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Causal Graph Discovery From Self and
Mutually Exciting Time Series

Song Wei , Yao Xie , Member, IEEE, Christopher S. Josef, and Rishikesan Kamaleswaran

Abstract—We present a generalized linear structural causal
model, coupled with a novel data-adaptive linear regularization,
to recover causal directed acyclic graphs (DAGs) from time
series. By leveraging a recently developed stochastic monotone
Variational Inequality (VI) formulation, we cast the causal dis-
covery problem as a general convex optimization. Furthermore,
we develop a non-asymptotic recovery guarantee and quan-
tifiable uncertainty by solving a linear program to establish
confidence intervals for a wide range of non-linear monotone
link functions. We validate our theoretical results and show the
competitive performance of our method via extensive numerical
experiments. Most importantly, we demonstrate the effectiveness
of our approach in recovering highly interpretable causal DAGs
over Sepsis Associated Derangements (SADs) while achieving
comparable prediction performance to powerful “black-box”
models such as XGBoost.

Index Terms—Causal structural learning, directed
acyclic graph, data-adaptive approach, generalized linear
model.

I. INTRODUCTION

CONTINUOUS, automated surveillance systems incor-
porating machine learning models are becoming

increasingly common in healthcare environments. These mod-
els can capture temporally dependent changes across multiple
patient variables and enhance a clinician’s situational aware-
ness by providing an early alarm of an impending adverse
event. Among those adverse events, we are particularly
interested in sepsis, which is a life-threatening medical con-
dition contributing to one in five deaths globally [1] and
stands as one of the most important cases for automated
in-hospital surveillance. Recently, many machine learning
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methods have been developed to predict the onset of sep-
sis, utilizing electronic medical record (EMR) data [2]. A
recent sepsis prediction competition [3] demonstrated the
robust performance of XGBoost models [4], [5], [6]; mean-
while, Deep Neural Networks [7] are also commonly used.
However, most approaches offer an alert adjudicator very little
information pertaining to the reasons for the prediction, lead-
ing many to refer to them as “black box” models. Thus, model
predictions related to disease identification, particularly for
complex diseases, still need to be adjudicated (i.e., interpreted)
by a clinician before further action (i.e., treatment) can be
initiated. Among the aforementioned works, [6] provided one
of the best attempts at identifying causality for their models’
predictions by reporting feature importance at a global level for
all patients; still, this did not convey which features were most
important in arriving at a given prediction for an individual
patient. The common lack of interpretability of many clinical
models, particularly those related to sepsis, suggests a strong
need for principled methods to study the interactions among
time series in medical settings.

A natural approach is to model relationships between time
series and their effects on sepsis through Granger causal
graphs. Granger causality assesses whether the history/past of
one time series is predictive of another and is a popular notion
of causality for time series data. Traditional approaches typi-
cally rely on a linear vector autoregressive (VAR) model [8]
and consider tests on the VAR coefficients in the bivariate
setting. However, it has been recognized that such tradi-
tional VAR models have many limitations, including linearity
assumption [9] and the absence of directed acyclic graph
(DAG) structure, which is essential in causal structural learn-
ing [10]. On the one hand, recent advancements in non-linear
Granger causality consider Neural Network based approaches
coupled with sparsity-inducing penalties [11], [12], but render
the optimization problem non-convex. On the other hand,
structural vector autoregressive (SVAR) models, which com-
bines the structural causal model (SCM) with the VAR
model, leverage DAG-inducing penalties to uncover causal
DAGs. Notable contributions include [13], [14], who lever-
aged adaptive Lasso [15] to recover a Causal DAG, and [16],
who applied a recently proposed continuous DAG charac-
terization [17] to encourage such DAG structure. Despite
recent advancements, leveraging the well-developed convex
optimization techniques to learn a causal DAG remains an
open problem. Moreover, the commonly considered DAG
structure is less than satisfactory since it cannot capture
the lagged self-exciting components, which are important for
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Fig. 1. Causal DAGs for SADs obtained via discrete-time Hawkes network coupled with various types of regularization. The node’s size is proportional to the
background intensity, and the width of the directed edge is proportional to the exciting effect magnitude. The out-of-sample total CE loss are 2.89 (proposed
regularization), 2.75 (ℓ1 regularization), 3.37 (DAG regularization [17], [20]) and 4.13 (a variant of DAG regularization). Our proposed regularization can
help output a DAG with self-exciting edges while achieving the good prediction accuracy; although ℓ1 regularization achieves the best CE loss, it fails to
capture the interactions among SADs, leading to a very uninformative graph.

clinicians to understand how long a node (i.e., a certain type
of disease or organ dysfunction) will last once it is triggered.

In this work, we present a generalized linear structural
causal model to recover the causal graph from mutually
exciting time series, called discrete-time Hawkes network. To
encourage the desired DAG structure, we propose a novel
data-adaptive linear regularizer, enabling us to cast the causal
structural learning problem as a convex optimization via
a monotone operator Variational Inequality (VI) formula-
tion. Furthermore, performance guarantees are established via
recent advances in optimization [18], [19] by developing a
non-asymptotic estimation error bound verified by numerical
examples. We show the good performance of our proposed
method and validate our theoretical findings using extensive
numerical experiments. In particular, our real data experiments
demonstrate that our proposed method can achieve comparable
prediction performance to powerful black-box methods such as
XGBoost, while outputting highly interpretable causal DAGs
for Sepsis Associated Derangements (SADs), as shown in
Figure 1. Although this work only shows the effectiveness of
our approach in causal DAG recovery for SADs in medical
settings, it can be broadly applicable to other applications.

A. Motivating Application and Dataset

This work is motivated by a real study on Sepsis, which is
formally defined as life-threatening organ dysfunction caused
by a dysregulated host response to infection [21]. In a recent
study of adult sepsis patients [22], each hour of delayed
treatment was associated with higher risk-adjusted in-hospital
mortality (odds ratio, 1.04 per hour), and thus early recognition
of the physiologic aberrations preceding sepsis would afford
clinicians more time to intervene and may contribute to
improving outcomes. Specifically, we handle a large-scale
dataset containing in-hospital EMR derived from the Grady
hospital system (an academic, level 1 trauma center located
in Atlanta, GA) spanning 2018-2019. The data was collected
and analyzed in accordance with Emory Institutional Review
Board approved protocol #STUDY00000302. We unitize a
retrospective cohort of patients created in our prior work [23],
where the patients were included in the Sepsis-3 cohort if they
met Sepsis-3 criteria while in the hospital and were admitted
for more than 24 hours. The resulting descriptive statistics are
provided in Table I. The raw features of each patient include

• Vital Signs: In Intensive Care Unit (ICU) environments,
vital signs are normally recorded at hourly intervals.
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TABLE I
MEDIAN (MED.) AND INTERQUARTILE RANGE (IQR) OF PATIENTS
DEMOGRAPHICS. THE UNIT OF TIME MEASUREMENT FOR PATIENT

TRAJECTORY LENGTH IS AN HOUR. WE TRUNCATE THE DATA BASED ON
EXPERT ADVICE TO ENSURE BOTH PATIENT COHORTS HAVE

COMPARABLE SEQUENTIAL ORGAN FAILURE ASSESSMENT (SOFA)
SCORES; REFER TO [23] FOR PATIENT COHORT CONSTRUCTION

However, patients on the floor may only have vital signs
measured once every 8 hours.

• Lab Results: The laboratory tests are most commonly
collected once every 24 hours. However, this collection
frequency may change based on the severity of a patient’s
illness.

The goal is to construct a predictive model for sepsis and an
interpretable causal DAG that captures the interactions among
those vital signs and Lab results. One difficulty comes from
synchronous and continuous-valued observations assumption
— in many applications, especially in the medical setting, the
observations can be both continuous and categorical-valued.
They can also be asynchronous and sampled with different
frequencies. For example, vital signs are recorded regularly,
whereas Lab results are only ordered when clinically neces-
sary. Since the absence of a lab carries meaning itself, this
cannot be simply formulated into a missing data problem. One
method to obtain interpretable predictive models is to consider
their syndromic nature — there is often a constellation of dif-
ferent physiologic derangements that can combine to create the
condition. For example, our prior works [23], [24] leveraged
expert opinion to identify the distinct types of measurable,
physiologic change that accompanies sepsis-related illness,
which is called SADs; see their definition in Table X in
Appendix D-A1 in the supplementary material. However, the
clinician did not determine the relationship among the SADs;
rather, these relationships were an output of model fitting.
Although there is a recently proposed principled method to
handle such mixed-frequency time series [25], we adopt a
similar approach with [23] in this study based on expert advice.
In Section VI, we will report the analysis results of this dataset
using our proposed method.

B. Literature

We briefly review several closely related areas and defer an
extended literature survey to Appendix A in the supplementary
material.

1) Causal Structural Learning: Structural causal model-
based causal discovery methods often boil down to
maximizing a score function within the DAG family [26],
making efficient DAG learning fundamental to causal dis-
covery. However, learning DAGs from observational data,
i.e., the structural learning problem, is NP-hard due to the
combinatorial acyclicity constraint [27]. This motivated many
research efforts to find efficient approaches for learning DAGs.

Recently, [28] proposed an indicator function-based approach
to enumerate and eliminate all possible directed cycles;
they used truncate ℓ1-function as a continuous surrogate of
indicator function and proposed to use alternating direction
method of multipliers to solve the problem numerically. Later
on, [29] followed this approach, transferred indicators into
binary variables, and leveraged mixed integer programming
to solve the problem. In addition, there are also dynamic
programming-based approaches, e.g., [30], but they are not
scalable in high dimensions unless coupled with a sparsity-
inducing penalty, e.g., A∗ Lasso [31].

One notable recent contribution in structural learning is [17],
who formulated the DAG recovery problem as a constrained
continuous optimization via a smooth DAG characterization;
they applied an augmented Lagrangian method to transfer
constraint as penalty and achieved efficient DAG recovery.
Later on, [20] proposed to use the non-convex DAG char-
acterization as a penalty directly and showed an asymptotic
recovery guarantee for linear Gaussian models. Other notable
extensions along this direction include a discrete backpropaga-
tion method, exploration of low-rank structure [32] and neural
DAG learning [33], [34], [35]. We refer readers to [36], [37],
[38], [39] for systematic surveys on structural learning and
causal discovery.

