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Data-adaptive symmetric CUSUM for sequential change 
detection

Nauman Ahada , Mark A. Davenporta , and Yao Xieb 

aSchool of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; 
bSchool of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA 

ABSTRACT 
Detecting change points sequentially in a streaming setting, espe-
cially when both the mean and the variance of the signal can 
change, is often a challenging task. A key difficulty in this context 
often involves setting an appropriate detection threshold, which for 
many standard change statistics may need to be tuned depending 
on the prechange and postchange distributions. This presents a chal-
lenge in a sequential change detection setting when a signal 
switches between multiple distributions. Unfortunately, change point 
detection schemes that use the log-likelihood ratio, such as cumula-
tive sum (CUSUM) and the generalized log-likelihood ratio (GLR), are 
quick to react to changes but are not symmetric when both the 
mean and the variance of the signal change. This makes it difficult 
to set a single threshold to detect multiple change points sequen-
tially in a streaming setting. We propose a modified version of 
CUSUM that we call data-adaptive symmetric CUSUM (DAS-CUSUM). 
The DAS-CUSUM procedure is symmetric for changes between distri-
butions, making it suitable to set a single threshold to detect mul-
tiple change points sequentially in a streaming setting. We provide 
results that relate the expected detection delay and average run 
length for our proposed procedure when both prechange and post-
change distributions are normally distributed. Experiments on simu-
lated and real-world data show the utility of DAS-CUSUM.
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1. INTRODUCTION

For a sequence of observations x1, :::, xt , the goal of change point detection is to detect 
whether there exists an instance nc such that x1, :::, xnc−1 are generated according to a 
different distribution than xnc , :::, xt, and, if so, estimating nc. This is typically accom-
plished by computing a simple change statistic based on the log-likelihood ratio, which 
can be compared to a threshold to detect changes or optimized to estimate nc. 
Sequential change point detection involves sequentially detecting multiple changes in 
streaming data. Many real-world applications require sequential detection of change 
points within streaming signals. Health care, communication, and finance are just a few 
areas where sequential change detection is widely used (Al-Assaf 2006; Lai, Fan, and 
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Poor 2004; Yang, Dumont, and Ansermino 2006). An extended discussion of applica-
tions of change point detection can be found in Aminikhanghahi and Cook (2017a).

Despite being devised more than half a century ago, the cumulative sum (CUSUM) 
statistic is still one of the most popular methods for detecting change points (Page 
1954). This is chiefly due to two reasons. First, it has a simple recursive implementation 
that makes it computationally efficient to apply. Second, it has been shown to be opti-
mal in minimizing the detection delay for a given false alarm rate (Lorden 1971). 
However, computing the CUSUM statistic requires complete knowledge of both the pre-
change and postchange distributions. This is not feasible in many real-world scenarios 
where the postchange distribution can be unknown. In such settings, a common 
approach is to use the generalized log-likelihood ratio (GLR) statistic, which involves 
estimating the postchange distribution for all possible change points (Siegmund and 
Venkatraman 1995). Both the CUSUM and GLR statistics leverage the log-likelihood 
ratio for the known/estimated pre- and postchange distributions.

Most work on change point detection has focused on identifying a single change 
point in the quickest possible manner. Though this has been useful for some applica-
tions, especially those that monitor a process for abnormal behavior, such as machine 
fault detection and network intrusion detection, many modern applications require the 
detection of multiple change points sequentially in streaming data. In sequential change 
point detection, the detection procedure must be restarted and continued after each 
change point, resulting in multiple change points being detected. Examples of such set-
tings include segmentation of signals for activity recognition where change points are 
used to identify transitions from one activity to another in a streaming setting 
(Aminikhanghahi and Cook 2017b). In such settings, the prechange and postchange dis-
tributions change after each change point and cannot be assumed to be known a priori. 
This presents a significant challenge to most standard change detection approaches 
because the detection threshold must be set without knowledge of these distributions 
(with the threshold typically fixed in advance and held constant throughout the 
procedure).

The machine learning community has been addressing this problem of identifying 
multiple change points in data streams (Liu et al. 2013). Such works show that proce-
dures employed to detect change points should be symmetric. This means the magnitude 
of a change from a distribution h0 to a distribution h1 should be the same for a change 
from h1 to h0. Using a procedure with similar power in detecting such changes makes it 
easy to select a threshold for detecting multiple changes sequentially. Statistics such as 
the GLR and CUSUM are not symmetric when distribution changes involve a change in 
variance. This makes it difficult to use these in detecting multiple changes.

In this work, we present an adaptive symmetric version of CUSUM called data-adap-
tive symmetric CUSUM (DAS-CUSUM). DAS-CUSUM uses a window to estimate the 
postchange distribution. It employs a symmetric change statistic to make selecting a 
fixed threshold to detect multiple change points in streaming data easier. We provide 
theoretical results for our proposed method that relates the expected detection delay 
(EDD; average delay in detecting true changes) to the average run length (ARL; average 
time until a false alarm occurs) for the case where both prechange and postchange 
observations are normally distributed. The rest of the article is organized as follows. 
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After reviewing related literature in Section 2, we formalize the change detection prob-
lem in Section 3 and further motivate the need to have a symmetric change statistic for 
detecting multiple changes. Section 4 describes the proposed procedure. Theoretical 
results relating to EDD versus ARL are described in Section 5, where a sketch of the 
related proofs is also given. Section 6 contains simulations that empirically validate the 
theoretical results in a practical setting. Experiments on real-world data are summarized 
in Section 7.

2. RELATED WORK

The CUSUM statistic is known for being asymptotically optimal in minimizing the 
maximum average detection delay as the average time to false alarm reaches infinity 
(Lorden 1971). CUSUM was later shown to be optimal in minimizing the EDD for a 
provided (nonasymptotic) expected time to false alarm (Moustakides 1986). Extensive 
work has been done to investigate further and generalize CUSUM’s optimality property. 
However, these results hold when both prechange and postchange distributions are 
completely known. A summary of such work can be found in Veeravalli and Banerjee 
(2014). A two-sided CUSUM test can detect either an increase or decrease in mean 
(Granjon 2014), but this approach still assumes a fixed and known variance. When the 
postchange distribution is unknown, the GLR test can be used by estimating both the 
change location and the postchange distribution through maximum likelihood estima-
tion. However, CUSUM, GLR, and their variants are often used to detect only a single 
change point (Tartakovsky et al. 2006). The few works that do use these methods to 
detect multiple changes do so by only detecting changes in the mean of normally dis-
tributed data (Bodenham and Adams 2017; Fathy, Barnaghi, and Tafazolli 2019). It is 
more challenging to detect multiple changes when both a signal’s mean and variance 
change. Limited prior work detects joint changes in both the mean and the variance of 
the signal (Hawkins and Zamba 2005); however, this has yet to be considered in detect-
ing multiple changes.

