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ABSTRACT
Modern health care systems are conducting continuous, automated
surveillance of the electronic medical record (EMR) to identify
adverse events with increasing frequency; however, many events
such as sepsis do not have elucidated prodromes (i.e., event chains)
that can be used to identify and intercept the adverse event early
in its course. Clinically relevant and interpretable results require
a framework that can (i) infer temporal interactions across mul-
tiple patient features found in EMR data (e.g., Labs, vital signs,
etc.) and (ii) identify patterns that precede and are speci!c to an
impending adverse event (e.g., sepsis). In this work, we propose
a linear multivariate Hawkes process model, coupled with ReLU
link function, to recover a Granger Causal (GC) graph with both
exciting and inhibiting e"ects. We develop a scalable two-phase
gradient-based method to obtain a maximum surrogate-likelihood
estimator, which is shown to be e"ective via extensive numeri-
cal simulation. Our method is subsequently extended to a data
set of patients admitted to Grady hospital system in Atlanta, GA,
USA, where the estimated GC graph identi!es several highly in-
terpretable GC chains that precede sepsis. The code is available at
https://github.com/SongWei-GT/two-phase-MHP.
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1 INTRODUCTION
Continuous, automated surveillance systems that use machine
learning models to identify adverse patient events are being incor-
porated into healthcare environments with increasing frequency.
One of the most notable adverse events is sepsis, a life-threatening
medical condition contributing to one in !ve deaths globally [46]
and stands as one of the most important cases for automated in-
hospital surveillance. Sepsis is formally de!ned as life-threatening
organ dysfunction caused by a dysregulated host response to infec-
tion [41]. Delays in recognizing sepsis and initiating appropriate
treatment can adversely impact patient outcomes. In a recent study
of adult sepsis patients, each hour of delayed treatment was asso-
ciated with higher risk-adjusted in-hospital mortality (odds ratio,
1.04 per hour) [38]. It logically follows that early recognition of the
physiologic aberrations preceding sepsis would a"ord clinicians
more time to intervene and may contribute to improving outcomes
and reducing costs. Many machine learning methods have been
developed to predict the onset of sepsis, utilizing data from the elec-
tronic medical record (EMR) [13, 34, 39]. While many approaches
can be designed to provide an alert preceding an event, most are
not designed to discover and report the causal chains that preceded
an adverse event. Developing and reporting a causal chain of events
not only serves as a foundation for prognosticating adverse event
occurrence, but more importantly it reveals the pathways of de-
terioration which may a"ord clinicians the additional context to
corroborate or modify existing treatment modalities in a way that
is superior to a simple alarm.

Recently, Hawkes processes [19–21], which model self- and
mutual- exciting patterns among continuous-time events, have
drawnmuch attention in the !eld of health analytics [2, 8, 31, 37, 45].
The linear multivariate Hawkes process (MHP) seems highly rele-
vant to our problem since (i) the support of the excitation matrix
enjoys a natural interpretation as a Granger Causal (GC) graph [47],
(ii) given its interpretation as a clustering process [21], we can infer
the commonly observed chain pattern that precedes sepsis from the
estimated GC graph, and (iii) with proper domain expertise, simple
methods, such as (generalized) linear model, are proven e"ective
in outputting highly explainable results [8, 45].
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Figure 1: GC graphs over SADs for Sepsis-3 cohort (left) and full patient cohort (right). The width of the directed edge is
proportional to the exciting (blue) or inhibiting (red) e!ect magnitude. We can observe that our proposed method can output
highly interpretable GC graphs; for example, the observation that Antibiotic Therapy inhibits most of the SADs agrees with
the well-known physiologic relationship.

However, there are two major challenges preventing us from
applying naive linear MHP to recover the GC graph. First and fore-
most, linear MHP itself fails to model inhibiting e"ects (e.g., proper
medication will inhibit the occurrence of a certain disease), since
“negative triggering e"ects” could lead to a negative conditional in-
tensity and thus intractable likelihood. Second, the well-established
expectation–maximization (EM) stochastic declustering algorithm
[14, 51] su"erers from scalability issue and cannot be applied to
EMR data with thousands of patients’ trajectories. Recently, Bonnet
et al. [3, 4] proposed a linear MHP coupled with ReLU link function
𝐿(𝑀) = 𝑀+ := max{0, 𝑀} to handle the potential inhibiting e"ects.
To evaluate and maximize the likelihood, they calculated the “re-
start time”, at which the conditional intensity becomes nonzero.
However, such a calculation has quadratic complexity, making it
unscalable. Scalable methods to infer GC graph with both exciting
and inhibiting e"ects for linear MHP are still largely missing.

In this paper, we adopt the ReLU link function in linear MHP to
recover a Granger Causal graph with both exciting and inhibiting
e"ects. We propose a maximum surrogate-likelihood formulation
to tackle the scalability issue caused by the re-start time calculation
[4]. Furthermore, we develop a two-phase gradient-based method
to solve the optimization problem, and we observe improved em-
pirical performance through extensive numerical simulation. Most
importantly, our method can output graphs (i.e., Figure 1) that af-
ford clinicians a simple mechanism for interpreting both promoting
and inhibitory causal relationship amongst the data — Networks
are exceptionally important for syndromic (i.e. a constellation of
di"erent physiologic derangements can be manifested) conditions
like sepsis. These graphs can be used to di"erentiate cohorts and
to identify important, intra-cohort relationships. For clinicians the
utility of these graphs is two-fold: they can be used to (i) quantify a
patient’s risk of developing subsequent physiologic derangements
in the future and (ii) discover new relationships. The estimated
GC graphs here are highly interpretable and can be used to create
or augment surveillance systems for high-risk patients. Here, we
demonstrate the e"ectiveness of our approach in learning a Granger
Causal graph for Sepsis Associated Derangements (SADs), but it
can be generalized to other applications with similar requirements.

Related work. Granger Causality is well-studied in time series
literature via the vector autoregressive (VAR) model; see Shojaie

and Fox [40] for a recent survey. VAR models and MHP models
share many similarities and some have recently recognized that the
self- and mutual-excitation matrix in the Hawkes process model
can be interpreted as Granger Causal graph in a similar way. The
study of GC under the context of MHP can be traced back to Kim
et al. [26]. Recent development includes leveraging the alternating
direction method of multipliers to infer the low-rank structure in
mutual excitation matrix [50], applying EM algorithm with various
constraints [7, 22, 47] and using powerful neural networks [48] to
infer the GC graph.

