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ABSTRACT ARTICLE HISTORY

Detecting change points sequentially in a streaming setting, espe- Received 3 November 2022

cially when both the mean and the variance of the signal can Revised 29 August 2023

change, is often a challenging task. A key difficulty in this context  Accepted 2 October 2023

often involves setting an appropriate detection threshold, which for

many standard change statistics may need to be tuned depending h . ..
P . ange point detection;

on the prechange and postchange distributions. This presents a chal- changes in mean and

lenge in a sequential change detection setting when a signal variance; false-alarm control

switches between multiple distributions. Unfortunately, change point

detection schemes that use the log-likelihood ratio, such as cumula-

tive sum (CUSUM) and the generalized log-likelihood ratio (GLR), are

quick to react to changes but are not symmetric when both the

mean and the variance of the signal change. This makes it difficult

to set a single threshold to detect multiple change points sequen-

tially in a streaming setting. We propose a modified version of

CUSUM that we call data-adaptive symmetric CUSUM (DAS-CUSUM).

The DAS-CUSUM procedure is symmetric for changes between distri-

butions, making it suitable to set a single threshold to detect mul-

tiple change points sequentially in a streaming setting. We provide

results that relate the expected detection delay and average run

length for our proposed procedure when both prechange and post-

change distributions are normally distributed. Experiments on simu-

lated and real-world data show the utility of DAS-CUSUM.

KEYWORDS

1. INTRODUCTION

For a sequence of observations xi, ..., x;, the goal of change point detection is to detect
whether there exists an instance n. such that x;,...,x, 1 are generated according to a
different distribution than x,_,...,x;, and, if so, estimating #.. This is typically accom-
plished by computing a simple change statistic based on the log-likelihood ratio, which
can be compared to a threshold to detect changes or optimized to estimate n,.
Sequential change point detection involves sequentially detecting multiple changes in
streaming data. Many real-world applications require sequential detection of change
points within streaming signals. Health care, communication, and finance are just a few
areas where sequential change detection is widely used (Al-Assaf 2006; Lai, Fan, and
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Poor 2004; Yang, Dumont, and Ansermino 2006). An extended discussion of applica-
tions of change point detection can be found in Aminikhanghahi and Cook (2017a).

Despite being devised more than half a century ago, the cumulative sum (CUSUM)
statistic is still one of the most popular methods for detecting change points (Page
1954). This is chiefly due to two reasons. First, it has a simple recursive implementation
that makes it computationally efficient to apply. Second, it has been shown to be opti-
mal in minimizing the detection delay for a given false alarm rate (Lorden 1971).
However, computing the CUSUM statistic requires complete knowledge of both the pre-
change and postchange distributions. This is not feasible in many real-world scenarios
where the postchange distribution can be unknown. In such settings, a common
approach is to use the generalized log-likelihood ratio (GLR) statistic, which involves
estimating the postchange distribution for all possible change points (Siegmund and
Venkatraman 1995). Both the CUSUM and GLR statistics leverage the log-likelihood
ratio for the known/estimated pre- and postchange distributions.

Most work on change point detection has focused on identifying a single change
point in the quickest possible manner. Though this has been useful for some applica-
tions, especially those that monitor a process for abnormal behavior, such as machine
fault detection and network intrusion detection, many modern applications require the
detection of multiple change points sequentially in streaming data. In sequential change
point detection, the detection procedure must be restarted and continued after each
change point, resulting in multiple change points being detected. Examples of such set-
tings include segmentation of signals for activity recognition where change points are
used to identify transitions from one activity to another in a streaming setting
(Aminikhanghahi and Cook 2017b). In such settings, the prechange and postchange dis-
tributions change after each change point and cannot be assumed to be known a priori.
This presents a significant challenge to most standard change detection approaches
because the detection threshold must be set without knowledge of these distributions
(with the threshold typically fixed in advance and held constant throughout the
procedure).

The machine learning community has been addressing this problem of identifying
multiple change points in data streams (Liu et al. 2013). Such works show that proce-
dures employed to detect change points should be symmetric. This means the magnitude
of a change from a distribution 0, to a distribution 0, should be the same for a change
from 0; to 0. Using a procedure with similar power in detecting such changes makes it
easy to select a threshold for detecting multiple changes sequentially. Statistics such as
the GLR and CUSUM are not symmetric when distribution changes involve a change in
variance. This makes it difficult to use these in detecting multiple changes.

In this work, we present an adaptive symmetric version of CUSUM called data-adap-
tive symmetric CUSUM (DAS-CUSUM). DAS-CUSUM uses a window to estimate the
postchange distribution. It employs a symmetric change statistic to make selecting a
fixed threshold to detect multiple change points in streaming data easier. We provide
theoretical results for our proposed method that relates the expected detection delay
(EDD; average delay in detecting true changes) to the average run length (ARL; average
time until a false alarm occurs) for the case where both prechange and postchange
observations are normally distributed. The rest of the article is organized as follows.
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After reviewing related literature in Section 2, we formalize the change detection prob-
lem in Section 3 and further motivate the need to have a symmetric change statistic for
detecting multiple changes. Section 4 describes the proposed procedure. Theoretical
results relating to EDD versus ARL are described in Section 5, where a sketch of the
related proofs is also given. Section 6 contains simulations that empirically validate the
theoretical results in a practical setting. Experiments on real-world data are summarized
in Section 7.

2. RELATED WORK

The CUSUM statistic is known for being asymptotically optimal in minimizing the
maximum average detection delay as the average time to false alarm reaches infinity
(Lorden 1971). CUSUM was later shown to be optimal in minimizing the EDD for a
provided (nonasymptotic) expected time to false alarm (Moustakides 1986). Extensive
work has been done to investigate further and generalize CUSUM’s optimality property.
However, these results hold when both prechange and postchange distributions are
completely known. A summary of such work can be found in Veeravalli and Banerjee
(2014). A two-sided CUSUM test can detect either an increase or decrease in mean
(Granjon 2014), but this approach still assumes a fixed and known variance. When the
postchange distribution is unknown, the GLR test can be used by estimating both the
change location and the postchange distribution through maximum likelihood estima-
tion. However, CUSUM, GLR, and their variants are often used to detect only a single
change point (Tartakovsky et al. 2006). The few works that do use these methods to
detect multiple changes do so by only detecting changes in the mean of normally dis-
tributed data (Bodenham and Adams 2017; Fathy, Barnaghi, and Tafazolli 2019). It is
more challenging to detect multiple changes when both a signal’s mean and variance
change. Limited prior work detects joint changes in both the mean and the variance of
the signal (Hawkins and Zamba 2005); however, this has yet to be considered in detect-
ing multiple changes.