Recently, there has been increasing interest in the machine learning community to 
detect multiple change points sequentially within streaming data (Alippi et al. 2016; 
Chang et al. 2019; Kifer, Ben-David, and Gehrke 2004; Liu et al. 2013). Most of these 
methods use nonparametric change statistics, which are symmetrical. This means that 
the magnitude of the change statistic for a change from h0 to h1 is equivalent in magni-
tude for a change from h1 to h0. The need for this symmetrical statistic was noted by 
Liu et al. (2013), who used a symmetric Kullback-Leibler (KL) divergence to detect mul-
tiple changes within streaming data where both the mean and variance of the normally 
distributed signal are changing. The symmetric statistic makes it easy to set a single 
detection threshold before the procedure is started to detect multiple changes within 
streaming data. At each time instance, a prechange distribution is estimated using a 
“past window,” and the postchange distribution is estimated using a “future window.” 
These methods, however, do not incorporate data samples directly. These samples are 
incorporated through distribution estimates, which makes these methods slow to react 
to changes. None of these methods characterize the relationship between detection delay 
and false alarm rate.
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The need to use symmetric statistics for change detection was also noted in Basseville 
and Benveniste (1983), Andre-Obrecht (1988), and Gustafsson (2000), where the 
authors noted the asymmetry in change statistics when there are changes in both the 
mean and variance. These works used a log-likelihood ratio with a drift term to make 
the expected value of the change statistic symmetric under the postchange distribution. 
However, this drift term meant that the expected statistic value is zero under the pre-
change distribution, which can lead to more false positives. A slightly modified version 
of this technique was mentioned in Basseville and Nikiforov (1993), where false alarm 
rates were reduced by adding a fixed drift term that made the expected value of the 
statistic negative under the prechange distribution. However, details still needed to be 
provided about setting this drift term. These methods also did not characterize the rela-
tionship between detection delay and false alarm rate.

In this work, we investigate a suitable choice for this fixed drift to make the statistic 
symmetric under the postchange distribution while ensuring that the expectation is 
negative under the prechange distribution. Our proposed change detection procedure 
provides a symmetric change statistic for different families of probability distributions. 
However, the theoretical results relating to detection delay and false alarm rate consider 
the more restricted setting of independent and identically distributed (i.i.d.) univariate 
normally distributed data.

3. PROBLEM STATEMENT

Change points are instances in a signal where the underlying distribution of data 
changes; for example, the parameters of the signal-generating distribution change from 
h0 to h1. Most change point detection methods rely on hypothesis tests based on the 
log-likelihood ratio. Specifically, suppose we are given a sequence of observations 
x0, :::, xt: We will assume that each element xi is drawn independently from a distribu-
tion fh where h represents some (possibly changing) parameters. To detect a change we 
compare the null hypothesis (H0) that all xi are drawn according to fh0 for some 
(known) h0 to the alternate hypothesis (H1) that the time series distribution changes 
from fh0 to fh1 , at time nc, for some h1 6à h0:

The likelihood of X under these two hypotheses is given by 
Qt

ià1 fh0ÖxiÜ (under H0) 
and 

Qnc−1
ià1 fh0ÖxiÜ

Qt
iànc

fh1ÖxiÜ (under H1), respectively. By computing the likelihood 
ratio and taking the logarithm, we obtain the likelihood ratio statistic at instance t for a 
possible change point at nc:

lt
nc
à
Xt

iànc

log fh1ÖxiÜ
fh0ÖxiÜ

:

Because the location of the change point nc is unknown, the maximum over all pos-
sible change point locations is taken to compute the change statistic at instance t:

lt à max
1nc<t

lt
nc
: (3.1) 

A change point is detected the first time the change statistic lt is greater than a speci-
fied threshold b. For a sequence of i.i.d. random variables, the sum of the log-likelihood 
probability ratio between distributions h1 and h0 satisfies an intuitive property: if a 
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sample is generated through a postchange distribution, the expected value of the incre-
ment should be positive (h1 âlog Öfh1ÖxiÜ=fh0ÖxiÜÜä > 0, and if the sample is generated 
through the prechange distribution, the expected value of the increment should be nega-
tive (h0 âlog Öfh1ÖxiÜ=fh0ÖxiÜÜä < 0; this can be readily shown from Jensen’s inequality.

In (3.1), we are maximizing over nc to find the maximum log-likelihood ratio. 
Instead of maximizing (3.1) with respect to nc, we can also maximize the log-likelihood 
ratio by minimizing, over nc, the expression

lt à
Xt

ià1
log fh1ÖxiÜ

fh0ÖxiÜ
− min

1nc<t

Xnc

ià1
log fh1ÖxiÜ

fh0ÖxiÜ
: (3.2) 

The CUSUM statistic (Page 1954) provides a computationally attractive recursive 
implementation of the test in (3.2). It assumes both prechange parameters h0 and post-
change distribution parameters h1 are known. In such a setting, a recursive implementa-
tion of (3.2) can be obtained as shown in (3.3):

St à Sát−1 á log fh1ÖxtÜ
fh0ÖxtÜ

, (3.3) 

where ÖxÜá à maxÖ0, xÜ and S0 à 0: The detection procedure is a stopping time T; a 
change point is detected at the first time when the detection statistic St exceeds a preset 
threshold b:

T à infft > 0 : St > bg: (3.4) 

The postchange distribution is often unknown in real-world settings. In such cases, 
the GLR (Siegmund and Venkatraman 1995) can be used to obtain the change statistic 
lt: GLR maximizes the change statistic in (3.5) over both the postchange distribution, ht 
at instance t, and the change instance nc. Let

lt
nc

:à max
h

Xt

iànc

log fhÖxiÜ
fh0ÖxiÜ

:

The GLR detection statistic is defined as

lt à max
1nc<t

lnc
t : (3.5) 

Once the change statistic, lt, crosses the threshold b, a change is detected at a simi-
larly defined stopping time T as in (3.4), and the estimated change point location n⇤c 
corresponds to the maximizing parameter at T. The corresponding postchange estimate 
ĥ

n⇤c
T is used as the new prechange estimate h0 and the sequential change point detection 

procedure is repeated to detect the next change. In this way, multiple change points are 
detected. It is important to note that the GLR procedure is nonrecursive and can be 
computationally expensive to run.

3.1. Asymmetry of Log-Likelihood Ratio

The log-likelihood ratio statistic, employed by GLR and CUSUM, is quick to react 
to changes but is asymmetric for detecting joint changes in the mean and variance. 
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Figure 1 illustrates this asymmetry. This difference becomes more pronounced when 
one of the two distributions has a much smaller variance.

Figure 2 shows a real-world example where this asymmetry makes it difficult for GLR 
to detect multiple change points. The log-likelihood ratio for the first change point is 
much larger than that for the second change point. This makes it difficult to set a 

Figure 1. Joint changes in the mean and variance lead to asymmetric likelihood ratios. (a) The pre-
change likelihood is in the tail, leading to a large likelihood ratio. (b) The postchange likelihood is 
higher than it is in (a), leading to a relatively smaller likelihood ratio.