We would like to highlight that the DAG structure with
lagged self-exciting components considered in this work is
new in the literature. Existing works typically allow directed
cycles in the adjacency matrices representing the lagged
effects [13], [14], [16], [23], [40]. As a question of science,
we believe those lagged cycles are less explainable. For
example, our prior work [23] discovered a “Renal Dysfunction
→ O2 Diffusion Dysfunction → Renal Dysfunction” cyclic
chain pattern, but we believe the “Renal Dysfunction → O2
Diffusion Dysfunction” coupled with the self-exciting pattern
of Renal Dysfunction uncovered by our proposed method here
is more convincing; see the bottom right panel in Figure 1.

2) Granger Causality for Time Series: One line of
research [8] combines SCM and VAR models and devel-
ops the so-called structural vector autoregressive models
to help uncover the Granger causal graphs with certain
desired structures, such as DAG structure. Notable contribu-
tions include [13], [14], who applied adaptive Lasso [15] to
encourage the DAG structure. Moreover, following [14], [41]
extended the finding that the non-Gaussian measurement noise
helps the model identifiability to time series setting; later
on, [25] further proved identifiability of SVAR models of order
one under arbitrary subsampling and mixed frequency scheme.
In addition to adaptive Lasso, there are also other approaches
to encouraging DAG structure in the SVAR model, such as the
aforementioned continuous DAG characterization [16]. As a
comparison, our proposed generalized linear model (GLM) can
be reformulated into a stochastic SCM by using Gumbel-Max
trick/technique [42], [43], [44], [45], [46], which is slightly
different from the deterministic SCMs with measurement noise
in SVAR models [13], [14], [16]. Moreover, compared with
the commonly adopted DAG-inducing penalties in SVAR
models, e.g., the continuous, differentiable but non-convex
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DAG characterization [17], our proposed data-adaptive linear
method for structural learning approach is not only convex but
also flexible in the sense that it can encourage a DAG structure
while keeping lagged self-exciting components.

Another line of research focuses on non-linear Granger
causality. Common non-linear approaches consider additive
non-linear effects from history that decouple across multiple
time series, such as [47], which leveraged a separable matrix-
valued kernel to infer the non-linear Granger causality. To
further capture the potential non-linear interactions between
predictors, Neural Networks coupled with sparsity-inducing
penalties are adopted [11], [12]. Even though our GLM can
be viewed as a Neural Network without a hidden layer,
our model is convex, theoretically grounded, and easy to
train, which are the major advantages over Neural Network-
based methods. In addition, there are also efforts to tackle
the high-dimensionality via regularization, such as group
Lasso [48], [49] and nuclear norm regularization [50]. For
a comprehensive survey on Granger causality, we refer
readers to [9].

C. Notations

We use R+ to denote the collection of non-negative real
numbers, i.e., R+ = [0,∞). For integers 0 < m ≤ n, we
denote [m : n] = {m, . . . , n}; in a special case where m = 1, we
denote [n] = {1, . . . , n}. Superscript T denotes vector/matrix
transpose; column vectors 1d = (1, . . . , 1)T ∈ Rd, 0d =
(0, . . . , 0)T ∈ Rd, ei,d ∈ Rd is the standard basis vector with
its i-th element being one and matrix Id ∈ Rd×d denotes the
d-by-d identity matrix; tr(eA) stands for the trace of the matrix
exponential of matrix A. For vectors a, b ∈ Rd, the comparison
a ≤ b is element-wise. In addition, we use ∇ to denote the
derivative operator; we use ⟨·, ·⟩ to denote the standard inner
product in Euclidean space, ∥ ·∥p to denote the vector ℓp norm
and ∥ · ∥F to denote the matrix F-norm.

II. DISCRETE-TIME HAWKES NETWORK

A. Set-Up and Background

Consider mixed-type observations over a time horizon
T ≥ 1: we observe d1 sequences of binary time series
{y(i)

1 , . . . , y(i)
T }, i ∈ [d1], which represent d1 type of events’

occurrences, d2 sequences of continuous-values time series
{x(i)

1 , . . . , x(i)
T }, i ∈ [d2], and d3 static variables z1, . . . , zd3 .

In the following, we will refer to the binary variable as
node variables, and our primary goal is to recover the graph
structure over those d1 nodes.

Linear multivariate Hawkes process (MHP) models the
mutual inter-dependence among variables by considering a
conditional intensity of event occurrence, which is jointly
determined by a deterministic background and a self-exciting
(or inhibiting) term depending on its history observations.
Given that the intensity has a natural interpretation as the
instantaneous probability and is inspired by linear MHP with
the exponential decaying kernel, we model the probability of
occurrence for the i-th node variable, i ∈ [d1], at time step

t ∈ [2 : T] as follows:

P
(

y(i)
t = 1|Ht−1

)
= νi +

d3∑

j=1

γijzj

+
t−1∑

k=1

( d2∑

j=1

βijx
(j)
t−ke−Rk +

d1∑

j=1

αijy
(j)
t−ke−Rk

)
, (1)

where Ht denotes the history observation up to time t. To
ensure the right-hand side (RHS) of the above equation is a
valid probability, we add the following linear constraint:

0 ≤ νi +
d3∑

j=1

γijzj

+
t−1∑

k=1

⎛

⎝
d2∑

j=1

βijx
(j)
t−ke−Rk +

d1∑

j=1

αijy
(j)
t−ke−Rk

⎞

⎠ ≤ 1.

For the i-th node variable, γij ∈ R represents the influence
from j-th static variable and contributes to the deterministic
background intensity together with νi ∈ R+; parameter αij ∈
R (or βij ∈ R) represents the magnitude of the influence
from the j-th node variable (or continuous variable) to the i-th
node variable, which decays exponentially fast with exponent
characterized by R > 0 — those parameter interpretations
connect (1) with the conditional intensity function of the MHP,
e.g., [23]. Moreover, one advantage of the above model is that,
as long as the above linear constraint is satisfied, we do not
restrict αij or βij to be non-negative, meaning that our model
can handle both triggering and inhibiting effects.

The matrix A = (αij) ∈ Rd1×d1 defines a weighted directed
graph G(A) = (V, E) on d1 nodes in the following way: V
is the collection of aforementioned d1 binary node variables;
let A ∈ {0, 1}d1×d1 such that Aij = 1 if αij ̸= 0 and zero
otherwise, then A defines the adjacency matrix of a directed
graph G(A), which gives the collection of directed edges E ;
the weights of the directed edges in E are defined accordingly
by matrix A. In a slight abuse of notation, we will call A the
(weighted) adjacency matrix of the graph.

B. Linear Model

One drawback of MHP comes from its scalability; to be
precise, considering complete history leads to quadratic com-
plexity with respect to (w.r.t.) the number of events. Since the
triggering (or inhibiting) effects from the history observations
decay exponentially fast, we typically consider finite memory
depth. Similarly, in our discrete-time Hawkes network, we
make reasonable simplification by assuming finite memory
depth τ ≥ 1 for both continuous and binary observations.
More specifically, consider given history at time t ∈ [1−τ : 0].
At time t ∈ [T], we use wt−τ :t−1 to denote the observations
from t − τ to t − 1:

wt−τ :t−1 =
(

1, z1, . . . , zd3 , x(1)
t−1, . . . , x(1)

t−τ , . . . , x(d2)
t−1 , . . . , x(d2)

t−τ ,

y(1)
t−1, . . . , y(1)

t−τ , . . . , y(d1)
t−1 , . . . , y(d1)

t−τ

)T
.

To ease the estimation burden, let αijk = αij exp{−Rk} and
βijk = βij exp{−Rk}; in fact, this re-parameterization gives
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our model more flexibility and expressiveness. Now, we can
rewrite (1) as follows:

P
(

y(i)
t = 1

∣∣∣wt−τ :t−1

)
= wT

t−τ :t−1θi,

θi ∈ ( = {θ : 0 ≤ wT
t−τ :t−1θ ≤ 1, t ∈ [T]} ⊂ Rd, (2)

where d = 1 + d3 + τd2 + τd1 is the dimentionality, ( is the
feasible region, and θi is the model parameter:

θi =
(
νi, γi1, . . . , γid3 ,βi11, . . . ,βi1τ , . . . , βid21, . . . ,βid2τ ,

αi11, . . . ,αi1τ , . . . ,αid11, . . . ,αid1τ

)T
.

This parameter summarizes the influence from all variables
to the i-th node. Before we move on, we want to briefly
mention that, as a special case of the GLM, (2) can also be re-
parameterized into a causal structural model and its parameters
Ak = (αijk) ∈ Rd1×d1, k ∈ [τ ], can be taken as causal
graphs under the no unobserved confounder assumption. We
will elaborate on these in Section II-C.

1) Estimation: We leverage a recently developed tech-
nique [18], [19], which estimates the model parameters by
solving stochastic monotone VI, to develop a statistically
principled estimator for discrete-time Hawkes network. To be
precise, in our linear model (2), for i ∈ [d1], we use the weak
solution to the following VI as the estimator θ̂i:

find θ̂i ∈ ( : ⟨F̄(i)
T (θi), θi − θ̂i⟩ ≥ 0, ∀θi ∈ (, VI[F̄(i)

T ,(]

where F̄(i)
T (θi) is the empirical vector field defined as follows:

F̄(i)
T (θi) = 1

T

T∑

t=1

wt−τ :t−1wT
t−τ :t−1θi −

1
T

T∑

t=1

wt−τ :t−1y(i)
t

= W1:Tθi −
1
T

T∑

t=1

wt−τ :t−1y(i)
t , (3)

and

W1:T = 1
T

T∑

t=1

wt−τ :t−1wT
t−τ :t−1 ∈ Rd×d. (4)

2) Connection to Least Square Estimator: One important
observation is that the vector field F̄(i)

T (θi) (3) is indeed the
gradient field of the Least Square (LS) objective, meaning that
the weak solution to the corresponding VI solves the following
LS problem [19]:

min
θi

1
2T
∥wT

1:Tθi − Y(i)
1:T∥22,

s.t. 0T ≤ wT
1:Tθi ≤ 1T , (5)

where

w1:T = (w1−τ :0, . . . , wT−τ :T−1) ∈ Rd×T ,

Y(i)
1:T =

(
y(i)

1 , . . . , y(i)
T

)T
∈ RT . (6)

One approach to solve (5) is to leverage the well-developed
convex optimization tools, such as CVX [51] and Mosek [52].
An alternative approach is through projected gradient descent
(PGD), where the empirical vector field (3) is treated as the
gradient field. To be precise, we introduce dual variables η1 =

(η1,1, . . . , η1,T)T ∈ RT
+, η2 = (η2,1, . . . , η2,T)T ∈ RT

+ and the
Lagrangian is given by:

L(θi, η1, η2)

= 1
2T
∥wT

1:Tθi − Y(i)
1:T∥22 + ηT

1
(
wT

1:Tθi − 1T
)
− ηT

2wT
1:Tθi.