Recently, there has been increasing interest in the machine learning community to
detect multiple change points sequentially within streaming data (Alippi et al. 2016;
Chang et al. 2019; Kifer, Ben-David, and Gehrke 2004; Liu et al. 2013). Most of these
methods use nonparametric change statistics, which are symmetrical. This means that
the magnitude of the change statistic for a change from 0, to 0, is equivalent in magni-
tude for a change from 0, to 0,. The need for this symmetrical statistic was noted by
Liu et al. (2013), who used a symmetric Kullback-Leibler (KL) divergence to detect mul-
tiple changes within streaming data where both the mean and variance of the normally
distributed signal are changing. The symmetric statistic makes it easy to set a single
detection threshold before the procedure is started to detect multiple changes within
streaming data. At each time instance, a prechange distribution is estimated using a
“past window,” and the postchange distribution is estimated using a “future window.”
These methods, however, do not incorporate data samples directly. These samples are
incorporated through distribution estimates, which makes these methods slow to react
to changes. None of these methods characterize the relationship between detection delay
and false alarm rate.



4 N. AHAD ET AL.

The need to use symmetric statistics for change detection was also noted in Basseville
and Benveniste (1983), Andre-Obrecht (1988), and Gustafsson (2000), where the
authors noted the asymmetry in change statistics when there are changes in both the
mean and variance. These works used a log-likelihood ratio with a drift term to make
the expected value of the change statistic symmetric under the postchange distribution.
However, this drift term meant that the expected statistic value is zero under the pre-
change distribution, which can lead to more false positives. A slightly modified version
of this technique was mentioned in Basseville and Nikiforov (1993), where false alarm
rates were reduced by adding a fixed drift term that made the expected value of the
statistic negative under the prechange distribution. However, details still needed to be
provided about setting this drift term. These methods also did not characterize the rela-
tionship between detection delay and false alarm rate.

In this work, we investigate a suitable choice for this fixed drift to make the statistic
symmetric under the postchange distribution while ensuring that the expectation is
negative under the prechange distribution. Our proposed change detection procedure
provides a symmetric change statistic for different families of probability distributions.
However, the theoretical results relating to detection delay and false alarm rate consider
the more restricted setting of independent and identically distributed (i.i.d.) univariate
normally distributed data.

3. PROBLEM STATEMENT

Change points are instances in a signal where the underlying distribution of data
changes; for example, the parameters of the signal-generating distribution change from
0o to 0;. Most change point detection methods rely on hypothesis tests based on the
log-likelihood ratio. Specifically, suppose we are given a sequence of observations
Xg> ...»Xt. We will assume that each element x; is drawn independently from a distribu-
tion fp where 0 represents some (possibly changing) parameters. To detect a change we
compare the null hypothesis (H,) that all x; are drawn according to fp, for some
(known) 0, to the alternate hypothesis (7{;) that the time series distribution changes
from fp, to fp,, at time n,, for some 0; # 0;.

The likelihood of X under these two hypotheses is given by Hf Jo, (%) (under H,)
and T[] fo, () TT- o Jo,(xi) (under H,), respectively. By computing the likelihood
ratio and taking the logarithm, we obtain the likelihood ratio statistic at instance t for a
possible change point at n,:

Jfo, (xl
Z tog e

Because the location of the change point s, is unknown, the maximum over all pos-
sible change point locations is taken to compute the change statistic at instance t:

/' = max /! . (3.1)

c
1<nc<t

A change point is detected the first time the change statistic /* is greater than a speci-
fied threshold b. For a sequence of i.i.d. random variables, the sum of the log-likelihood
probability ratio between distributions 0; and 0, satisfies an intuitive property: if a
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sample is generated through a postchange distribution, the expected value of the incre-
ment should be positive Eg, [log (fy, (xi)/fo,(xi))] > 0, and if the sample is generated
through the prechange distribution, the expected value of the increment should be nega-
tive Eq, [log (fo, (xi) /fo,(x:))] < 0; this can be readily shown from Jensen’s inequality.

In (3.1), we are maximizing over #. to find the maximum log-likelihood ratio.
Instead of maximizing (3.1) with respect to n,, we can also maximize the log-likelihood
ratio by minimizing, over n,, the expression

Jo(x fo, (x:)
Z log f90 - 112(2 Z log o) (3.2)

The CUSUM statistic (Page 1954) provides a computationally attractive recursive
implementation of the test in (3.2). It assumes both prechange parameters 0, and post-

change distribution parameters 0; are known. In such a setting, a recursive implementa-
tion of (3.2) can be obtained as shown in (3.3):

Jou(x1)
t = N 1 .
S =8, + 8 (n) (33)

where (x)" = max(0,x) and Sy = 0. The detection procedure is a stopping time T; a
change point is detected at the first time when the detection statistic S, exceeds a preset
threshold b:

=inf{t >0:S, > b}. (3.4)

The postchange distribution is often unknown in real-world settings. In such cases,
the GLR (Siegmund and Venkatraman 1995) can be used to obtain the change statistic
/¢. GLR maximizes the change statistic in (3.5) over both the postchange distribution, 0,
at instance f, and the change instance n,. Let

0, = maxz log f
00 (X

The GLR detection statistic is defined as

/' = max /. (3.5)
1<n.<t

Once the change statistic, /;, crosses the threshold b, a change is detected at a simi-
larly defined stopping time T as in (3.4), and the estimated change point location n}
corresponds to the maximizing parameter at T. The corresponding postchange estimate
é;ﬁ is used as the new prechange estimate 0, and the sequential change point detection
procedure is repeated to detect the next change. In this way, multiple change points are
detected. It is important to note that the GLR procedure is nonrecursive and can be

computationally expensive to run.

3.1. Asymmetry of Log-Likelihood Ratio

The log-likelihood ratio statistic, employed by GLR and CUSUM, is quick to react
to changes but is asymmetric for detecting joint changes in the mean and variance.
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Figure 1. Joint changes in the mean and variance lead to asymmetric likelihood ratios. (a) The pre-
change likelihood is in the tail, leading to a large likelihood ratio. (b) The postchange likelihood is
higher than it is in (a), leading to a relatively smaller likelihood ratio.
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Figure 2. Joint changes in the mean and variance lead to asymmetric likelihood ratio. (a) The likeli-
hood ratio (in GLR) for the second change is much smaller than the likelihood for the first change.
This can lead to a missed change point when the detection threshold is set to be large. When the
detection threshold is lowered to detect this missed change point, many false change points are

detected, as shown in (b).

