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Abstract

Change-point detection studies the problem of detecting the changes in the

underlying distribution of the data stream as soon as possible after the change

happens. Modern large-scale, high-dimensional, and complex streaming data

call for computationally (memory) efficient sequential change-point detection

algorithms that are also statistically powerful. This gives rise to a computation

versus statistical power trade-off, an aspect less emphasized in the past in clas-

sic literature. This tutorial takes this new perspective and reviews several

sequential change-point detection procedures, ranging from classic sequential

change-point detection algorithms to more recent non-parametric procedures

that consider computation, memory efficiency, and model robustness in the

algorithm design. Our survey also contains classic performance analysis, which

provides useful techniques for analyzing new procedures.

This article is categorized under:

Statistical Models > Time Series Models

Algorithms and Computational Methods > Algorithms

Data: Types and Structure > Time Series, Stochastic Processes, and Func-

tional Data
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1 | INTRODUCTION

Sequential change-point detection has been a classic topic in statistics since the 1920s (Shewhart, 1925, 1931) with moti-
vations in quality control—the objective is to monitor the manufacturing process by examining its statistical properties
and signals a change in quality when the distribution of certain features of the products deviates from the desired one.
Since then, change-point detection finds many applications in other fields, including monitoring power networks
(Chen et al., 2015), internet traffic (Lakhina et al., 2004), sensor networks (Hallac et al., 2015; Raghavan &
Veeravalli, 2010), social networks (Peel & Clauset, 2015; Raginsky et al., 2012), medical image processing (Malladi
et al., 2013), cybersecurity (Tartakovsky, Polunchenko, & Sokolov, 2012), video surveillance (Lee & Kriegman, 2005),
COVID-19 intervention (Dehning et al., 2020), and so on. Recently, there has been much interest in out-of-distribution
detection (Magesh et al., 2022; Ren et al., 2019), which aims to detect the shift of the underlying distribution of the test
data from training data, which is related to sequential change-point detection.
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This tutorial considers sequential (also known as the online or quickest, in some context) change point detection
problems, where the goal is to monitor a sequence of data or time series for any change and raise an alarm as quickly
as possible the change has occurred to prevent any potential loss. The above problem is different from another major
type of change-point detection problem, which is offline and aims to detect and localize (possibly multiple) change-
points from sequential data in retrospect (see Truong et al. (2020) for a review). This tutorial focuses on sequential
change-point detection.

Shewhart (1925) introduced a control chart that computes a statistic from every sample, where a low statistic
value represents the process still within the desired control. Later it is generalized to compute a statistic for several
consecutive samples. Page (1954) proposed the CUSUM procedure based on the log-likelihood ratio between the two
exactly known distributions, one for the control and one for the anomaly. Moustakides (1986) and Lorden (1971)
proved that CUSUM has strong optimality properties. Shiryaev–Roberts (SR) procedure (Roberts, 1966;
Shiryaev, 1963) is similar to CUSUM inspired by the Bayesian setting, which is also optimal in several senses
(Pollak, 1985; Pollak & Tartakovsky, 2009; Polunchenko & Tartakovsky, 2010; Tartakovsky, Pollak, &
Polunchenko, 2012). More recent works on change point detection focus on relaxing the strong assumptions of para-
metric and known distributions. The generalized likelihood ratio (GLR) procedure (Lorden, 1971; Siegmund &
Venkatraman, 1995) aims to detect the change to an unknown distribution assuming a parametric form by searching
for the most probable post-change scenario. These classic procedures and their variants can also be found in
Basseville and Nikiforov (1993) and Tartakovsky et al. (2014). Sparks (2000) proposed the first adaptive CUSUM,
which detects an unknown mean shift by inserting an adaptive estimate of new mean to the CUSUM recursion,
followed by Lorden and Pollak (2005), Abbasi and Haq (2019), Cao et al. (2018), and Xie et al. (2022). Such proce-
dures allow an unknown post-change distribution while also having the computational benefit of CUSUM. More
recently, Romano et al. (2023) and Ward et al. (2022) present a novel computationally efficient approach that imple-
ments the GLR test statistic for the Gaussian mean shift and the Poisson parameter shift detection, respectively. The
above works belong to parametric change-point detection, that is, assuming the pre- and post-change distributions
belong to the parametric family and detect a certain type of change (for instance, the mean shift and covariance
change). There have also been many non-parametric and distribution-free change-point detection algorithms devel-
oped, such as kernel-based methods (Harchaoui et al., 2008; Li et al., 2019; Song & Chen, 2022) and graph-based
method (Chen & Zhang, 2015; Chu & Chen, 2019).

Sequential change-point detection is different from the traditional fixed-sample hypothesis test. It is fundamentally
a repeated likelihood ratio test because of the unknown change point. Moreover, the test statistics are correlated when
scanning through time to detect a potential change point. Such correlation is significant, complicates the analysis, and
must be explicitly characterized. For instance, in the GLR procedure, we are interested in the probability that the maxi-
mum likelihood ratio of all segments of consecutive observations exceeds a certain threshold. In this article, we review
two different analytical techniques to tackle such a challenge: an earlier technique developed based on renewal theory
(Siegmund, 1985), and a more recently developed method based on a change-of-measure technique for the extreme
value of Gaussian random fields (Yakir, 2013).

Despite many methodological and theoretical development for sequential change-point detection, the aspect of
(computational and memory) efficiency versus performance tradeoff has been less emphasized. Many change-point
detection algorithms are designed, taking such considerations implicitly. This trade-off is becoming more prominent in
modern applications due to the need to process large-scale streaming data in real-time and detect changes as quickly as
possible. For example, in social network monitoring, one Twitter community will contain at least hundreds of users,
let alone the entire network.

Thus, in this tutorial, we aim to contrast classic and new approaches through the lens of computational efficiency
versus statistical performance tradeoff; we hope this can enlighten developing new techniques for analyzing new algo-
rithms. We highlight the tradeoff by presenting the classic and new performance analysis techniques, ranging from the
most standard parametric models to the more recent nonparametric and distribution-free models introduced to achieve
computational benefits, such as robustness and flexibility in handling real data. We focus on proof techniques such as
renewal theory and the change-of-measure technique, as they are essential for analyzing the classic performance met-
rics such as the average run length (ARL) and expected detection delay (EDD).

The rest of the article is organized as follows. Section 2 describes the formulation of a sequential change-point detec-
tion problem and several classic detection procedures. In Section 3, we define the performance metric and provide the
classic analysis of CUSUM in renewal theory. Sections 4–6 each give a detailed review of recent literature on managing
unknown distributions, from parametric to distribution-free. Section 7 concludes our review.
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We would like to acknowledge that there are other recent techniques for analyzing alternative performance metrics,
such as Maillard (2019), Yu et al. (2020), and Chen et al. (2022), which we do not discuss in this article due to space
limitations.

2 | BASICS OF CHANGE-POINT DETECTION AND PROBLEM SETUP

2.1 | Problem setup

Consider a basic sequential change-point detection problem, where the aim is to detect an unknown change-point. We
are given samples x1,x2,… such that before the change happens, the data distribution follows distribution f 0 �ℱ0, and
after the change happens, the distribution shifts to f 1 �ℱ1. At each time step t after collecting the sample xt, we can
decide whether to raise an alarm or not. Our goal is to raise an alarm as soon as the change has happened under the
false alarm constraint.

The simplest setting is when the sets are singletons, that is, the pre- and post-change distributions are f 0 and f 1,
respectively. This happens when we understand the physical nature of the process or there is enough historical data to
estimate the pre-change distribution f 0. The post-change distribution f 1 can be either a target anomaly or the smallest
change we wish to detect. The anomaly may occur at some time v�ℕ, resulting in x1,…,xv!1 "i:i:d: f 0 and xv,xvþ1,… "i:i:d: f 1.
If the change never occurs, we write v¼∞. Here we assume the change-point v is deterministic but unknown, and the
observations before and after the change-point are all independent and identically distributed.

