, S. Early
detection of configuration errors to reduce failure damage. In 12th { USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16) (2016),
pp. 619-634.

Xu, T., ZHANG, J., HUANG, P., ZHENG, J., SHENG, T., YuaN, D., ZHou, Y., AND
PASUPATHY, S. Do not blame users for misconfigurations. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles (2013), pp. 244—
259.

YANG, Z., NGUYEN, P., JiN, H., AND NAHRSTEDT, K. Miras: Model-based reinforce-
ment learning for microservice resource allocation over scientific workflows. In
2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)
(2019), IEEE, pp. 122-132.

ZHANG, B., VAN AKEN, D., WANG, J., DAL, T, JI1ANG, S., LAo, J., SHENG, S., PAvLo,
A., AND GORDON, G. J. A demonstration of the ottertune automatic database
management system tuning service. Proceedings of the VLDB Endowment 11, 12
(2018), 1910-1913.

ZHANG, S., WANG, Q., KANEMASA, Y., L1U, J., AND Pu, C. Doublefacead: A new data-
store driver architecture to optimize fanout query performance. In Proceedings
of the 21st International Middleware Conference (2020), pp. 430-444.

Znovu, X., PENG, X, XIg, T., SuN, J,, J1, C,, L1u, D., X1ANG, Q., AND HE, C. Latent
error prediction and fault localization for microservice applications by learning
from system trace logs. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (2019), pp. 683-694.

Znu, Y., Liu,], Guo, M., Bao, Y., Ma, W, L1u, Z., SoNG, K., AND YANG, Y. Bestconfig:
tapping the performance potential of systems via automatic configuration tuning.
In Proceedings of the 2017 Symposium on Cloud Computing (2017), pp. 338-350.
Zuv, Z., By, J., Yuan, H., AND CHEN, Y. Sla based dynamic virtualized resources
provisioning for shared cloud data centers. In 2011 IEEE 4th International Confer-
ence on Cloud Computing (2011), IEEE, pp. 630-637.

Z1pKIN. Zipkin: A distributed system. https://zipkin.io/.

https://spring.io/projects/spring-boot
http://www.gnuplot.info/
https://openvz.org/
https://openvz.org/
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://zipkin.io/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Soft Resources in Microservices
	2.2 Experimental Setup
	2.3 Shifting of Optimal Soft Resource Allocation during Runtime

	3 Scatter-Concurrency-Goodput Model
	3.1 Limitations of Existing Online Models
	3.2 Model Description
	3.3 Sensitivity Analysis of SCG Model

	4 Sora Framework
	4.1 Module Design
	4.2 Implementation Details

	5 Experimental Evaluation
	5.1 Model Validation for Different Soft Resources Estimation
	5.2 Mitigating Response Time Fluctuations in Autoscaling
	5.3 Mitigating Response Time Fluctuations in System State Drifting

	6 Discussions
	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