Figure 1 illustrates this asymmetry. This difference becomes more pronounced when
one of the two distributions has a much smaller variance.

Figure 2 shows a real-world example where this asymmetry makes it difficult for GLR
to detect multiple change points. The log-likelihood ratio for the first change point is
much larger than that for the second change point. This makes it difficult to set a
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detection threshold a priori to detect multiple change points in a streaming data setting.
In Figure 2(a), the fixed detection threshold misses the second change point, which has
a much smaller statistic. As seen in Figure 2(b), a reduction in the detection threshold
leads to many false change point detections.

4. DATA-ADAPTIVE SYMMETRIC DAS-CUSUM
4.1. Adaptive Postchange Estimation

When the postchange distribution is unknown, another way to estimate the postchange
distribution is to use a window of size w to perform a sequential estimate of the post-
change parameters 0, at time ¢ for the CUSUM statistic S,, called the window-limited
CUSUM in Xie, Moustakides, and Xie (2022) and used in Xie, Moustakides, and Xie
(2018) where a window is used to estimate postchange distribution change distribution
for subspace change detection. Figure 3 illustrates the procedure. For normally distrib-
uted i.i.d. data, the postchange distribution estimate 0, = (ji,, 67) at time ¢ can be calcu-

lated conveniently as

t+w 4w 1
a 2 A N2
My = Xip Oy = ;(x,- — )"
i=t+1 i=t+1

Using “future” samples to calculate postchange estimates 0, may initially seem unrea-
sonable. Still, detection decisions can be delayed by w samples so that data are available
for calculating these estimates (provided that w is not excessively large). These estimates
can be substituted for 0; in (3.3) to obtain an adaptive form of CUSUM where the post-
change distribution is estimated. Such estimates are also independent of the change stat-
istic S;. In comparison to GLR, adaptive CUSUM leads to a more computationally
efficient method for detecting change points when the postchange distribution is
unknown. CUSUM has been extensively studied to develop tools that characterize the

w

|
“ét = MLE(% 41, -Tt+w)

Sample at time ¢ : z; |

St:S;1+8t

t

Time
Figure 3. Adaptive version of CUSUM. Using a “future” window to estimate postchange parameters
0; could be used in place of postchange distribution 0; for CUSUM update.
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detection ARL, the average time until false detection under the prechange distribution,
and the EDD, which is the expected time until true detection under the postchange dis-
tribution. Adaptive CUSUM can utilize the similar technique to characterize the ARL
and EDD performance.

4.2. Proposed Procedure

As discussed in Section 3.1, the log-likelihood ratio test is asymmetric for changes
between two distributions having different variances. This makes it difficult to select a
single threshold for adaptive CUSUM to detect multiple changes.

To address this problem, we introduce a symmetric version of adaptive CUSUM
called DAS-CUSUM. To begin, we recall that the KL divergence between the distribu-
tion fy, and fy, is given by

DKmHmQQ-—JﬁJx)bgﬁh@jdx

Jo (%)
The DAS-CUSUM-based change detection statistic is defined as
St = (Si-1)" + s
with the incremental update statistic given by
Jo,(xi)
Joo (%)

where v >0 is a constant in the drift term.

Compared to the incremental update for CUSUM, which only contains the log-likeli-
hood ratio, the DAS-CUSUM update statistic has two additional terms, which can be
seen in (4.1). The first of these terms is a KL divergence, which makes the incremental
statistic almost symmetric under the postchange distribution. When w is sufficiently
large, @t ~ 0;, and thus

Eg,[s:] =~ Dxi(01,00) + Dxr(0o,01) — . (4.2)

s = log + Dx1.(00,0;) — v, (4.1)

The second of these additional terms, v, is a drift term that makes the expectation of
the incremental statistic negative under the prechange distribution. This allows our pro-
posed statistic to match the property of CUSUM, which requires that the increment
term be negative under the prechange distribution to avoid false alarms.

4.3. Practical Implementation

Algorithm 1 shows how to implement DAS-CUSUM for detecting multiple change
points. This algorithm uses values for the window size w* and drift term v*, based on
theoretical results presented in Section 5. However, these results require complete know-
ledge of the postchange distribution 0; to compute the KL divergences, necessary to
compute the desired values for w* and v*. Because this postchange distribution is
unknown, we can set a minimum symmetric KL divergence that corresponds to the
minimum change in distribution that is to be detected in a streaming data setting. This
minimum symmetric KL divergence can be used to set window size values w* and drift
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term v*. The optimal window size w* can be found by minimizing an expression. This
expression is discussed in more detail in Remark 5.2. Despite this expression being con-
vex with respect to w, a closed-form expression of w* is difficult to obtain. This optimal
window size w* can be solved numerically. When a change point is detected, the previ-
ous postchange estimate 0, is used as the prechange distribution 0, for detecting the
subsequent change point.

Algorithm 1. DAS-CUSUM for multiple change point detection

Inputs: Sequence: X, Threshold b, Target ARL: 7y, Min sym div: ¢/,
Prechange distribution: 0 := (u, 75)

Output CpList: List containing change points

Choose window size

1
w" = arg min 08" ~ tw
—1+4 (1+ws'2) + log <1 - %)
52
=t (L) ~log (1)
=——+|—=+w , V=m0
0 s \s2 dy
for t =1 to length(X)] do
+w +w 1

I ~ A N\2 A ~ A~

Hy = in’ ot = Z;(xi_.“t) o 0i= (i, 67)
i=t+1 i=t+1

Compute CUSUM recursion

ff)t(xi)

S, =(S-1)" + lo + Dx1.(0y, 01) = v*
t ( t 1) gfeo(xi) KL( 0 1)
if S; > b then
Add t to CpList
b=y 0= 6
end if
end for

5. THEORETICAL RESULTS: EDD VERSUS ARL

With the definition of the stopping time T, the detection procedure takes t samples to
detect a change. The ARL is the expected value of 7 under the prechange distribution
0 such that a false change is detected: Eo[T], where E., is the expectation under the
probability measure on observations without a change. A commonly considered metric
is the worst EDD (Lorden 1971) conditioned on the worst possible realizations:

E,[T] = supess supEy([T — k + 1]+|X1,....,Xk_1), (5.1)

k>1

where k denotes the change point location and Ey is the expectation under the probabil-
ity measure of observations when the change occurs at k. Using a similar argument as
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shown in lemma 4 in Xie, Moustakides, and Xie (2022), we can show that E;[T] (when
the change happens at the first time instance) provides an upper bound to the worst
case expected detection delay (5.1). Thus, in our analysis, we focus on E,[T], which we
call the EDD. Our first result relates DAS-CUSUM’s ARL with its EDD, using similar
techniques as those in Xie, Xie, and Moustakides (2020) and Xie, Moustakides, and Xie
(2022).