A change-point detection procedure is a stopping time τ, which has the following property. For each t¼ 1,2,…, the
event τ> tf g is measurable with respect to σ x1,…,xtð Þ, the σ-field generated by data till time t. In other words, whether
the procedure decides to stop right after observing the t-th sample depends solely on the history, not the future. Com-
mon detection procedures are based on the choice of a certain detection statistic, computing the detection statistic using
the most recent data to form Tt, and stopping the first time that the detection statistics Tt signals a potential change-
point (typically by comparing with a predetermined threshold b; the choice of the threshold b balances the false alarm
and detection delay). Thus, the detection procedure can be defined as a stopping time

τ¼ min t≥ 1 :Tt > bf g:

Since, in practice, there are usually abundant pre-change samples for us to estimate f 0 with high accuracy, here we
only consider the case with known pre-change distribution f 0. Uncertainties in the pre-change distribution can also be
addressed though, and we give such an example in Sections 5 and 6. In such cases, it will be harder to control false
alarms, and the detection procedure will be more complex computationally in general. We would often like to treat the
post-change distribution f 1 as unknown since it is due to an unknown anomaly. Then instead of considering a single
distribution f 1, we consider the post-change distribution belonging to a parametric distribution family f 1 ' ,θð Þ with
parameter θ�Θ1.

2.2 | Computation and robustness considerations versus statistical performance

Two commonly used performance metrics for change-point detection are the ARL and the EDD, which we describe
below and introduce more formally in Section 3.1. The ARL (related to the false alarm rate) is the expected stopping
time under the pre-change distribution (i.e., where there is no change point), and the EDD is the expected
stopping time after a change point has happened. Typically, one would choose a threshold to control the ARL to satisfy
ARL≥ γ for some chosen large lower bound γ, and measure the statistical performance by the EDD for a fixed γ. The
well-known lower bound (see, e.g., Lorden, 1971) is EDD¼ logγ 1þo 1ð Þð Þ=D f 1kf 0ð Þ as γ!∞, where D f 1kf 0ð Þ is the
Kullback–Leibler (KL) divergence between f 0 and f 1. A larger KL divergence means it is easier to distinguish f 1 from f 0
and thus a smaller EDD is possible.

Another way to describe the objective is to minimize

ARL!1þλEDD

WANG and XIE 3 of 22
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with some hyper-parameter λ. For some detection procedure τ which minimizes the above for certain λ, it also mini-
mizes the EDD among all detection procedures with ARL≥ γ¼ARL τð Þ. Most of the existing change-point detection
procedures can be regarded as trying to solve the following minimax problem (with slightly varying definitions on the
ARL and EDD):

min
τ � T

max
f 1 �ℱ1

ARLf 0 τð Þ!1þλEDDf 1 τð Þ, ð1Þ

where T is the set of stopping times, and ℱ1 is the set of possible post-change distributions. We include f 0, f 1 in the
subscript to show the dependence of the performance metrics on those distributions, but since there is often a large
amount of reference data to estimate the pre-change distribution, here we only consider f 1 to be unknown. The statis-
tical performance of a detection procedure can then be represented by the value max f 1 �ℱ1ARLf 0 τð Þ!1þ λEDDf 1 τð Þ:
One can expect that as the size of ℱ1 grows, a detection procedure either becomes more complex or has worse statisti-
cal performance. This leads to the trade-off between computation, model robustness (the size of ℱ1), and statistical
performance.

Given observations x1,x2,…,xt, intuitively, to utilize observations and achieve the best statistical performance fully,
we would use all the past samples in the detection statistic—as is in the case for the CUSUM and GLR procedures.
However, this can become prohibitive in practice as t, the duration we have run the detection procedure grows larger
and larger (unless the algorithm is fully recursive such as CUSUM).

A practical online change-point detection algorithm should have constant computation complexity and
memory requirement O 1ð Þ per iteration (unit time), but this is not likely to be statistically powerful for various cases.
However, in some situations, the statistically powerful algorithm will require O tð Þ computation per iteration,
which grows with time and thus is not practical. Therefore, we constantly face a computation and statistical perfor-
mance tradeoff. Due to this consideration, a commonly adopted simple (yet effective in many cases) strategy is
to use sliding window: which stores historical data within a sliding window of length w and computes the statistic Tt

using data in the sliding window xt!wþ1,xt!wþ2,…,xtð Þ for every t≥w; this way, both memory and computational
complexities are constant in the duration t. We wish to have w as small as possible to minimize the algorithm's
memory complexity and computation complexity. However, w also cannot be too small to sacrifice performance.
Thus, the critical question is to decide the window length w—how much data needs to be remembered. We will see a
trade-off between the memory complexity with respect to the window length w and statistical performance in
Section 2.4.

The popularity of CUSUM in practice is probably due to that it achieves constant memory and computational
complexity (only use the current sample). Furthermore, its statistical performance is asymptotically optimal (which
we will specify more precisely later). However, this optimality of CUSUM requires precise knowledge of the pre-
change and post-change distributions, which is not robust to model misspecification. In improving the model's
robustness by relaxing such requirements (especially the assumption of known post-change distribution), the tradeoff
arises between computation and memory complexity versus statistical performance. For example in window-limited
GLR, the memory requirement is O wð Þ where the window length is directly related to the gap between the pre-change
distribution f 0 and ℱ1 to have good statistical performance. And the computation complexity, in general, is at least
O w2ð Þ per time unit.

Another direction in developing robust change-point detection procedures is to utilize distribution-free methods
and non-parametric statistics. Arguably, when the distributional models can be specified more or less reasonably, the
non-parametric models are not needed, and they may not be as good as the parametric change-point detection algo-
rithms. However, they gain robustness when the data distributions are not easy to specify using parametric models.
While the construction of the non-parametric detection statistics can be straightforward in many cases (such as the
kernel-based sequential change-point detection procedure Li et al. (2019)), the performance analysis is much harder
than the parametric cases due to a lack of handle through the probability density function in parametric distributional
models; the distribution of the non-parametric statistics can be unknown functional form. The asymptotic optimality is
also harder to analyze in the sense that a meaningful lower bound is unclear. There are several recent interesting works
in this area, and we discuss them in Sections 5 and 6.

In the following, we will describe several common procedures. The comparisons of the detecting statistics are sum-
marized in Figure 1 and Table 1.
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2.3 | Classic CUSUM procedure

The CUSUM procedure is derived based on likelihood ratios. For an assumed change-point location ν, the log-
likelihood ratio for the hypothesis H0 : x1,x2,…" f 0 versus the alternative hypothesis Hv : x1,…,xv!1 " f 0,xv,xvþ1…" f 1 is
given by

Xt

i¼v

log
f 1 xið Þ
f 0 xið Þ

! "

Since change-point ν is unknown, the detection statistic needs to consider the maximization of the above with
respect to all possible change-point locations. This gives rise to the following detection statistic for each time t

TCUSUM
t ¼ max

1≤ k≤ tþ1

Xt

i¼k

log
f 1 xið Þ
f 0 xið Þ

! "
: ð2Þ

Here when k¼ tþ1, we set the empty summation to 0. The CUSUM procedure computes the detection statistic for
each time t, stops the first time that the detection statistic exceeds a certain threshold b>0, and claims there has been a
change in the past:
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FIGURE 1 Illustration of the statistical performance, computational and memory efficiency, model robustness trade-off for the classic
procedures in sequential change detection. The color shows the assumption on post-change distribution.

TABLE 1 Comparisons of classic parametric change-point detection procedures.

Model robustness
Computation and memory
efficiency

Asymptotic
optimality

CUSUM/SR f 1 is known O 1ð Þ O 1ð Þ ✓

Adaptive CUSUM/SR Exponential family O 1ð Þ O 1ð Þ ✓

GLR Parametric ≥O tð Þ O tð Þ ✓

Window-limited GLR Parametric ≥O wð Þ O wð Þ ✓

Shewhart chart Can be nonparametric Varies O wð Þ O

Note: Model robust means whether the detection procedure requires an accurate post-change distribution as an input. Efficiency includes both computational
and memory requirements per time unit, and we say the procedure is efficient if both are a constant with respect to the duration t we monitor the process.
Asymptotic optimality is reached when the performance satisfies the theoretical lower bound given in Section 3.1, Theorem 1. Note that the Shewhart chart
contains a broad range of detecting procedures and can be based on either parametric or non-parametric statistics.
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τCUSUM bð Þ¼ inf t :TCUSUM
t > b

# $
: ð3Þ

The popularity of CUSUM is possibly due to the following recursive computation of the detection statistic. Let zi ¼
log f 1 xið Þ=f 0 xið Þð Þ be the increment in the log-likelihood ratio, i¼ 1,2,…, and St ¼

Pt
i¼1zi, 8t≥ 0. Then the CUSUM sta-

tistic has the following recursive expression because the partial sums starting from each potential change-point k shares
the same increment when updating from time step t to tþ1:

TCUSUM
tþ1 ¼ max

0≤ k≤ tþ1
Stþ1!Skð Þ¼ max ztþ1þmax0≤ k≤ t St!Skð Þ,0f g¼ max ztþ1þTCUSUM

t ,0
# $

, ð4Þ

with TCUSUM
0 ¼ 0. This convenient recursive CUSUM evaluation (4) means that we do not need to remember any data

and merely update the detection statistic every time we observe a new sample. More precisely, for each time slot, one
only needs to compute the new log-likelihood ratio increment zi and update the CUSUM statistic TCUSUM

t according to
(4). In other words, both the computation and memory complexity per update are constant for CUSUM.