Even outside the context of Granger Causality, the Hawkes pro-
cess itself has drawn much attention recently — there have been
many (semi-)parametric Hawkes process models by considering
di"erent types of triggering kernel function, such as probability
weighted kernel estimation with adaptive bandwidth [51], probabil-
ity weighted histogram estimation [29] and with inhomogeneous
spatial background rate [14] and so on. In addition, there are also
many non-parametric methods, e.g., the Neural Hawkes process
[30] and the Transformer Hawkes process [52].

Despite those advancements in semi- and non-parametric Hawkes
process models, Choi et al. [8], Wei et al. [45] showed that simple
linear models can output meaningful results in practice. However,
the state-of-the-art method is the stochastic declustering algorithm,
which is based on the EM algorithm and is thus highly unscalable.
This scalability issue makes it a less desirable option when we han-
dle EMR data. Recently, there are attempts to explore the powerful
yet simple gradient-based method to infer the problem parameters;
notable contributions include Cartea et al. [6], Wang et al. [44]. In
particular, we want to mention that using the ReLU link to allow
potential inhibiting e"ect in linear MHP was recently proposed by
Bonnet et al. [3, 4] and relatively novel in literature — there have
not been many methods tailored to this particular parameteriza-
tion, and thus we only numerically compare our method with this
re-start time method as well as some naive gradient-based methods.

Another closely related topic is causal discovery, which has
drawn much attention in the past few decades. The state-of-the-art
constraint-based algorithms include PC and Fast Causal Inference
(FCI) [42]. Both algorithms can output the underlying true graph
structure in the large sample limit. However, PC cannot deal with
unobserved confounding whereas FCI is capable of dealing with
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confounders. However, since those algorithms rely on conditional
independence tests to eliminate edges from the complete graph,
they are not scalable when the number of nodes becomes large.
Existingwork to handle this includes a fast andmemory-e#cient PC
algorithm using the parallel computing technique [27]. Moreover,
there is a continuous optimization-based approach to infer the
underlying directed acyclic graph (DAG) structure, e.g., Zheng
et al. [49], which alleviates the aforementioned scalability issue. In
addition, for time series data, existing causal discovery algorithms
need to adapt to the potential temporal dependence. The most well-
known method would be using AR time series to infer the Granger
Causality, and later on, Xu et al. [47] extend GC to the context of
the point process. However, the GC framework typically relies on
the “no unobserved confounding” assumption. Examples to handle
this include the FCI algorithm for time series to handle confounders
[11]. It remains an open problem how to apply PC and FCI to point
process data. For a complete survey on recent developments in
causal inference, we refer readers to Glymour et al. [15].

2 BACKGROUND
2.1 Multivariate Hawkes Process
Consider 𝑁 types events modeled by a counting process 𝑂 = (𝑂 1,
. . . ,𝑂𝐿 ), where each process 𝑂 𝑀 = {𝑂 𝑀

𝑁 : 𝑃 ↑ [0,𝑄 ]} itself is a
counting measure on time horizon 𝑄 and records the number of
type-𝑅 events before time 𝑃 . Such a process is called a linear MHP if
the conditional intensity of 𝑅-th process (𝑅 = 1, · · · ,𝑁) is de!ned as:

𝑆𝑀 (𝑃) = 𝑇𝑀 +
𝐿∑
𝑂=1

∫ 𝑁

0
𝑈𝑀, 𝑂 (𝑉) 𝑁𝑂 𝑂

𝑁↓𝑃 ,

where 𝑇𝑀 is the exogenous background intensity for type-𝑅 event
and independent of the history, and kernel function 𝑈𝑀, 𝑂 (·) captures
the impact from historical type- 𝑊 event to subsequent type-𝑅 event.

Here, we adopt a very common and popular exponential kernel
function 𝑈𝑀, 𝑂 (𝑃) = 𝑋𝑀, 𝑂 exp{↓𝑌𝑃}. The parameter 𝑋𝑀, 𝑂 represents the
magnitude of the impact from type- 𝑊 event to type-𝑅 event and 𝑌
characterizes the rate of decay of that impact. Most importantly,
unlike the classic model, we consider both exciting and inhibiting
e"ects by allowing negative magnitude parameters 𝑋𝑀, 𝑂 ’s. However,
this could lead to negative intensity, which contradicts the under-
standing of conditional intensity as the instantaneous probability
of event occurrence. Following Bonnet et al. [3], we apply the ReLU
link function (·)+ = max{0, ·} to the linear conditional intensity to
!x this issue and get

𝑆𝑀 (𝑃) =
(
𝑇𝑀 +

𝐿∑
𝑂=1

∫ 𝑁

0
𝑋𝑀, 𝑂𝑍

↓𝑄𝑃𝑁𝑂 𝑂
𝑁↓𝑃

)+
. (1)

We denote the background intensity vector as 𝑇 = (𝑇1, . . . , 𝑇𝐿 )𝑅
and the self and mutual excitation/inhibition matrix as𝑎 = (𝑋𝑀, 𝑂 ) ↑
R𝐿↔𝐿 . We will show the support of matrix 𝑎 can be interpreted as
a Granger Causal graph.

2.2 Granger Causality
In the seminal paper, Eichler et al. [9] showed that the Granger
Causal structure of the MHP is fully encoded in matrix 𝑎:

P!"#"$%&%"’ 2.1 (E%()*+! +& ,*. [9]). Let 𝑂 = (𝑂 1, . . . ,𝑂𝐿 )
be a 𝑁-dimensional multivariate Hawkes process with conditional
intensity de!ned in (1), then 𝑂 𝑂 does NOT Granger-cause 𝑂 𝑀 if and
only if 𝑋𝑀, 𝑂 = 0.

We need to remark that inferring Granger Causality needs “all
the information in the universe” [16–18]. In the graph induced by
the matrix 𝑎 = (𝑋𝑀, 𝑂 ), the absence of an edge means Granger non-
causality whereas only when there is no unobserved confounding
can the presence of an edge in 𝑎 imply Granger causality. Here, we
assume there is no unobserved confounding and we will take this
matrix 𝑎 as the Granger Causal graph.

