10

11

12

13

14
15

16

17

18

19

20

21

22

23

24

Controlling melt flow by nanoparticles to eliminate surface wave induced surface fluctuation
Minglei Qu®®, Qilin Guo®®, Luis I. Escano? Jiandong Yuan®®, S. Mohammad H. Hojjatzadeh®®,
Samuel J. Clark®, Kamel Fezzaa®, Tao Sun® !, Lianyi Chen® ™ *

a Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
53706, USA

b Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison,
Wisconsin 53706, USA

¢ X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA

* Corresponding author: lianyi.chen@wisc.edu

Corresponding author address: Department of Mechanical Engineering, University of Wisconsin-
Madison, Madison, Wisconsin 53706, USA
ICurrent address: Department of Materials Science and Engineering, University of Virginia,

Charlottesville, VA 22904, USA.

Abstract

The high surface roughness is one of the major challenges encountered in laser metal additive
manufacturing (AM) processes, which is closely related to the melt flow behavior. However, how
to control the melt flow in laser metal AM processes to improve surface finish is unknown. Here
we reveal the effects of nanoparticles on melt flow behavior at every location of melt pool during
laser metal AM process for the first time using A16061 + TiC nanoparticles system and achieve
significant improvement of surface finish by using TiC nanoparticles to control the melt flow and
damp the surface wave. Based on the in-situ x-ray imaging observation, the surface wave is fully
damped after adding TiC nanoparticles, compared with only 56% damping without nanoparticles
during LPBF of Al6061. Our in-depth in-situ x-ray imaging analysis and viscosity measurement
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enable us to identify that nanoparticle-induced increase of viscosity causes the fully damping of
the surface wave by (1) increasing the internal fluid friction for more efficient wave amplitude
reduction, (2) controlling the melt flow to increase the surface wave number, (3) controlling the
melt flow to increase the wave damping time. Furthermore, we also quantified the relative
contributions of increasing fluid friction, increasing wave number, and increasing damping time
to wave damping, which account for 61%, 25%, and 14%, respectively. Our research provides the
mechanisms and potential method to address the surface finish challenge in laser metal AM
processes.
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1. Introduction

Laser metal AM enables a one-step production of complex parts directly from digital design
models [1], potentially revolutionizing the aerospace, biomedical, and automobile industries [2].
However, the rough printed surface is a major challenge encountered during the laser metal AM
process, which will adversely affect the mechanical property, such as tensile properties [3], fatigue
life [4,5], which limits the final product application. Surface wave (surface rippling) is one of the
key contributors to the surface roughness [6,7] and can be dominant under certain laser processing
condition [8]. The surface wave originates from the periodic adjustment/fluctuation of vapor
depression (also known as depression zone or keyhole) shape mainly due to the dynamic balance
of recoil pressure and surface tension pressure, which results in the repeated liquid pushing near

the vapor depression rim to generate surface wave [9]. The generated surface wave usually flows
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backward (i.e., opposite to the laser scanning direction) along the melt pool surface via Marangoni
flow, introducing the surface fluctuation as it solidifies on the as-printed surface [10].

Many post-processing methods have been reported to reduce surface roughness, including
chemical-based polishing [11], abrasive flow machining [12], hydrodynamic cavitation abrasive
finishing process [13]. However, post processing introduces extra step, cost, and time, which
compromises AM process advantages of minimized processing steps and short lead time.
Moreover, while post processing techniques can improve the finial printed surface, they cannot
address the surface roughness of intermediate layers during printing, which often introduces
defects, such as lack of fusion porosity [14]. Therefore, improving the surface finish by solving
the intrinsic surface wave problem during laser melting process is important.

The generation and propagation of surface waves are closely related to the melt flow behavior.
However, there is no insightful study on the correlation between melt flow and surface wave since
it is very difficult to visualize and control the melt flow inside the melt pool.

It was proposed that adding ceramic nanoparticles may alter the melt flow behavior during laser
metal AM or laser welding. However, the conclusions reported in previously published papers
based on simulation results or theoretical analysis are controversial. For example, adding
nanoparticle enhances [15] or diminishes [16] the liquid flow, maintains [17] or reverses [18] the
flow direction. Recently, we reported the direct observation of effects of nanoparticles on spatter
dynamics, vapor depression fluctuation [19] and keyhole pore formation [20] during laser AM
process by x-ray imaging. Yet, how nanoparticles influence melt flow dynamics during laser
melting has not been experimentally characterized and is still unclear.

Surface finish improvement by adding microparticles/nanoparticles during laser processing

(laser AM and laser polishing) was reported in previous publications, most of which were
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attributed to the increase of the absorptivity. For example, adding TiC [15], graphite [21], or SiC
[22] particles into Al or Fe can significantly increase the absorptivity, resulting in more sufficient
melting to improve the surface finish. In previous study, TiC nanoparticles were also used to
eliminate large spatters to improve the surface finish during laser AM of Al6061 [19]. In laser
polishing, it was reported that adding Al>O3 nanoparticles into Ni can improve the surface finish
by reducing the thermocapillary flow induced liquid accumulation at the melt pool tail [23].
However, the magnitudes of driving forces (e.g., recoil pressure, Marangoni force) under the
relative low energy input (power of 36 W) and small melt pool size (depth of 2.1 um) in laser
polishing are different from the ones in laser metal AM (power of 100 — 500 W, pool depth of 50
— 400 pm [24]). Despite these studies on adding nanoparticles to improve surface finish, the
concept of using nanoparticles to control melt flow to solve the intrinsic surface wave induced
surface fluctuation problem in keyhole mode melting has not been reported.