Figure 2. Joint changes in the mean and variance lead to asymmetric likelihood ratio. (a) The likeli-
hood ratio (in GLR) for the second change is much smaller than the likelihood for the first change. 
This can lead to a missed change point when the detection threshold is set to be large. When the 
detection threshold is lowered to detect this missed change point, many false change points are 
detected, as shown in (b).
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detection threshold a priori to detect multiple change points in a streaming data setting. 
In Figure 2(a), the fixed detection threshold misses the second change point, which has 
a much smaller statistic. As seen in Figure 2(b), a reduction in the detection threshold 
leads to many false change point detections.

4. DATA-ADAPTIVE SYMMETRIC DAS-CUSUM

4.1. Adaptive Postchange Estimation

When the postchange distribution is unknown, another way to estimate the postchange 
distribution is to use a window of size w to perform a sequential estimate of the post-
change parameters ĥt at time t for the CUSUM statistic St, called the window-limited 
CUSUM in Xie, Moustakides, and Xie (2022) and used in Xie, Moustakides, and Xie 
(2018) where a window is used to estimate postchange distribution change distribution 
for subspace change detection. Figure 3 illustrates the procedure. For normally distrib-
uted i.i.d. data, the postchange distribution estimate ĥt à Öl̂t, r̂2

t Ü at time t can be calcu-
lated conveniently as

l̂t à
Xtáw

iàtá1
xi, r̂2

t à
Xtáw

iàtá1

1
w Öxi − l̂tÜ

2:

Using “future” samples to calculate postchange estimates ĥt may initially seem unrea-
sonable. Still, detection decisions can be delayed by w samples so that data are available 
for calculating these estimates (provided that w is not excessively large). These estimates 
can be substituted for h1 in (3.3) to obtain an adaptive form of CUSUM where the post-
change distribution is estimated. Such estimates are also independent of the change stat-
istic St. In comparison to GLR, adaptive CUSUM leads to a more computationally 
efficient method for detecting change points when the postchange distribution is 
unknown. CUSUM has been extensively studied to develop tools that characterize the 

Figure 3. Adaptive version of CUSUM. Using a “future” window to estimate postchange parameters 
ĥt could be used in place of postchange distribution h1 for CUSUM update.
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detection ARL, the average time until false detection under the prechange distribution, 
and the EDD, which is the expected time until true detection under the postchange dis-
tribution. Adaptive CUSUM can utilize the similar technique to characterize the ARL 
and EDD performance.

4.2. Proposed Procedure

As discussed in Section 3.1, the log-likelihood ratio test is asymmetric for changes 
between two distributions having different variances. This makes it difficult to select a 
single threshold for adaptive CUSUM to detect multiple changes.

To address this problem, we introduce a symmetric version of adaptive CUSUM 
called DAS-CUSUM. To begin, we recall that the KL divergence between the distribu-
tion fh0 and fh1 is given by

DKLÖh0, h1Ü à
Ö

fh0ÖxÜ log fh1ÖxÜ
fh0ÖxÜ

dx:

The DAS-CUSUM-based change detection statistic is defined as

St à ÖSt−1Üá á st , 

with the incremental update statistic given by

st à log
fĥt
ÖxiÜ

fh0ÖxiÜ
á DKLÖh0, htÜ − v, (4.1) 

where v> 0 is a constant in the drift term.
Compared to the incremental update for CUSUM, which only contains the log-likeli-

hood ratio, the DAS-CUSUM update statistic has two additional terms, which can be 
seen in (4.1). The first of these terms is a KL divergence, which makes the incremental 
statistic almost symmetric under the postchange distribution. When w is sufficiently 
large, ĥt ⇡ h1, and thus

(h1 stâ ä ⇡ DKLÖh1, h0Ü á DKLÖh0, h1Ü − v: (4.2) 

The second of these additional terms, v, is a drift term that makes the expectation of 
the incremental statistic negative under the prechange distribution. This allows our pro-
posed statistic to match the property of CUSUM, which requires that the increment 
term be negative under the prechange distribution to avoid false alarms.

4.3. Practical Implementation

Algorithm 1 shows how to implement DAS-CUSUM for detecting multiple change 
points. This algorithm uses values for the window size w⇤ and drift term v⇤, based on 
theoretical results presented in Section 5. However, these results require complete know-
ledge of the postchange distribution h1 to compute the KL divergences, necessary to 
compute the desired values for w⇤ and v⇤: Because this postchange distribution is 
unknown, we can set a minimum symmetric KL divergence that corresponds to the 
minimum change in distribution that is to be detected in a streaming data setting. This 
minimum symmetric KL divergence can be used to set window size values w⇤ and drift 
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term v⇤: The optimal window size w⇤ can be found by minimizing an expression. This 
expression is discussed in more detail in Remark 5.2. Despite this expression being con-
vex with respect to w, a closed-form expression of w⇤ is difficult to obtain. This optimal 
window size w⇤ can be solved numerically. When a change point is detected, the previ-
ous postchange estimate ĥt is used as the prechange distribution h0 for detecting the 
subsequent change point.

Algorithm 1. DAS-CUSUM for multiple change point detection   
Inputs: Sequence: X, Threshold b, Target ARL: c, Min sym div: s0,   
Prechange distribution: h0 :à Öl0, r2

0Ü
Output CpList: List containing change points   
Choose window size

w⇤ à arg min
w

log c

−1á Ö1á ws02Ü
1
2 á log 1 − −1áÖ1áws02Ü

1
2

� �2

ws02

✓ ◆á w 

d⇤0 à − 1
s0 á

1
s02á w⇤
✓ ◆1=2

, v⇤ à
− log 1 − d⇤0

2

w

⇣ ⌘

d⇤0    

for t à 1 to lengthÖXÜä do

l̂t à
Xtáw

iàtá1
xi, r̂2

t à
Xtáw

iàtá1

1
w Öxi − l̂tÜ

2, ĥt à Öl̂t , r̂2
t Ü

Compute CUSUM recursion

St à ÖSt−1Üá á log
fĥt
ÖxiÜ

fh0ÖxiÜ
á DKLÖh0, h1Ü − v⇤

if St > b then          
Add t to CpList

l0 :à l̂t , r2
0 :à r̂2

t       

end if   
end for 

5. THEORETICAL RESULTS: EDD VERSUS ARL 

With the definition of the stopping time T, the detection procedure takes s samples to 
detect a change. The ARL is the expected value of s under the prechange distribution 
h0 such that a false change is detected: (1âTä, where (1 is the expectation under the 
probability measure on observations without a change. A commonly considered metric 
is the worst EDD (Lorden 1971) conditioned on the worst possible realizations:

�(1 Tâ ä à sup
k�1

ess sup(kÖ T − ká 1â äájX1, ::::, Xk−1Ü, (5.1) 

where k denotes the change point location and (k is the expectation under the probabil-
ity measure of observations when the change occurs at k. Using a similar argument as 
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shown in lemma 4 in Xie, Moustakides, and Xie (2022), we can show that (1âTä (when 
the change happens at the first time instance) provides an upper bound to the worst 
case expected detection delay (5.1). Thus, in our analysis, we focus on (1âTä, which we 
call the EDD. Our first result relates DAS-CUSUM’s ARL with its EDD, using similar 
techniques as those in Xie, Xie, and Moustakides (2020) and Xie, Moustakides, and Xie 
(2022).