Moreover, CUSUM's statistical performance enjoys asymptotic optimality (Lorden, 1971), which we will explain in
Section 3.1. It is exactly optimal shown later by (Moustakides, 1986). Largely speaking, for CUSUM to enjoy a good per-
formance, we need the property that the expected value of the increment term before the change happens is negative
(0 zt½ )<0), and positive after the change (1 zt½ )>0). This can be verified using Jensen's inequality (when the data dis-
tribution specifications are precise).

However, a known drawback of CUSUM is that it requires both the pre-change and post-change distributions to be
parametric and specified exactly, which can be too restrictive for real-world applications. When the true distribution
deviates from the assumed distributions, CUSUM is no longer optimal and suffers from performance loss depending on
the level of model misspecification. For modern data, especially high-dimensional data, having an exact specification of
data distribution is difficult, and performance degradation of CUSUM due to model mismatch becomes inevitable.

Multiple variants have been developed to make CUSUM more robust to unknown post-change distributions. One
possibility is to run multiple CUSUM procedures in parallel, each detecting against a different possible anomaly out-
come (Lorden & Eisenberger, 1973; Lucas, 1982; Tartakovsky, 2005; Xie & Siegmund, 2013). Another approach is to
consider the so-called adaptive CUSUM, to adaptively estimate the post-change distribution while running the CUSUM
recursion (Abbasi & Haq, 2019; Lorden & Pollak, 2005; Sparks, 2000; Xie et al., 2020). Uncertainties in the pre-change
distribution can be treated similarly (Krieger et al., 1999; Mei, 2006; Pollak & Siegmund, 1991); however, to the best of
our knowledge, there is yet a study regarding how to obtain recursive expression when the pre-change distribution is
unknown. A more detailed review of adaptive CUSUM and its recent progress can be found in Section 4.

2.4 | Other classic procedures

2.4.1 | Shiryaev–Roberts procedure

The SR procedure, similar to the CUSUM, is based on the log-likelihood ratio between the completely specified pre-
change and post-change distribution. It is first inspired by putting a prior on the change-point v and assuming it follows
a geometric distribution (Shiryaev, 1963). The SR procedure can now be seen as the resulting procedure when the geo-
metric mean goes to infinity. This is reflected in the detection statistic, where the SR procedure takes the summation
instead of the maximum over all the potential change-point k (as done in CUSUM),

TSR
t ¼

Xt

k¼1

Yt

i¼k

f 1 xið Þ
f 0 xið Þ

:

And the recursion (similar to CUSUM) is in the form of

TSR
tþ1 ¼ 1þTSR

t

% & f 1 xtþ1ð Þ
f 0 xtð Þ :
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The SR procedure is exactly optimal under the integral expected detection delay (Pollak & Tartakovsky, 2009) and
later Tartakovsky, Pollak, and Polunchenko (2012) proved that the SR procedure is third-order asymptotically optimal
following Pollak's (1985) definition of the EDD. They also compared different initial values of TSR

0 and discussed the
detection delay conditioned on the change-point k. See Polunchenko and Tartakovsky (2012) for a review on sequential
change-point detection with known pre- and post-change distributions.

2.4.2 | Generalized likelihood ratio procedure

The GLR procedure is adopted when the post-change distribution is unknown but still parametric. The test statistic
scan through the log-likelihood ratio over all the potential change-point k and for each assumed k and maximum likeli-
hood estimator of the post-change parameter is used in forming the likelihood ratio:

TGLR
t ¼ max

1≤ k≤ t
sup
θ � Θ1

Xt

i¼k

log
f 1 xi,θð Þ
f 0 xið Þ

! "
:

The GLR procedure is asymptotically optimal in its statistical performance and handles the problem of unknown
post-change distribution automatically by searching through all possible parameters in the feasible region. Lorden
(1971) proves the first-order asymptotic optimality for the GLR procedure with univariate exponential family, and later
Siegmund and Venkatraman (1995) provides a more precise characterization of the ARL on the problem of a mean shift
with known variance, which turns out to be very useful in analyzing modern change-point detection procedures as well.
We will review this method in Section 6. Unfortunately, in general, TGLR

tþ1 cannot be updated recursively from TGLR
t and

the computation and memory needed per update is often at least linear in t. An exception with univariate exponential
family can be found in Romano et al. (2023) where the complexity is reduced to O log tð Þ.

2.4.3 | Window-limited GLR

A more computationally efficient procedure than the above vanilla GLR is the window-limited GLR (Willsky &
Jones, 1976) developed by taking the maximum over all potential change-points within a sliding window of fixed
length w:

TWL-GLR
t ¼ max

t!w≤ k≤ t
sup
θ � Θ1

Xt

i¼k

log
f 1 xi,θð Þ
f 0 xið Þ

! "
:

At each time step, the computational and memory requirement of window-limited GLR is constant with respect to
t. It appears that by forgetting previous samples before time t!w, we may lose information. But it can be shown that
with a proper window length w, the window-limited GLR can still be asymptotically optimal (Lai & Shan, 1999); this
requirement is w≥ logγ=Dmin , where γ is the ARL and Dmin is the smallest KL-divergence between f 0 and potential f 1
we want to detect. Because the window-limited GLR still scans through all potential change points within the sliding
window, the computational cost scales with w; in general, it is reasonable to assume at least O wð Þ operations are needed
to find the supremum over θ�Θ1. There are w potential change points per update so the computation complexity
would be at least O w2ð Þ. When working with exponential family, however, the computation complexity is reduced to
O wð Þ because the partial sum

Pt
¼kxi is a sufficient statistic for computing the maximum likelihood ratio for each poten-

tial change point k.
Shewhart chart is one of the earliest sequential change-point procedures (Shewhart, 1925, 1931). Still, many recent

detecting procedures fall into this type due to its simplicity: an offline test can be converted into a sequential
change-point detection procedure easily by applying the test to a sliding window of samples. More precisely, the detec-
tion statistic Tt using a sliding window of fixed length w. For instance, the simplest example is by letting Tt be the aver-
age of the past w samples to detect a mean shift. If the problem is parametric, it can be the generalized likelihood ratio:
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TSH-GLR
t ¼ sup

θ � Θ1

Xt

i¼t!w

log
f 1 xi,θð Þ
f 0 xið Þ

! "
, ð5Þ

And again when dealing with exponential families, the above turns into an explicit function of the partial sumPt
i¼t!wxi. Another example of Shewhart chart is based on the score statistic (e.g., Chen et al. (2020)) utilizing the locally

most powerful score statistic,

TScore
t ¼ 1

2w
rT

θ

Xt

i¼t!w

log f 1 xi,θð Þ

 !

I!1 0ð Þrθ

Xt

i¼t!w

log f 1 xi,θð Þ

 !

,

where I 0ð Þ is the Fisher information Casella and Berger (2021) at θ¼ 0 and it can be pre-computed.
The score statistic can sometimes lead to simple detection statistics. Since we only consider the gradient of the likeli-

hood ratio at the single parameter value under the null hypothesis, sometimes this avoids solving optimization prob-
lems or matrix inversion. Similar to the window-limited GLR, the choice of the window length w depends on the
smallest change we are interested in detecting. To further simplify computation, one can replace computing the statistic
Tt at every time step with updating it every δ time unit for δ up to w.