Here we performed in-situ x-ray imaging experiment and, for the first time, demonstrated the
effects of nanoparticles on melt flow behavior at every location of the melt pool using Al16061 +
TiC nanoparticles system during the laser metal AM process. Nanoparticles damped the melt flow
and surface wave before it solidified, resulting in a significant reduction of surface roughness. Our
in-depth in-situ x-ray imaging analysis and viscosity measurement enable us to identify that
nanoparticle-induced increase of viscosity causes the fully damping of the surface wave by (1)
increasing the internal fluid friction for more efficient wave amplitude reduction, (2) controlling
the melt flow to increase the surface wave number, (3) controlling the melt flow to increase the
wave damping time. Furthermore, we also quantified the relative contributions of increasing fluid
friction, increasing wave number, and increasing damping time to wave damping, which account

for 61%, 25%, and 14%, respectively. The concept of using nanoparticles to damp surface waves
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was further demonstrated to solve the surface wave problem encountered in keyhole-mode laser
polishing of rough surfaces.

2. Materials and Methods

2.1 Materials and sample preparation

Al6061 + TiC system was used as a model system for this study because of the wide application
of A16061 and the chemical stability of TiC in the aluminum melt with neglectable reaction [25,26].
The Al6061 powders with the size of 17-60 pm were purchased from Valimet Inc (Stockton, CA,
USA). The Al6061 substrate was cut from the commercial Al6061 plate purchased from
McMaster-Carr (Elmhurst, IL, USA). The Al6061+TiC powders were prepared by ball milling of
the Al6061 powders and TiC nanoparticles (83 nm, SSnano, Houston, TX, USA). The
Al6061+TiC substrate was cut from the as-printed Al6061+TiC samples, which were fabricated
by laser powder bed fusion (LPBF) of the ball-milled Al16061+TiC powders. To study the effects
of nanoparticle volume fraction on the melt flow, two A16061+TiC samples with different volume
fractions of TiC nanoparticles were prepared: A16061+1.8vol.%TiC, Al6061+4.4vol.%TiC.

17-4 precipitation hardening (17-4PH) stainless steel and ZrO» nanoparticles were used to
further confirm that the nanoparticle-induced damping of the surface wave can be applied to other
materials. The 17-4PH powders with the size of 26-56 um were purchased from EOS GmbH
(Krailling, Germany). The 17-4PH+5vo0l.%ZrO> powders were prepared by ball milling of the 17-
4PH powders and ZrO; nanoparticles (40 nm, USnano, Houston, TX, USA). The ball-milled 17-
4PH+5vo0l.%ZrO; powders were cold-pressed into a disc with the diameter of 10 mm and thickness
of 1 mm for laser melting experiment. For reference, we also prepared the 17-4PH disc with the
same size as the 17-4PH+5v0l.%ZrO; disc using as-received 17-4PH powders by cold pressing.

The chemical compositions of Al6061 powders, Al6061 plate, and 17-4PH powders are shown in



116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

Table 1.

Table 1: Chemical composition in mass percentage of feedstock materials

Element Al C Cr Cu Fe Mg Mn Nb Ni Si Ti Zn
Al6061 powder Balance - 0.1 027 0.09 086 <0.01 - - 055 0.01 <o0.01
Al6061 plate  Balance - 02 0.28 0.4 096 0.12 - - 0.69 0.02 0.01

17-4PH powder - 0.01 15.8 3.9 Balance - 005 03 41 0.02 - -

2.2 High-speed high-resolution x-ray imaging

High-speed high-resolution x-ray imaging was performed at Beamline 32-ID-B, Advanced
Photon Source, Argonne National Laboratory to study the effects of nanoparticles on the melt flow
and surface wave dynamics. During the experiment, a focused laser beam with a wavelength of
1070 nm and beam size of 90 um (D4c) was used to perform the laser melting experiment. At the
same time, the x-ray penetrated through the sample, and the transmitted signal carrying the
information of melt flow and surface wave dynamics was captured and recorded by a detection
system (exposure time of 1 us). The frame rate is 100 kHz to capture the melt flow dynamics, and
50 kHz to capture the surface wave dynamics. More information for the experimental setup is
detailed in reference [27].

For laser melting experiment, the scan speed is fixed at 0.4 m/s. Different laser powers were
used to study the melt flow and surface wave behavior under different melting modes for different
materials: (1) under conduction mode, the laser powers used for Al6061, Al6061+1.8vol.%TiC,
Al6061+4.4vol.%TiC are 390 W, 312 W, 286 W, respectively; (2) under keyhole mode, the laser
powers used for Al6061, Al6061+1.8vol.%TiC, Al6061+4.4vol.%TiC are 416 W, 364 W, 338 W,
respectively. Different laser powers were used for different materials to offset the absorptivity
increase caused by the nanoparticles and, thus, to generate similar laser energy input, melt pool

volume and vapor depression depth. Melt pool volume and vapor depression depth control melt
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pool inertia [28] and recoil pressure (see Appendix A for detailed discussion), which are two
important variables for melt pool oscillation and surface wave generation. Similar melt pool
volume and keyhole depth allow us to exclude the effects from melt pool inertia and recoil pressure
difference, so that we can study the pure nanoparticle effects on the melt flow and surface wave.
For the x-ray imaging experiment tracing the melt flow velocity, tungsten microparticles (1
vol.%, diameter < 10 um, USnano, Houston, TX, USA) were embedded in the Al6061 powders
and Al6061+TiC powders by the ball milling process, which allowed for the incorporation of
tungsten particles into the melt pool as flow tracers during LPBF of the A16061 and A16061+TiC
[29]. The effects of tungsten particles on the melt flow are neglectable, as discussed in Appendix

B.