Theorem 5.1. Let fh0ÖxÜ and fh1ÖxÜ be the normal density functions of x under the pre-
change distribution h0 and postchange distribution h1, which is unknown and estimated 
using a window of size w. Assume the ARL � c. When c!1 and for large window size 
w, the EDD of DAS-CUSUM is given by

(1 Tâ ä à log cá oÖ1Ü
d0 DKLÖh1, h0Ü á DKLÖh0, h1ÜÖ Ü á log 1 − d02

w

⇣ ⌘á w: (5.2) 

where d0 > 0:

Corollary 5.1. The value of d0 that minimizes the EDD for a given ARL in (5.2) is given 
by

1
DKLÖh0, h1Ü á DKLÖh1, h0ÜÖ Ü2

á w
✓ ◆1=2

− 1
ÖDKLÖh0, h1Ü á DKLÖh1, h0Ü

: (5.3)   

Remark 5.1. The value of d⇤0 from Corollary 5.1 can be used in the result of Theorem 
5.1 to obtain the minimum EDD for a given ARL.  

Corollary 5.2. The optimal drift term v⇤ that minimizes the EDD in (5.2) for a given 
ARL is given by

− log Ö1 − d⇤0
2=wÜ=d⇤0: (5.4)   

Remark 5.2. The expression in Theorem 5.1 can be minimized with respect to w (at a 
provided value of ARL and symmetric KL divergence) to find the optimal window size 
w⇤: A closed-form expression for w⇤ cannot be obtained, but w⇤ can be solved numeric-
ally. Figure 4 shows how EDD relates to window size w. The curve has a minimum 
point corresponding to a window size of wà 11. When this solution is too small, the 
results in Theorem 5.1 do not hold, which assume w to be large (so that postchange 
estimates converge to true postchange distribution). More details can be found in 
Section 6.2. Additionally, the window size should be large enough for d⇤0 < w for the 
logarithmic term in Theorem 5.1 to be real. 

5.1. Comparison to CUSUM Results 

Lorden (1971) provided the asymptotic lower bound for EDD for CUSUM given (1 �
c and c!1,

10 N. AHAD ET AL.



(1 Tâ ä � log cÖ1á oÖ1ÜÜ
DKLÖh1, h0Ü

: (5.5)  

For the proposed detection procedure, it can be seen in Theorem 5.1 that the EDD at 
a set ARL value would be similar for a change from h0 to h1 and a change from h1 to 
h0. This is not true for CUSUM, where the detection delay for a change from h0 to h1 
will not be equal to a change from h1 to h0. 

The expression in Theorem 5.1 also has an additional w term that takes into account 
the time delay for obtaining the window to estimate postchange parameters, but this is 
a consequence of the postchange distribution being unknown. 

5.2. Sketch of the Proof 

The increment of the CUSUM statistic in (3.3) consists of a log-likelihood ratio that has 
a negative expectation under the prechange distribution h0. The proposed increment 
statistic for DAS-CUSUM in (4.1) has a negative drift under the postchange distribution 
but is not a log-likelihood ratio. One way to find the optimal value v in our proposed 
update statistic is to convert it to a valid log-likelihood ratio. Once this is done, ARL 
and EDD results from CUSUM can be used for our proposed statistic. This expression 
would consist of the negative drift term v, which could be minimized to find the opti-
mal value for v. It can be seen in Lorden (1971) that for a detection threshold b, the 
CUSUM procedure has the following asymptotic average run length:

(1 Tâ ä à ebÖ1á oÖ1ÜÜ
K , (5.6) 

where K is a constant. For CUSUM, the EDD matches the lower bound as shown in 
(5.5). Using the techniques proposed in Xie, Moustakides, and Xie (2018, 2022), an 

Figure 4. EDD versus window size for a change with symmetric KL divergence of 0.5 at an ARL value 
of 5,000. This figure shows that the EDD is a convex function of w that can be minimized to obtain 
the optimal window w⇤:
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equivalence term d0 can be introduced to our incremental statistic that satisfies the 
equation

(h0 exp Öd0stÜâ ä à 1: (5.7) 

When (5.7) is satisfied, exp Öd0stÜ can be considered to be the likelihood ratio 
between distributions ~f h1

à expâd0stäfh0 and fh0 , which then allows us to use (5.6) to 
obtain the ARL performance for DAS-CUSUM. The threshold b can be expressed in 
terms of the average run length (c):

b à log cÖ1á oÖ1ÜÜ
d0

: (5.8) 

This expression is obtained through (5.6) where the constant K is absorbed within o 
(3.1) and the introduced scaling factor d0 for the incremental statistic is appropriately 
scaled. Similarly, d1 can be introduced such that d1st is the log-likelihood ratio between 
fh1 and ~f h0

à expâ−d1stäfh1 : Thus, we can relate the change between fh1 , where the d1 
term is observed in o (3.1) as shown below:

(1 Tâ ä à bÖ1á oÖ1ÜÜ
(h1 stâ ä

: (5.9) 

Substituting (5.8) in the above equation, we obtain

(1 Tâ ä à log cÖ1á oÖ1ÜÜ
d0(h1 stâ ä

: (5.10) 

Substituting (4.2) yields

(1 Tâ ä à log cÖ1á oÖ1ÜÜ
d0 DKLÖh0, h1Ü á DKLÖh1, h0Ü − vÖ Ü : (5.11) 

Our expression above assumes that our statistic is converted to a log-likelihood ratio 
by satisfying the martingale property in (5.7). Lemma 5.1 satisfies this requirement by 
finding an expression that relates the drift value v with the equivalence factor d0

Lemma 5.1. As w!1,(h0 âexp Öd0stÜä à 1 asymptotically when v takes the value in (5.4). 
Then the value for v, for which (5.7) is satisfied, can be substituted. Because w sam-

ples are needed to estimate the postchange distribution ĥt , when w!1, the EDD 
approaches to

log cá oÖ1Ü
d0 DKLÖh0, h1Ü á DKLÖh1, h0ÜÖ Ü á log 1 − d02

w

⇣ ⌘á w: (5.12)  