Theorem 5.1. Let fp (x) and fy, (x) be the normal density functions of x under the pre-
change distribution 0y and postchange distribution 0;, which is unknown and estimated
using a window of size w. Assume the ARL > y. When 7 — oo and for large window size
w, the EDD of DAS-CUSUM is given by
E,[T] = logy + o(1) — +w. (5.2)
00 (Dk(01,00) + Dxi(0, 01)) + log (1 - %)

where ¢ > 0.

Corollary 5.1. The value of ¢ that minimizes the EDD for a given ARL in (5.2) is given
by

1 1/2 I
<<DKL(90’ 01) + Dx (61, 90)>2 i W) - (Dkr (0o, 01) + Dxr(61,00) (5.3)

Remark 5.1. The value of J; from Corollary 5.1 can be used in the result of Theorem
5.1 to obtain the minimum EDD for a given ARL.

Corollary 5.2. The optimal drift term v* that minimizes the EDD in (5.2) for a given
ARL is given by

—log (1 —5;%/w) /8. (5.4)

Remark 5.2. The expression in Theorem 5.1 can be minimized with respect to w (at a
provided value of ARL and symmetric KL divergence) to find the optimal window size
w*. A closed-form expression for w* cannot be obtained, but w* can be solved numeric-
ally. Figure 4 shows how EDD relates to window size w. The curve has a minimum
point corresponding to a window size of w=11. When this solution is too small, the
results in Theorem 5.1 do not hold, which assume w to be large (so that postchange
estimates converge to true postchange distribution). More details can be found in
Section 6.2. Additionally, the window size should be large enough for J, < w for the
logarithmic term in Theorem 5.1 to be real.

5.1. Comparison to CUSUM Results

Lorden (1971) provided the asymptotic lower bound for EDD for CUSUM given E,, >
y and y — oo,
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EDD vs window size (w) (Sym Div: 0.50 )
200 : : : : : ‘ : : :
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w
Figure 4. EDD versus window size for a change with symmetric KL divergence of 0.5 at an ARL value
of 5,000. This figure shows that the EDD is a convex function of w that can be minimized to obtain
the optimal window w*.

logy(1 + o(1))
E,[T] > —DKL(HI’ 0o)

For the proposed detection procedure, it can be seen in Theorem 5.1 that the EDD at

(5.5)

a set ARL value would be similar for a change from 0, to 0, and a change from 0, to
0o. This is not true for CUSUM, where the detection delay for a change from 0, to 0,
will not be equal to a change from 0; to 0,.

The expression in Theorem 5.1 also has an additional w term that takes into account
the time delay for obtaining the window to estimate postchange parameters, but this is
a consequence of the postchange distribution being unknown.

5.2. Sketch of the Proof

The increment of the CUSUM statistic in (3.3) consists of a log-likelihood ratio that has
a negative expectation under the prechange distribution 0y. The proposed increment
statistic for DAS-CUSUM in (4.1) has a negative drift under the postchange distribution
but is not a log-likelihood ratio. One way to find the optimal value v in our proposed
update statistic is to convert it to a valid log-likelihood ratio. Once this is done, ARL
and EDD results from CUSUM can be used for our proposed statistic. This expression
would consist of the negative drift term v, which could be minimized to find the opti-
mal value for v. It can be seen in Lorden (1971) that for a detection threshold b, the
CUSUM procedure has the following asymptotic average run length:

e’ (1+0(1))
K

where K is a constant. For CUSUM, the EDD matches the lower bound as shown in
(5.5). Using the techniques proposed in Xie, Moustakides, and Xie (2018, 2022), an

E[T] = , (5.6)
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equivalence term Jy can be introduced to our incremental statistic that satisfies the
equation

Eg,[exp (dost)] = 1. (5.7)

When (5.7) is satisfied, exp (dos;) can be considered to be the likelihood ratio
between distributions jel = exp|dost|fo, and fy,, which then allows us to use (5.6) to
obtain the ARL performance for DAS-CUSUM. The threshold b can be expressed in
terms of the average run length (y):

- log y(1+0(1)) .

3% (5.8)

This expression is obtained through (5.6) where the constant K is absorbed within o
(3.1) and the introduced scaling factor J, for the incremental statistic is appropriately
scaled. Similarly, 4, can be introduced such that d;s; is the log-likelihood ratio between
fo, and f(,o = exp[—018:|fp,- Thus, we can relate the change between fy,, where the J,
term is observed in o (3.1) as shown below:

b(1+o0(1))

E,[T] = T[Sr]' (5.9)

Substituting (5.8) in the above equation, we obtain

_ logy(1+o0(1))
E,[T] = %E—{)I[St]. (5.10)

Substituting (4.2) yields

B log y(1 + o(1))
BT = 5 D (00, 01) + Dt (01,00) =) G.11)

Our expression above assumes that our statistic is converted to a log-likelihood ratio
by satisfying the martingale property in (5.7). Lemma 5.1 satisfies this requirement by
finding an expression that relates the drift value v with the equivalence factor d

Lemma 5.1. As w—o00, Ey, [exp (Jos¢)] = 1 asymptotically when v takes the value in (5.4).

Then the value for v, for which (5.7) is satisfied, can be substituted. Because w sam-
ples are needed to estimate the postchange distribution ét, when w — oo, the EDD
approaches to

logy + o(1)
d0(Dk1(00, 01) + Dxr.(61,6p)) + log (1 - b_fvz)

+ w. (5.12)

This EDD expression can be minimized with respect to dy by equating the derivative
to 0. The optimal value of J; that minimizes the expression is given by (5.3). Using this
optimal value of Jy in (5.12) and (5.4) leads to the results of Theorem 5.1 and
Corollary 5.2.
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5.2.1. Sketch of Proof for Lemma 1
The left side of (5.7) can be written as shown below by substituting the proposed update

statistic from (4.1):

_ (e =) | (e— o) o+ (o — ) 1

E 8 5) =E So| - L _
o,[exp (do St)] 0, | €xp ( 0( Py + 202 + 27 5=V

t

Because a future window (x;y1, ..., Xr1y) is used to estimate ut and 6, these estimates
are independent from x;. These estimates can be treated as constants while introducing
a conditional expectation through the tower rule. The equation above can be written as

s+ (o — f1)* 1 .
Ext+1)_”,xt+w~ﬁ)0 leXP <50 (% - E -V Ext+1,m,x[+w~f(lo [T(X;) |:ut’ O-f]
t

1 ol + (g — 1)’ -
= €Xp (50 <_ E - V> )Ext+1,..,r+wN00 exp 50 % ]Exf"‘e() [r(xf) |:ut’ O-fH >

r(x:) = exp (50 (— <xt2_(}?t) + (e 2_0_%10) ))

Further details for these calculations can be found in the Appendix.