2.3 Image processing

To characterize the melt flow behavior, the contrast of raw x-ray images was adjusted using the
Imagel software so that the movement of tungsten tracers can be clearly identified. We then
quantified the moving velocity of tungsten tracers by dividing their displacement by their moving
time. The displacement is obtained based on the 2D coordinate change of the tungsten tracers from
one frame to the next frame in the recorded x-ray image sequences using ImageJ software. The
moving time is the time interval before two consecutive frames, which was calculated according

to the frame rate of 100 kHz.

2.4 Height profile of the scan track

The height profile of the scan track was captured by the Keyence LJ-V7000 laser profiler
(Keyence, Osaka, Japan). The resolutions of the x-axis and y-axis are 20 pum, and 1 um,
respectively. The height resolution is 100 nm.

2.5 Surface tension and viscosity measurement



160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

To explain the nanoparticle-induced wave damping phenomenon during LPBF process, we
conducted the surface tension and viscosity measurement for the A16061 and Al6061+TiC based
on the oscillating droplet method [30]. During the experiment, the sample (1.3 x 102 g) was first
placed on an inert ring with the inner diameter of 2 mm and thickness of 0.5 mm. The ring was
attached to a linear solenoid. A continuous-wave laser with the power of 150 W, laser beam
diameter (D4c) of around 250 um was used to heat and melt the sample for 2 s. After the laser
heating/melting was over, the linear solenoid was immediately triggered to accelerate the inert ring,
causing the droplet to pass through the ring due to the inertia, thereby introducing the initial
deformation on the droplet. The droplet oscillation after passing through the ring was captured by
a high-speed visible light camera (FASTCAM Nova S12, Photron, Tokyo, Japan) at a frame rate
of 10 kHz. The surface tension was determined by the oscillation frequency, as denoted by the

following equation:

3 3nmf2
-8

o

(1)
where o is the surface tension, f'is the frequency of the oscillation, m is the mass of the liquid
droplet. The viscosity was determined by the damping speed of the amplitude during the droplet

oscillation:

3
= n 11’1( é
107Td0f C

# ) )

where u is the viscosity, ¢ is the oscillation time, dj is the equilibrium diameter of the droplet,
is the initial amplitude, {is the final amplitude after oscillating ¢ time. The chamber was evacuated
and refilled with Argon gas three times before the experiment.

2.6 High-speed visible light imaging of surface wave dynamics
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A high-speed visible light camera (FASTCAM Nova S12, Photron, Tokyo, Japan) was used to
capture the surface wave dynamics (from the top view) during laser melting experiment for 17-
4PH and 17-4PH+5v0l.%ZrO;. A continuous-wave (CW) ytterbium fiber laser (IPG YLR-500-
AC, IPG Photonics, USA) was used to perform the single-track laser melting experiment on the
17-4PH and 17-4PH+5v0l.%ZrO; discs. The view angle of the camera is 15° away from the normal
direction of the disc surface. Imaging was performed at 50 kHz frame rate with an exposure time
of 5 ps. The resolution is 4 um. SugarCUBE Ultra illumination system (White LED Light
SugarCUBE Ultra, Ushio, Tokyo, Japan) was used to illuminate the disc during the experiment.
2.7 Pre-sintering and laser polishing experiment

A continuous-wave ytterbium fiber laser (IPG YLR-500-AC, IPG Photonics, Oxford, MA, USA)
was used to perform the pre-sintering and laser polishing experiment. The powder layer thickness
is 100 pm. The laser power for the pre-sintering is 250 W. The laser power for the laser polishing
is 500 W. The scan speed is 0.2 m/s for both. The laser beam diameter (D40) is around 250 pm.
The hatch spacing is 80 pm. Keyence VHX-5000 digital microscope (Keyence, Osaka, Japan) was
used to capture the optical images and height profile of the pre-sintered and polished surface. The
height profile was captured based on the focus variation principle [31].

2.8 Surface roughness analysis

The surface roughness analysis was performed based on the ISO 4287 and ISO 4288 standard.
The cut-off is 0.8 mm. The evaluation length is 4 mm. Two different surface profile parameters
were used: (1) Ra: arithmetical mean deviation of the assessed profile; (2) Rz: maximum height of
the profile.