This EDD expression can be minimized with respect to d0 by equating the derivative 
to 0. The optimal value of d⇤0 that minimizes the expression is given by (5.3). Using this 
optimal value of d0 in (5.12) and (5.4) leads to the results of Theorem 5.1 and 
Corollary 5.2. 
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5.2.1. Sketch of Proof for Lemma 1 
The left side of (5.7) can be written as shown below by substituting the proposed update 
statistic from (4.1):

(h0 exp Öd0 ~stÜâ ä à (h0 exp d0 − Öxt − l̂tÜ
2

2r̂2
t
á Öxt − l0Ü

2

2r2
0
á r2

0 á Öl0 − l̂tÜ
2

2r̂2
t

− 1
2 − v

 ! !" #

:

Because a future window (xtá1, :::, xtáw) is used to estimate lt and r̂t , these estimates 
are independent from xt. These estimates can be treated as constants while introducing 
a conditional expectation through the tower rule. The equation above can be written as

(xtá1, :::, xtáw⇠fh0
exp d0

r2
0 á Öl0 − l̂tÜ

2

2r̂2
t

− 1
2 − v

 ! !

(xtá1, :::, xtáw⇠fh0
rÖxtÜjl̂t , r̂tâ ä

" #

à exp Öd0 − 1
2 − v

✓ ◆
Ü(xtá1, ::, táw⇠h0 exp d0

r2
0 á Öl0 − l̂Ü2

2r̂2
t

 ! !

(xt⇠h0 r xtÖ Ü l̂t, r̂tj ä
⇥ ⇤

,
"

(5.13) 
where

r xtÖ Ü à exp d0 − Öxt − l̂tÜ
2

2r̂2
t
á Öxt − l0Ü

2

2r2
0

 ! !

:

Further details for these calculations can be found in the Appendix. 

6. SIMULATIONS 

6.1. ARL and EDD 

As discussed in Section 4.2, the DAS-CUSUM change point detection procedure is 
designed to have a symmetric change statistic. Due to this symmetric property, DAS- 
CUSUM should have similar ARL versus EDD performance for changes from the distri-
bution h0 to h1 and from h1 to h0. This symmetry is studied in ARL versus EDD plots 
in Figure 5. This figure also contains plots for CUSUM and an adaptive version of 
CUSUM where a future window of size w is used to estimate the postchange parame-
ters. CUSUM curves for changes from h0Öl0 à 1, r2

0 à 1Ü to h1Öl1 à 2, r2
1 à 2Ü and h1 

to h0 are far away from one another, whereas DAS-CUSUM curves are closer to each 
other. These DAS-CUSUM curves become closer when the postchange estimates 
become more accurate with increasing window size, as shown in Figure 5(b). These 
results align with Section 5.1, which compares the results of DAS-CUSUM in Theorem 
5.1 with corresponding results for CUSUM. Specifically, EDD at a given ARL is the 
same for a change from h0 to h1 and vice versa when the window length w becomes 
asymptotically large. 

Now we validate the accuracy of theoretical approximation by comparing it against 
simulation results. Figure 6 shows DAS-CUSUM plots for EDD versus ARL at different 
window lengths (w to estimate postchange distribution). For each window length, plots 
for the theoretical relationship (from Theorem 5.1) are compared to simulated plots. 
For a small window size (wà 10), the theoretical and simulated results grow apart as 
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ARL increases. The difference between the theoretical and simulated plots decreases as 
the window size increases. This is expected because the results in Theorem 5.1 hold 
when w grows asymptotically. When wà 120, the difference between theoretical and 
simulated EDD is approximately 1 sample for the shown ARL range. 

6.2. Optimal Window Length 

DAS-CUSUM results that relate EDD with ARL in Theorem 5.1 depend on the estima-
tion window size w (at provided values of ARL and symmetric KL divergence). This 
equation can be minimized for w to find the optimal window length (w⇤). 
Unfortunately, there is no closed-form expression for this optimal value. Nevertheless, 

Figure 5. EDD versus ARL performance comparison for DAS-CUSUM and CUSUM for changes between 
h0Öl0 à 1, r2

0 à 1Ü and h1Öl1 à 2, r2
1 à 2Ü that corresponds to a symmetric KL divergence of 1. (a) 

The relationship when a window size of 10 is used for the postchange estimate and (b) the case 
when the window size is 40. Notice the similar performance for DAS-CUSUM for changes from h0 to 
h1 and h1 to h0. This similarity increases with window size w.

Figure 6. Comparison between theoretical and simulated DAS-CUSUM results for different postchange 
estimation window sizes w. The change in this example has a symmetric KL divergence of 1.
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this equation can be minimized numerically to obtain w⇤: Figure 7 shows this relation-
ship at an ARL of 5,000 for changes with two different symmetric KL divergence values. 

Figure 7(a) shows this relationship for a smaller change in distribution (a symmetrical 
KL divergence of 0.10), and Figure 7(b) shows this relationship for a larger change (a 
symmetric KL divergence of 2). Intuitively, a larger change (with a larger symmetric KL 
divergence) would be easier to detect, requiring a shorter window length compared to a 
smaller change (with a smaller symmetric KL divergence). However, for larger changes, 
the window size corresponding to the minimum EDD value could be too small, as seen 
in Figure 7(b) where this window is of size 4. The theoretical results start to match 
simulated results at a window size of about 30, whereas results at a window size of 10 
diverge. For this reason, when the optimal window size (w⇤Ü is below 20, a rule should 
be in place for a minimum window size. 

Results that relate the optimal window length for different ARL values can be seen in 
Figure 7. The changes in this figure have small divergence values, which lead to w⇤ that 
is greater than a size of 20. The curves for w⇤ are in yellow and seem to provide better 
EDD versus ARL performance than most other window sizes. As the optimal window 
size w⇤ increases in Figure 8(b), the corresponding ARL versus EDD curve often per-
forms best (or close to best) when compared with other window sizes. 

6.3. Setting the Detection Threshold 

Table 1 compares the simulated and theoretical detection threshold (b) to achieve differ-
ent ARL values. The theoretical relationship between ARL and the detection threshold 
is provided in (5.8). These experiments were done on a distribution change from 
h0Öl0 à 1, r2

0 à 1Ü to h1Öl1 à 2, r2
1 à 2Ü, which corresponds to a symmetric KL diver-

gence of 1. For ARL, false alarms occur when data points generated from the prechange 
distribution (h0) are falsely detected as change points. Intuitively, ARL values should 
depend only on the prechange h0, but the postchange distribution (h1) is used to set the 

Figure 7. Relation between EDD and window size for changes with different symmetric KL divergen-
ces. The ARL has been set to 5,000 in both figures. The optimal window size corresponds to the min-
imum EDD values. (a) The relationship for a change with symmetric KL divergence of 0.10 and (b) the 
relationship for a symmetric KL divergence of 2.
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d⇤0 value, which is used within the theoretical (5.8) as well as for setting the drift term v 
for the simulations. The difference between theoretical and simulated results is large for 
small values of postchange estimate window w, but these results become closer as this 

Figure 8. ARL versus EDD performance for different window length (w) sizes. (a) Plots for a change 
from h0Öl0 à 1, r2

0 à 1Ü to h1Öl1 à 1:3, r2
1 à 1:3Ü and (b) plots for changes from h0Öl0 à 1, r2

0 à 1Ü
to h1Öl1 à 1:2, r2

1 à 1:2Ü: Optimal window size (w⇤) provides optimal performance as w⇤ increases.