(5.13)

where

6. SIMULATIONS
6.1. ARL and EDD

As discussed in Section 4.2, the DAS-CUSUM change point detection procedure is
designed to have a symmetric change statistic. Due to this symmetric property, DAS-
CUSUM should have similar ARL versus EDD performance for changes from the distri-
bution 0y to 0; and from 0; to 0y This symmetry is studied in ARL versus EDD plots
in Figure 5. This figure also contains plots for CUSUM and an adaptive version of
CUSUM where a future window of size w is used to estimate the postchange parame-
ters. CUSUM curves for changes from 0y(uy = 1,05 = 1) to 0;(u; = 2,07 =2) and 0,
to 0, are far away from one another, whereas DAS-CUSUM curves are closer to each
other. These DAS-CUSUM curves become closer when the postchange estimates
become more accurate with increasing window size, as shown in Figure 5(b). These
results align with Section 5.1, which compares the results of DAS-CUSUM in Theorem
5.1 with corresponding results for CUSUM. Specifically, EDD at a given ARL is the
same for a change from 0, to 0; and vice versa when the window length w becomes
asymptotically large.

Now we validate the accuracy of theoretical approximation by comparing it against
simulation results. Figure 6 shows DAS-CUSUM plots for EDD versus ARL at different
window lengths (w to estimate postchange distribution). For each window length, plots
for the theoretical relationship (from Theorem 5.1) are compared to simulated plots.
For a small window size (w=10), the theoretical and simulated results grow apart as
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Change between 0y(19 = 1,08 = 1) and 6, (u1 = 2,07 = 2) when w = 10
80 : : : ‘

Change between 6y(j = 1,03 = 1) and 6, (11 = 2,07 = 2) when w = 40
80 T T T
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Figure 5. EDD versus ARL performance comparison for DAS-CUSUM and CUSUM for changes between
Oo(io = 1,05 = 1) and 0:(p, = 2,62 = 2) that corresponds to a symmetric KL divergence of 1. (a)
The relationship when a window size of 10 is used for the postchange estimate and (b) the case
when the window size is 40. Notice the similar performance for DAS-CUSUM for changes from 0, to
0, and 0, to 0q. This similarity increases with window size w.

100
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80 [

Change from pig = 1,08 =1to 1 = 2,07 =2 (Sym div: 1)

= =Theoretical w : 10
= =Theoretical w: 25
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7
log ARL

—— Simulation w:55
= Simulation w:70
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Figure 6. Comparison between theoretical and simulated DAS-CUSUM results for different postchange
estimation window sizes w. The change in this example has a symmetric KL divergence of 1.

ARL increases. The difference between the theoretical and simulated plots decreases as
the window size increases. This is expected because the results in Theorem 5.1 hold
when w grows asymptotically. When w =120, the difference between theoretical and
simulated EDD is approximately 1 sample for the shown ARL range.

6.2. Optimal Window Length

DAS-CUSUM results that relate EDD with ARL in Theorem 5.1 depend on the estima-
tion window size w (at provided values of ARL and symmetric KL divergence). This
equation can be minimized for w to find the optimal window length (w*).
Unfortunately, there is no closed-form expression for this optimal value. Nevertheless,
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EDD vs window size (w) (Sym Div: 0.10 ) EDD vs window size (w) (Sym Div: 2.00 )

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
w w

(a) (b)

Figure 7. Relation between EDD and window size for changes with different symmetric KL divergen-
ces. The ARL has been set to 5,000 in both figures. The optimal window size corresponds to the min-
imum EDD values. (a) The relationship for a change with symmetric KL divergence of 0.10 and (b) the
relationship for a symmetric KL divergence of 2.

this equation can be minimized numerically to obtain w*. Figure 7 shows this relation-
ship at an ARL of 5,000 for changes with two different symmetric KL divergence values.

Figure 7(a) shows this relationship for a smaller change in distribution (a symmetrical
KL divergence of 0.10), and Figure 7(b) shows this relationship for a larger change (a
symmetric KL divergence of 2). Intuitively, a larger change (with a larger symmetric KL
divergence) would be easier to detect, requiring a shorter window length compared to a
smaller change (with a smaller symmetric KL divergence). However, for larger changes,
the window size corresponding to the minimum EDD value could be too small, as seen
in Figure 7(b) where this window is of size 4. The theoretical results start to match
simulated results at a window size of about 30, whereas results at a window size of 10
diverge. For this reason, when the optimal window size (w*) is below 20, a rule should
be in place for a minimum window size.

Results that relate the optimal window length for different ARL values can be seen in
Figure 7. The changes in this figure have small divergence values, which lead to w* that
is greater than a size of 20. The curves for w* are in yellow and seem to provide better
EDD versus ARL performance than most other window sizes. As the optimal window
size w* increases in Figure 8(b), the corresponding ARL versus EDD curve often per-
forms best (or close to best) when compared with other window sizes.

6.3. Setting the Detection Threshold

Table 1 compares the simulated and theoretical detection threshold (b) to achieve differ-
ent ARL values. The theoretical relationship between ARL and the detection threshold
is provided in (5.8). These experiments were done on a distribution change from
0oy = 1,05 = 1) to 0;(u; = 2,01 = 2), which corresponds to a symmetric KL diver-
gence of 1. For ARL, false alarms occur when data points generated from the prechange
distribution (0,) are falsely detected as change points. Intuitively, ARL values should
depend only on the prechange 0, but the postchange distribution (60,) is used to set the
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Figure 8. ARL versus EDD performance for different window length (w) sizes. (a) Plots for a change
from 0o (g = 1,62 = 1) to 6;(1; = 1.3,02 = 1.3) and (b) plots for changes from 6y(yy = 1,03 = 1)
to 01(p; = 1.2, 6% = 1.2). Optimal window size (w*) provides optimal performance as w* increases.