The Lagrangian dual function is minθi L(θi, η1, η2). As we
can see, the Lagrangian above is convex w.r.t. θi. By setting
∇θiL(θi, η1, η2) = 0, we have

θ̂i(η1, η2) = 1
T
W−1

1:T

(
w1:TY(i)

1:T/T − η1 + η2

)
.

As pointed out in [19], W1:T ∈ Rd×d (4) will be full rank (and
thus invertible) with high probability when T is sufficiently
large. By plugging θ̂i(η1, η2) into the Lagrangian, we give the
dual problem as follows:

max
η1,η2

L
(
θ̂i(η1, η2), η1, η2

)
,

s.t. η1, η2 ≥ 0T .

This problem can be solved by PGD as its projection step
simply changes all negative entries to zeros.

C. Generalized Linear Model

As mentioned earlier, the linear assumption is restrictive,
and therefore, we consider the following GLM [53] to enhance
its expressiveness:

P
(

y(i)
t = 1

∣∣∣wt−τ :t−1

)
= g

(
wT

t−τ :t−1θi
)
, θi ∈ (, (7)

where g : R→ [0, 1] is a monotone link function. For example,
it can be non-linear, such as sigmoid link function g(x) =
1/(1 + e−x) on a domain x ∈ R and exponential link function
g(x) = 1 − e−x on a domain x ∈ R+; also, it can be linear
g(x) = x on a domain x ∈ [0, 1], which reduces our GLM (7)
to the linear model (2). The feasible region ( will vary based
on the choice of link functions, and we will see two examples
later in Section II-C2.

1) Structural Causal Model: One key feature that distin-
guishes our discrete-time Hawkes network from the existing
black-box method is the causal graph under Pearl’s frame-
work [10] encoded in the GLM parameters. To be precise,
one can uncover the connection between the GLM (7) and the
stochastic SCM via the Gumbel-Max technique [42], [43]: Let
us denote

p(i)
t (1) = P

(
y(i)

t = 1
∣∣∣wt−τ :t−1

)
= g

(
wT

t−τ :t−1θi
)
,

p(i)
t (0) = 1− p(i)

t (1).

Then, our GLM (7) can be reformulated into an SCM as fol-
lows:

y(i)
t = arg max

y∈{0,1}

(
log

(
p(i)

t (y)
)

+ ϵ
(i)
t

)
, (8)

where ϵ
(i)
t is a Gumbel r.v., i.e., ϵ

(i)
t ∼ Gumbel(0, 1). The

Gumbel-Max technique tells us that the SCM (8) is equivalent
to our GLM (7) in that we still have P(y(i)

t = 1|wt−τ :t−1) =
g(wT

t−τ :t−1θi). Therefore, under standard conditions that there
is no unobserved confounding, one can see that the adjacency
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matrices Ak = (αijk) ∈ Rd1×d1, k ∈ [τ ], represent the causal
graph structure over d1 nodes.

Remark 1 (Connection to Granger Causality): One may
find a very close connection between our causal graph
with Granger causality in the non-linear autoregressive
model [11]; See Appendix B-A in the supplementary material
for further details on Granger causality. The key difference
is whether or not there is unmeasured confounding: Those
two causality notions will overlap in a world where there
are no potential causes. However, this is not a very likely
setting and a fundamentally untestable one [54]. To understand
this, the argument that “Christmas trees sales Granger-cause
Christmas” will not hold once one knows that Christmas took
place on December 25th for centuries, which can be modeled
as a confounding variable that causes both Christmas tree
sales and Christmas itself.

2) Estimation With Variational Inequality: Similar
to VI[F̄(i)

T ,(] for the linear model, we use the weak solution
to the following VI as the estimator for our GLM (7):

find θ̂i ∈ ( : ⟨F(i)
T (θi), θi − θ̂i⟩ ≥ 0, ∀θi ∈ (, VI[F(i)

T ,(]

Parameter θi is constrained in a convex set ( ⊂ Rd, which may
vary with different non-linear links; we will see two examples
later. The main difference from VI[F̄(i)

T ,(] is the empirical
vector field, which is defined as follows:

F(i)
T (θi) = 1

T

T∑

t=1

wt−τ :t−1

(
g
(
wT

t−τ :t−1θi
)
− y(i)

t

)
. (9)

As we can see, the definition above covers that of F̄(i)
T (3)

for linear link case; thus, we will use F(i)
T to denote the

empirical vector field for all monotone links in the following.
Furthermore, the statistical inference for each node can be
decoupled, and thus we can perform parallel estimation and
simplify the analysis.

The intuition behind this VI-based method is straightfor-
ward. Let us consider the global counterpart of the above
vector field, whose root is the unknown ground truth θ⋆

i , i.e.,

F(i)(θi) = E(w,y(i))

[
w

(
g
(
wTθi

)
− y(i)

)]

= E(w,y(i))
[
w

(
g
(
wTθi

)
− g

(
wTθ⋆

i
))]

.

Although we cannot access this global counterpart, by solv-
ing the empirical one VI[F(i)

T ,(] we could approximate
the ground truth very well. We will show how well this
approximation can be in Section IV.

Remark 2 (Comparison With the Original Work): As a
generalization of the VI-based estimator for binary time
series [19], our method can handle mix-type data (i.e., binary
and continuous-valued time series and static variables).
Furthermore, we show how to leverage regularization in
the VI-based estimation framework as well as extend the
performance guarantee to general non-linear monotone link
functions, on which we will elaborate in Sections III and IV,
respectively.

3) Examples for Non-Linear Link Function: Now, we will
give two examples of general non-linear monotone links
and briefly discuss how to numerically obtain our proposed
estimator. Note that the equivalence between our proposed
estimator and LS estimator only holds for linear link function
since the gradient field of LS objective with general link
function will be:

1
T

T∑

t=1

∇g
(
wT

t−τ :t−1θi
)(

g
(
wT

t−τ :t−1θi
)
− y(i)

t

)

= 1
T

T∑

t=1

wt−τ :t−1g′
(
wT

t−τ :t−1θi
)(

g
(
wT

t−τ :t−1θi
)
− y(i)

t

)
,

where g′ is the derivative of g. However, in the sigmoid link
function case, our proposed estimator reduces to the Maximum
Likelihood (ML) estimator for the logistic regression. To be
precise, we can show that the empirical vector filed (9) is the
gradient field of the objective function of the following ML
problem:

max
θi

1
T

T∑

t=1

y(i)
t log g

(
wT

t−τ :t−1θi
)

+
(

1− y(i)
t

)
log

(
1− g

(
wT

t−τ :t−1θi
))

.

Again, this equivalence between our proposed estimator and
ML estimator comes from the fact that g′(x) = g(x)(1− g(x))
for the sigmoid link function and does not hold for other
non-linear link functions. One advantage of the sigmoid link
function is that we do not need to put additional constraints
on the parameter θi to ensure g(wT

t−τ :t−1θi) is a reasonable
probability, i.e., the feasible region is ( = Rd. To numerically
obtain such our proposed estimator, we can use vanilla gradient
descent (GD), where the gradient is the empirical vector
field (9).

Another non-linear example is the exponential link g(x) =
1 − e−x, x ∈ R+. Similar to the linear link case, to ensure
valid probability, the feasible region is ( = {θ : wT

t−τ :t−1θ ≥
0, t ∈ [T]}. To numerically solve for our proposed estimator,
we can again perform PGD on the Lagrangian dual problem.
Alternatively, in many real applications where we have prior
knowledge that we do not consider inhibiting effect, i.e., the
feasible region is θi ∈ Rd

+ ⊂ (, we can perform PGD on the
primal problem.

For general non-linear links, PGD is the most sensible
approach to obtain our proposed estimator. However, due the
serial correlation in the data, we cannot conduct theoretical
convergence analysis as [18] did. Later, we will use numerical
simulation to demonstrate the good performance of PGD for
all three aforementioned link functions.

III. DATA-ADAPTIVE CONVEX STRUCTURAL LEARNING

In causal structural learning [10], it is often of great interest
to recover a DAG from observational data. In our analysis, we
want a DAG-like structure that additionally keeps the lagged
self-exciting components, i.e., length-1 cycles. This is because
a stronger self-exciting effect informs the adjudicator that
the corresponding node/event can last for a longer time once
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triggered. Therefore, our goal is to remove the less explainable
directed cycles with lengths greater than or equal to two
(referred to as cycles for brevity) while keeping lagged self-
exciting components to improve the result interpretability.

A. Estimation With Data-Adaptive Linear Constraints

1) Existing Characterizations of Acyclicity: The estimation
of a DAG structure is challenging due to the combinatorial
nature of the acyclicity constraint. One seminal work [17]
characterized the acyclicity constraint via the following contin-
uous and differentiable constraint: We consider memory depth
τ = 1 and denote αij = αij1, A = (αij) for brevity (general
τ ≥ 1 case will be presented later in this subsection); for
non-negative weighted adjacency matrix A ∈ A ∈ Rd1×d1

+ , its
induced graph is a DAG if and only if

h(A) = tr
(

eA
)
− d1 =

∞∑

L=1

tr
(
AL)

L!
= 0. (10)

The above DAG characterization can be understood as follows:
For A ∈ Rd1×d1

+ , tr(AL) ≥ 0, and it will be zero if and only if
there does not exist any length-L directed cycle in the induced
graph; if h(A) = 0, then tr(AL) = 0 for all L ≥ 1, implying
the induced graph is a DAG.