3 ESTIMATION
Consider the following continuous-time event data over a time
horizon 𝑄 > 0:

(𝑏1, 𝑃1), . . . , (𝑏𝑆 , 𝑃𝑆 ),

where 0 ↗ 𝑃1 < · · · < 𝑃𝑆 ↗ 𝑄 denote the exact occurrence times
of the events and 𝑏𝑇 ↑ {1, . . . ,𝑁} represents the type of the 𝑐-th
event. The conditional intensity function of type-𝑅 event at time
0 ↗ 𝑃 ↗ 𝑄 is as follows:

𝑆𝑀 (𝑃) =
(
𝑇𝑀 +

∑
𝑂 :𝑁 𝐿<𝑁

𝑋𝑀,𝑈 𝐿 𝑍
↓𝑄 (𝑁↓𝑁 𝐿 )

)+
.

Typically, we use the Maximum likelihood estimation (MLE) to
learn model parameters, where the true log likelihood is:

𝑑 (𝑇,𝑎; 𝑌) =
𝐿∑
𝑀=1

(∫ 𝑅

0
log 𝑆𝑀 (𝑃)𝑁𝑂 𝑀

𝑁 ↓
∫ 𝑅

0
𝑆𝑀 (𝑃)𝑁𝑃

)
. (2)

3.1 Existing method
In (2), the !rst term reduces to a summation over the log-intensities
on event occurrence times

∑𝑆
𝑇=1 log 𝑆𝑈𝑀 (𝑃𝑇), which will be well-

de!ned since the conditional intensity at the event occurrence time
will be positive. To be precise, the feasible region is

ω = {(𝑇,𝑎) : 𝑆̃𝑈𝑀 (𝑃𝑇) > 0, 𝑐 = 1, . . . ,𝑂 }, (3)

where the surrogate conditional intensity is de!ned as:

𝑆̃𝑀 (𝑃) = 𝑇𝑀 +
∑
𝑂 :𝑁 𝐿<𝑁

𝑋𝑀,𝑈 𝐿 𝑍
↓𝑄 (𝑁↓𝑁 𝐿 ) . (4)

After each event occurrence, due to the potential inhibiting e"ect,
there could be an event with negative surrogate intensity; the ReLU
link enforces such negative value to be zero and ensures that 𝑆𝑀 (𝑃) =
(𝑆̃𝑀 (𝑃))+ is still a valid intensity. Nevertheless, it still takes some
time for the process to “re-start”, and we will call the time when the
surrogate intensity increases to zero again as the “re-start time”; see
a graphical illustration in Figure 9 in the appendix. To be precise,
after the occurrence of 𝑐-th event (𝑏𝑇, 𝑃𝑇), the 𝑐-th re-start time for
𝑅-th process is as follows [3, 4]:

𝑄 (𝑀 )
(𝑇,𝑈𝑀 ) = min

{
𝑃𝑇+1, arg min

𝑁 : 𝑁>𝑁𝑀
𝑆̃𝑀 (𝑃) ↘ 0

}
. (5)
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Figure 2: Comparison of the estimated adjacency matrices for a 𝑁 = 10 illustrative example; the corresponding method is
speci"ed on the top of each panel. We can observe that relaxing the feasibility constraint and using the gradient-norm as
the stopping criterion can improve the estimation accuracy compared with the conventional likelihood criterion; further
quantitative comparison can be found in Table 4.

Then, for (𝑇,𝑎) ↑ ω, we can re-write (2) into:

𝑑 (𝑇,𝑎; 𝑌) =
𝑆∑
𝑇=1

log 𝑆̃𝑈𝑀 (𝑃𝑇) (6)

↓
𝐿∑
𝑀=1

(∫ 𝑁1

0
+
𝑆↓1∑
𝑇=1

∫ 𝑁𝑀+1

𝑅 (𝑁 )
(𝑀,𝑂𝑀 )

+
∫ 𝑅

𝑅 (𝑁 )
(𝑃 ,𝑂𝑃 )

)
𝑆̃𝑀 (𝑃)𝑁𝑃 .

Now, we remove the non-di"erentiable ReLU link in the log
likelihood and the objective becomes di"erentiable. Despite its
complicated form, the log likelihood objective can be calculated in
closed-from due to the analytical expression of the re-start times
[4]. Thus, we can leverage the powerful stochastic gradient descent
(SGD) method to numerically solve the MLE.

3.2 Proposed gradient-based method
3.2.1 Empirical challenge. The di#culty of applying gradient de-
scent (GD) comes from the optimization landscape — the log likeli-
hood can become intractable, i.e., the GD iterate could go outside
the feasible region ω, especially when the it is close to the em-
pirical optimizer as the empirical optimizer often lies on the edge
of the feasible region (see Figure 3 for illustration), and the log
likelihood will no longer be well-de!ned, rendering us unable to
accurately track or maximize the likelihood to learn the problem
parameters. This suggests that naively applying GD will result in
a highly unstable procedure (as veri!ed by Figure 7 in the appen-
dix). Moreover, searching for the empirical optimizer within the
feasible region based on the log likelihood criterion may not be
the best option — indeed, our empirical !ndings from Figure 8 in
the appendix show that, even when the log likelihood becomes
intractable, the estimation error continues to decrease when using
the matrix Frobenius norm (𝑒 -norm) of the gradient with respect
to (w.r.t.) adjacency matrix as the stopping criterion (referred to as
the gradient-norm criterion below), suggesting that we could relax
the feasibility constraint (𝑇,𝑎) ↑ ω and use gradient-norm criterion
instead of the log likelihood one. To support this claim, we use
SGD to solve for MLE within the feasible region (3) and report the
estimated adjacency matrix in the last panel in Figure 2. In compar-
ison, we relax the feasibility constraint and use the gradient-norm

criterion. We report the resulting estimated 𝑎 in the third panel of
Figure 2, and we can see the estimation is more accurate when we
use gradient-norm criterion compared with the conventional log
likelihood criterion.

Table 1: Complexity analysis of di!erent estimationmethods;
𝑁 denotes the dimensionality and 𝑂 is the number of events.
Since there is no adaptation of EM algorithm [47] to handle
the instability issue as illustrated in Figure 3, the gradient
evaluation of EM is left blank.

EM Re-start time Proposed

Number of parameters 𝑉 (𝑆 2 + 𝐿2 ) 𝑉 (𝐿𝑆 + 𝐿2 ) 𝑉 (𝐿2 )
Gradient evaluation ↓ 𝑉 (𝐿𝑆 2 ) 𝑉 (𝑆 2 + 𝐿𝑆 )

Figure 3: Optimization landscape for a 𝑁 = 3 example; the X,
Y and Z axes correspond to 𝑋13, 𝑋21 and the log likelihood,
respectively. “No Z value for pair (X, Y)”, which is the grey
region in the right panel, means the log likelihood becomes
intractable for the corresponding (𝑋13,𝑋21) pair. We can see
the empirical optimizer lies on the border of the intractable
likelihood region. Complete details of this illustrative exam-
ple can be found in Appendix A.1.