We would like to emphasize that a distinction is that the Shewhart detection statistic, unlike CUSUM, does not scan
over all potential change-point locations. Because the Shewhart chart no longer scans over potential change points, its
statistical performance is not asymptotically optimal with respect to the ARL EDD metric (with the exception that if we
consider a different metric: maximizing the probability of detection [Moustakides, 2014; Pollak & Krieger, 2013]). It is
commonly believed that CUSUM is more statistically powerful for detecting small changes.

3 | STATISTICAL PERFORMANCE

We start by reviewing statistical performance analysis for change-point detection algorithms. The techniques used for
statistical performance analysis include renewal theory, Wald's identity, and change-of-measure techniques (see,
e.g., Lai, 1998; Lorden, 1971; Lorden & Eisenberger, 1973; Page, 1954; Pollak, 1985; Siegmund, 1985; a recent survey in
quickest change-point detection can be found in Xie et al. (2021)). We review such techniques because they are still use-
ful for analyzing new change-point detection procedures (Tartakovsky, 2019).

3.1 | Standard performance metrics: ARL and EDD

The performance of a change-point detection procedure with stopping time τ can be evaluated by the average stopping
time after a change with a false alarm constraint. Let Pv,v be the probability measure and expectation given time of
change v¼ 1,… (with ν¼∞ denoting no change).

Consider the following problem. We would like to find a detection procedure that can minimize the worst-case
expected detection delay (Pollak, 1985):

EDD τð Þ≔ sup
v≥ 1

v τ! vþ1jτ≥ v½ ), ð6Þ

subject to average run length

ARL τð Þ≔0 τ½ )≥ γ ð7Þ

for some large constant γ>0. (Note that there are other definitions of the worst-case detection delay, such as that in
Lorden (1971), which we do not consider here.) The theoretical lower-bound of the EDD has related to the Kullback–
Leibler (KL) divergence between the post-change and pre-change distributions:

8 of 22 WANG and XIE
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D f 1kf 0ð Þ¼1 log f 1 xð Þ=f 0 xð Þð Þ½ ):

Theorem 1. Lower bound for EDD (Lai, 1998; Pollak, 1985).

inf
τ:ARL τð Þ≥ γ

EDD τð Þ≥ logγ
D f 1kf 0ð Þ

1þo 1ð Þð Þ,

as γ!∞.
It can be shown that the CUSUM procedure satisfies

ARL τCUSUM bð Þ
% &

¼Θ eb
% &

, EDD τCUSUM bð Þ
% &

¼ b
D f 1kf 0ð Þ

1þo 1ð Þð Þ, ð8Þ

as the threshold b!∞, and hence it is asymptotically optimal; here, Θ is the big-theta notation. In the next
subsection, we provide the analysis leading to (8) for the basic i.i.d. setup. For non-i.i.d. data, (8) still holds when
the average log-likelihood ratio between P0 and Pv converges to some constant in probability as t!∞
(Lai, 1998).

3.2 | Analysis via renewal theory and Wald's identity

Now we demonstrate the analysis of the ARL and EDD approximation (8) for the CUSUM procedure when the data are
i.i.d. By the recursive rule (4), TCUSUM

t

% &
t≥ 1 in CUSUM can be viewed as a random walk. Each time the random walk is

increased by log f 1 xtð Þ=f 0 xtð Þð Þ, with the exception that if the path steps below 0, there is a renewal and the path is reset
to 0. The random walk ends the first time when the path exceeds the threshold b.

To analyze the EDD of CUSUM procedure τCUSUM bð Þ for i.i.d. data, first, we have the following fact that greatly sim-
plifies EDD's computation. For any b≥ 0, for CUSUM procedure τCUSUM bð Þ (which is abbreviated as τ in the informal
proof to simplify notation)

sup
v≥ 1

v τ! vþ1jτ≥ v½ ) ¼1 τ½ ): ð9Þ

Proof. (Informal) We first show that for any v≥ 1,

v τ! vþ1jτ≥ v½ )≤1 τ½ ):

Thus, the conditional expectation of detection delay in EDD's definition (6) reaches its supremum at v¼ 1.
Conditioned on τ≥ v and TCUSUM

v!1 , τ is decided by the random walk starting from TCUSUM
v!1 ≥ 0 with increments

zv,zvþ1,zvþ2,…, which are function values of i.i.d. random variables xv,xvþ1,…, " f 1. By the independence between
samples, the increments zv,zvþ1,…, are independent of TCUSUM

v!1 and the event τ≥ v. For every v≥ 2 and s≥ 0, there
must be

v τ! vþ1jτ≥ v,TCUSUM
v!1 ¼ s

' (
≤v τ! vþ1jτ≥ v,TCUSUM

v!1 ¼ 0
' (

because the random walk with renewal must be at least as large as if it starts from TCUSUM
v!1 ¼ 0, and hence stops earlier.

Also note that the random walk TCUSUM
v!1þt

% &
t≥ 0 conditioned on TCUSUM

v!1 ¼ 0 under Pv is identically distributed with
TCUSUM
t

% &
t≥ 0 starting from TCUSUM

0 ¼ 0 under P1, so their expected stopping time should be the same, which gives
v τ! vþ1jτ≥ v,TCUSUM

v!1 ¼ 0
' (

¼1 τ½ ): Then

WANG and XIE 9 of 22
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v τ! vþ1jτ≥ v½ ) ¼v v τ! vþ1jτ≥ v,TCUSUM
v!1

' (
jτ≥ v

' (
≤v τ! vþ1jτ≥ v,TCUSUM

v!1 ¼ 0
' (

¼1 τ½ ):

Now with (9), we can compute the EDD using renewal properties under P1. Let N1 be the first time the random
walk TCUSUM

t

% &
t≥ 1 falls out of the interval 0,bð Þ. If TCUSUM

N1
≥ b, the random walk stops, otherwise there is a renewal,

and TCUSUM
N1

is reset to be 0. We can continue and define N2,N3,… to be the time the renewed random walk

TCUSUM
N1þt

) *

t≥ 1
first falls out of 0,bð Þ, until finally for some M, TCUSUM

N1þ…þNM
≥ b. Since the increments zt, t¼ 1,2,… are i.i.d.,

so are the random walks after renewal. This means N1,N2,… are i.i.d, and the conditional probability
P1 M¼mjM ≥mð Þ is a constant with respect to m. So M follows a geometric distribution with expectation 1=P1 M¼ 1ð Þ.
Then we need Wald's identity on the expectation of summation of random variables with a stopping time.

Theorem 2. (Wald's identity) For i.i.d. random variables X1,X2, ' ' ' and a stopping time τ, if
 X1½ ), τ½ )<∞, then


Xτ

i¼1

Xi

" #

¼ X1½ ) τ½ ):

By the Wald's identity,

1 τCUSUM bð Þ
' (

¼1

XM

i¼1

Ni

" #

¼1 N1½ )1 M½ ) ¼1 N1½ )=P1 M¼ 1ð Þ: ð10Þ

For the ARL, the same argument applies with the probability measure P0 and

0 τCUSUM bð Þ
' (

¼0 N1½ )=P0 M¼ 1ð Þ: ð11Þ

Now we have established that the ARL equals to 0 N1½ )=P0 M¼ 1ð Þ and the EDD equals to
1 N1½ )=P1 M¼ 1ð Þ. Next, we analyze these values using martingale properties. Let Stð Þt≥ 0 be the random walk
with increments z1,z2,… without renewal, that is, St ¼

Pt
i¼1zi, 8t≥ 0. Let the stopping time

N ¼N1 ¼ min t≥ 1 : St =2 0,bð Þf g:

3.2.1 | Ladder variables

For now, the increments zi can be either positive or negative. To connect with the renewal theorem, we introduce the
ladder variable zþ, which is the value when Stð Þt≥ 0 first hits the positive axis, and let

τþ ¼ inf t : St >0f g:

By the law of large numbers, since 1 z1½ )>0, τþ must be finite under P1. So zþ ¼ Sτþ is well defined under P1. We
also define two other stopping times for later use.

τb ¼ inf t : St ≥ bf g,τ! ¼ inf t : St <0f g:

As we will see later, the value of interest is the overshoot Sτb !b under P1, and it suffices to consider only the distri-
bution of zþ. This is because Stð Þ0≤ t≤ τb can break down into several pieces, each ending when the random walk reaches
a new highest. Therefore, Sτb can be expressed as the sum of i.i.d. copies of zþ.