Intuitively, cycles with length L ≥ d1 do not contribute to
the DAG characterization, and thus one can truncate the infi-
nite series (10) [33]. Indeed, one can always apply topological
ordering to get a lower triangle adjacency matrix Ã for a DAG,
which is nilpotent such that Ãd1 = 0; such a topological re-
order of nodes corresponds to applying permutation matrix P
to the original adjacency matrix A, i.e., Ã = PAPT, and one still
has Ad1 = 0 (since a permutation matrix satisfies P−1 = PT);
see [55, Proposition 1] for an equivalent characterization of
DAG as Ad1 = 0. Quite contrary to the work by [56] which
put emphasis on long cycles, [55] proposed to truncate the
series (10) to

htrunc(A) =
k∑

L=1

tr
(
AL)

= 0, (11)

where k < d1 since they observed that “higher-order terms
that are close to zero”.

2) Motivation: Following [55], we propose to apply “soft”
linear constraint to encourage acyclicity while maintaining the
convexity. Specifically, for L ∈ [2 : k], we relax the strict
characterization tr(AL) = 0 by constraining the weighted sum
for all possible length-L cycles: for iL → iL−1 → · · · →
i1 → iL:

αi1i2 + αi2i3 + · · · + αiL−1iL + αiLi1 ≤ δ. (12)

Notice that we do not put constraint on L = 1 case since the
self-exciting effects carry meaning and are desirable in our
analysis.

One simple estimation method would be to include the
above linear constraints into the feasible region, which will not
change the convexity since the intersection of two convex sets
is still convex. However, the number of linear constraints will
be on the order of dk

1, and the constraint hyperparameter δ ≥ 0

Fig. 2. Illustration of the estimated graph without regularization. Existence
of an edge represents the corresponding estimated weight is greater than zero
and dashed edge 3→ 2 indicates that its weight is very small, which could
be a result of noisy observations.

should also vary for different length-L cycles, depending on
the ground truth weight parameters in the corresponding cycle.
Fortunately, due to the consistency result (to be presented
in the next section), we can address the above issues by
obtaining data-adaptive linear constraints. To be precise, as
illustrated in Figure 2, the recovery guarantee implies that the
existence of edge 3 → 2 might be a result of noise in the
observations, and the VI solution tends to output such a false
discovery. Therefore, one can simply add the following data-
adaptive constraints

α23 + α32 ≤ α̂32, α12 + α23 + α31 ≤ α̂12 + α̂31,

into the feasible region when solving the VI. Moreover, in
the above illustrative example, oftentimes imposing the first
constraint suffices to remove edge 3 → 2, meaning that
removing short cycles suffices to remove long cycles; in both
our simulation and real experiments, we have demonstrated
that it suffices to consider k = 3 in moderate-sized graph
(around 20 nodes) setting; indeed, we only discover short
cycles in our real data example (see Figure 5). We will
formally state our method with k = 3 in the following.

3) Proposed Constraint: Consider the causal graphs
induced by the estimated adjacency matrices Âℓ = (α̂ijℓ) ∈
Rd1×d1, ℓ ∈ [τ ], using the VI-based estimator VI[F(i)

T ,(]. As
mentioned earlier, cycles in those graphs are undesirable, and
we want to remove them. Let us begin with formally defining
cycles: for positive integer L ≥ 2, if there exist ℓ ∈ [τ ] and
mutually different indices i1, . . . , iL ∈ [d1] such that

α̂i1iLℓ > 0, α̂ik+1ikℓ > 0, k ∈ [L− 1],

then we say there exists a length-L (directed) cycle in the
directed graphs induced by Âℓ’s.

We consider all possible length-2 and length-3 cycles in
those graphs, whose indices are as follows:

I2,ℓ =
{
(i, j) : i ̸= j, α̂ijℓ > 0, α̂jiℓ > 0

}
, ℓ ∈ [τ ],

I3,ℓ =
{
(i, j, k) : i, j, k mutually different,

α̂ijℓ > 0, α̂jkℓ > 0, α̂kiℓ > 0
}
, ℓ ∈ [τ ].

As illustrated in Figure 2, in each cycle, the edge with the least
weight could be caused by noisy observation, meaning that
we should remove such edges to eliminate the corresponding
cycle. To do so, we impose the following data-adaptive linear
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cycle elimination constraints to shrink the weights of those
“least important edges”:

αijℓ + αjiℓ ≤ δ2,ℓ(i, j), (i, j) ∈ I2,ℓ, ℓ ∈ [τ ],

αijℓ + αjkℓ + αkiℓ ≤ δ3,ℓ(i, j, k), (i, j, k) ∈ I3,ℓ, ℓ ∈ [τ ],

(13)

where, for ℓ ∈ [τ ], the data-adaptive regularization strength
parameters δ2,ℓ(i, j), (i, j) ∈ I2,ℓ and δ3,ℓ(i, j, k), (i, j, k) ∈ I3,ℓ

are defined as follows:

δ2,ℓ(i, j) = α̂ijℓ + α̂jiℓ −min
{
α̂ijℓ, α̂jiℓ

}
= max

{
α̂ijℓ, α̂jiℓ

}
,

δ3,ℓ(i, j, k) = α̂ijℓ + α̂jkℓ + α̂kiℓ −min
{
α̂ijℓ, α̂jkℓ, α̂kiℓ

}
. (14)

4) Constrained Joint VI-Based Estimation: Different
from the aforementioned decoupled learning approach in
Section II-C2, here we need to estimate parameters θ1, . . . , θd1

jointly to remove cycles and encourage our desired DAG
structure. We concatenate the parameter vectors into a matrix,
i.e., θ = (θ1, . . . , θd1) ∈ Rd×d1, and the feasible region of the
concatenated parameter is then defined as:

(̃ = {θ =
(
θ1, . . . , θd1

)
: θi ∈ (, i ∈ [d1]}. (15)

The joint estimator coupled with the data-adaptive linear cycle
elimination constraint is defined as the weak solution to the
following VI:

find θ̂ ∈ (DAL : ⟨vec(FT(θ)), vec
(
θ − θ̂

)
⟩ ≥ 0, ∀θ ∈ (DAL,

VI[FT ,(DAL]

where vec(A) is the vector of columns of A stacked one under
the other, the empirical “vector” field is

FT(θ) =
(

F(1)
T (θ1), . . . , F(d1)

T (θd1)
)
∈ Rd×d1, (16)

and vector field F(i)
T (θi) ∈ Rd is defined in (9). Moreover, the

convex set (DAL incorporates the above data-adaptive linear
constraints (13) and is defined as follows:

(DAL =
{
θ : θ ∈ (̃, eT

fj,ℓ,dθei,d1 + eT
fi,ℓ,dθej,d1 ≤ δ2,ℓ(i, j),

(i, j) ∈ I2,ℓ, ℓ ∈ [τ ],

eT
fj,ℓ,dθei,d1 + eT

fk,ℓ,dθej,d1 + eT
fi,ℓ,dθek,d1 ≤ δ3,ℓ(i, j, k),

(i, j, k) ∈ I3,ℓ, ℓ ∈ [τ ]
}
,

where regularization strength parameters δ2,ℓ(i, j), δ3,ℓ(i, j, k)
are defined in (14) and fj,ℓ = 1 + d3 + τd2 + (j− 1)τ + ℓ such
that eT

fj,ℓ,d
θei,d1 = αijℓ.

5) A Special Case: Linear Link Function: Now, we elab-
orate on our proposed regularization on a special linear link
case. The vector field FT(θ) (16) can be expressed as follows:

FT(θ) = 1
T

w1:TwT
1:Tθ − 1

T
w1:TY = W1:Tθ − 1

T
w1:TY,

where Y = (Y(1)
1:T , . . . , Y(d1)

1:T ) ∈ RT×d1 and Y(i)
1:T , w1:T ∈

Rd×T are defined in (6). Similar to the linear model exam-
ple in Section II-B, the above vector field is the gradient

field of the least square objective, and our proposed estima-
tor VI[FT ,(DAL] boils down to the LS estimator, which solves
the following constrained optimization problem:

min
θ

1
2T

d1∑

i=1

∥wT
1:Tθi − Yi,1:T∥22 = 1

2T
∥wT

1:Tθ − Y∥2F,

s.t. 0T ≤ wT
1:Tθi ≤ 1T , i ∈ [d1],

eT
fj,ℓ,dθei,d1 + eT

fi,ℓ,dθej,d1 ≤ δ2,ℓ(i, j),

(i, j) ∈ I2,ℓ, ℓ ∈ [τ ],

eT
fj,ℓ,dθei,d1 + eT

fk,ℓ,dθej,d1 + eT
fi,ℓ,dθek,d1 ≤ δ3,ℓ(i, j, k),

(i, j, k) ∈ I3,ℓ, ℓ ∈ [τ ]. (17)

Similarly, (17) is convex and can be efficiently solved by a
well-develop toolkit such as Mosek.