3.2.2 A maximum surrogate likelihood formulation. Another prac-
tical issue comes from the re-start time (5), which needs to be
re-calculated after each iteration, making it highly non-scalable;
see Table 1 for the complexity analysis. To alleviate this scalability
issue caused by the re-start time calculation while harvesting the
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Figure 4: Illustration of the proposed two-phase method. After Phase 1, we select nodes # 3 and # 6 based on gradient-norm
(see the right panel; the percentage threshold 𝑓 = 0.85 in Algorithm 2) and proceed to phase 2, where we perform GD without
projection for selected nodes (see the left panel for illustration and evidence of convergence).

empirical good performance of (6), we propose to maximize the
following surrogate log likelihood:

𝑑 (𝑇,𝑎; 𝑌) =
𝑆∑
𝑇=1

log 𝑆̃𝑈𝑀 (𝑃𝑇) ↓
𝐿∑
𝑀=1

∫ 𝑅

0
𝑆̃𝑀 (𝑃)𝑁𝑃 (7)

=
𝐿∑
𝑀=1

𝑆↓1∑
𝑂=1

𝑋𝑀,𝑈 𝐿

𝑌

(
𝑍↓𝑄 (𝑁𝑃 ↓𝑁 𝐿 ) ↓ 1

)
↓𝑄

𝐿∑
𝑀=1

𝑇𝑀

+
𝑆∑
𝑇=1

log
(
𝑇𝑈𝑀 +

∑
𝑂<𝑇

𝑋𝑈𝑀,𝑈 𝐿 𝑍
↓𝑄 (𝑁𝑀↓𝑁 𝐿 )

)
,

which serves as a computationally stable and e#cient approxima-
tion to the true log likelihood (6). The above surrogate, which di"ers
from true log likelihood in the integration region in the second term,
is a computationally friendly and di"erentiable approximation to
the true log likelihood, which can be understood as either (i) replac-
ing the true conditional intensity with its di"erentiable surrogate
(4) or (ii) ignoring the re-start time calculation and integrating the
surrogate intensity on [0,𝑄 ]. We will maximize this surrogate log
likelihood to estimate the problem parameters, i.e.,

𝑇,𝑎 = argmin(𝑊,𝑋)↑ω ↓ 𝑑 (𝑇,𝑎; 𝑌). (8)

3.2.3 A two-phase gradient descent algorithm. Since the objective
function (8) is convex w.r.t. (𝑇,𝑎) [1], projected gradient descent
(PGD) is a tempting choice, which enjoys a strong convergence guar-
antee. However, despite the above simple closed-form expression,
the projection back to ω to maintain feasibility is computationally
intense, making PGD again unscalable. Fortunately, the gradient
!eld of this surrogate remains well-de!ned even outside the feasible
region ω, making the vanilla GD possible. However, vanilla GD
(without projection) will su"er from divergence issues, as the iter-
ate can easily go outside the feasible region ω (see Figure 7 in the
appendix for empirical evidence). Thus, we need to gradually decay
the learning rate during the learning process. Since the (surrogate)
log likelihood is also intractable, it cannot be used to ful!ll this pur-
pose. To tackle those di#culties, we propose a two-phase GD-based
method coupled with a learning rate decaying scheme based on the
gradient-norm; this method is illustrated in Figure 4 and one can

see its good performance in the second panel in Figure 2. Next, we
will brie$y introduce this algorithm.

Phase 1: Projected Gradient Descent. In the !rst phase, we con-
strain all parameters to be non-negative and perform projected GD
with !xed step length. We denote 𝑇𝑁 and 𝑎𝑁 to be the iterates at
𝑃-th step, and the update rule is as follows:

𝑇𝑁 ≃ 𝑇𝑁↓1 + 𝑔⇐𝑊𝑑/⇒⇐𝑊𝑑 ⇒2, 𝑎𝑁 ≃ 𝑎𝑁↓1 + 𝑔⇐𝑋𝑑/⇒⇐𝑋𝑑 ⇒𝑌 ,
where 𝑔 is the learning rate, ⇒ · ⇒2 and ⇒ · ⇒𝑌 represent vector 𝑕2
norm and matrix Frobenius norm, respectively, and the gradient
!elds are de!ned as:

⇐𝑊𝑑 = ⇐𝑊𝑑 (𝑇𝑁↓1,𝑎𝑁↓1; 𝑌), ⇐𝑋𝑑 = ⇐𝑋𝑑 (𝑇𝑁↓1,𝑎𝑁↓1; 𝑌) .
The parameter 𝑌 is assumed to be known; in practice, we will
perform a grid search to select the best 𝑌 . To make sure we do not
get negative intensity, we perform the following projection:

𝑇𝑁 ≃ argmin𝑊↑R+ ⇒𝑇𝑁 ↓ 𝑇⇒2, 𝑎𝑁 ≃ argmin𝑋↑R𝑄↔𝑄+
⇒𝑎𝑁 ↓𝑎⇒𝑌 ,

whereR+ = [0,⇑). This projection can be easily achieved by setting
all negative entries to zeros; complete details of the PGD can be
found in Algorithm 1 in Appendix A.2.

This warm-up phase guides us to a neighborhood around the
global optimizer while ensuring the stability/convergence of the
algorithm. Moreover, it reduces the computation cost by !nding
a small batch of coordinates for further optimization in phase 2;
see the illustration in Figure 4 and the description of the phase 2
algorithm below.

Phase 2: Batch Coordinate Gradient Descent. In the second phase,
we consider those variables/nodes whose corresponding rows (in
𝑎) could have negative values. We identify those nodes by the
𝑕2 norm of the gradient (w.r.t. 𝑎) row vector — large gradient-
norm indicates that the convergence of the corresponding row is
not achieved yet after phase 1; see the right panel in Figure 4 for
a graphical illustration and complete details on how to identify
those rows in Algorithm 2 in Appendix A.2. Next, we need to
keep performing GD without the constraint/projection for those
selected rows in 𝑎 to estimate those negative entries (and PGD for
the corresponding background intensities). Despite the intractable
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Table 2: Performance of proposed method when 𝑌 is assumed to be known. We observe that all error metrics are decreasing
with either an increasing number of sequences or time horizon, which numerically veri"es the consistency of our method.

Varying sequence time horizon 𝑄 (sequence number !xed to be 1).