Table 1. Comparison between theoretical and simulated detection thresholds at different ARL values 
for a change with symmetric KL divergence of 1.

wà 10 wà 20 wà 30 wà 40 wà 50 wà 100 wà 150

ARL à 5,000 Threshold 3.68 2.38 1.86 1.57 1.37 0.94 0.75
Simulated 14.77 6.10 3.16 2.13 1.69 1.01 0.77

ARL à 10,000 Threshold 3.98 2.57 2.02 1.70 1.50 1.02 0.82
Simulated 18.16 7.91 4.13 2.70 2.11 1.26 0.96

Figure 9. Plots for results in Table 1. (a) The relationship for an ARL value of 5,000 and (b) the rela-
tionship for an ARL of 10,000. The gap between simulation and theoretical results gets small at a win-
dow size value of about 30.
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window size increases. This is expected because the relationship between the detection 
threshold and ARL is obtained using (5.7), which is satisfied asymptotically (Figure 9). 

6.4. Moving between Multiple Distributions 

In the previous section, as demonstrated in (4.1), we showed that the DAS-CUSUM 
method exhibits symmetry when transitioning between distributions h0 and h1. This 
desirable property allows for the implementation of a single threshold when detecting 
multiple change points, even when the data sequence involves more than two distinct 
distributions. 

Consider a sequence that alternates among three distributions: h0 à Öl0 à 0:5, r2
0 à

0:5Ü, h1 à Öl1 à 3, r2
1 à 3Ü, h2 à Öl2 à 1:5, r2

2 à 1:5Ü: In this case, the change statistics 
for transitions between h0 and h1, as well as between h1 and h2, would differ. However, 
the DAS-CUSUM method generates more similar change statistics for these varying dis-
tributional transitions when compared to the CUSUM and adaptive CUSUM 
approaches. 

This similarity in change statistics for diverse distributional transitions facilitates the 
selection of a single threshold capable of detecting true change points across multiple 
types of distributional shifts while minimizing the identification of false changes. 
Figure 10 illustrates the EDD versus ARL curves for changes from h0 to h1 and from h1 
to h2. The proximity of these curves for the DAS-CUSUM method (represented by light 
blue and yellow) is noticeably greater than that observed for the other methods. 

To further illustrate this example, consider the case when this sequence persists in h0 
for 1,000 samples and then switches from h0 to h1. This sequence then persists in h1 for 
1,000 samples, after which it changes from h1 to h2. When this sequence changes from 
h0 to h1, the change statistics after 10 samples can be seen in Figure 11(a). Figure 12(b)
shows the change statistics when the sequence persists in h1 for 1,000 samples, and 

Figure 10. ARL versus EDD relationship when moving between h0 : Öl0 à 0:5, r2
0 à 2Ü to h1 : Öl1 à

3, r2
1 à 3Ü and from h1 : Öl1 à 3, r2

1 à 3Ü to h2 : Öl2 à 1:5, r2
2 à 1:5Ü: For both figures, which show 

different window sizes used, curves for DAS-CUSUM are closer, indicating that it is easier to set a 
threshold to detect changes from h0 to h1 and from h1 to h2 with closer EDD versus ARL 
performance.
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Figure 11(b) shows the change statistics after 10 samples of distribution changing from 
h1 to h2. The change statistic for CUSUM and adapative CUSUM under no change in 
Figure 12(b) goes up to 6.01 and 4.3, respectively. These are smaller than their respect-
ive change statistics after 10 samples in Figure 11(b). This means that CUSUM and 
adaptive CUSUM cannot set a threshold that can correctly detect a change within 10 
samples of the sequence switching from h1 to h2 without detecting a false change when 
the sequence is in h1. This is not a problem for DAS-CUSUM. Note that the change 

Figure 11. The change statistic St for DAS-CUSUM, CUSUM, and adaptive CUSUM is presented under 
the assumption of no distributional shifts. (a) A prechange distribution with l0 à 0:5 and r2

0 à 0:5 
and (b) a prechange distribution with l0 à 3 and r2

0 à 3: A window size of 20 is employed for esti-
mating the postchange distribution in both DAS-CUSUM and adaptive CUSUM methods.

Figure 12. The change statistic St for DAS-CUSUM, CUSUM, and adaptive CUSUM is presented under 
different distributional shifts. (a) The change statistic under the postchange distribution of h1 à
Öl1 à 3, r2

1 à 3Ü, transitioning from a prechange distribution of h0 à Öl0 à 0:5, r2
0 à 0:5Ü: In con-

trast, (b) illustrates the change statistic under the postchange distribution of h2 à Öl2 à 1:5, r2
2 à

1:5Ü, originating from a prechange distribution of h1 à Öl1 à 3, r2
1 à 3Ü: Both DAS-CUSUM and 

adaptive CUSUM methods employ a window size of 20 for estimating the postchange distribution.
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statistics when the sequence persists in h0 for 1,000 samples in Figure 12(a) is very simi-
lar to change statistics when the sequence persists in h1. Thus, all CUSUM, adaptive 
CUSUM, and DAS-CUSUM can correctly detect a change when moving from h0 to h1 
without detecting a false change when this sequence persists in h0. However, only DAS- 
CUSUM, with a threshold value greater than 5 (but lower than 20), can detect changes 
from h0 to h1 and h1 to h2 without detecting any false changes when the sequence per-
sists in h0 and h1. 

7. REAL DATA 

Real-world sequences often involve signals that switch between multiple distributions. 
These distributions may also persist for relatively short intervals. DAS-CUSUM’s sym-
metric statistic is more useful for detecting multiple changes compared to GLR and 
adaptive CUSUM. This is favorable for detecting multiple changes in real-world prob-
lems, as seen in Figure 14, which shows readings from a pressure mat that can be seen 
in Figure 13. The mat is inserted beneath a wheelchair cushion and is used to character-
ize in-seat movement for wheelchair users. When the wheelchair is occupied, the sensor 
signal has a high mean and variance, whereas when the chair is unoccupied, the signal 
has a low mean and variance. Detecting changes in occupancy can be treated as a 
change detection problem. As discussed previously, the asymmetric log-likelihood ratio 
makes it difficult for both GLR and adaptive CUSUM to detect these changes. 