3. Results and Discussion

3.1 Effects of nanoparticle on melt flow in conduction-mode LPBF process
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We first performed the in-situ high-speed synchrotron x-ray imaging experiment to study the
effects of nanoparticles on the melt flow behavior during conduction-mode LPBF process. The
melt flow behavior of Al6061 and Al6061+TiC was successfully captured by the tungsten tracers
during the x-ray imaging experiment (Fig. la-c). To clearly reveal the melt flow at different
locations, the melt pool was divided into multiple cubic cells (50 pm % 50 um), and the melt flow
velocity of each cell was quantified according to the average velocity of tungsten microparticles
within that cell during the x-ray imaging experiment (Fig. 1d-f). The quantified results show that,
after adding 1.8vol.% TiC, 4.4vol.% TiC nanoparticles, the average flow speed of the whole melt
pool decreased by 39%, 73%, respectively (Fig. 1h). The melt flow below the melt pool surface
started to stagnate after adding nanoparticles and almost fully stalled for the A16061+4.4vol.%TiC
(Fig. 1d-f). The flow area ratio (defined as the melt pool area with liquid flowing/total melt pool
area, the melt pool area mentioned in this paper is the projected area observed in x-ray images)
decreased from 90% for the AI6061 to 68%, 47% for the Al6061+1.8vol.%TiC,
Al6061+4.4vo0l.%TiC, respectively (Fig. 11). The general trend of the effects of nanoparticles on

melt flow behavior in the conduction-mode LPBF process is summarized in Fig. 1g.

10
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Fig. 1. Control of melt flow by nanoparticles in conduction-mode LPBF process. a-c, X-ray
images showing the instantaneous liquid flow direction during conduction-mode LPBF of A16061,
Al6061+1.8vol. %TiC, and Al6061+4.4vol.%TiC. The yellow solid circles indicate the W-tracers.
The yellow solid arrows indicate the W-tracer trajectories. The yellow dashed circles and yellow
dashed arrows represent the W-tracers and their moving trajectories obtained from other frames
in the same experiment. d-f, Vector maps denoting the liquid flow velocity during LPBF. g,
Schematic drawing indicating the effect of nanoparticles on melt flow in conduction-mode LPBF
process. h, The average flow speed. i, The flow area ratio, which is defined as the ratio of the melt
pool area with liquid flowing to the total melt pool area. The laser power for Al6061,
Al6061+1.8vol. %TiC, Al6061+4.4vol. %TiC are 390 W, 312 W, 286 W, respectively. The laser
power was selected to achieve a similar melt pool dimension. Adding nanoparticles decreases the
laser power needed to achieve a similar melt pool dimension because TiC has higher absorptivity
than Al6061 at 1070 nm wavelength [26]. The scan speed is 0.4 m/s for all. The laser beam
diameter (D4c) is 90 um. The error bar indicates the standard deviation. The color scale for vector
maps d-f'is set to be consistent with that for Fig. 2d-f to compare the velocity difference between
conduction mode and keyhole mode.

3.2 Effect of nanoparticle on melt flow in keyhole-mode LPBF process
The effect of nanoparticles on melt flow in the keyhole-mode melting is rather complex, as

revealed by x-ray images and quantified flow velocity during LPBF of the Al6061,
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Al6061+1.8vol.%TiC, Al6061+4.4vol.%TiC (Fig. 2a-c). In the laser interaction domain, due to
the continuous forward movement of the vapor depression, the liquid in front of the vapor
depression needs to flow backward either through the liquid channels around the sides of vapor
depression or beneath the vapor depression. After adding nanoparticles, we observed the liquid
prefers to flow via the side of vapor depression instead of the bottom. Accordingly, the downwards
flow speed ahead of vapor depression decreased from 1 m/s for Al6061 to 0.6 m/s for
Al6061+1.8vol.%TiC and 0.4 m/s for A16061+4.4vol.%TiC (Fig. 2h).

At the melt pool main body region (behind the vapor depression), we first observe the average
flow speed decreased by 61%, 80% for the Al6061+1.8vol.%TiC, Al6061+4.4vol.%TiC,
respectively, after adding nanoparticles (Fig. 2d-f, 1). The thermocapillary flow covered almost the
entire melt pool surface for Al6061. After adding nanoparticles, the thermocapillary flow stagnated
before reaching the melt pool tail. The stagnation position is getting closer to the vapor depression
as the volume fraction of nanoparticles increases (Fig. 2d-f). For A16061, a clear vortex below the
melt pool surface was observed, with a flow area ratio of 93%. After adding nanoparticles, the
vortex disappeared. The flow area ratio plunged to 37% for the A16061+1.8vol.%TiC, and further
decreased to 24% for the Al6061+4.4vol.%TiC (Fig. 2j). The general trend of the effects of
nanoparticles on melt flow behavior in the keyhole-mode LPBF process is summarized in Fig. 2g.

To explain the nanoparticle-induced change/damping of the melt flow behavior, we measured
viscosity of Al6061, Al6061+1.8vol.%TiC, and Al6061+4.4vol.%TiC based on the oscillating
droplet method. During the experiment, the free oscillation of the deformed droplets was clearly
captured by the high-speed camera (Fig. 3a). The recorded high-speed images show that adding
nanoparticles reduced the oscillating time required for the deformed droplet to return to the

spherical shape due to the increase of viscosity. Based on the oscillating curve (Fig. 3b), the
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calculated viscosity of the Al6061+1.8vol.%TiC (25.9 mPa-s) is 4.3 times higher, while the
calculated viscosity of the A16061+4.4vol.%TiC (79.4 mPa-s) is 15.2 times higher than that of the
Al6061 (4.9 mPa-s).