𝑁 = 5 𝑁 = 10
T 500 2000 5000 10000 20000 500 2000 5000 10000 20000

𝑇 err.
𝐿 7.41 (3.42) 5.34 (2.93) 4.25 (2.76) 3.81 (2.8) 3.69 (2.72) 17.96 (5.98) 11.26 (4.47) 8.65 (4.01) 8.78 (3.8) 7.58 (3.75)

𝑎 err. 8.94 (5.96) 2.26 (2.81) 1.01 (0.82) 0.75 (0.43) 0.57 (0.23) 20.95 (12.55) 4.93 (2.55) 2.6 (1.04) 1.87 (0.61) 1.52 (0.48)
𝑎 HD 0.24 (0.13) 0.08 (0.091) 0.04 (0.076) 0.04 (0.059) 0.0 (0.056) 0.245 (0.075) 0.07 (0.063) 0.03 (0.035) 0.015 (0.025) 0.01 (0.018)
𝑎 SHD 6.0 (3.43) 2.0 (2.28) 1.0 (1.9) 1.0 (1.48) 0.0 (1.41) 24.5 (7.72) 7.0 (6.34) 3.0 (3.57) 1.5 (2.55) 1.0 (1.86)

Varying sequence number (time horizon 𝑄 !xed to be 500).

𝑁 = 5 𝑁 = 10
Seq. Num. 1 10 20 50 100 1 10 20 50 100

𝑇 err.
𝐿 6.25 (3.29) 3.91 (2.81) 3.86 (2.72) 3.41 (2.66) 2.91 (2.50) 17.96 (5.98) 8.61 (4.01) 8.67 (3.78) 7.54 (3.74) 6.9 (3.49)

𝑎 err. 9.42 (5.50) 1.19 (1.22) 0.86 (1.00) 0.6 (0.91) 0.54 (0.91) 20.96 (12.56) 2.62 (1.04) 1.84 (0.61) 1.4 (0.46) 1.51 (0.47)
𝑎 HD 0.26 (0.120) 0.06 (0.075) 0.04 (0.061) 0.04 (0.045) 0.0 (0.050) 0.245 (0.075) 0.03 (0.036) 0.015 (0.026) 0.01 (0.018) 0.01 (0.017)
𝑎 SHD 7.0 (3.14) 1.5 (1.89) 1.0 (1.53) 1.0 (1.14) 0.0 (1.27) 24.5 (7.72) 3.0 (3.66) 1.5 (2.71) 1.0 (1.85) 1.0 (1.76)

𝐿 the value times 10↓2 is the actual 𝑇 estimation error; we omit ↔10↓2 in the value due to space consideration.

Table 3: Performance of proposed method when 𝑌 is unknown. The last row corresponds to selected 𝑌 based on end-of-phase 1
log likelihood, where we can observe its performance (italic) is almost the same with the best achievable performance (bold).

𝑁 = 5 𝑁 = 10 𝑁 = 20
𝑌 𝑇 err.

𝐿 𝑎 err. 𝑎 HD 𝑎 SHD 𝑇 err.
𝐿 𝑎 err. 𝑎 HD 𝑎 SHD 𝑇 err.

𝐿 𝑎 err. 𝑎 HD 𝑎 SHD

0.4 5.01 (3.16) 1.51 (0.85) 0.06 (0.092) 1.5 (2.3) 8.53 (3.81) 4.39 (0.63) 0.03 (0.052) 3.0 (5.27) 14.97 (5.13) 13.46 (2.14) 0.047 (0.044) 19.0 (17.82)
0.5 5.78 (3.3) 1.26 (0.86) 0.04 (0.08) 1.0 (2.01) 10.57 (4.39) 3.49 (0.6) 0.02 (0.033) 2.0 (3.39) 20.51 (6.16) 10.59 (2.27) 0.043 (0.047) 17.5 (18.88)
0.6 5.39 (3.24) 1.05 (0.88) 0.02 (0.071) 0.5 (1.79) 10.04 (4.36) 2.58 (0.64) 0.02 (0.023) 2.0 (2.38) 21.18 (6.41) 8.55 (2.35) 0.045 (0.046) 18.0 (18.67)
0.7 5.2 (3.12) 0.86 (0.88) 0.0 (0.065) 0.0 (1.64) 8.94 (4.05) 1.86 (0.61) 0.01 (0.024) 1.0 (2.47) 19.35 (6.09) 6.54 (2.43) 0.048 (0.048) 19.5 (19.24)
0.8 4.67 (3.02) 0.74 (0.89) 0.0 (0.039) 0.0 (0.99) 7.54 (3.74) 1.4 (0.46) 0.01 (0.018) 1.0 (1.85) 17.11 (5.65) 4.98 (2.5) 0.06 (0.053) 24.0 (21.52)
0.9 4.51 (2.94) 0.66 (0.9) 0.0 (0.036) 0.0 (0.91) 6.79 (3.53) 1.52 (0.41) 0.01 (0.02) 1.0 (2.08) 16.34 (5.21) 5.11 (2.13) 0.07 (0.055) 28.0 (22.32)
1 4.46 (2.87) 0.79 (0.92) 0.0 (0.034) 0.0 (0.86) 7.16 (3.47) 1.84 (0.39) 0.01 (0.022) 1.0 (2.28) 18.0 (5.29) 5.93 (1.82) 0.088 (0.055) 35.5 (22.29)
1.1 4.56 (2.79) 1.03 (0.91) 0.0 (0.035) 0.0 (0.87) 7.73 (3.47) 2.3 (0.34) 0.02 (0.026) 2.0 (2.65) 19.95 (5.55) 6.83 (1.64) 0.103 (0.056) 41.5 (22.52)
1.2 4.75 (2.74) 1.2 (1.22) 0.0 (0.032) 0.0 (0.85) 8.4 (3.46) 2.72 (0.38) 0.03 (0.033) 3.0 (3.36) 22.84 (6.08) 7.8 (1.53) 0.121 (0.052) 48.5 (21.1)
↓ 4.57 (2.96) 0.74 (0.89) 0.0 (0.036) 0.0 (0.9) 7.04 (3.55) 1.62 (0.41) 0.01 (0.021) 1.0 (2.17) 16.7 (5.34) 5.06 (2.19) 0.07 (0.055) 28.0 (22.02)

𝐿 the value times 10↓2 is the actual 𝑇 estimation error; we omit ↔10↓2 in the value due to space consideration.

log likelihood in this phase, we develop a learning rate decaying
scheme based on the gradient 𝑒 -norm to guarantee convergence
empirically. Complete details of the PGD algorithm can be found
in Algorithm 3 in Appendix A.2.