10 of 22 WANG and XIE
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3.2.2 | Approximating ARL

For i¼ 0, exp Stð Þð ÞNt¼0 is a martingale under P0 because for every 0≤ t<N ,

0 exp Stþ1ð Þjexp Stð Þ½ ) ¼ exp Stð Þ0 f 1 xtþ1ð Þ=f 0 xtþ1ð Þ½ ) ¼ exp Stð Þ:

By Doob's Martingale inequality,

P0 SN ≥ bð Þ¼P0 exp SNð Þ≥ eb
% &

≤
0 exp S0ð Þ½ )

eb
¼ e!b: ð12Þ

And obviously N ≥ 1, so

ARL τCUSUM bð Þ
% &

¼0 N½ )=P0 SN ≥ bð Þ≥ eb: ð13Þ

To better approximate the ARL and improve the multiplicative constant, first, we look at 0 N½ ). As b!∞, N ! τ!
and 0 N½ )!0 τ!½ ) because of the monotone convergence theorem. The divider in (11) can be evaluated using a
change-of-measure trick,

P0 SN ≥ bð Þ¼0 1 SN ≥ bf g½ ) ¼1 exp !SNð Þ1 SN ≥ bf g½ ) ¼ e!b1 exp ! SN !bð Þð Þ1 SN ≥ bf g½ ), ð14Þ

where 1 'f g is the indicator function of an event. The second equality is due to the fact that exp !SNð Þ is the likelihood
ratio between P0 and P1. We use the renewal theorem to estimate the right-hand side of (14).

Theorem 3. (Renewal theorem) (Siegmund, 1985, chapter 8) For any y≥ 0,

lim
b!∞

P1 Sτb !b> yð Þ¼1 zþ½ )!1
Z ∞

y
P1 zþ > xð Þdx:

This result specifies the asymptotic tail distribution of the “over-shoot” term as b!∞, useful in deriving
many properties of the stopping time. Then the right hand side of (14) can be approximated using

1 exp ! SN !bð Þð Þ1 SN ≥ bf g½ ) ¼P1 SN ≥ bð Þ1 exp ! SN !bð Þð ÞjSN ≥ b½ )≈P1 SN ≥ bð Þ1 exp ! Sτb !bð Þð Þ½ )

as done in Lorden and Eisenberger (1973). When b!∞, P1 SN ≥ bð Þ!P1 τ! ¼∞ð Þ, and

1 exp ! Sτb !bð Þð Þ½ )!1 zþ½ )!1 1!1 exp !zþð Þ½ )ð Þ

as a result of the renewal theorem above. So putting the results above together, we have

ARL τCUSUM bð Þ
% &

≈
0 τ!½ )1 zþ½ )

P1 τ! ¼∞ð Þ 1!1 exp !zþð Þ½ )ð Þ
eb:

3.2.3 | Approximating EDD

Since St!D f 1kf 0ð Þtð Þt≥ 0 is a martingale under P1, by the optional stopping theorem,

1 Sτb !D f 1kf 0ð Þτb½ ) ¼ 0,

and 1 τb½ ) ¼ bþ1 SτCUSUM !b½ )ð Þ=D f 1kf 0ð Þ. Note that St ≥T for any t, so CUSUM must stop no later than τb,

WANG and XIE 11 of 22
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EDD τCUSUM bð Þ
% &

≤1 τb½ ) ¼ bþ1 Sτb !b½ )
D f 1kf 0ð Þ

,

where as a result of Theorem 3,

lim
b!∞

1 Sτb !b½ ) ¼ lim
b!∞

Z ∞

0
P1 Sτb !b> yð Þdy¼

Z ∞

0
lim
b!∞

P1 Sτb !b> yð Þdy

¼ 1 zþ½ )!1
Z ∞

0

Z ∞

y
P1 zþ > xð Þdxdy¼1 zþ½ )!1

Z ∞

0
xP1 zþ > xð Þdx

¼ 1 zþð Þ2
h i

=21 zþ½ ):

Here we assume we can change the order of taking limit and integral but this is not an issue using a more complete
version of the renewal theorem. For details, we refer to Siegmund (1985).

For the stopping time N1, similarly, there is 1 SN !D f 1kf 0ð ÞN½ ) ¼ 0, and

1 N½ ) ¼ 1 SN½ )
D f 1kf 0ð Þ

≥
1 SN1 SN ≥ bf g½ )

D f 1kf 0ð Þ
≥
P1 SN ≥ bð Þb
D f 1kf 0ð Þ

,

with (10), together there is

b
D f 1kf 0ð Þ

≤EDD τCUSUM bð Þ
% &

≤
bþ1 zþð Þ2

h i
=21 zþ½ )þo 1ð Þ

D f 1kf 0ð Þ
:

4 | ADAPTIVE CUSUM

When the post-change distribution belongs to some family parametrized by θ�Θ1, adaptive CUSUM provides another
framework other than GLR. At each time slot, the statistic Tt is computed using the CUSUM recursive rule (4), where
the increment zt is the log-likelihood ratio log f 1 xt,bθ

) *
=f 0 xtð Þ

) *
for some estimator bθt . Such method first appears in

sequential hypothesis testing where the alternative hypothesis is composite, and a non-anticipating estimator replaces
the simple alternative distribution in the sequential likelihood ratio test (Pavlov, 1991; Robbins & Siegmund, 1972,
1974). Tartakovsky (2014) compared the adaptive likelihood ratio with the generalized likelihood ratio type-of method,
and found the former more convenient in controlling the probability of false alarm. In change-point detection, the key
difference between adaptive CUSUM and (even Shewhart-chart type of) GLR is that while both search for the most
probable post-change parameter bθt, GLR estimates the post-change parameter and finds evidence for the change in the
same window, and adaptive CUSUM do these separately. It turns out that we need fewer observations to estimate
the post-change parameters than to find evidence, and this can be one reason why adaptive CUSUM outperforms GLR
in computational aspects.

An earlier work we found that uses adaptive CUSUM is (Sparks, 2000), which considers the case where the
change-point causes a mean shift with an unknown scale. They proposed to estimate the shifted mean bθt
using the exponentially weighted moving average (EWMA) and update the CUSUM statistic using the new sample xt
and bθt as the targeted change. Then the estimated change is updated using bθtþ1 ¼ αxtþ 1!αð Þbθt for some α� 0,1ð Þ.
Following the same spirit, Cao et al. (2018) propose to update the estimate bθt using online convex optimization
algorithms to manage exponential families while the estimated change bθt remains to be computed recursively. More
recently, Xie et al. (2022) studied a window-limited CUSUM which can be applied to general distribution families of
parametric forms. This procedure estimates the bθt in a sliding window of length w, and the statistic is given by the
recursion

12 of 22 WANG and XIE
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TWL-CUSUM
tþ1 ¼ max TWL-CUSUM

t þ log
f 1 xtþ1,bθ

w
tþ1

) *

f 0 xtþ1ð Þ
,0

8
<

:

9
=

;, ð15Þ

where bθ
w
t is a consistent estimator (e.g., the maximum likelihood estimator) of θ using a sliding window of past w sam-

ples: xt!w,…,xt!1. Unlike the window-limited GLR where w"Θ logγð Þ needs to be in the same order with EDD (or the
threshold b) to collect enough information to detect a change, the window-limited CUSUM has smaller memory
requirement w"Θ

ffiffiffiffiffiffiffiffiffi
logγ

p% &
, possibly explained by the fact that in window-limited CUSUM we only need enough sam-

ples to obtain a reasonably good estimate of bθt. The optimal window length is explained by the following upper bound
on the EDD, and with this window length window-limited CUSUM is asymptotically optimal in its statistical
performance:

Theorem 4. (EDD of window-limited CUSUM) (Xie et al., 2022)

EDD≤
bþbJ0=bD f 1,θkf 0

% &
þ bbJ0=bD f 1,θkf 0

% &) *1=2
þwD f 1,θkf 0

% &
þ D f 1kf 0ð ÞwbJ0=bD f 1,θkf 0

% &) *1=2

bD f 1,θkf 0
% & ,

where D f 1,θkf 0
% &

is the KL-divergence and J0 the second-order moment of the log-likelihood between the (true)
post-change and pre-change distribution,