Table 1. Comparison between theoretical and simulated detection thresholds at different ARL values
for a change with symmetric KL divergence of 1.

w=10 w=20 w=30 w=40 w=50 w =100 w=150

ARL = 5,000 Threshold 3.68 238 1.86 1.57 1.37 0.94 0.75
Simulated 14.77 6.10 3.16 213 1.69 1.01 0.77
ARL = 10,000 Threshold 3.98 2.57 2.02 1.70 1.50 1.02 0.82
Simulated 18.16 791 413 2.70 211 1.26 0.96
EDD vs w for ARL of 5,000 EDD vs w for ARL of 10,000
—o— Simulation —e— Simulation
16 16 1
14 - 14
- 12F - 12+
© ©
5 10 5 10
2 2
=a g o
6 1 6
4 4
2 \\‘ ] 2 \‘*&‘\
0 - : 0 : §

0 50 100 150 200 0 50 100 150 200
w w

(a) (b)

Figure 9. Plots for results in Table 1. (a) The relationship for an ARL value of 5,000 and (b) the rela-
tionship for an ARL of 10,000. The gap between simulation and theoretical results gets small at a win-
dow size value of about 30.

0, value, which is used within the theoretical (5.8) as well as for setting the drift term v
for the simulations. The difference between theoretical and simulated results is large for
small values of postchange estimate window w, but these results become closer as this
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window size increases. This is expected because the relationship between the detection
threshold and ARL is obtained using (5.7), which is satisfied asymptotically (Figure 9).

6.4. Moving between Multiple Distributions

In the previous section, as demonstrated in (4.1), we showed that the DAS-CUSUM
method exhibits symmetry when transitioning between distributions 0, and 0,. This
desirable property allows for the implementation of a single threshold when detecting
multiple change points, even when the data sequence involves more than two distinct
distributions.

Consider a sequence that alternates among three distributions: 0y = (¢, = 0.5, 05 =
0.5),0, = (4, = 3,07 =3),0, = (4, = 1.5,65 = 1.5). In this case, the change statistics
for transitions between 0, and 0,, as well as between 0; and 0,, would differ. However,
the DAS-CUSUM method generates more similar change statistics for these varying dis-
tributional transitions when compared to the CUSUM and adaptive CUSUM
approaches.

This similarity in change statistics for diverse distributional transitions facilitates the
selection of a single threshold capable of detecting true change points across multiple
types of distributional shifts while minimizing the identification of false changes.
Figure 10 illustrates the EDD versus ARL curves for changes from 0, to 0; and from 0,
to 0,. The proximity of these curves for the DAS-CUSUM method (represented by light
blue and yellow) is noticeably greater than that observed for the other methods.

To further illustrate this example, consider the case when this sequence persists in 0,
for 1,000 samples and then switches from 6, to 0,. This sequence then persists in 60, for
1,000 samples, after which it changes from 0; to 0,. When this sequence changes from
0y to 0y, the change statistics after 10 samples can be seen in Figure 11(a). Figure 12(b)
shows the change statistics when the sequence persists in 0; for 1,000 samples, and

Changes between 3 distributions when w = 20 Changes between 3 distributions when w = 40
6000 :(po = 0.5,08 = 0.5),01 : (11 = 3,07 =3),0s: (u2 = 1.5,03 = 1.5) 10099 (o = 0.5,0% =0.5),0; : (11 = 3,07 =3),05: (u2 = 1.5,03 = L5)
- —= CUSUM: 6, to 6, — - CUSUM: 6 to 6,
~-=-CUSUM adpt 6 to 6, —-=-CUSUM adpt 6, to 6,
50 - DASCUSUM 6, to 6; 1 80t DASCUSUM 6, to 6,
- — CUSUM: 6, to 6, - = CUSUM: 0, to 0,
40 ~-~-CUSUM adpt 6, to 6, pe— —-—-CUSUM adpt 6; to 6,
DASCUSUM 6, to 6, i pe" 60 DASCUSUM 6, to 6,
g i g 8 _________________________
% =T BT I~ R
77777777777777777 ) Gk Sl 40 T
20 - ) =
10 ”,’ 20 _———____, d
pless===—"" 1 | 0 e 5 G A Lt o sy a2 LA SN
6 8 10 12 14 6 8 10 12 14
Log ARL Log ARL
(a) b)

Figure 10. ARL versus EDD relationship when moving between 6 : (1, = 0.5,0% = 2) to 0 : (1, =
3,02 =3) and from 0; : (1; = 3,07 =3) to 0, : (1, = 1.5,65 = 1.5). For both figures, which show
different window sizes used, curves for DAS-CUSUM are closer, indicating that it is easier to set a
threshold to detect changes from 0y to 6; and from 6, to 6, with closer EDD versus ARL
performance.
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Change statistics for change from
01 : (po =3, 03 =3) to by : (o = 1.5, 02 = 1.5)

Change statistics for change from
o : (uo = 0.5, 3 = 0.5) to 01 : (g = 3, 02 = 3)
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(a) (b)
Figure 11. The change statistic S; for DAS-CUSUM, CUSUM, and adaptive CUSUM is presented under
the assumption of no distributional shifts. (a) A prechange distribution with y, = 0.5 and ¢ = 0.5

and (b) a prechange distribution with 1, = 3 and o3 = 3. A window size of 20 is employed for esti-
mating the postchange distribution in both DAS-CUSUM and adaptive CUSUM methods.

Change statistics under no change Change statistics under no change
0 : (1o = 0.5, 03 = 0.5)
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Figure 12. The change statistic S, for DAS-CUSUM, CUSUM, and adaptive CUSUM is presented under
different distributional shifts. (a) The change statistic under the postchange distribution of 0; =
(= 3,02 = 3), transitioning from a prechange distribution of 0y = (uy = 0.5, = 0.5). In con-
trast, (b) illustrates the change statistic under the postchange distribution of 6, = (u, = 1.5,6% =
1.5), originating from a prechange distribution of 0; = (y; = 3,62 = 3). Both DAS-CUSUM and
adaptive CUSUM methods employ a window size of 20 for estimating the postchange distribution.