Recently, Juditsky et al. [23], Juditsky andNemirovski [24] showed
that a projected GD along some (strong) monotone vector !eld can
be interpreted as a solution to a stochastic variation inequality (VI)
and enjoys both signal estimation guarantee and convergence guar-
antee. However, since we do not constraint the iterate within ω
in phase 2, the vector !elds ⇐𝑊𝑑 and ⇐𝑋𝑑 are no longer monotone.
Hence, we could only use numerical evidence to show the e"ective-
ness of our method. Nevertheless, this vector !eld view under the
VI framework might give us a chance to theoretically explain our
heuristic’s empirical success.

4 EXPERIMENTS
4.1 Numerical simulation
In this subsection, we will show the good performance of our pro-
posed two-phase method. We report (i) 𝑕1 norm of 𝑌 estimation
error (𝑌 err.), (ii) 𝑕1 norm of 𝑇 estimation error (𝑇 err.), (iii) 𝑕1
norm of 𝑎 estimation error (𝑎 err.), (iv) Hamming Distance (𝑎
HD) and (v) Structural Hamming Distance (𝑎 SHD) between ground
truth and estimated adjacency matrix 𝑎 as our evaluation metrics.
All experiments in this subsection are carried out for randomly

generated problem parameters and repeated 100 times; here we
report the mean and standard deviation of those metrics. One can
see Appendix B.1 for further details.

4.1.1 Experiment 1. We begin with a simple setting where we
know the ground truth 𝑌 . We want to numerically verify the con-
sistency with respect to the time horizon𝑄 and the total number of
sequences. To be precise, we generate (1) one single sequence on
time horizon 𝑄 ↑ {500, 2000, 5000, 10000, 20000} and (2) multiple
sequences (total sequence number chosen from {1, 10, 20, 50, 100})
on time horizon 𝑄 = 500 and learn the parameter via our proposed
two-phase method. We report the results for 𝑁 = 5, 10 cases in Ta-
ble 2, from which we can see that, with longer sequences (or more
sequences), all those errors decrease monotonically. To further vali-
date our !ndings, we also perform the experiment for 𝑁 = 20 case;
the results can be found in Table 9 in Appendix B.2, from which
we can still see the decaying error pattern as observed in the above
𝑁 = 5, 10 cases. Therefore, we numerically verify the consistency of
our proposed method.

4.1.2 Experiment 2. Next, we consider a more general scenario
where we do not know the true 𝑌 (ground truth is 0.8) — we
treat it as a hyperparameter and perform a grid search over 𝑌 ↑
{0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2}. We propose to use the end-of-
phase 1 likelihood as the goodness-of-!t (GoF) criterion to select
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hyperparameter 𝑌 . In comparison, we also consider the end-of-
phase 1 gradient-norm as the GoF criterion, but it does not perform
as well as the end-of-phase 1 likelihood criterion; one can see the
corresponding results in Table 10 in Appendix B.2. For each grid
value, we randomly generate synthetic data (50 sequences with
𝑄 = 500) and !t our model. We repeat this procedure independently
100 times, and at each trial, we select 𝑌 with the largest end-of-
phase 1 likelihood. We report the results in Table 3, where we can
observe that the grid search approach coupled with end-of-phase
1 likelihood GoF criterion achieves almost the same performance
with the best achievable performance (oftentimes it is better than
true 𝑌’s performance). This shows the e"ectiveness of our approach
in practice.

4.1.3 Experiment 3. Lastly, we compare our proposed method with
two benchmark methods for 𝑁 = 20 setting. Here, we consider
vanilla gradient descent (vanilla GD) and the re-start time method
[3, 4] coupled with SGD (gradient-norm as the stopping criterion);
further details of the benchmarks can be found in Appendix B.3.1.
We report the results in Table 4. As we can see, for both cases,
our proposed method outperforms benchmarks in terms of most
evaluation metrics; in particular, our method does the best in terms
of adjacency matrix recovery. Although GD with proper stopping
criterion achieves slightly better 𝑕1 estimation error in case 1, its
pattern recovery of 𝑎 is much worse than our method (i.e., larger
HD and SHD), making it unable to return a reliable GC graph in
practice.

Table 4: Comparison with benchmarks. The best results are
highlighted. We can observe our method performs the best
in terms of the adjacency matrix recovery.

Case 1: single sequence with time horizon𝑅 = 10000.

Method Two-phase method Vanilla GD Early stopped GD Re-start

𝑄 err. .312 (.112) .393 (.035) .264 (.137) .837 (.246)
𝑊 err. .0386 (.0252) .0413 (.0317) .0398 (.0281) .239 (.102)
𝑋 err. 1.726 (0.785) 23.58 (7.93) 1.494 (0.731) 8.828 (1.213)
𝑋 HD .0304 (.0416) .1336 (0.118) .0936 (.0926) .3576 (.0459)
𝑋 SHD .76 (1.04) 3.37 (2.96) 2.34 (2.32) 8.98 (1.19)

Case 2: multiple (100) sequences with time horizon𝑅 = 500.

Method Two-phase method Vanilla GD Early stopped GD Re-start + SGD

𝑄 err. .264 (.151) .367 (.074) .254 (.136) .295 (.128)
𝑊 err. .0489 (.0269) .0367 (.0228) .0435 (.0272) .0198 (.0136)
𝑋 err. 0.983 (0.301) 12.13 (2.419) 1.759 (0.480) 1.067 (0.401)
𝑋 HD .0236 (0.0376) .0748 (0.0680) .0808 (0.0642) .044 (0.0639)
𝑋 SHD .59 (.94) 1.88 (1.72) 2.02 (1.61) 1.1 (1.60)

Additionally, as shown in Table 1, our proposed approach is scal-
able, which is another major advantage compared with the re-start
time approach. Here, we demonstrate this bene!t by performing
a run time analysis. Due to space consideration, the results are
deferred to Table 11 in Appendix B.3.2.

4.2 Real data example
We created a retrospective cohort of patients utilizing in-hospital
data derived from Grady hospital system in Atalanta, GA, an aca-
demic level 1 trauma center, spanning 2018-2019. This data was
collected and analyzed in accordance with Emory Institutional Re-
view Board (IRB) approved protocol #STUDY00000302. Patients

were included in the Sepsis-3 cohort if they met Sepsis-3 criteria
while in the hospital and were admitted for ↘ 24 hours. Patients
were included in the Non-Septic cohort if they had a Sequential
Organ Failure Assessment (SOFA) score ↘2. A total of 37 patient
features comprised of laboratory results (Labs) and observations
(vital signs) were examined for this work. Treatments were limited
to two classes of medication: antimicrobial therapy (e.g., antibiotics)
and vasopressor therapy. We report the median and interquartile
range (IQR) in Table 5 and defer the cohort construction details to
Appendix C.1.