D f 1,θkf 0
% &

¼1,θ log
f 1 x1,θð Þ
f 0 x1ð Þ

, -
,J0 ¼1,θ log2 f 1 x1,θð Þ

f 0 x1ð Þ

, -
,

bD f 1,θkf 0
% &

,bJ0 is defined similarly with true parameter θ replaced by the estimator,

bD f 1,θkf 0
% &

¼1,θ log
f 1 xt ,bθt
% &

f 0 xtð Þ

, -
¼D f 1,θkf 0

% &
þO 1=wð Þ,bJ0 ¼1,θ log2 f 1 xt ,bθt

% &

f 0 xtð Þ

, -
¼ J0þO 1=wð Þ, fort≥wþ1:

The computation complexity of this window-limited CUSUM depends on the parametric family and the optimiza-
tion method to obtain the estimator bθt . For the exponential family, bθt can be updated recursively in O 1ð Þ time from bθt!1

and for the general parametric family, this depends on the precision we want in solving optimization and the computa-
tion complexity may scale with window length w. Apart from this, the statistic TWL-CUSUM

tþ1 can be updated in O 1ð Þ time
using the usual CUSUM recursion. Either way, it has better computation complexity than window-limited GLR because
the latter one still needs to search for all possible change points within the much bigger sliding window.

5 | E-DETECTORS: NONPARAMETRIC CHANGE-POINT DETECTION

Recently, Shin et al. (2022) discuss a general framework based on the CUSUM procedure, which can be applied to non-
parametric and composite pre- and post-change distribution families ℱ0 and ℱ1, named E-detectors. A ℱ0-E-detector is
defined as a non-negative process Mtð Þt≥ 0 such that

f ,0 Mτ½ )≤f ,0 τ½ ), 8f �ℱ0,8τ� T ,

where f ,0 is the expectation when the pre-change distribution is f with no change-point, and T is the set of finite stop-
ping times. It is easily seen by the optional stopping theorem that if Mt! tð Þt≥ 0 is a super-martingale under all probabil-
ity measure in ℱ0, then Mtð Þt≥ 0 must be an ℱ0-E-detector. Let the stopping time

τE bð Þ¼ min t :Mt ≥ exp bð Þf g:

Then the ARL is lower bounded by

WANG and XIE 13 of 22
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f 0,0 τE bð Þ
' (

≥f 0,0 MτE bð Þ
' (

≥ exp bð Þ: ð16Þ

The classic CUSUM and SR procedures all satisfy the definition of E-detectors, and (16) provides a fast and easy
way to lower bound the ARL, which is good enough for showing the asymptotic optimality of the procedure.

For the CUSUM procedure, the final E-detector used for detecting an unknown anomaly is a mixture of baseline
E-detectors. Each baseline E-detector is constructed via E-processes M kð Þ

t

) *

t≥ 0
, k¼ 1,2,3,…, which are generalizations

of the likelihood ratio. Each E-process is responsible for detecting a change point at k. An example of the most basic
setup described in Section 2 is

M kð Þ
t ¼

Qt
i¼k

f 1 xið Þ
f 0 xið Þ

t≥ k,

1 1≤ t< k:

8
<

: ð17Þ

In the non-parametric setup, the baseline E-process is in the form of

M kð Þ
t ¼

Qt
i¼kLi t≥ k,

1 1≤ t< k,

(

ð18Þ

where the multiplicative increments Li are non-negative and shared between all k to keep the recursive rule (4). Li also
satisfies for any f 0 �ℱ0, f 0 Lijx1,…,xi!1½ )≤ 1: So the E-process M kð Þ

t

) *

t≥ 0
is a non-negative super-martingale under the

null hypothesis. An example of the multiplicative increments Li is by leveraging the concentration inequalities used to
quantify the uncertainties in the (non-parametric) pre-change distribution f 0 (e.g., Howard et al. (2020)), which is in
the form of

f 0 exp λs xið Þ!φ λð Þν xið Þð Þjx1,…,xi!1½ )≤ 1, 8λ�Λ

for some known real function s, continuously differentiable convex function φ and non-negative function ν. Then the
multiplicative increment is

Li λð Þ¼ exp λs xið Þ!φ λð Þν xið Þð Þ, ð19Þ

and the baseline E-detector is

Mt λð Þ¼ max
1≤ k≤ t

M kð Þ
t λð Þ, t¼ 0,1,2,…, ð20Þ

where λ remains to be chosen to optimize the EDD. To account for the unknown post-change distribution, a mixture of
baseline E-detectors

Mt ¼
XK

i¼1

ωiMt λið Þ,
XK

i¼1

ωi ¼ 1

can be taken so that the EDD for the worst possible anomaly will be small. Since the set of E-detectors is closed under
convex operations, the mixture will still be an E-detector, and the ARL is controlled by (16). Let 1,f 1 ,1,f 1 represent the
expectation and variance when the change starts with the first sample and the post-change distribution is f 1. Let

L λð Þ
1

) *

λ � Λ
be the set of all possible baseline increments in an E-process, and λ* be the parameter maximizing

1,f 1 logL λð Þ
1

h i
. Let D f 1kℱ0ð Þ¼1,f 1 logL λ*ð Þ

1

h i
be the divergence between f 1 and ℱ0. Let ΔU ,ΔL be the upper and lower
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bound of the gap 1,f 1 s x1ð Þ½ )=1,f 1 ν x1ð Þ½ ) between ℱ0 and all possible f 1, and let φ* be the convex conjugate of φ: For
i.i.d. data and a properly chosen mixture, the EDD is upper bounded by the following.

Theorem 5. (EDD of a proper mixture) (Shin et al., 2022, theorem 4.3) For every f 1 �ℱ1,

EDD τE bð Þ
% &

≤
gb

D f 1kℱ0ð Þ
þ
1,f 1 logL λ*ð Þ

1

) *

D f 1kℱ0ð Þ2
þ1,

where

gb ¼ inf
η>1

η bþ log 1þ log η
φ* ΔUð Þ
φ* ΔLð Þ

. /! "! "
,

given that there are sufficiently many baseline E-detectors in the mixture.

The first inequality is based on results in Lorden (1970). Note that D f 1kℱ0ð Þ is no longer the KL divergence, as there
are no probability density functions. It is instead related to the construction of the set of baseline increments, in this
case, the functions s,v,φ in (19) and Λ the set of possible λ. So are the gap bounds ΔU ,ΔL. Here D f 1kℱ0ð Þ will be
smaller than the KL divergence between the true f 0 and the true f 1, thus this procedure is not asymptotically optimal
in the sense of Theorem 1. We believe no non-parametric methods can match this theoretical lower bound on EDD, as
a cost of admitting better model robustness.

The computation and memory complexity is constant for each baseline E-detector, the same as the classic CUSUM
procedure. The number of baseline E-detectors depends on the threshold b for ARL control and the size of the gap
between ℱ0 and ℱ1. For details, we refer to Shin et al. (2022).

6 | DISTRIBUTION-FREE CHANGE-POINT DETECTION PROCEDURES

Like has mentioned above, to our knowledge, existing distribution-free change-point detection procedures largely fol-
low a similar strategy based on the Shewhart chart: scanning through different blocks of the data and finding the statis-
tics Ttf gt≥ 0 where a higher value suggests the distributions of the two blocks are different. Then the procedure declares
a change-point when Tt > b for some t. Such methods replace the log-likelihood ratio used in a parametric setup with
alternative divergence, for example, the maximum mean discrepancy (MMD) (Li et al., 2019; Song & Chen, 2022),
kernel-based Fisher discriminant ratio (Harchaoui et al., 2008), similarity graphs (Chen & Zhang, 2015; Chu &
Chen, 2019), marginal ranking (Lung-Yut-Fong et al., 2015), interpoint distance (Matteson & James, 2014) to remove
the strong assumption of known distribution family. Typically theoretical analysis for such procedures can be more
challenging because of the lack of a handle through the likelihood ratio. Here we review a technique based on change-
of-measure that can approximate the probability of extremely rare events leading to the ARL. We start from the analysis
under the parametric setup (Section 6.1) and discuss its generalization to distribution-free change-point detection in
Section 6.2. The complete and rigorous version is given in Yakir (2013). The EDD analysis remains an open question.