Most applications, including our motivating example, only
considers triggering effect, meaning that one can replace
wT

1:Tθi ≥ 0T with θi ≥ 0d as a relaxation. In addition,
since the prediction of the i-th event’s occurrence at time t
is by comparing the estimated probability wT

t−τ :t−1θi with a
threshold selected using the validation dataset, we can further
relax the constraint wT

1:Tθi ≤ 1T and treat wT
t−τ :t−1θi as a

“score” instead of a probability. Thus, we can adopt the
following penalized form:

min
θ

1
2T
∥wT

1:Tθ − Y∥2F

+
τ∑

ℓ=1

⎛

⎝
∑

(i,j)∈I2,ℓ

λ
(

eT
fj,ℓ,d

θei,d1 + eT
fi,ℓ,d

θej,d1

)

δ2,ℓ(i, j)

+
∑

(i,j,k)∈I3,ℓ

λ
(

eT
fj,ℓ,d

θei,d1 + eT
fk,ℓ,d

θej,d1 + eT
fi,ℓ,d

θek,d1

)

δ3,ℓ(i, j, k)

⎞

⎠,

s.t. θi ≥ 0T , i ∈ [d1], (18)

where λ is a hyperparameter that controls the strength
of regularization. The data-adaptive regularization strength
parameters δ2,ℓ(i, j), δ3,ℓ(i, j, k) appear in the denominator
since smaller δ2,ℓ(i, j), δ3,ℓ(i, j, k) imply stronger penalty,
which closely resembles adaptive Lasso [15]. Most impor-
tantly, (18) can be solved efficiently using PGD, where at each
iteration, the update rule is as follows:

θ̂ ← θ̂ − η

⎛

⎝FT

(
θ̂
)

+
τ∑

ℓ=1

⎛

⎝
∑

(i,j)∈I2,ℓ

λ
(

efj,ℓ,deT
i,d1

+ efi,ℓ,deT
j,d1

)

δ2,ℓ(i, j)

+
∑

(i,j,k)∈I3,ℓ

λ
(

efj,ℓ,deT
i,d1

+ efk,ℓ,deT
j,d1

+ efi,ℓ,deT
k,d1

)

δ3,ℓ(i, j, k)

⎞

⎠

⎞

⎠,

(19)

where η is the step size/learning rate hyperparameter and
empirical field FT(·) is given in (16). After the above update
in each iteration, the projection onto the feasible region Rd×d1

+
can be simply done by replacing all negative entries in θ̂ with
zeros.
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B. Penalized Joint VI-Based Estimation

As previously discussed in Section II-C2, the VI[F(i)
T ,(]

can be solved by PGD as the feasible region ( is a convex set.
However, VI[FT ,(DAL] additionally incorporates the data-
adaptive linear constraints into its feasible region (DAL to
encourage a DAG structure with desired lagged self-exciting
components, making the projection step harder to implement.
Alternatively, it will be much easier if we can transfer the
constraints into the penalty. Inspired by the penalized form
for the linear link special case (18) (which is very similar
to adaptive Lasso [15]), we propose a data-adaptive linear
penalized VI-based estimator, which is the weak solution to
the following VI:

find θ̂ ∈ (̃ :
〈
vec

(
FDAL

T (θ)
)
, vec

(
θ − θ̂

)〉
≥ 0, ∀θ ∈ (̃,

VI[FDAL
T , (̃]

where the feasible region (̃ is defined in (15) and the data-
adaptive linear penalized vector filed FDAL

T (θ) is defined
as follows:

FDAL
T (θ) = FT(θ)

+
τ∑

ℓ=1

⎛

⎝
∑

(i,j)∈I2,ℓ

λ
(

efj,ℓ,deT
i,d1

+ efi,ℓ,deT
j,d1

)

δ2,ℓ(i, j)

+
∑

(i,j,k)∈I3,ℓ

λ
(

efj,ℓ,deT
i,d1

+ efk,ℓ,deT
j,d1

+ efi,ℓ,deT
k,d1

)

δ3,ℓ(i, j, k)

⎞

⎠.

(20)

Here, λ is a tunable penalty strength hyperparameter,
FT(θ) = (F(1)

T (θ1), . . . , F(d1)
T (θd1)) ∈ Rd×d1 is the con-

catenated field (16) and vector field F(i)
T (θi) ∈ Rd is

defined in (9). Compared with VI[FT ,(DAL], it is much
easier to solve VI[FDAL

T , (̃] using PGD. For example,
in the exponential link function case, if we restrict our
consideration to triggering effect only, we can use (19)
as the update rule in PGD and zero out all negative
entries after each update as the projection step in each
iteration.

Remark 3: One advantage of our data-adaptive linear regu-
larization is its flexibility, and it is the user’s choice to decide
which potential cycle should be included in the constraint.
Please refer to our work [57] for more numerical examples of
recovering strict DAGs (i.e., without any lagged self-exciting
components) by additionally including length-1 cycles in our
data-adaptive linear constraints.

Remark 4: The above idea to transfer constraint into a
penalty by adding the penalty’s derivative to the empirical
vector field opens up possibilities to consider various types
of penalties to encourage desired structures when using
our proposed VI-based estimator, e.g., the continuous DAG
characterization [17] and the adaptive Lasso [15]; one can
see Section V below for more details on our proposed VI-
based estimator coupled with DAG regularization (21) and ℓ1
regularization (22).

IV. NON-ASYMPTOTIC PERFORMANCE GUARANTEE

In this section, we will show our proposed estimator has nice
statistical properties, i.e., it is unique and consistent; the proof
is deferred to Appendix B-B in the supplementary material due
to space consideration. In addition, we will also derive a linear
program (LP) based confidence interval (CI) of parameters
θi’s, which we defer to Appendix B-C in the supplementary
material. One pitfall of our theoretical analysis is the lack of
guarantee for the proposed data-adaptive linear method and
we leave this topic for future discussion. We begin with two
necessary model assumptions:

Assumption 1: The link function g(·) is continuous and
monotone, and the vector field G(θ) = Ew[wg(wTθ)] is well
defined (and therefore monotone along with g). Moreover, g is
differentiable and has uniformly bounded first order derivative
mg ≤ |g′| ≤ Mg for 0 < mg ≤ Mg.

Assumption 2: The observations (static, binary, and contin-
uous) are bounded almost surely: there exists Mw > 0 such
that at any time step t, we have ∥wt−τ :t−1∥∞ ≤ Mw with
probability one.

Theorem 1 (Upper Bound on ∥θ̂i − θ⋆
i ∥2): Under

Assumptions 1 and 2, for i ∈ [d1] and any ε ∈ (0, 1), with
probability at least 1 − ε, the ℓ2 distance between ground
truth θ⋆

i and the weak solution θ̂i to VI[F(i)
T ,(] can be upper

bounded as follows:

∥θ̂i − θ⋆
i ∥2 ≤

Mw

mgλ1

√
d log(2d/ε)

T
,

where λ1 is the smallest eigenvalue of W1:T =∑T
t=1 wt−τ :t−1wT

t−τ :t−1/T (4).
The above theorem is an extension to the general link

function case with mixed-type data of [19, Th. 1]. As pointed
out in [19], W1:T ∈ Rd×d will be full rank for sufficiently
large T , i.e., λ1 will be a positive constant with high
probability.

Remark 5 (Identifiablility): The uniqueness, or rather, the
identifiability, comes from the nice property of the underlying
vector field. To be precise, in the proof of the above theorem
(see Appendix B-B in the supplementary material), we have
shown the vector field F(i)

T (θi) is monotone modulus mgλ1
under Assumption 1. Then, the following lemma tells us that
our proposed estimator is unique:

Lemma 1 [18, Lemma 3.1]: Let ( be a convex compact
set and H be a monotone vector field on ( with monotonicity
modulus κ > 0, i.e.,

∀ z, z′ ∈ (,
[
H(z)− H

(
z′
)]T(z− z′

)
≥ κ∥z− z′∥22.

Then, the weak solution z̄ to VI[H,(] exists and is unique. It
satisfies:

H(z)T(z− z̄) ≥ κ∥z− z̄∥22.
Next, we will use both simulations and real examples to

show the good performance of our method for causal structural
learning.

V. NUMERICAL SIMULATION

In this section, we conduct numerical simulations to show
the good performance of VI-based estimator VI[F(i)

T ,(].
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We will show the competitive performance of our VI-based
method compared with benchmark methods such as Neural
Network based method [12], even under the model mis-
specification setting. Importantly, we also show that our
proposed data-adaptive linear regularization outperforms other
DAG-inducing regularization approaches in structural learn-
ing. Due to space consideration, the complete experimental
configurations and the comparison between VI-based estimator
and under the model mis-specification setting is deferred to
Appendices C-A and C-B.

1) Evaluation Metrics: We consider a simple τ = 1 case
in our simulations, and we are interested in the estimation of
model parameters: (i) background intensity ν = (ν1, . . . , νd1)

T

and (ii) self- and mutual-exciting matrix A1 = (αij1); for
brevity, we drop the last subscript “1” and denote the adja-
cency matrix by A = (αij). We consider (i) the ℓ2 norm of
the background intensity estimation error ∥ν̂ − ν∥2 (ν err.)
and (ii) matrix F-norm of the self- and mutual-exciting matrix
estimation error ∥Â − A∥F (A err.). Additionally, we report
the Structural Hamming Distance (SHD) between Â and A,
which reflects how close the recovered graph is to the ground
truth. This is the primary quantitative metric in the following
experiment. SHD is the number of edge flips, insertions,
and deletions in order to transform between two graphs. In
particular, when edge i→ j is in the true graph, i.e., αji > 0,
whereas edge i ← j is in the estimated graph, i.e., α̂ij >

0, the SHD is increased by 1 via edge flip instead of 2
by edge insertion and deletion. In addition, since we are
interested in DAG structure with self-exciting components,
we also consider a measure of “DAG-ness” on the recovered
adjacency matrix (after zeroing out the diagonal entries of Â),
denoted by h(A0) (10). We need to mention that small h(A0)

with large SHD means we recover a DAG which is not close
to the ground truth and this does not imply good structure
recovery.

2) Benchmark Regularization Approaches: Let us first for-
mally introduce several benchmark regularization approaches.
Recall that we use A = (αij) to denote A1 = (αij1) in τ = 1
case for brevity:

• Continuous DAG Regularization and a Proposed Variant:
Recall the continuous and differentiable (but not convex)
characterization by [17] in (10), which can measure the
DAG-ness of A. Most importantly, this DAG character-
ization has closed from derivative, i.e., ∇h(A) = (eA)T.