Table 5: Summary statistics of patients’ demographics.

Sepsis-3 patients Non-sepatic patients
year 2018 (𝑇 = 409) 𝐿 2019 (𝑇 = 454) 2018 (𝑇 = 960) 2019 (𝑇 = 1169)

Age (median and IQR) 58 (38 - 68) 59 (46 - 68) 56 (38 - 67) 55 (37 - 66)
Female (percentage) 30.1 % 36.6 % 37.1 % 35.8 %
SOFA score (mean) 3.32 3.14 2.18 2.28
Traj. len. (median and IQR) 25 (25 - 25) 25 (25 - 25) 17 (13 - 22) 17 (13 - 22)

𝐿𝑇 represents the total number of patients in the corresponding cohort.

4.2.1 Sepsis-Associated Derangements. Integrating high dimen-
sional information (via, e.g., clustering) is essential in causal dis-
covery and explainable machine learning [36]; examples include
Braman et al. [5], Uleman et al. [43],Wei et al. [45].While the Sepsis-
3 de!nition provides the explicit features necessary for identifying
the presence of sepsis, there is no consensus as to which features
are best for prognosticating the disease. To reduce the complexity of
our computations, expert opinion was utilized to identify common
and clinically relevant Sepsis-Associated Derangements (SADs) that
could be detected using structured EMR data. A total of 18 SADs
and 2 relevant treatments shown in Table 6 were identi!ed using 37
patient features and treatments gathered from the medical record.
A SAD was considered present if the patient’s features were outside
of normal limits. Details on how SADs were constructed based on
vital signs and Labs can be found in Table 12 in Appendix C.1.

Table 6: Measurements to construct sepsis-associated events.
Sepsis-Associated Derangement

Full name Abbreviation Measurement name

Renal Dysfunction RenDys creatinine, blood_urea_nitrogen_(bun)
Electrolyte Imbalance LyteImbal calcium, chloride, magnesium, potassium, phosphorus
Oxygen Transport De"ciency O2TxpDef hemoglobin
Coagulopathy Coag partial_prothrombin_time_(ptt), !brinogen, platelets,

d_dimer, thrombin_time, prothrombin_time_(pt), inr
Malnutrition MalNut transferrin, prealbumin, albumin
Cholestatsis Chole bilirubin_direct, bilirubin_total
Hepatocellular Injury HepatoDys aspartate_aminotransferase_(ast), ammonia,

alanine_aminotransferase_(alt)
Acidosis Acidosis base_excess, ph
Leukocyte Dysfunction LeukDys white_blood_cell_count
Hypercarbia HypCarb partial_pressure_of_carbon_dioxide_(paco2),

end_tidal_co2
Hyperglycemia HypGly glucose
Mycardial Ischemia MyoIsch troponin
Tissue Ischemia TissueIsch base_excess, lactic_acid
Diminished Cardiac Output DCO best_map
CNS Dysfunction CNSDys gcs_total_score
Oxygen Di!usion Dysfunction O2Di"Dys spo2, !o2
Thermoregulation Dysfunction ThermoDys temperature
Tachycardia Tachy pulse

Other Sepsis-Associated Events
Full name Abbreviation Measurement name

Vasopressor Support VasoSprt norepinephrine_dose_weight, epinephrine_dose_weight,
dobutamine_dose_weight, dopamine_dose_weight,
phenylephrine_dose_weight, vasopressin_dose_weight

Antibiotic Therapy ABX ↓
Sepsis SEP3 ↓
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Figure 5: Percentage of SAD’s occurrence. We can observe
that most SADs’ occurrences are more frequent in Sepsis-3
cohort, which can justify our approach to construct SADs.

Sepsis often shares symptoms with other disease processes mak-
ing discrimination challenging. To evaluate the appropriateness of
the constructed SADs, the percentage of SAD occurrence (within
the selected time window) was calculated for both Sepsis and Non-
Septic patients and can be seen for both years in Figure 5. It is
expected that SADs would be present in both cohorts; however, the
Sepsis-3 cohort demonstrated patterns showing a closer relation-
ship with the SADs than the Non-Septic cohort.

4.2.2 Recovering GC graphs. To study the temporal interactions
between SADs (and other SAEs), we !t two GC graphs — one graph
is on the Sepsis-3 cohort and the other is on the full patient cohort
(i.e., the Sepsis-3 and Non-Septic cohorts combined). We report the
results in Figure 6 and defer the training details to Appendix C.2.
Both graphs demonstrate examples of clinically reasonable interac-
tions between individual SADs (i.e., Oxygen Di"usion Dysfunction
promotes Renal Dysfunction in the Septic cohort) and between
SADs and Sepsis (i.e., Diminished Cardiac Output promotes Sepsis
in both graphs). Interestingly the graph examining only the Sepsis-3
cohort identi!ed more interactions between SADs than the one for
the full patient cohort whereas the graph for the full patient cohort
presented a higher number of strong relationships between SADs
and sepsis suggesting that a time-dependent, causal relationship
exists between individual SADs and sepsis. A key !nding across
both graphs was the inhibitory e"ect of antibiotics on most SADs,
which is consistent with the known ability of antibiotics to reduce
in-hospital mortality in sepsis patients [38] presumably through
preventing organ dysfunction like those identi!ed via SADs.

While most of the relationships identi!ed in these graphs are
expected or feasible, vasopressors appear to unexpectedly inhibit
both sepsis and the administration of antibiotics. In the year 2018,
among 409 (960) selected septic (non-septic) patients, there were 15
(96) receive vasopressor support and 84 (231) received antibiotics
during the window, and only 3 (38) received both vasopressors and
antibiotics. This low number of vasopressor patients in the Sepsis-3
cohort is not unexpected as the time window for analysis is 24
hours prior to meeting the Sepsis-3 de!nition when most patients
are not severely ill (see Appendix C.1 for more details). Addition-
ally, antibiotics are dosed at scheduled intervals (e.g., once every
six hours) whereas vasopressors are administered in a continuous
fashion. These two attributes of the data set create a number of

instances where vasopressors are administered without a formal
antibiotic administration event in the following hour (though the
patient may be on antibiotics). Additionally, each patient in the
Sepsis-3 cohort is right censored after sepsis which means there
is only one hour where the sepsis label is positive. Taken together
these attributes of the data set likely explain why this unexpected
relationship is seen.