6.1 | ARL analysis via change-of-measure for extreme of random fields

In this section, we review the ARL analysis of the GLR in Siegmund and Venkatraman (1995). In this setup, the pre-
change distribution f 0 "N 0,1ð Þ and the post-change distribution f 1 "N θ,1ð Þ where θ is unknown. The (window-lim-
ited) GLR statistic is in the form of

TGLR
t ¼ max

min t!w,1f g≤ k≤ t

Pt

i¼k
xi

! "2

2 t!kþ1ð Þ
,
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where for GLR, we use w¼∞; note that the maximum over θ part is absorbed into the equation using a plug-in maxi-
mum likelihood estimator.

For each t,kð Þ, we denote by Zt,k ¼
Pt

i¼kxi
% &

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t!kþ1

p
and each follows N 0,1ð Þ under the null distribution. This

kind of analysis can be generalized to setups where the log-likelihood ratios do not follow Gaussian distribution and
have a possibly continuous-valued index θ. Recall that a general change-point detection procedure is defined as the first
time the detecting statistic exceeds threshold b, and in this case, we consider the one-sided stopping rule

τGLR ¼ inf t : max
min t!w,1f g≤ k≤ t

Zt,k ≥
ffiffiffiffiffi
2b

p0 1
:

6.1.1 | Poisson approximation

By examining the correlation between the Zt,ks, it can be proved that τGLR asymptotically follows exponential distribu-
tion (Siegmund & Venkatraman, 1995; Yakir, 2013). Next we want to find out the mean by calculating P0 τGLR ≤mð Þ
for logb< <m< < b!1=2eb,

P0 τGLR ≤m
% &

¼P0 max min t!w,1f g≤ k≤ t≤mZt,k ≥
ffiffiffiffiffi
2b

p) *
: ð21Þ

And there would be ARL τGLRð Þ"m=P0 τGLR ≤mð Þ, where the symbol " means the ratio between the two sides con-
verges to 1.

Decomposition on the local field of each t,kð Þ. Note that the random field Zt,kf g is highly correlated because it is
computed using highly overlapping data segments. For convenience, we denote the set of all possible t,kð Þ by Sm,w ¼
t,kð Þ�ℕ2 : min t!w,1f g≤ k≤ t≤m

# $
and the event max t,kð Þ � Sm,wZt,k ≥

ffiffiffiffiffi
2b

p# $
by Am,w. To analyze the tail probability

on the right-hand-side of (21), we decompose it as the sum of the probability Zt,k ≥
ffiffiffiffiffi
2b

p
for each t,kð Þ� Sm,k while also

take into account their correlation. Let 1 be the indicator function. For any function g :ℝ!ℝ,

P0 max t,kð Þ � Sm,wZt,k ≥
ffiffiffiffiffi
2b

p) *

¼ 0

P
t,kð Þ � Sm,w

exp g Zt,kð Þð Þ
P

t0,k0ð Þ � Sm,w
exp g Zt0,k0

% &% &1 Am,wf g

" #

¼
X

t,kð Þ � Sm,w

0
exp g Zt,kð Þð ÞP

t0,k0ð Þ � Sm,w
exp g Zt0,k0

% &% &1 Am,wf g

" #

6.1.2 | Exponential tilting and change-of-measure

We use a change-of-measure technique similar to that has been used in Section 3, Equation (14) so that under the
new probability measure, Zt,k ≥

ffiffiffiffiffi
2b

p# $
happens with a much higher rate. In this setup for each t,kð Þ we change to the

measure Pt,k and its expectation t,k, under which xk,xkþ1,…,xt "N
ffiffiffiffiffi
2b

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t!kþ1

p
,1

% &
while the rest of the samples

still follow N 0,1ð Þ. So now Zt,k "N
ffiffiffiffiffi
2b

p
,1

% &
under Pt,k, and the event Am,w happens with high probability. Let g Zt,kð Þ¼ffiffiffiffiffi

2b
p

Zt,k!b be the log-likelihood ratio between Pt,k and P0. When Zt,k is not normally distributed, exponential tilting is
done by letting g zð Þ¼ γz!φ γð Þ, where φ is the log moment generating function of Zt,k under the null distribution. Then
0 exp g Zt,kð Þð Þ½ ) ¼ 1 and it can be regarded as the likelihood ratio between P0 and some distribution Pt,k. By choosing a
proper γ such that t,k Zt,k½ ) equals to the threshold b, Am,w happens with high probability.

P0 max t,kð Þ � Sm,wZt,k ≥
ffiffiffiffiffi
2b

p) *

¼
X

t,kð Þ � Sm,w
t,k

1
P

t0,k0ð Þ � Sm,w
exp

ffiffiffiffiffi
2b

p
Zt0,k0 !b

% &1 Am,wf g

" #

:
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Next step, we decompose the expectation into a local and a global term which are “asymptotically independent,”
the meaning of which will be explained later.

X

t,kð Þ � Sm,w

t,k
1

P
t0,k0ð Þ � Sm,w

exp
ffiffiffiffiffi
2b

p
Zt0,k0 !b

% &1 Am,wf g

" #

¼
X

t,kð Þ � Sm,w

t,k

max t0,k0ð Þ � Sm,w
exp

ffiffiffiffiffi
2b

p
Zt0,k0 !Zt,k
% &) *

P
t0,k0ð Þ � Sm,w

exp
ffiffiffiffiffi
2b

p
Zt0,k0 !Zt,k
% &% & exp !max t0,k0ð Þ � Sm,w

ffiffiffiffiffi
2b

p
Zt0,k0 !b

) *) *
1 Am,wf g

2

4

3

5:

For convenience, let

St,k ¼
X

t0,k0ð Þ � Sm,w

exp
ffiffiffiffiffi
2b

p
Zt0,k0 !Zt,k
% &) *

, Mt,k ¼ max t0,k0ð Þ � Sm,w
exp

ffiffiffiffiffi
2b

p
Zt0,k0 !Zt,k
% &) *

:

Now after replacing certain terms with St,k and Mt,k,

P Am,wð Þ¼
X

t,kð Þ � Sm,w

t,k
Mt,k

St,k
exp ! logMt,kþ

ffiffiffiffiffi
2b

p
Zt,k!b

) *) *
1 logMt,kþ

ffiffiffiffiffi
2b

p
Zt,k!b≥ b

n o, -
: ð22Þ

Next we discuss the expectation as

b!∞, t!k!∞,and b= t!kþ1ð Þ! cfor some constant c: ð23Þ

6.1.3 | The local term

The first term Mt,k=St,k in (22) for every t,kð Þ� Sm,w, or the tuple Mt,k,St,kð Þ, is a local random variable meaning it can
be well approximated with high probability using values in the random field Zt0,k0

% &
t0,k0ð Þ � Sm,w

which index is constantly
close to t,kð Þ. And Mt,k,St,kð Þ converge in distribution to some local random variables which we will define later. Since
it is a Gaussian random field with mean 0 under P0, the local properties are decided by the covariance under the asymp-
totic regime (23). For fixed i, j, i0, j0 �ℤ, it can be verified that

Cov0 Ztþi,k!j,Ztþi0,k!j0
' (

¼ 1! c
2b

j i! i0 j! c
2b

j j! j0 jþo b!1% &
: ð24Þ

And consequently,

t,k

ffiffiffiffiffi
2b

p
Ztþi,k!j!Zt,k
% &h i

¼!c j i j!c j j jþo 1ð Þ,

Covt,k
ffiffiffiffiffi
2b

p
Ztþi,k!j!Zt,k
% &

,
ffiffiffiffiffi
2b

p
Ztþi0,k!j0 !Zt,k
% &h i

¼ 2c1 ii0 >0f gmin jij, ji0jf gþ2c1 jj0 >0f gmin jjj, jj0jf g:

The local random field
ffiffiffiffiffi
2b

p
Ztþi,k!j!Zt,k
% &# $

i,j under Pt,k converge in distribution to

YiþY 0
j

n o

i,j
, ð25Þ

where Yif gi � ℤ is a two-sided Gaussian random walk with a negative drift c and variance 2c, that is,
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 Yi½ ) ¼!c j i j , Cov Yi,Yi0½ ) ¼ 2c1 ii0 >0f gmin jij, ji0jf g:

Y 0
j

n o

j � ℤ
is an i.i.d. copy of Yif gi � ℤ. Let

ℳc ¼ max
i � ℤ

exp Yið Þ, Sc ¼
X

i � ℤ

exp Yið Þ,

The expectation  ℳc=Sc½ ) is called the Mill's ratio (see chapter 2.2 in Yakir (2013)) and it has the following form.