The downwards flow ahead of vapor depression is driven by the vertical (downwards)
component of recoil pressure, which provides the shear force at the gas-liquid interface.
Nanoparticles can impair this flow by increasing viscosity. Hence, more liquid needs to flow
horizontally through the channels around the sides of vapor depression. The horizontal flow is
driven by the horizontal component of recoil pressure, which squeezes the liquid ahead of vapor
depression to the back during the forward movement of vapor depression. This explains why the
liquid prefers to flow via the side of vapor depression instead of the bottom after adding
nanoparticles (Fig. 2d-f).

In the melt pool main body region, the surface melt flow is driven by the Marangoni force which
promotes fluid flow and viscous force which impedes fluid flow [32]. The Marangoni force mainly
depends on the temperature gradient and surface tension coefficient [33]. The viscous stress
depends on the viscosity and velocity gradient perpendicular to the melt pool surface. When the
liquid moves from vapor depression to the melt pool tail region, the Marangoni force decreases
while the viscous force increases because: (1) The temperature gradient near the vapor depression
is higher than that far away from vapor depression [34]; (2) The viscosity of the liquid near the
vapor depression is lower due to the higher liquid temperature. The decrease of Marangoni force
and the increase of viscous force explain why the horizontal flow velocity at the melt pool surface
first increases and then decreases for both A16061 and Al6061+TiC (Fig. 2d-f).

After adding nanoparticles, the viscosity increases, leading to the increase of the viscous force

and reduction of flow velocity for both conduction mode and keyhole mode. The decrease of the
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flow velocity further causes the decrease of inertial pressure of the fluid [29], which is the major
driving force of the vortex flow below the melt pool surface. As a result, the vortex disappears

after adding nanoparticles.
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Fig. 2. Control of melt flow by nanoparticles in keyhole-mode LPBF process. a-c, X-ray images
showing the instantaneous liquid flow direction during keyhole-mode LPBF of Al6061,
Al6061+1.8vol. %TiC, A16061+4.4vol. %TiC. The yellow solid circles indicate the W-tracers. The
vellow solid arrows indicate the W-tracer trajectories. The yellow dashed circles and yellow
dashed arrows represent the W-tracers and their moving trajectories obtained from other frames
in the same experiment. d-f, Vector maps denoting the liquid flow velocity. g, Schematic drawing
indicating the effect of nanoparticle on melt flow during keyhole-mode LPBF process. h, The
average speed of downwards flow ahead of vapor depression. i, The average flow speed of the
whole melt pool. j, The flow area ratio. The laser power for Al6061, Al6061+1.8vol.%TiC,
Al6061+4.4vol.%TiC are 416 W, 364 W, 338 W, respectively. The laser power was selected to
achieve similar vapor depression and melt pool dimensions. Adding nanoparticles decreases the
laser power needed to achieve a similar vapor depression dimension because TiC has higher
absorptivity than A16061 at 1070 nm wavelength. The scan speed is 0.4 m/s for all. The laser beam
diameter (D4a) is 90 um. The error bar indicates the standard deviation.
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Fig. 3. The surface tension and viscosity measurement. a, High-speed images showing the
dynamic droplet morphology during oscillation. b, The droplet diameter as a function of time
during oscillation.

3.3 Damping of the surface wave by nanoparticles

We further studied the effects of nanoparticles on the surface wave dynamics during keyhole-
mode melting by the in-situ x-ray imaging experiment (Fig. 4a-c). X-ray images clearly captured
the surface wave that initiated at vapor depression rear wall, subsequently moved backward with
the Marangoni flow, and finally was captured by solidification front. We quantified the amplitude
of the surface waves as a function of the distance from the vapor depression rear wall. The results
(Fig. 4d-e) show that the amplitude of the surface wave decreased during the backward movement
due to the wave damping effect induced by viscous stress [35]. For the Al6061 and
Al6061+1.8vol.%TiC, the amplitudes of surface waves captured by solidification front were 24.2
+ 11.3 pm and 12.4 £ 5.5 um, respectively. In contrast, for the A16061+4.4vol.%TiC, the surface
waves were fully damped (not detectable by the x-ray imaging facility we used) before being
captured by the solidification front (Fig. 4d-e, Supplementary Movie 1). The detailed discussion

of surface wave formation mechanism is shown in Appendix C.
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Fig. 4. Nanoparticle-induced damping of the surface wave during LPBF process. a-c, x-ray
images showing the surface wave during LPBF of Al6061, Al6061+1.8vol %TiC,
Al6061+4.4vol. %TiC, respectively. d, Surface wave amplitude as a function of the distance from
vapor depression. e, Height of the melt pool surface as a function of the distance from vapor
depression. The height of the melt pool surface in e is collected from multiple frames for each
material. The laser power for AI6061, AI6061+1.8vol.%TiC, AI6061+4.4vol. %TiC are 416 W, 364
W, 338 W, respectively. The laser power was selected to achieve similar vapor depression and
melt pool dimensions. The scan speed is 0.4 m/s for all. The laser beam diameter (D4ac) is 90 um.