Inspired by [20], we use this characterization as a penalty
directly. We take advantage of its differentiability and
add its derivative to the concatenated field FT(θ) (16),
which will be treated as the gradient field in PGD. More
specifically, let J = (0d1 , Id1) ∈ Rd1×d and we will
have Jθ = AT. Then, the vector field coupled with DAG
regularization FDAG

T (·) is defined as follows:

FDAG
T (θ) = FT(θ) + λJT∇h(Jθ) = FT(θ) + λJTeA,

(21)

where tunable hyperparameter λ controls the penalty
strength. The PGD update rule is given by:

θ̂ ← θ̂ − ηFDAG
T

(
θ̂
)
,

Fig. 3. Simulated example: demonstration of the effectiveness of our
proposed data-adaptive linear regularization. We visualize the recovered graph
structures for a d1 = 10 and T = 500 illustrative example using our proposed
VI-based estimator coupled with various types of regularization (specified on
top of each panel). We can observe that our proposed VI-based estimator
coupled with our proposed data-adaptive linear constraint can return the
closest graph structure to the ground truth; see quantitative evaluation metrics,
such as SHD, in Table II.

where η is the learning rate hyperparameter and is
also tunable. One drawback of the aforementioned DAG
regularization is that it removes not only cycles but also
lagged self-exciting components; this is evidenced in
Figure 3. To keep those informative lagged self-exciting
components, we simply zero out the diagonal elements in
DAG regularization derivative ∇h(Jθ) in (21). Thus, the
PGD update will not shrink the diagonal elements.

• ℓ1 Regularization and Adaptive Lasso: We adopt the ℓ1
penalty as another benchmark, which encourages a sparse
graph structure and, in turn, eliminates cycles. The ℓ1
penalized vector filed is defined as follows:

Fℓ1
T (θ) = FT(θ) + λJT∇(|Jθ |1), (22)

where | · |1 is the summation of the absolute values
of all entries. Similarly, the VI-based estimator can be
efficiently solved by PGD using the following update rule:

θ̂ ← θ̂ − ηFℓ1
T

(
θ̂
)
.

As a variant of ℓ1 regularization, adaptive ℓ1 regulariza-
tion (or adaptive Lasso [15]) replaces λ|αij| with λ

α̂ij
|αij|

in (22); for α̂ij = 0 case, we adopt a simple remedy by
adding penalty term 103λ|αij| to enforce αij to be zero.

3) Results: We first demonstrate the competitive
performance of our proposed data-adaptive linear method
on a d1 = 10 illustrative example, where we adopt an
exponential link function. We visualize the recovered graphs
using our VI-based estimator with exponential link coupled
with various types of regularization in Figure 3, and we
report all aforementioned quantitative metrics in Table II;
additionally, we report the relative errors in the illustrative
example in Table VIII in the supplementary material. We
observe that our proposed data-adaptive linear regularization
can achieve the best weight recovery accuracy (in terms of
ν. err. and A err.) and structure recovery accuracy (in terms
of SHD) compared with all benchmark methods.
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TABLE II
SIMULATED EXAMPLE: QUANTITATIVE METRICS OF THE EXAMPLE IN

FIGURE 3. WE CAN OBSERVE THAT OUR PROPOSED VI-BASED
ESTIMATOR, COUPLED WITH OUR PROPOSED DATA-ADAPTIVE LINEAR
CONSTRAINT, CAN ACHIEVE BETTER ESTIMATION ACCURACY WHILE

ENCOURAGING A DESIRED DAG STRUCTURE. BESIDES, OUR PROPOSED
METHOD ALSO GIVES THE BEST STRUCTURE RECOVERY, I.E., THE

SMALLEST SHD; ALTHOUGH THE ADAPTIVE ℓ1 APPROACH ACHIEVES
THE BEST DAG-NESS, IT ACHIEVES SO BY REMOVING MANY
IMPORTANT EDGES AND CANNOT OUTPUT A CORRECT GRAPH

STRUCTURE (AS EVIDENCED IN FIGURE 3)

Fig. 4. Simulation: mean (dot) and standard deviation (error bar) of matrix
F-norm of the self- and mutual-exciting matrix estimation error (A err.)
and Structural Hamming Distance (SHD) over 100 independent trials for
various types of regularization. For each regularization, the closer it is to the
origin, the better it is. We can observe that our proposed data-adaptive linear
regularization performs the best (especially in higher dimensional cases) in
terms of structure recovery while achieving almost the same weight recovery
accuracy with the best result.

To further validate the good performance of our proposed
data-adaptive linear method, we run 100 independent trials for
d1 = 10, T = 500 and d1 = 20, T = 1000 cases as well as
linear link and exponential link functions cases. We plot the
mean and standard deviation of A err. and SHD in Figure 4;
for completeness, we also report the raw values of the mean
and standard deviation of all four aforementioned metrics in
Table IX in the supplementary material. The complete details,
including random DAG generation, PGD to solve for the
estimators, and additional results (Tables VIII and IX in the
supplementary material), are deferred to Appendix C-C in the
supplementary material.

Figure 4 shows that, in low dimensional (i.e., d1 = 10)

case, ℓ1 regularization does well in weight recovery but fails
in structure recovery, whereas our proposed variant of DAG
regularization prioritizes the structure recovery but performs

poorly in weight recovery. As a comparison, our proposed
data-adaptive linear regularization achieves comparable weight
and structure recovery accuracy to ℓ1 regularization and the
proposed variant of DAG regularization, respectively, suggest-
ing that it can balance the weight recovery accuracy and
the structure recovery accuracy in low dimensional case. In
the higher dimensional (i.e., d1 = 20) case, our proposed
approach achieves the best structure recovery accuracy while
maintaining nearly the same weight recovery accuracy with
the best result (achieved by ℓ1 regularization-based method).
It is interesting to observe that adaptive ℓ1 regularization’s
performance lies between ℓ1 regularization and our proposed
regularization. In addition, our proposed regularization has
a dominating performance over DAG regularization-based
approaches in terms of both structure recovery accuracy
and weight recovery accuracy. These observations are also
validated by Table IX in the Appendix in the supplementary
material.

VI. REAL DATA EXAMPLE

In this section, we demonstrate the usefulness of
our proposed method in a real study. We perform a
train-validation-test split to select the models and their
hyperparameters based on the predictive performance on the
held-out test dataset. We show that the proposed discrete-
time Hawkes network with a linear link function achieves
the best performance. To enhance interpretability, we per-
form Bootstrap uncertainty quantification to remove false
discoveries in the causal graphs. Importantly, our proposed
DAG-encouraging regularization can further boost both the
predictive performance and the causal graph interpretability.

A. Settings

1) Dataset and Sepsis Associated Derangements: This real
study targets a short time window right after the SOFA score
turns 2 for ICU patients; see patient demographics in Table I,
Section I-A. To reduce the complexity of the computations
due to high-dimensional raw features (i.e., vital signs and
Lab results), expert (i.e., clinician) opinion is utilized to
identify common and clinically relevant SADs that could
be detected using structured EMR data. In particular, those
Labs and vital signs are all converted into binary SADs,
representing nodes in the graph; As all those raw features are
used in SADs’ construction, they are not input to the model to
avoid undesired correlation amongst nodes. Please find further
details in Table X in Appendix D-A1 in the supplementary
material.

2) Evaluation Metrics: The primary quantitative evaluation
metric is Cross Entropy (CE) loss, as our model outputs
predicted probabilities for binary SADs sequentially. As
SADs do not occur very often for each patient, we also
use Focal loss as an alternative metric to account for such
class imbalance issues. Furthermore, we focus on the inter-
pretability of the resulting causal DAG by (i) counting the
number of undesirable length-L cycles, L ∈ {2, 3, 4, 5}, and
(ii) studying whether or not the inferred interactions align
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Fig. 5. Causal graphs recovered by our proposed discrete-time Hawkes network using a linear link without (left) and with (right) Bootstrap uncertainty
quantification. We remove the directed edges whose 95% Bootstrap confidence intervals contain zero. We can observe that, by comparing both graphs, the
graph with BP has much fewer edges (which are caused by noisy observation) and is thus more interpretable. However, there still exist three length-2 cycles
(green) and one length-4 cycle (orange) in this graph.

with well-known physiologic relationships. Please find further
details in Appendix D-A2 in the supplementary material.

3) Training Details: We perform train-validation-test data
split to fine-tune the hyperparameters: we use the 2018 data as
the training dataset, and we randomly split the 2019 dataset by
half (for both sepsis and non-sepsis patient cohorts) into vali-
dation and testing datasets; we will select the hyperparameters
based on the CE loss on the validation dataset and demonstrate
its performance on the test dataset. We fit the candidate models
using the 2018 real data and select the hyperparameters based
on the total CE loss on the 2019 validation dataset. Please
find further details in Appendix D-A3 in the supplementary
material.

B. Model Comparison

1) Candidate Models: We compare the VI-based estima-
tion VI[F(i)

T ,(] with the black-box methods — we choose
XGBoost over other models, e.g., Neural Networks, since it
outperformed other candidate models in the 2019 Physionet
Challenge on sepsis prediction [58]. For the VI-based esti-
mation, we consider linear, sigmoid, and exponential link
functions. Furthermore, we incorporate expert opinion/prior
medical knowledge that no inhibiting effect exists: on one
hand, it remained unclear how to interpret inhibiting effects
among SADs; on the other hand, restricting our consideration
to triggering effects reduces the feasible region to θ ∈ Rd×d1

+ ,
which enables us to leverage PGD to numerically obtain the
estimators.

2) Results: We visualize the recovered causal graphs of
the SADs in Figure 5 and report the out-of-sample testing
metrics in Table III. We can observe that our proposed model
with linear link function achieves the best performance for
predicting most SADs; in particular, it has the smallest out-of-
sample CE loss for sepsis prediction. Although the exponential
link function outperforms the linear link for some SADs, the
improvements are negligible; in addition, it performs rather
poorly for CNS Dysfunction and Tachycardia predictions.
Therefore, we will continue our real data analysis using the
VI-based estimation coupled with the linear link function. For

TABLE III
COMPARISON BETWEEN THE VI-BASED ESTIMATION COUPLED WITH
VARIOUS LINK FUNCTIONS AND BLACK-BOX XGBOOST: WE REPORT
THE AVERAGE AND STANDARD DEVIATION OF CROSS ENTROPY LOSS
OVER ALL PATIENTS IN THE 2019 TEST DATASET FOR ALL METHODS.