 ℳc=Sc½ ) ¼ cν
ffiffiffiffiffi
2c

p) *
, ð26Þ

where the special function

ν xð Þ¼ 2x!2 exp !2
X∞

i¼1

i!1Φ !xi1=2=2
) * !

,

is closely related to the Laplace transform of the overshoot over the boundary of a random walk. A numerical approxi-
mation to the Mill's ratio is

ν xð Þ≈ 2=xð Þ Φ x=2ð Þ!0:5ð Þ
x=2ð ÞΦ x=2ð Þþϕ x=2ð Þ ,

here ϕ,Φ is the p.d.f. and c.d.f. of the standard normal distribution.
Back to the GLR analysis, it can be shown that Mt,k,St,kð Þ converge in distribution to ℳcℳ0

c,ScS0
c

% &
where ℳ0

c,S
0
c

% &

is an i.i.d. copy of ℳc,Scð Þ. This is because our local random field is two-dimensional and asymptotically we can break
it down using (25) into the sum of two independent Gaussian random walks. Using the Mill's ratio, the expectation
t,k Mt,k=St,k½ ) over the two-dimensional random field is

t,k Mt,k=St,k½ )! ℳc=Sc½ )2 ¼ c2ν2
ffiffiffiffiffi
2c

p) *
:

6.1.4 | The global term

The second term exp ! logMt,kþ
ffiffiffiffiffi
2b

p
Zt,k!b

% &% &
1 logMt,kþ

ffiffiffiffiffi
2b

p
Zt,k!b≥ b

# $
in (22) for every t,kð Þ� Sm,w is considered

a global one because asymptotically it is not relevant with the constantly many observations around time t and k, but
only those in between. Under the asymptotic regime (23),

ffiffiffiffiffi
2b

p
Zt,k!b"N b,2bð Þ but the distribution of Mt,k converge

to ℳcℳ0
c which does not scale with b. It can be shown that the distribution of logMt,kþ

ffiffiffiffiffi
2b

p
Zt,k!b together is domi-

nated by
ffiffiffiffiffi
2b

p
Zt,k!b and it is so close to N b,2bð Þ that for each t,kð Þ in (22) the global term can be treated as such and

is “independent” of the local term. And the expectation of the global term converges to

t,k exp !
ffiffiffiffiffi
2b

p
Zt,k!b

) *) *
1

ffiffiffiffiffi
2b

p
Zt,k!b≥ b

n oh i
!
Z ∞

b

1ffiffiffiffiffiffiffiffi
4πb

p exp !xð Þdx¼ e!b=
ffiffiffiffiffiffiffiffi
4πb

p

because the probability density function of
ffiffiffiffiffi
2b

p
Zt,k!b is almost always 1=

ffiffiffiffiffiffiffiffi
4πb

p
around b.

Together, we know that asymptotically the expectation in (22) is

t,k
Mt,k

St,k
exp ! logMt,kþ

ffiffiffiffiffi
2b

p
Zt,k!b

) *) *
1 logMt,kþ

ffiffiffiffiffi
2b

p
Zt,k!b≥ b

n o, -
" e!b

ffiffiffiffiffiffiffiffi
4πb

p c2ν2
ffiffiffiffiffi
2c

p) *
: ð27Þ
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6.1.5 | The ARL

After checking several good conditions on t,k '½ ) (e.g., uniform integrability), we can now calculate the probability
P Am,wð Þ by substituting the summation with integral. Assume as b!∞, the window length w satisfies b=w!C,
and m> >w,

P Am,wð Þ" e!b
ffiffiffiffiffiffiffiffi
4πb

p
X

t,kð Þ � Sm,w

 ℳb= t!kþ1ð Þ=Sb=t!kþ1
' (2

" e!b
ffiffiffiffiffiffiffiffi
4πb

p b
Z C!1

0
m ℳx!1=Sx!1½ )2dx,

where we take x¼ t!kþ1ð Þ=b when changing to integral. By Poisson approximation,

ARL τGLR
% &

"
ffiffiffiffiffi
4π

p
b!0:5eb

Z C!1

0
x!2ν2

ffiffiffiffiffiffiffiffi
2=x

p) *
dx

 !!1

:

6.2 | Scan statistic via kernel-based MMD

In (Li et al., 2019), the authors propose to use the unbiased kernel-based maximum mean divergence (MMD) statistic to
measure the difference between two blocks of samples. For X ¼ x1,x2,…,xnf g and Y ¼ y1,y2,…,ynf g, the unbiased
MMD is

MMD X ,Yð Þ¼ 1
n n!1ð Þ

X

i≠ j

k xi,xj
% &

þk yi,yj
) *

!k xi,yj
) *

!k yi,xj
% &) *

,

where k is a kernel in the reproducing kernel Hilbert space. The expectation of such measure is 0 only when samples in
X and Y share the same distribution; otherwise, the expectation is strictly positive. Assuming the abundance of refer-
ence data, at every time t the average unbiased MMD between the most recent B samples and N reference blocks is
computed, and then normalized to get the test statistic TMMD

t :

Zt ¼
1
N

XN

i¼1

MMDu Xt,Yt,ið Þ, TMMD
t ¼ Zt

0 Ztð Þ1=2
:

Here Xt is the collection of the most recent B samples, and the reference blocks Yt,i, i¼ 1,…,N is formed by taking
NB samples without replacement from reference data. The variance 0 Ztð Þ1=2 can be pre-computed from reference data.
And procedure raises an alarm at τMMD ¼ min t :TMMD

t > b
# $

.
During each update, the statistic TMMD

tþ1 can be computed recursively from TMMD
t . This is because the reference block

Ytþ1,i is formed by adding a new sample from reference data to Yt,i and removing the oldest one, for i¼ 1,…,N . Xtþ1 is
formed using the same way. For convenience, let

h x,x0,y,y0ð Þ¼ k x,x0ð Þþk y,y0ð Þ!k x,y0ð Þþk y,x0ð Þ,

and let Yt,i ¼ yt!Bþ1,i,…,yt,i
% &

: for every i¼ 1,…,N . Then TMMD
tþ1 can be updated from TMMD

t by adding and subtracting
the values h xs,xtþ1,ys,i,ytþ1,i

% &
,h xs,xt!Bþ2,ys,i,yt!Bþ2,i

% &
s¼ t!Bþ2,…, t, i¼ 1,…,N . This leads to a computation and

memory complexity of O NBð Þ.
The ARL analysis of such statistics follows the example given in Section 6.1. The covariance between the statistics

Ttf gt≥ 0 is provided in a close form and can be computed easily from reference data. With a proper asymptotic regime,
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the local covariance can be found in the form of (24). The rest of the analysis carries through as if Ttf gt≥ 0 follows
Gaussian distribution.

Of course, the above analysis can be less accurate when Ztf gt ≥ 0 does not converge to a Gaussian distribution. Skew-
ness correction can be performed to account for the non-zero third-order moment. This method first appears in Tu and
Siegmund (1999) and then is modified in Tang and Siegmund (2001) and becomes useful in analyzing the ARL or false
alarm rate in many change-point detection procedures based on scanning statistics.

7 | CONCLUSION

In this article, we review the classic procedures in sequential change-point detection featuring the computation versus
performance trade-off and the classic performance analysis methods, which are still quite useful in analyzing new
change-point detection procedures and other problems (for details, we refer to Yakir, 2013). We also discuss several
recent articles covering computation and model robustness considerations. For completeness, a longer survey on the
extensions and modern applications of sequential change-point detection can be found in Xie et al. (2021). Finally,
another important direction we have not mentioned is machine learning algorithm-based sequential change-point
detection to handle situations such as missing data (Londschien et al., 2021; Xie et al., 2012), the existence of outliers
(Fearnhead & Rigaill, 2019), and cost-sensitive active sampling (Gundersen et al., 2021).
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