3.4 Effects of nanoparticle-induced wave damping on surface finish

To study the effect of wave damping on surface finish, the height profile of the scan track was
captured by a 3D profiler. The results (Fig. 5a-c) show that the track surface became smoother as
the volume fraction of nanoparticles increased. Further analysis of surface roughness shows that
compared with Al6061, the Ra of the AI6061+1.8vol.%TiC, Al6061+4.4vol.%TiC decreased by
30%, 68%, respectively (Fig. 5d). We extracted the height profile of the center line (parallel to
laser scan direction) of the scan track. The periodic surface features induced by surface wave were
clearly observed on the track surface of the Al6061 and Al6061+1.8vol.%TiC, but no clear
periodic features exhibited on the Al16061+4.4vol.%TiC (Fig. Se). This suggested that the damping

of surface waves can significantly improve the surface finish.
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To prove that the periodic surface features on the printed surface were caused by the periodic
surface waves, we quantified the spatial frequency of the surface asperity on the printed surface
and the temporal frequency of the surface wave in the x-ray videos to verify that they have the
following relationship:

fi=vJ 3)
where f is the temporal frequency of the surface wave with the unit of s, /s the spatial frequency
of the surface asperity on the printed surface with the unit of m™', v is the scan speed with the unit
of m/s.

To capture the temporal frequency of the surface wave, the liquid height fluctuation (relative

change from the average value) at the vapor depression rear rim in the x-ray videos was quantified

17



360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

and the peak in the liquid height versus time curve was identified as one surface wave (Fig. 6a-c).
The temporal frequency of the surface wave was calculated by the following equation:

S, =UT 4)
where f, is the temporal frequency, T'is the average period of the surface waves (Fig. 6a-c). The
calculated temporal frequencies of the Al6061, Al6061+1.8vol.%TiC and A16061+4.4vol.%TiC
are 7.4 kHz, 8.1 kHz, and 8.9 kHz, respectively.

The spatial frequency of the surface asperity on the printed surface was calculated based on the
surface profile (Fig. 6d-e). The spatial frequency is the reciprocal of the surface asperity
wavelength (i.e., the distance between two nearest humps) on the printed surface, as denoted by
the equation below:

f.=1/D (5)
where D is the wavelength of the surface asperity. The calculated spatial frequencies of the A16061
and A16061+1.8vol.%TiC based on the surface profile are 2.1 x 10*m™, 2.8 x 10* m™!, respectively.
There is no obvious periodic surface feature on the printed surface of Al6061+4.4vol.%TiC (Fig.
6f), due to the complete damping of the surface wave. For Al6061 and Al6061+1.8vol.%TiC, we
observed that the spatial frequency of the surface asperity on the printed surface and the temporal
frequency of the surface wave approximately follow the relationship in Equation (3). The
difference of left side and the right side of Equation (3) for AlI6061 is 12%, while that for
Al6061+1.8vol.%TiC is 28%. This suggests that most of the surface asperities on the printed
surface for the A16061 and Al6061+1.8vol.%TiC were caused by the periodic surface waves. The
slight deviation may be attributed to the additional surface asperities induced by the stochastic

surface wave (See Appendix D).
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in the curve represents the generation of the surface wave. d-f, The surface height profile of the
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LPBF process.

3.5 Mechanism of nanoparticle-enabled damping of surface wave
To explain the observed wave damping phenomenon, we performed in-depth in-situ x-ray
imaging analysis, which enables us to quantitively understand the mechanisms of nanoparticle-

induced damping of the surface wave based on the wave damping model [36]:

8muk’ t)

¢(t) = {(0) exp < (6)

where ((t) is the final amplitude with the unit of m, {(0) is the initial amplitude with the unit of m,
¢t is damping time with the unit of s, u is the dynamic viscosity with unit of Pa-s, k is the wave
number with the unit of m™!, p is the density with the unit of kg/m®. Based on Equation (6), the

increase of viscosity, or wave number, or damping time leads to a stronger damping effect. To

19



398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

realize the effects of nanoparticles on the surface wave damping, we measured the viscosity and
calculated the wave number and damping time of the A16061 and Al6061+TiC. The results (Fig.
7a-d) show that the viscosity, surface wave number, and damping time all increased after adding
TiC nanoparticles.

The measured viscosity of the A16061+1.8vol.%TiC (25.9 mPa-s) is 4.3 times higher, while the
measured viscosity of the A16061+4.4vol.%TiC (79.4 mPa-s) is 15.2 times higher than that of the
Al6061 (4.9 mPa-s), as detailed in Section 3.2. The viscosity enhancement causes the increase of
the internal fluid friction during wave damping so that the wave amplitude will be reduced more
efficiently [36].

The wave number and damping time were calculated based on the x-ray imaging data. The wave
number is defined as the number of waves per unit distance at melt pool surface, which is related
to the wave generation frequency and relative moving speed between vapor depression (moving
forwards, speed equal to laser scanning speed) and surface wave (moving backward), as denoted

by the following equation:

k= (7

where f'is the surface wave generation frequency, v, is laser scan speed (0.4 m/s), v,, is the surface
wave moving speed. As mentioned earlier, the surface wave generation frequencies of the A16061,
Al6061+1.8vol.%TiC, and Al6061+4.4vol.%TiC were captured by x-ray images as 7.4 kHz, 8.1
kHz, 8.9 kHz, respectively (Fig. 6a-c). The frequency increase after adding nanoparticles could be
attributed to the increase of surface tension [37,38]. Based on the oscillating frequency during the
oscillating droplet experiment, as shown in Fig. 3b, the calculated surface tensions of Al6061,
Al6061+1.8vol.%TiC, and Al6061+4.4vol.%TiC are 0.68 N'm™, 0.76 N'm™ and 0.81 N'm™,