For both Figures 2 and 14(a), the statistic for getting into the chair (low variance to 
high variance) is not equal to the statistic for getting out of the chair. For this reason, it 
is difficult to select a threshold that detects both changes. It can be seen that there is a 
larger delay in detecting the change while still detecting a false-positive change point. 
Because of the asymmetric statistics, the change for the first statistic is extremely large 

Figure 13. Sensor mat used for characterizing in-seat behavior for wheelchair users. Sequential 
change point detection can be used to identify changes in wheelchair occupancy.
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compared to the second change. To detect both changes, a lower threshold is set, which 
causes the first change to be detected really quickly (where the signal is in the middle 
of the transition). This causes incorrect signal estimates to be used as prechange esti-
mates, causing false change points to be detected. Figure 14(b) shows the performance 
of DAS-CUSUM on this signal. The symmetric change statistic provides similar power 
for detecting both changes without detecting any false-positive changes. The symmetric 
statistic makes it easy to select a threshold to detect multiple changes. This is attractive 
for real-world scenarios where numerous changes need to be detected when the signal 
changes to unforeseen distributions. 

Figure 15 provides an extended example of the occupancy problem. The signal sen-
sors develop drift, and the postchange distribution can change to different unknown 
distributions at different times. This makes it difficult to use two-sided CUSUM or 
other variants because the postchange distribution is not known. In such an example, it 
can be seen that with symmetric statistics, DAS-CUSUM performs much better than 
GLR and adaptive CUSUM. The in-chair distribution is not static. The mean and the 
variance of the signal changes within the chair; however, these changes are much 
smaller than the changes in distribution when there is a change in wheelchair occu-
pancy. Symmetric DAS-CUSUM’s change statistic is much larger for these occupancy 
change events, which makes it easy to detect these events without detecting any false 
alarms. For all methods, a window size of 300 was used to estimate the postchange 
distribution. 

8. CONCLUSION 

In this work, we have presented DAS-CUSUM, which is a symmetric change point 
detection procedure. Owing to DAS-CUSUM’s symmetric incremental statistic, the 
EDD versus ARL relationship is the same for changes from a distribution h0 to h1 and 
from h1 to h0. This symmetric change statistic is helpful when identifying multiple 
changes in both the mean and variance of a signal. A single threshold can be easily set 

Figure 14. (a) Performance and (b) advantages of using DAS-CUSUM for multiple changes over adap-
tive CUSUM.
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to detect multiple change points. This is extremely helpful for identifying change points 
in real-world settings where log-likelihood ratio–based approaches such as GLR and 
adaptive CUSUM struggle. We have derived results that characterize DAS-CUSUM’s 
EDD and ARL. Extensive simulations are used to validate these results. 
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Figure 15. Comparison of GLR, adaptive CUSUM, and DAS-CUSUM for detecting multiple change 
points. The asymmetric log-likelihood ratio makes it difficult for CUSUM and GLR to detect all changes 
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lower threshold results in many false change points. The symmetric DAS-CUSUM is able to correctly 
detect all true change points without detecting any false change points.
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APPENDIX. PROOF OF LEMMA 5.4 

A.1. Computing the Inner Expectation 
For the expression in (5.13), the inner expectation is first simplified:

(xt⇠h0 r xtÖ Ü l̂t , r̂tj ä à (xt⇠h0 exp d0 − Öxt − l̂Ü2

2r̂2 á Öxt − l0Ü
2

2r2
0

 ! !

l̂t , r̂tj ä à r12
r0

exp −Öl0 − l̂tÜ
2

2 r̂2
t

d0
á 2 r2

0
1−d0

0

@

1

A,

2

4

2

4

(A.1) 

where

r2
12 à

r̂2
t r

2
0

d0r2
0 á Ö1 − d0Ür̂2

t
: (A.2)  

Note: d0 should be such that r2
12 > 0 in (A.2). 

A.2. Computing the Outer Expectation 
Plugging in the results of the inner expectation from (A.1) in (5.13):

(h0 exp Öd0 ~stÜâ ä à exp Öd0 − 1
2 − v
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Expressing and simplifying the above equation yields:

(h0 exp Öd0~stÜâ ä à exp Öd0 − 1
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(A.3) 

A.3. Asymptotic Distribution of gÖl̂t, r̂tÜ
Now the asymptotic distribution for the argument of the exponent (gÖl̂t , r̂tÜ) within the expect-
ation would be found (when the sample mean and sample variance are estimated under the pre-
change distribution). This argument is defined as
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We now find the distribution of gÖl̂t , r̂tÜ when samples xt::xtáw used to calculate lt and r̂t 
are distributed by h0. Decomposing gÖl̂t , r̂tÜ into two terms,
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A.4. Asymptotic Distribution of First Term aÖr̂t2Ü
To find the asymptotic distribution of aÖr̂2

t Ü, we first recall some results. The asymptotic distri-
bution of sample variance is r̂2

t :

r̂2
t à
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(Note that sample variance is divided by Öw − 1Ü instead of w, though as w!1, the sample 
variance is similar when divided by w or w − 1: We divide by w to use the tools of central limit 
theorem, as shown below.) By the central limit theorem, r̂2

t
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These variables have a mean 1 and variance 2:
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An asymptotically normal estimator ĥ for the parameter h is distributed through
ÅÅÅ
n
p
Öĥ − hÜ!d W ⇠ N Ö0, r2Ü:

For a function gÖĥÜ of an asymptotically normal estimator ĥ of h, the delta method states that
ÅÅÅ
n
p
ÖgÖĥÜ − gÖhÜÜ!d W⇤ ⇠ N Ö0, g0ÖhÜ2r2Ü:

This result is, however, true only when g0ÖhÜ exists and is not 0. Because the sample variance, 
r̂2

t , is asymptotically normal (as shown in equation A.5), we can try applying the delta method 
with aÖr̂2

t Ü in place of gÖhÜ:
ÅÅÅ
n
p
ÖaÖr̂2

t Ü − aÖr2
0ÜÜ!

d W⇤ ⇠ N Ö0, 2Öa0Ör̂2
t ÜÜ

2r4
0Ü

a0Ör̂2
t Ü à

d0r2
0

−2r̂4
t
á d0r2

0
2r̂2

t Öd0r2
0 á Ö1 − d0Ür̂2

t Ü

a0Ör2
0Ü à

d0r2
0

−2r4
0
á d0

2r2
0

à 0:
Because a0Ör2

0Ü à 0, the delta method cannot be used. In such a case, the second-order delta 
method can be used if a00Ör2

0Ü 6à 0:

A.5. Second-Order Delta Method
For an asymptotically normal estimator ĥ for the parameter h—that is,

ÅÅÅ
n
p
Öĥ − hÜ!d W ⇠ N Ö0, r2Ü, 

the second-order delta method (Casella and Berger 2002) states that if there is a function g on 
these estimates ĥ, and both gÖĥÜ and g00Öh0Ü exist and are nonzero, then
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nÖgÖĥÜ − gÖh0ÜÜ!
d W ⇠ r2