THE BEST RESULTS (BEFORE WE ROUND THE NUMBER) ARE
HIGHLIGHTED. WE CAN OBSERVE THE VI-BASED ESTIMATION

COUPLED WITH LINEAR LINK FUNCTION OUTPERFORMS OTHER
CANDIDATE METHODS WHEN PREDICTING MOST SADS. ALTHOUGH THE
EXPONENTIAL LINK FUNCTION PERFORMS THE BEST FOR MANY SADS,

ITS IMPROVEMENTS COMPARED WITH LINEAR LINK ARE MARGINAL,
LET ALONE IT IS NOT ROBUST IN THE SENSE THAT IT PERFORMS

POORLY FOR CNSDYS AND TACHY PREDICTIONS

completeness, further comparisons with XGBoost, VI-based
estimation coupled with non-linear links (such as Figure 12 in
the supplementary material), and VI-based estimation without
prior medical knowledge (i.e., with potential inhibiting effects)
are deferred to Appendices D-B1, D-B2, and D-B3 in the
supplementary material, respectively.

C. Causal DAG Discovery

Table III shows the competitive performance of the VI-
based estimation coupled with the linear link function, and
thus we continue our analysis with such mode choice. The
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TABLE IV
COMPARISON AMONG VARIOUS TYPES OF REGULARIZATION: WE REPORT THE NUMBER OF CYCLES FOR VARIOUS METHODS. WE CAN SEE

BOOTSTRAP CAN REMOVE MOST OF THE CYCLES BY REMOVING THE “LESS IMPORTANT EDGES” IN THE GRAPH; SEE THE COMPARISON BETWEEN
BOTH GRAPHS IN FIGURE 5 FOR A GRAPHICAL ILLUSTRATION. MOREOVER, BUILT ON TOP OF THE BOOTSTRAP UNCERTAINTY QUANTIFICATION,

PROPER DAG-INDUCING REGULARIZATION CAN COMPLETELY REMOVE CYCLES AND ENCOURAGE A DESIRED
“DAG WITH SELF-EXCITING COMPONENTS” STRUCTURE

TABLE V
COMPARISON AMONG VARIOUS TYPES OF REGULARIZATION: WE REPORT THE AVERAGE AND STANDARD DEVIATION OF CROSS ENTROPY LOSS OVER

ALL PATIENTS IN THE 2019 TEST DATASET. THE BEST RESULTS (BEFORE WE ROUND THE NUMBER) ARE HIGHLIGHTED. WE CAN OBSERVE OUR
PROPOSED DATA-ADAPTIVE LINEAR REGULARIZATION CAN ACHIEVE THE BEST PERFORMANCE FOR MOST SADS COMPARED WITH OTHER

DAG-INDUCING REGULARIZATIONS; MOREOVER, BY COMPARING THIS TABLE WITH TABLE III, WE CAN SEE IT ACHIEVES
ALMOST THE SAME PERFORMANCE AS THE BEST ACHIEVABLE PERFORMANCE

objective now is to improve the result interpretability by
considering causal structural learning.

1) Bootstrap UQ: We report the number of length-L cycles
for L ∈ {2, 3, 4, 5} in Table IV. As we can see from that table,
the recovered graph without uncertainty quantification and
DAG-inducing regularization contains many cycles, making
the results less explainable.

The left panel in Figure 5 shows many edges with very
small weights, meaning that the existence of such an edge
might be a result of noisy observations. For example, although
the edge from Diminished Cardiac Output (vital signs) to
sepsis events agrees with the well-known causal relationships
in sepsis-related illness, its weight is too small to convince
the clinician that such a triggering effect is statistically signif-
icant. Thus, before applying regularization, we first perform
Bootstrap UQ, and the existence of an edge is determined
by its Bootstrap confidence interval: we assign zero weight
to that edge if its 95% CI contains zero; otherwise, we use
the median of the Bootstrap results as the weight. Here, we
obtain the CI based on 1500 Bootstrap trails; complete details
are deferred to Appendix D-A4 in the supplementary material.
The resulting graph is reported in the right panel in Figure 5
and the CE loss is reported in Table V.

The results in Table IV and Figure 5 show that BP can
remove a substantive amount of cycles. Importantly, it is
good to observe that the well-known triggering effect from
Diminished Cardiac Output (vital signs) to sepsis events is
statistically significant; see Figure 5. However, as evidenced
by Tables III and V, performing Bootstrap UQ leads to
much worse CE loss for almost all SADs To improve its
prediction performance to make the interpretable graphs more
convincing, and to remove the remaining cycles highlighted
in Figure 5, we consider causal structural learning via our
penalized VI-based estimation such as VI[FDAL

T , (̃].
2) Causal DAG Recovery via Regularization: We adopt the

regularization approaches described in Sections III-A and V;
again, for each regularization, we perform Bootstrap UQ
with 1500 trials and 95% confidence level; we select the
regularization strength hyperparameter λ using grid search
based on the validation total CE loss. We report the CE
loss on the test dataset for each regularization (with cor-
responding selected λ’s) in Table V; the resulting graphs
are visualized at the beginning of this paper in Figure 1.
From Table V, we can observe that our proposed data-
adaptive linear regularization can not only remove cycles
while keeping the lagged self-exciting components but also
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reduce the out-of-sample prediction CE loss. This suggests
that Bootstrap coupled with our proposed DAG-inducing regu-
larization outputs a highly interpretable causal DAG (Figure 1
and Table IV) while achieving almost identical out-of-sample
prediction performance (Tables III and V). Additionally, we
report an additional metric — Focal loss — in Table XIII,
Appendix D-B4 in the supplementary material, and hyperpa-
rameter λ selection table in Table XIV, Appendix D-B5 in
the supplementary material, re-affirming the aforementioned
findings.

3) Interpretation: Figure 1 elucidates which relationships
are most important in the graph, which is an essential aspect
of interpretability. For example, the triggering effect from
Diminished Cardiac Output (vital signs) to sepsis events
remains significant after the Bootstrap UQ and cycle elimi-
nation; in fact, nearly all triggering effects of sepsis events
remain significant. We provide the top causes of sepsis
discovered in Figure 1, showing their similarity to the results
of XGBoost [6] on clinically published data [3]. Due to space
consideration, one can find those results in Appendix D-B6 in
the supplementary material.

The primary outcome of interest for this work was sepsis.
Meanwhile, as demonstrated in Figure 1, the causal relation-
ship between any node pair can be estimated: Indeed, we can
identify several strong triggering effects shared by both graphs,
which are commonly recognized (though in other types of
patients). For example, the exciting effect from Hyperglycemia
to Electrolyte Imbalance is commonly seen in type 2 diabetes
patients [59], and the observation that Acidosis precedes
Cholestatsis is common for patients with pregnancy [60].
Meanwhile, our model can predict all SAD events in the graph,
and this gives clinician users insight into the probability of
observing subsequent SADs after sepsis. Even though our
prediction of sepsis events is not perfect, the ability to predict
other SADs that are on the path to sepsis or identify different
potential pathways to an adverse event is also very important
for clinicians to respond to those potential adverse events
accordingly. Overall, the fact that identified triggering effects
agree with the well-known physiologic relationships and the
satisfying predictive performance affirm the usefulness of our
proposed method.

VII. CONCLUSION

In this work, we present a GLM for causal DAG discovery
from mutually exciting time series data. Most importantly, our
proposed data-adaptive linear DAG-inducing regularization
helps formulate the model estimation as a convex optimization
problem. Furthermore, we establish a non-asymptotic esti-
mation error upper bound for the GLM, which is verified
numerically; we also give a confidence interval by solving
linear programs. Both our numerical simulation and real
data example show the good performance of our proposed
method, making its future adoption in conducting continuous
surveillance under medical settings and other similar problems
much more likely. Meanwhile, there are a few interesting
topics that the current work does not cover. For example, the

convexity inherent in our proposed data-adaptive linear causal
discovery method opens up the possibility of establishing
performance guarantees, which we leave for future discussion.

REFERENCES

[1] Global Report on the Epidemiology and Burden of Sepsis: Current
Evidence, Identifying Gaps and Future Directions, World Health Org.,
Geneva, Switzerland, 2020.

[2] L. M. Fleuren et al., “Machine learning for the prediction of sepsis:
A systematic review and meta-analysis of diagnostic test accu-
racy,” Intensive Care Med., vol. 46, no. 3, pp. 383–400, 2020.

[3] M. A. Reyna et al., “Early prediction of sepsis from clinical data: The
PhysioNet/computing in cardiology challenge 2019,” in Proc. Comput.
Cardiol. (CinC), 2019, pp. 1–8.

[4] J. A. Du, N. Sadr, and P. de Chazal, “Automated prediction of sepsis
onset using gradient boosted decision trees,” in Proc. Comput. Cardiol.
(CinC), 2019, pp. 1–4.

[5] M. Zabihi, S. Kiranyaz, and M. Gabbouj, “Sepsis prediction in intensive
care unit using ensemble of XGboost models,” in Proc. Comput. Cardiol.
(CinC), 2019, pp. 1–4.

[6] M. Yang et al., “An explainable artificial intelligence predictor for early
detection of sepsis,” Crit. Care Med., vol. 48, no. 11, pp. e1091–e1096,
2020.

[7] S. P. Shashikumar, C. S. Josef, A. Sharma, and S. Nemati, “DeepAISE—
An interpretable and recurrent neural survival model for early prediction
of sepsis,” Artif. Intell. Med., vol. 113, Mar. 2021, Art. no. 102036.

[8] H. Lütkepohl, New Introduction to Multiple Time Series Analysis.
Heidelberg, Germany: Springer, 2005.

[9] A. Shojaie and E. B. Fox, “Granger causality: A review and recent
advances,” Annu. Rev. Stat. Appl., vol. 9, pp. 289–319, Mar. 2022.

[10] J. Pearl, Causality. Cambridge, U.K.: Cambridge Univ. Press, 2009.
[11] A. Tank, I. Covert, N. Foti, A. Shojaie, and E. Fox, “Neural Granger

causality for nonlinear time series,” Feb. 2018, arXiv:1802.05842v2.
[12] S. Khanna and V. Y. F. Tan, “Economy statistical recurrent units

for inferring nonlinear Granger causality,” in Proc. Int. Conf. Learn.
Represent., 2019, pp. 1–19.

[13] K. Zhang and A. Hyvärinen, “Causality discovery with additive dis-
turbances: An information-theoretical perspective,” in Proc. Joint Eur.
Conf. Mach. Learn. Knowl. Disc. Databases, 2009, pp. 570–585.