respectively. The surface wave moving speed was captured by x-ray images (Fig. 7¢). Note that
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the surface wave moving speed is higher than the flowing speed of the uppermost layer of the melt
pool captured by W-tracers (Fig. 2d-f). This is because: (1) the surface wave moving speed is a
combination of melt flow speed and wave propagation speed; (2) there is a boundary layer on the
melt pool surface, which is a thin layer of fluid immediately adjacent to the melt pool surface
caused by the Marangoni shear stress [39]. Within this boundary layer, the horizontal flow speed
suddenly decreases from surface to inside. The calculated boundary layer thickness is less than
105 um, as detailed in Appendix E, which is in the similar range of velocity quantification cell
size (50 um) for W-tracers. Therefore, the flow speed of the uppermost layer of the melt pool
captured by W-tracers, which is the average speed of melt flow within 50 um depth from the top
surface, is smaller than the top surface flow speed. Based on the frequency and relative velocity,
the wave number was calculated based on Equation (7). The results (Fig. 7c) show that the wave
number of the A16061+1.8vol.%TiC (2.6 x 10° m!) is 23% higher, while the wave number of the
Al6061+4.4vol.%TiC (3.7 x 10> m™!) is 75% higher than that of the A16061 (2.1 x 10° m™).

The damping time is defined as the lifetime of the surface wave, which was calculated by
dividing the melt pool length from vapor depression rear wall to melt pool tail by the relative

velocity of surface wave and vapor depression, as denoted by the following equation:

L

Ve + v,

t:

(8)

where ¢ is the damping time, L is the length from vapor depression rear wall to melt pool tail, which
was captured by x-ray images. The calculated damping time (Fig. 7d) of the A16061+1.8vol.%TiC
(0.26 ms) is 15% longer, while the damping time of the Al6061+4.4vol.%TiC (0.35 ms) is 55%
higher than that of the A16061 (0.23 ms).

After obtaining the viscosity, wave number and damping time for the Al6061,

Al6061+1.8vol.%TiC, and Al6061+4.4vol.%TiC, we input these numbers into Equation (6) to
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predict the final amplitude of surface wave after damping. The results (Fig. 7f) show that the
surface wave amplitude for Al6061 decreased by 13.5%, while the one of Al6061+1.8vol.%TiC
decreased by 69% after damping. In contrast, the amplitude of A16061+4.4vol.%TiC decreased by
over 99.9% after damping. This indicates that nanoparticles can significantly improve the wave
damping effect by increasing viscosity, wave number, and damping time. The prediction result
that the A16061+4.4vol.%TiC can almost fully damp the surface wave is consistent with our x-ray
observation (Fig. 4d).

While the viscosity of the material can be measured, the wave number and damping time are
hard to be measured without in-situ observation of the melt flow. Therefore, most of the previous
studies did not consider the effects of wave number and damping time change on the damping of
surface wave. Here in our work, the simultaneous quantification of the viscosity, wave number
and damping time enable us, for the first time, to study the individual contribution of viscosity,
wave number, and damping time during the wave damping of A16061+4.4vol.%TiC. To be specific,
we performed another three calculations of wave damping based on Equation (6). For each
calculation, we used one increased number (viscosity, or wave number, or damping time) from
Al6061+4.4vol.%TiC, while other numbers were from Al6061, i.e., we change one factor at a time.
The individual increase of viscosity, wave number, and damping time results in a wave amplitude
decrease of 90%, 36%, 20%, suggesting an individual contribution (maintaining the relative ratio

relation) of 61%, 25%, 14%, respectively (Fig. 7g).
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Fig. 7. The mechanism of nanoparticle-induced wave damping. a, Schematic showing that
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3.6 Nanoparticle-enabled damping of surface wave during laser melting of steel
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To confirm the nanoparticle-enabled damping of surface wave is not just limited to aluminum
alloy, we performed laser melting experiment for 17-4PH stainless steel and 17-4PH+5vol.%ZrOs.
The captured surface profile of the scan track shows that adding ZrO» nanoparticles significantly
improved the surface finish (Fig. 8a, b). The surface finish improvement was attributed to the
increase of the viscosity and damping of the surface wave by ZrO; nanoparticle, which was
confirmed by the high-speed visible light imaging (See Supplementary Movie 2). Periodic surface
features induced by the surface wave exhibited on the scan track of 17-4PH (Fig. 8c). In contrast,
no obvious periodic surface feature was observed on the scan track of 17-4PH+5vol.%ZrO> (Fig.
8c). Further surface roughness analysis (Fig. 8d) shows that adding ZrO> nanoparticles results in a
63% decrease of Ra from 4.0 um for 17-4PH to 1.5 um for 17-4PH+5v0l.%ZrO;. This indicates
that the concept of using nanoparticles to eliminate surface wave and improve the surface finish

can be applied to other materials in fusion-based manufacturing process.
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Fig. 8. Nanoparticle-enabled damping of surface wave during laser melting of steel. a, b, Track
height profile of 17-4PH, and 17-4PH+5vol.%ZrO:. ¢, The built height of the centerline of the
scan track. d, The surface roughness (Ra) of the scan track. The error bar indicates the standard
deviation.