0
g00Ör2

0Ü
2 v2

1:

Because the sample variance, r̂2
t , is asymptotically normal (as shown in equation A.5), we can 

try applying the second-order delta method with aÖr̂2
t Ü in place of gÖhÜ :

nÖaÖr̂2
t Ü − aÖr2

0ÜÜ!
d W ⇠ r4

0a00Ör2
0Üv2

1: (A.6) 
Finding the double derivative of aÖr̂2

t Ü with respect to r̂2
t ,

a00Ör̂2
t Ü à

d0r2
0

r̂6
t

− d0r2
0r̂

−2
t Ö1 − d0Ü á d0r2

0r̂
−4
t Öd0r2

0 á Ö1 − d0Ür̂2
t Ü

2Öd0r2
0 á Ö1 − d0Ür̂2

t Ü
2 :

Plugging in r̂t à r0,

a00Ör2
0Ü à

d0
r4

0
− d0Ö1 − d0Ü á d0

2r4
0

à d2
0

2r4
0
:

Plugging this result in (A.6), we have

nÖaÖr̂2
t Ü − aÖr2

0ÜÜ!
d W ⇠ d2

0
2 v2

1,

aÖr̂2
t Ü!

d W⇤ ⇠ d2
0

2n v2
1 á aÖr2

0Ü:

As aÖr2
0Ü à

d0
2 ,

aÖr̂2
t Ü!

d W⇤ ⇠ d2
0

2n v2
1 á

d0
2 ,

aÖr̂2
t Ü!

d d2
0

2n Z á d0
2 Öwhere Z ⇠ v2

1Ü:
(A.7) 

A.6. Looking at the Second Term bÖl̂t, r̂t2Ü
The second term is defined as

bÖl̂t , r̂2
t Ü à

Öl0 − l̂tÜ
2

2
d0

r̂2
t

− Ö1 − d0Üd0

Ö1 − d0Ür̂2
t á d0r2

0

 !
:

Manipulating the second term:

bÖl̂t , r̂2
t Ü à

Öl0 − l̂tÜ
2

2
d0

r̂2
t

− Ö1 − d0Üd0

Ö1 − d0Ür̂2
t á d0r2

0

 !

à

r2
0

w
Öl0−l̂ tÜ

2

r2
0

w
2

d0

r̂2
t

− Ö1 − d0Üd0

Ö1 − d0Ür̂2
t á d0r2

0

 !

à

r2
0

w
Öl0−l̂ tÜ

2

r2
0

w
2

d0
r2

0
w−1

w−1
r2

0
r̂2

t

− Ö1 − d0Üd0

Ö1 − d0Ü r2
0

w−1
w−1
r2

0
r̂2

t á d0r2
0

0

@

1

A:

(A.8) 
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Recall that the distribution of the sample mean and the sample variance is given by

l̂t ⇠ N l0, r2
0

n

✓ ◆
,

Öw − 1Ü
r2

0
r̂2

t à V ⇠ v2
w−1:

(A.9) 

Also,

Öl0 − l̂tÜ
2

r2
0

w

à Z ⇠ v2
1:

Using these results in (A.8) yields

bÖl̂t , r̂2
t Ü!

d
r2

0
w Z
2

d0
r2

0
w−1 V

− Ö1 − d0Üd0

Ö1 − d0Ü
r2

0
w−1 V á d0r2

0

 !
:

As w!1, by the law of large numbers, v
2
w−1

w−1!1: Thus, as w!1, V
w−1!1, leading to

bÖl̂t, r̂2
t Ü!

r2
0

w Z
2

d0
r2

0
− Ö1 − d0Üd0
Ö1 − d0Ür2

0 á d0r2
0

✓ ◆

à d2
0Z

2w :

Because Z ⇠ v2
1, when w!1,

bÖl̂t , r̂2
t Ü!

d d2
0Z

2w ⇠
d2

0v
2
1

2w : (A.10) 

A.7. Combining the Two Terms
Note that

gÖl̂t , r̂tÜ à
1
2 log r̂2

t
d0r2

0 á Ö1 − d0Ür̂2
t

 !

á d0r2
0

2r̂2
t|ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ{zÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ}

aÖr̂2
t Ü

á Öl0 − l̂tÜ
2

2
d0

r̂2
t

− Ö1 − d0Üd0

Ö1 − d0Ür̂2
t á d0r2

0

 !

|ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ{zÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ}
bÖl̂ t, r̂ tÜ

à aÖr̂2
t Ü á bÖl̂t , r̂2

t Ü:

Because

aÖr̂2
t Ü!

d d2
0

2n Z á d0
2 ,

bÖl̂t , r̂2
t Ü!

d d2
0U

2w :

we have

gÖl̂t , r̂2
t Ü!

d d2
0

2n Z á d0
2 á

d2
0

2n U Öwhere Z, U ⇠ v2
1Ü

à d2
0

2n Y á d0
2 Öwhere Y ⇠ v2

2Ü:
(A.11) 

A chi-square variable of v degrees of freedom can be written as a gamma variable, with shape 
parameter v=2 and scale parameter 2. Also, if X ⇠ GammaÖa, bÜ, then k:X ⇠ GammaÖa, k:bÜ:
Thus, the asymptotic distribution of gÖl̂t , r̂2

t Ü can be written as

gÖl̂t , r̂2
t Ü!

d X á d0
2 Öwhere X ⇠ GammaÖaÖshapeÜ à 1, bÖscaleÜ à d2

0
wÜÜ: (A.12) 
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A.8. Finding the Equivalence Factor d0
The results from (A.12) can be used within (A.3), which can be written as

(h0 exp Öd0 ~stÜâ ä à exp Öd0 − 1
2 − v

✓ ◆
Ü(X⇠GammaÖ1=2, 2d2

0=nÜ exp X á d0
2

✓ ◆ �
:

Using this result to solve for d0 in the statement of Lemma 5.1,

exp Öd0 − 1
2 − v

✓ ◆
Ü(X⇠GammaÖ1=2, 2d2

0=nÜ exp X á d0
2

✓ ◆ �
à 1

exp −d0vÖ Ü(X⇠GammaÖ1=2, 2d2
0=nÜ exp ÖXÜâ ä|ÇÇÇÇÇ{zÇÇÇÇÇ}

MGFunc

à 1: (A.13) 

The moment-generating function of the gamma distribution is

(X⇠GammaÖa, bÜ exp tXÖ Ü
⇥ ⇤

à Ö1 − tbÜ−a:

Using the moment-generating function results in

exp −d0vÖ Ü 1 − d2
0

n

⇣ ⌘−1
à 1

d0vá log 1 − d2
0

n

✓ ◆
à 0

v à
− log 1 − d2

0
n

⇣ ⌘

d0

:
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