[14] A. Hyvärinen, K. Zhang, S. Shimizu, and P. O. Hoyer, “Estimation of a
structural vector autoregression model using non-Gaussianity,” J. Mach.
Learn. Res., vol. 11, no. 5, pp. 1709–1731, 2010.

[15] H. Zou, “The adaptive lasso and its oracle properties,” J. Amer. stat.
Assoc., vol. 101, no. 476, pp. 1418–1429, 2006.

[16] R. Pamfil et al., “DYNOTEARS: Structure learning from time-series
data,” in Proc. Int. Conf. Artif. Intell. Stat., 2020, pp. 1595–1605.

[17] X. Zheng, B. Aragam, P. K. Ravikumar, and E. P. Xing, “DAGs with
NO TEARS: Continuous optimization for structure learning,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 31, 2018, pp. 1–22.

[18] A. B. Juditsky and A. Nemirovski, “Signal recovery by stochastic
optimization,” Autom. Remote Control, vol. 80, no. 10, pp. 1878–1893,
2019.

[19] A. Juditsky, A. Nemirovski, L. Xie, and Y. Xie, “Convex parameter
recovery for interacting marked processes,” IEEE J. Sel. Areas Inf.
Theory, vol. 1, no. 3, pp. 799–813, Nov. 2020.

[20] I. Ng, A. Ghassami, and K. Zhang, “On the role of sparsity and DAG
constraints for learning linear dags,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 33, 2020, pp. 17943–17954.

[21] M. Singer et al., “The third international consensus definitions for sepsis
and septic shock (sepsis-3),” JAMA, vol. 315, no. 8, pp. 801–810, 2016.

[22] C. W. Seymour et al., “Time to treatment and mortality during mandated
emergency care for sepsis,” New Engl. J. Med., vol. 376, no. 23,
pp. 2235–2244, 2017.

[23] S. Wei, Y. Xie, C. S. Josef, and R. Kamaleswaran, “Granger causal
chain discovery for sepsis-associated derangements via continuous-time
Hawkes processes,” in Proc. 29th ACM SIGKDD Conf. Knowl. Disc.
Data Min., 2023, pp. 2536–2546.

[24] S. Wei, Y. Xie, C. S. Josef, and R. Kamaleswaran, “Causal graph
recovery for sepsis-associated derangements via interpretable Hawkes
networks,” in Proc. Int. Conf. Mach. Learn. (IMLH), 2021, pp. 1–72.

[25] A. Tank, E. B. Fox, and A. Shojaie, “Identifiability and estimation
of structural vector autoregressive models for subsampled and mixed-
frequency time series,” Biometrika, vol. 106, no. 2, pp. 433–452, 2019.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 25,2024 at 23:44:50 UTC from IEEE Xplore.  Restrictions apply. 



WEI et al.: CAUSAL GRAPH DISCOVERY FROM SELF AND MUTUALLY EXCITING TIME SERIES 761

[26] C. Glymour, K. Zhang, and P. Spirtes, “Review of causal discovery
methods based on graphical models,” Front. Genet., vol. 10, p. 524,
2019.

[27] M. Chickering, D. Heckerman, and C. Meek, “Large-sample learning
of Bayesian networks is NP-hard,” J. Mach. Learn. Res., vol. 5,
pp. 1287–1330, Oct. 2004.

[28] Y. Yuan, X. Shen, W. Pan, and Z. Wang, “Constrained likelihood for
reconstructing a directed acyclic Gaussian graph,” Biometrika, vol. 106,
no. 1, pp. 109–125, 2019.

[29] H. Manzour, S. Küçükyavuz, H.-H. Wu, and A. Shojaie, “Integer
programming for learning directed acyclic graphs from continuous
data,” INFORMS J. Optim., vol. 3, no. 1, pp. 46–73, 2021.

[30] P.-L. Loh and P. Bühlmann, “High-dimensional learning of linear causal
networks via inverse covariance estimation,” J. Mach. Learn. Res.,
vol. 15, no. 1, pp. 3065–3105, 2014.

[31] J. Xiang and S. Kim, “A* Lasso for learning a sparse Bayesian network
structure for continuous variables,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 26, 2013, pp. 1–9.

[32] Z. Fang, S. Zhu, J. Zhang, Y. Liu, Z. Chen, and Y. He, “On low-
rank directed acyclic graphs and causal structure learning,” IEEE
Trans. Neural Netw. Learn. Syst., early access, May 22, 2023,
doi: 10.1109/TNNLS.2023.3273353.

[33] Y. Yu, J. Chen, T. Gao, and M. Yu, “DAG-GNN: DAG structure learning
with graph neural networks,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 7154–7163.

[34] N. R. Ke et al., “Learning neural causal models from unknown
interventions,” 2019, arXiv:1910.01075.

[35] S. Lachapelle, P. Brouillard, T. Deleu, and S. Lacoste-Julien, “Gradient-
based neural DAG learning,” in Proc. Int. Conf. Learn. Represent., 2019,
pp. 1–23.

[36] M. Scanagatta, A. Salmerón, and F. Stella, “A survey on Bayesian
network structure learning from data,” Progr. Artif. Intell., vol. 8, no. 4,
pp. 425–439, 2019.

[37] B. Schölkopf et al., “Toward causal representation learning,” Proc. IEEE,
vol. 109, no. 5, pp. 612–634, May 2021.

[38] N. K. Kitson, A. C. Constantinou, Z. Guo, Y. Liu, and K. Chobtham,
“A survey of Bayesian network structure learning,” 2021,
arXiv:2109.11415.

[39] M. J. Vowels, N. C. Camgoz, and R. Bowden, “D’ya like DAGs?
A survey on structure learning and causal discovery,” ACM Comput.
Surveys, vol. 55, no. 4, pp. 1–36, 2022.

[40] A. Tong, L. Atanackovic, J. Hartford, and Y. Bengio, “Bayesian dynamic
causal discovery,” in Proc. Causal View Dyn. Syst. NeurIPS Workshop,
2022, pp. 1–14.

[41] S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen, “A linear
non-Gaussian acyclic model for causal discovery,” J. Mach. Learn. Res.,
vol. 7, no. 10, pp. 2003–2030, 2006.

[42] C. Maddison, A. Mnih, and Y. Teh, “The concrete distribution: A
continuous relaxation of discrete random variables,” in Proc. Int. Conf.
Learn. Represent., 2017, pp. 1–20.

[43] E. Jang, S. Gu, and B. Poole, “Categorical reparametrization with
Gumbel-softmax,” in Proc. Int. Conf. Learn. Represent., 2017, pp. 1–13.

[44] M. Oberst and D. Sontag, “Counterfactual off-policy evaluation with
Gumbel-max structural causal models,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 4881–4890.

[45] G. Lorberbom, D. D. Johnson, C. J. Maddison, D. Tarlow, and T. Hazan,
“Learning generalized Gumbel-max causal mechanisms,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 34, 2021, pp. 26792–26803.

[46] K. Noorbakhsh and M. Rodriguez, “Counterfactual temporal point
processes,” in Proc. Adv. Neural Inf. Process. Syst., vol. 35, 2022,
pp. 24810–24823.

[47] V. Sindhwani, H. Q. Minh, and A. C. Lozano, “Scalable matrix-valued
kernel learning for high-dimensional nonlinear multivariate regression
and Granger causality,” in Proc. 29th Conf. Uncertain. Artif. Intell.,
2013, pp. 586–595.

[48] A. Bolstad, B. D. Van Veen, and R. Nowak, “Causal network inference
via group sparse regularization,” IEEE Trans. Signal Process., vol. 59,
no. 6, pp. 2628–2641, Jun. 2011.

[49] S. Basu, A. Shojaie, and G. Michailidis, “Network Granger causality
with inherent grouping structure,” J. Mach. Learn. Res., vol. 16, no. 1,
pp. 417–453, 2015.

[50] S. Basu, X. Li, and G. Michailidis, “Low rank and structured
modeling of high-dimensional vector autoregressions,” IEEE Trans.
Signal Process., vol. 67, no. 5, pp. 1207–1222, Mar. 2019.

[51] M. Grant and S. Boyd. “CVX: MATLAB software for disci-
plined convex programming, version 2.1.” 2014. [Online]. Available:
http://cvxr.com/cvx/

[52] (Mosek ApS, Copenhage, Denmark). The MOSEK Optimization
Toolbox for Python Manual. Version 10.0. (2019). [Online]. Available:
https://docs.mosek.com/latest/pythonapi/index.html

[53] B. Efron, Exponential Families in Theory and Practice. Cambridge,
U.K.: Cambridge Univ. Press, 2022.

[54] M. Lechner, “The relation of different concepts of causality used in
time series and microeconometrics,” Economet. Rev., vol. 30, no. 1,
pp. 109–127, 2010.

[55] Z. Zhang et al., “Truncated matrix power iteration for differentiable
DAG learning,” in Proc. Adv. Neural Inf. Process. Syst., vol. 35, 2022,
pp. 18390–18402.

[56] K. Bello, B. Aragam, and P. Ravikumar, “DAGMA: Learning dags via
m-matrices and a log-determinant acyclicity characterization,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 35, 2022, pp. 8226–8239.

[57] S. Wei and Y. Xie, “Causal structural learning from time series: A convex
optimization approach,” 2023, arXiv:2301.11336.

[58] M. A. Reyna et al., “Early prediction of sepsis from clinical data: The
PhysioNet/computing in cardiology challenge 2019,” Crit. Care Med.,
vol. 48, no. 2, pp. 210–217, Feb. 2020.

[59] R. N. Khan, F. Saba, S. F. Kausar, and M. H. Siddiqui, “Pattern
of electrolyte imbalance in type 2 diabetes patients: Experience from
a tertiary care hospital,” Pakistan J. Med. Sci., vol. 35, no. 3,
p. 797, 2019.

[60] K. Sterrenburg, W. Visser, L. Smit, and J. Cornette, “Acidosis: A poten-
tial explanation for adverse fetal outcome in intrahepatic cholestasis of
pregnancy. A case report,” Obstetr. Med., vol. 7, no. 4, pp. 177–179,
2014.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 25,2024 at 23:44:50 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TNNLS.2023.3273353