Figure 11(b) shows the change statistics after 10 samples of distribution changing from
0, to 0,. The change statistic for CUSUM and adapative CUSUM under no change in
Figure 12(b) goes up to 6.01 and 4.3, respectively. These are smaller than their respect-
ive change statistics after 10 samples in Figure 11(b). This means that CUSUM and
adaptive CUSUM cannot set a threshold that can correctly detect a change within 10
samples of the sequence switching from 0, to 0, without detecting a false change when
the sequence is in 0. This is not a problem for DAS-CUSUM. Note that the change
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statistics when the sequence persists in 0, for 1,000 samples in Figure 12(a) is very simi-
lar to change statistics when the sequence persists in 0;. Thus, all CUSUM, adaptive
CUSUM, and DAS-CUSUM can correctly detect a change when moving from 0, to 0,
without detecting a false change when this sequence persists in 0,. However, only DAS-
CUSUM, with a threshold value greater than 5 (but lower than 20), can detect changes
from 0, to 0, and 0, to 0, without detecting any false changes when the sequence per-
sists in 0y and 0,.

7. REAL DATA

Real-world sequences often involve signals that switch between multiple distributions.
These distributions may also persist for relatively short intervals. DAS-CUSUM’s sym-
metric statistic is more useful for detecting multiple changes compared to GLR and
adaptive CUSUM. This is favorable for detecting multiple changes in real-world prob-
lems, as seen in Figure 14, which shows readings from a pressure mat that can be seen
in Figure 13. The mat is inserted beneath a wheelchair cushion and is used to character-
ize in-seat movement for wheelchair users. When the wheelchair is occupied, the sensor
signal has a high mean and variance, whereas when the chair is unoccupied, the signal
has a low mean and variance. Detecting changes in occupancy can be treated as a
change detection problem. As discussed previously, the asymmetric log-likelihood ratio
makes it difficult for both GLR and adaptive CUSUM to detect these changes.

For both Figures 2 and 14(a), the statistic for getting into the chair (low variance to
high variance) is not equal to the statistic for getting out of the chair. For this reason, it
is difficult to select a threshold that detects both changes. It can be seen that there is a
larger delay in detecting the change while still detecting a false-positive change point.
Because of the asymmetric statistics, the change for the first statistic is extremely large

Front

SN: 0oaz

Figure 13. Sensor mat used for characterizing in-seat behavior for wheelchair users. Sequential
change point detection can be used to identify changes in wheelchair occupancy.
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Figure 14. (a) Performance and (b) advantages of using DAS-CUSUM for multiple changes over adap-
tive CUSUM.

compared to the second change. To detect both changes, a lower threshold is set, which
causes the first change to be detected really quickly (where the signal is in the middle
of the transition). This causes incorrect signal estimates to be used as prechange esti-
mates, causing false change points to be detected. Figure 14(b) shows the performance
of DAS-CUSUM on this signal. The symmetric change statistic provides similar power
for detecting both changes without detecting any false-positive changes. The symmetric
statistic makes it easy to select a threshold to detect multiple changes. This is attractive
for real-world scenarios where numerous changes need to be detected when the signal
changes to unforeseen distributions.

Figure 15 provides an extended example of the occupancy problem. The signal sen-
sors develop drift, and the postchange distribution can change to different unknown
distributions at different times. This makes it difficult to use two-sided CUSUM or
other variants because the postchange distribution is not known. In such an example, it
can be seen that with symmetric statistics, DAS-CUSUM performs much better than
GLR and adaptive CUSUM. The in-chair distribution is not static. The mean and the
variance of the signal changes within the chair; however, these changes are much
smaller than the changes in distribution when there is a change in wheelchair occu-
pancy. Symmetric DAS-CUSUM’s change statistic is much larger for these occupancy
change events, which makes it easy to detect these events without detecting any false
alarms. For all methods, a window size of 300 was used to estimate the postchange
distribution.

8. CONCLUSION

In this work, we have presented DAS-CUSUM, which is a symmetric change point
detection procedure. Owing to DAS-CUSUM’s symmetric incremental statistic, the
EDD versus ARL relationship is the same for changes from a distribution 6, to 0; and
from 0, to 0y This symmetric change statistic is helpful when identifying multiple
changes in both the mean and variance of a signal. A single threshold can be easily set
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(b) GLR misses true change points
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Figure 15. Comparison of GLR, adaptive CUSUM, and DAS-CUSUM for detecting multiple change
points. The asymmetric log-likelihood ratio makes it difficult for CUSUM and GLR to detect all changes
correctly without any false alarms. (a), (b) A large detection threshold to avoid false change points
results in many missed change points while still detecting a few false change points. (c), (d) How a
lower threshold results in many false change points. The symmetric DAS-CUSUM is able to correctly
detect all true change points without detecting any false change points.

to detect multiple change points. This is extremely helpful for identifying change points
in real-world settings where log-likelihood ratio-based approaches such as GLR and
adaptive CUSUM struggle. We have derived results that characterize DAS-CUSUM’s
EDD and ARL. Extensive simulations are used to validate these results.
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APPENDIX. PROOF OF LEMMA 5.4

A.1. Computing the Inner Expectation
For the expression in (5.13), the inner expectation is first simplified:

E. 0 r(x)|/ﬁc (A)'} =FE, exp ) _(xt_ﬂ)2+(xt_ﬂo)2 |/:L 6’] :26)(1) _(:uO_/at)z
xp~O t Ot xp~0o 0 26’2 20(2) Ot o 2:;)__% n 2% >
0 —do

(A.1)
where
6% (A2)

0—2 = " .
12 500'(2) + (1 - 50)6’?
Note: dy should be such that g2, > 0 in (A.2).

A.2. Computing the Outer Expectation
Plugging in the results of the inner expectation from (A.1) in (5.13):

. 1 [ 2+ (= i)\ Yo (== 1)\ |
Eg,[exp (30 50)] = exp (9o =5 = v ) B oma, [exp (00| b0 R ) ) D exp (0T ) ],
20’t ) 26_;—'_2_0

1-0¢

Expressing and simplifying the above equation yields:

~ 1 | g + (4o = [at)z 012 (o = l)t)z ]
Eo, [exp (005¢)] = exp (do| =5 = v ) )Ex,,, o, [€xp (S0 | —— 5| | —exp | ——
2 20[ (o) 2% +2 T

1-0p

vt 1) o () =)

o} 67 2(1 = 89)67 + 25002

= exp (30 ~5 =) Eucr o e 507D
(A.3)

A.3. Asymptotic Distribution of g(ji,, 6¢)

Now the asymptotic distribution for the argument of the exponent (g(f;,6;)) within the expect-
ation would be found (when the sample mean and sample variance are estimated under the pre-
change distribution). This argument is defined as

~2 2 a2 _
g(ﬂt,&t)zllog<—6t >+5°UO+(”° ) (5—‘;— (L= %) > (A4)

2 506%+(1—50)6’? 26? 2 gy (1—50)6’?+506%

a(a7) b(ity» 61)

We now find the distribution of g(jt,, ;) when samples x;..x¢,, used to calculate ut and 6,
are distributed by 0o. Decomposing g(it,, 6¢) into two terms,

2
(S()O'O

a(6?) = tiog [~—— 1)+
DT\ G+ (1-o0)e? ) 267
. — ) (o 1-8)0
iy 6%) = P = 1) <o_ (1=30)d

2 62 (1= 30)62 + 6902
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A.4. Asymptotic Distribution of First Term a(6,2)

To find the asymptotic distribution of a(67), we first recall some results. The asymptotic distri-

bution of sample variance is 67 :

:_ZX ﬂt)
_f: Z(X ﬂt .