4.2.3 Identifying GC chains. The estimated GC graphs help reduce
the problem of enumerating combinatorially many possible chains
to !nd the chains that only exist in the Sepsis-3 graph. However,
even for a 2-by-2 sub-adjacency matrix, there could be multiple
potential chain interpretations. We validate whether or not the
chain structure re$ects a unique pattern in the Sepsis-3 cohort by
performing Fisher’s exact test and reporting the 𝑓-value. Here, we
only focus on the “++” and “+++” exciting e"ects when forming all
possible chains. This method allows chains to be ranked in order
of signi!cance, a"ording those with domain expertise an e#cient
mechanism to inspect results. We report the top GC chains which
are unique in the Sepsis-3 cohort for years 2018 (in-sample test) and
2019 (out-of-sample test) in Table 7. More details on those chains
(including how to perform the test) and more identi!ed chains can
be found in Tables 14, 15 and 16 in Appendix C.3.

Table 7: Granger Causal chains which are signi"cantly
unique in Sepsis-3 cohort in both years 2018 and 2019.

Chain: TissueIsch → O2Di"Dys
𝑍-value: 0.004 (2018) 0.092 (2019)

Chain: O2Di"Dys → RenDys → O2Di"Dys
𝑍-value: 0.107 (2018) 0.004 (2019)

Chain: VasoSprt → TissueIsch → HepatoDys
𝑍-value: 0.052 (2018) 0.088 (2019)

Chain: LyteImbal → Acidosis → O2Di"Dys
𝑍-value: 0.009 (2018) 0.088 (2019)

Chain: Acidosis → O2Di"Dys → HypGly
𝑍-value: 0.039 (2018) 0.063 (2019)

In Table 7, the chains possess a statistically strong relationship
with patients in the Sepsis-3 cohort and correlate with clinical pat-
terns that are often seen in sepsis. For example, Oxygen Di"usion
Dysfunction (i.e., low oxygen saturation in the blood) is found to
promote Renal Dysfunction and subsequent Oxygen Di"usion Dys-
function. Though not re$ected in this table, septic patients could
experience multiple chains simultaneously in addition to experi-
encing other discrete SADs simultaneous to events in a chain. This
method to select and rank chains a"ords clinicians the ability to
e#ciently discover or follow those temporal patterns that di"eren-
tiate septic patients from those experiencing organ injury caused
by other diseases.

4.2.4 Evaluating the quantitative performance. Due to the lack of
time granularity of the time series data and the overly simple para-
metric form of the MHP model, we do not build a sequential pre-
diction model to validate our method’s usefulness. Instead, we
quantitatively validate the usefulness of the identi!ed GC chains
by using them to construct features and apply a more sophisti-
cated (but less interpretable) machine learning method to perform
sequential prediction tasks. Here, we choose XGBoost due to its
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Figure 6: Adjacency matrices of the Granger Causal graphs for Sepsis-3 (left) and full (right) patient cohorts in Figure 1. “+”,
“++” and “+++” correspond to the (absolute) value in (0, .0005), [.0005, .001) and [.001,⇑), respectively, where the original values in
the adjacency matrices are reported in Figure 11 in the Appendix. Nodes (i.e., SADs or SAEs) named along the X-axis can have
either an inhibitory (red) or promoting e!ect (blue) on the nodes named on the Y-axis.

Table 8: Sepsis event prediction: the proposedmethod that in-
corporates the identi"edGC chains as input features achieves
better performance than the benchmark method.

In-sample (year 2018) Out-of-sample (year 2019)

Benchmark Proposed Benchmark Proposed
Accuracy 0.7183 0.7862 0.7214 0.7789
Sensitivity 0.7258 0.7983 0.7300 0.7930

good performance (compared with other choices such as neural
networks) in the sepsis prediction challenge [35].

In the benchmark XGBoost method, we use the mean values of
the past 12 hours’ SADs as input features. In contrast, we addition-
ally include binary variables indicating whether or not there exist
chain patterns as shown in Table 7 in the past 12 hours as the input
features, to see whether or not this can improve the prediction
accuracy and sensitivity. We use 5-fold cross validation (for grid
search of hyperparameters in XGBoost) and train the model using
2018 data. We test the performance on 2019 data. The results are
reported in Table 8, where we can observe improvements in both
accuracy and sensitivity when predicting sepsis using our identi-
!ed GC chains as input features. This suggests the usefulness of
the identi!ed GC chains; however, building a powerful prediction
model with such GC chains is still on-going work.

5 CONCLUSION
To conclude this paper, we brie$y summarize the contribution and
limitations of current work. We defer an extended discussion to
Appendix D. Our proposed method for Granger Causal chain dis-
covery provides a novel and scalable approach to leverage clinical

expertise to elucidate patterns of interest amongst large amounts
of related EMR data. Though we do not build or validate a clinical
alarm, this is a very useful and logical extension of this work. Addi-
tionally, knowledge from the GC chains could be used to estimate
the risk of a future SAD (e.g., Renal Dysfunction) which might
prompt a clinician to alter treatment (e.g., modify IV $uids therapy).
A limitation of this work stems from the grouped nature of many
lab results and vital sign measurements. It is not uncommon for
multiple patient features to be recorded in the EMR with identical
timestamps which means that multiple SADs can occur simultane-
ously. This presents challenges to our point process model which
can not capture relationships between simultaneously occurring
SADs. This could be remedied by incorporating second or third-
order interaction e"ect in ANOVA into the work to evaluate the
e"ect of combined SADS on future patient states. Another limita-
tion of the method arises from the way treatments are administered.
Some treatments (i.e., antibiotics) are dosed on an interval whereas
others (i.e., vasopressors) are dosed continuously. This results in
a higher number of “vasopressor” events than antibiotic events
for certain patients and can lead to the false conclusion that vaso-
pressors are inhibiting antibiotics which is not an expected !nding.
Possible solutions include representing antibiotics as a continuous
medication similar to vasopressors so that the continuous e"ects
of antibiotics are appreciated by the model.
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APPENDIX
Appendix, including step-by-step details of the proposed method,
experimental settings and additional results on both simulated and
real data, as well as an extended discussion, can be found in the full
paper available at https://arxiv.org/abs/2209.04480.
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