H—’

xlvariables

(Note that sample variance is divided by (w — 1) instead of w, though as w—oo, the sample
variance is similar when divided by w or w — 1. We d1v1de by w to use the tools of central limit
theorem, as shown below.) By the central limit theorem, 2% is a mean of the sum of 2 variables.
These variables have a mean 1 and variance 2: K

&2 d
VN[ =t -1 |52~ N(0,2).
%
Or, equivalently,
VN2 = 62)-52 ~ N(0,25%). (A.5)

An asymptotically normal estimator 6 for the parameter 0 is distributed through

V(0 = 005w ~ N (0, 0%).
For a function g(f) of an asymptotically normal estimator § of 6, the delta method states that

A d "

Vn(g(0) = g(0)) =W ~ N (0,8 (0)0%).

This result is, however, true only when ¢’(0) exists and is not 0. Because the sample variance,

67, is asymptotically normal (as shown in equation A.5), we can try applying the delta method
with a(67) in place of g(6):

Vn(a(67) = a(o2)SW* ~ N(0,2(a'(67))%0%)

/(AZ) 506% 506%
al(o =
=26t 2628003 + (1 - 80)67)
S0 &
@ (0}) = 5+
—20; 203
=0.

Because a’'(62) = 0, the delta method cannot be used. In such a case, the second-order delta
method can be used if a”(a2) # 0.

A.5. Second-Order Delta Method

For an asymptotically normal estimator 0 for the parameter H—that is,

V(0 = 0) LW ~ N(0,6%),

the second-order delta method (Casella and Berger 2002) states that if there is a function g on
these estimates ), and both g(0) and g”(6y) exist and are nonzero, then
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n(g(0) - g(00) W ~ i3S 00) 12

Because the sample variance, 67, is asymptotically normal (as shown in equation A.5), we can
try applying the second-order delta method with a(6?) in place of g(0) :

n(a(5?) - a(02)SW ~ ot (a3)72. (A6)
Finding the double derivative of a(67) with respect to 67,

(6% = d005 _ 80056, (1 = do) + 3036, (do0 + (1= 30)57)
t/) 7 46

g, 2(500%-’-(1—50)&?)2

Plugging in 6, = 0y,

ap 205
_ %
208
Plugging this result in (A.6), we have
-2 2\ 4 53 2
n(a(6;) = alag)) =W ~ i,
ad O
a(of)—>W ~ z—zﬁ +a(ap).
As a(c}) = %‘],
52 0
a(Az)iW* Al-i——o,
52 23 2 (A7)
a(67)— a °Z+— (where Z ~ 3).
A.6.

Looking at the Second Term b(ji,, 6,2)
The second term is defined as

A2
o - 0 (1= 00)0o
b(ii, 62) = (o — i) o '
('ut t) 2 6'? (1 —50)&?-{-500’%

Manipulating the second term:

b ) — Lo =21 (@_ (1= 30)dy )

6% (1 - 50) =+ 500’0
95 (o~ ll)
:W % Jo  (1=30)d
G (o=fiy)
A S (1—30)d
o 2 TG w—1 42

1 0 (1—5>“°W;0 ¢ + 0005

2
0



SEQUENTIAL ANALYSIS (&) 25

Recall that the distribution of the sample mean and the sample variance is given by

2
i NN(,UO) @))

(W 1) AZ =V~ / e (A‘9)

Also,

Using these results in (A.8) yields

2Z a
b(jt, 67)— : 7( ?0 - u 50)50 )

G,

W_—OIV (1—50) V-f—(SoO'O

2
As w—o00, by the law of large numbers, i:,_*i —1. Thus, as w—00, -5 —1, leading to

L, 9z 1—80)0
R -

2 \a} (1-90p)03+ oo
_ %2
Toow’
Because Z ~ y2, when w—o0,
a0z 6 Ve
b(i,, 24 A.10
(1> 67) 2W 2w ( )
A.7. Combining the Two Terms
Note that
. A 1 6'2 (300'2 ([l - [:L )2 50 (1 - 50)50
, =1 t 0 0 t b
(it &) = 3108 <5oa§+(1—60)&f> 5 T\ et e 0 T
a(6?) bljiys 1)
Because
d o do
a(6}) 52+
5 27
o .oy d OgU
b, U?)_’ﬁ~
we have
5 S O
g(ft,62)— a 222 —0—|— U (where Z,U ~ »3)

2 (A.11)
_% Y+5— (where Y ~ 73)
 2n x2)-

A chi-square variable of v degrees of freedom can be written as a gamma variable, with shape
parameter v/2 and scale parameter 2. Also, if X ~ Gamma(a,b), then k.X ~ Gamma(a, k.b).
Thus, the asymptotic distribution of g(ji,, 67) can be written as

2

d )
J{™ &f)iX + 70 (where X ~ Gamma(a(shape) = 1, b(scale) = —2)). (A.12)
w
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A.8. Finding the Equivalence Factor o,
The results from (A.12) can be used within (A.3), which can be written as

5 1 )
IE90 [exp (50 St)] = €xp (50 (_5 - V) )EXNGamma(l/Z,Zég/n) |:eXp (X + ?>:| .
Using this result to solve for dy in the statement of Lemma 5.1,
1 do
exp (50 _5 -V )EXNGamma(l/Z,Zéé/n) exp | X + 7 =1
1

€Xp (_50V)EX~Gamma(l/2,Zéé/n) [CXP (X)] = 1.
MGFunc

(A.13)

The moment-generating function of the gamma distribution is

IEXNGamma(a,b) [eXP (tX)} = (1 - tb)_u'

Using the moment-generating function results in

exp (—dov) (1 - ﬁ)_l =1

52
dov + log (1 ——0) =0
n

Vﬁ—log(l—é—f)

= 5
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