3.7 Wave-free keyhole-mode polishing of rough surface
We further demonstrate that our concept of using nanoparticle to damp the surface wave can

also help to improve the laser polishing process. Laser polishing is a surface polishing process
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using laser to melt the workpiece, resulting in the surface smoothing due to the surface tension and
viscosity damping [40]. Previous research shows that keyhole-mode melting is required in laser
polishing to polish the rough surface due to the larger pool dimension in keyhole-mode laser
melting. However, keyhole-mode polishing introduces extra surface roughness induced by surface
wave [41], limiting laser polishing application. Here we utilize nanoparticles to damp the surface
wave, which enables us to achieve a wave-free keyhole-mode polishing of the rough surface. To
demonstrate this, we created a rough surface by pre-sintering the powder bed (100 um powder
layer thickness) of Al6061 and Al6061+4.4vol.%TiC (Fig. 9a, e), and then polished the pre-
sintered surface by keyhole-mode laser polishing (Fig. 9b, f). For both materials, the rough surface
features induced by partially melt powders were smoothed after laser polishing. However, for the
Al6061, we observed additional surface fluctuation induced by surface waves (Fig. 9b). In
comparison, there were almost no noticeable wavy features for the A16061+4.4vol.%TiC (Fig. 91).
The height profiles of pre-sintered surface and polished surface for Al6061 and
Al6061+4.4vo0l.%TiC were captured by digital microscope based on the focus variation principle
(Fig. 9c-d, g-h). Further surface roughness analysis shows that the Ra of the A16061+4.4vol.%TiC
decreased by 94% after polishing (from 45.7 pm to 2.9 um), compared with a decrease of 35%
(from 11.9 pm to 7.8 pm) for the Al6061. The Rz of the A16061+4.4vol.%TiC decreased by 93%
after polishing (from 217 pum to 16 um) compared with a decrease of 50% (from 62 pm to 31 um)
for the Al6061.

Through the nanoparticle-enabled wave-free keyhole mode polishing, we can polish the rough
surface with initial roughness far beyond these reported in previous laser polishing studies (Fig.
10), while still ensuring good polishing efficiency: 93% reduction of Ra. This is because we

performed the laser polishing in keyhole mode, which significantly enhanced the melt pool
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dimension. The expanded melt pool size enabled us to polish the large asperity on the melt pool
surface. This explains why we can polish the extremely rough surface. At the same time, we
introduced nanoparticles to solve the surface wave problem caused by the keyhole fluctuation in

the keyhole mode polishing. Therefore, we can still achieve a relatively good polishing efficiency

as compared with previous laser polishing works (Fig. 10).
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Fig. 9. Nanoparticle enabled wave-free keyhole-mode polishing of rough surfaces.
images showing the pre-sintered (a) and polished surface (b) of A16061. c-d, The height profile of
pre-sintered (c) and polished surface (d) of AI6061. e-f, Optical images showing the pre-sintered
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(e) and polished surface (f) of Al6061+4.4vol.%TiC. g-h, The height profile of pre-sintered (g)

and polished surface (h) of AI6061+4.4vol.%TiC. ¢, d, g, h were taken at the area indicated in a,

b, e, f, respectively. i-j, The Ra (i) and Rz (j) of the pre-sintered and polished surface for AI6061
and Al6061+4.4vol. %TiC. The error bar indicates the standard deviation.
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4. Conclusion

In summary, we revealed the effects of nanoparticles on melt flow behavior at every location of
melt pool during laser metal AM process and utilized nanoparticles to successfully control the melt
flow and damp the surface wave, achieving significant surface finish improvement in the metal
AM process and keyhole mode surface polishing. The main conclusions are as follows:

1. We experimentally revealed the effects of nanoparticles on the melt flow for the first time.
Adding nanoparticle significantly reduced the melt flow speed in both conduction-mode and
keyhole-mode LPBF process, resulting in the elimination of vortex.

2. After controlling melt flow by nanoparticles, the surface wave was fully damped before being
captured by the solidification front. Therefore, the as-solidified surface finish was significantly
improved after adding nanoparticles.

3. Our in-depth in-situ x-ray imaging analysis and viscosity measurement enable us to identify
that nanoparticle-induced increase of viscosity causes the fully damping of the surface wave by (1)

increasing the internal fluid friction for more efficient wave amplitude reduction, (2) controlling
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the melt flow to increase the surface wave number, (3) controlling the melt flow to increase the
wave damping time. Furthermore, we also quantified the relative contributions of increasing fluid
friction, increasing wave number, and increasing damping time to wave damping, which account
for 61.6%, 24.7%, and 13.7% respectively.

4. We further demonstrated that adding nanoparticle can achieve wave-free keyhole-mode
polishing. Through the nanoparticle-enabled wave-free keyhole-mode polishing, we can polish the
rough surface with initial roughness far beyond these reported in previous laser polishing, while
still ensuring good polishing efficiency.

Our research provides the mechanisms and potential method to address the surface finish
challenge in laser metal AM processes. Our concept of using nanoparticle to solve the intrinsic
surface wave induced surface fluctuation problem can also improve the surface finish of
intermediate layers during printing, which may significantly reduce the defects in the as-printed
product. More work will be done in the future to gain deeper understanding of nanoparticle-
enabled melt flow control and develop a feasible guideline for selecting/designing nanoparticles

for different alloy systems to achieve desired melt flow and surface finish during laser metal AM.
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Appendix A: Comparing the melt flow and surface wave dynamics at similar vapor
depression depth

We studied the effects of nanoparticle on the melt flow and surface wave dynamics under same
vapor depression depth instead of same laser power because same vapor depression depth can rule
out the effects from variation of laser energy input, recoil pressure, and melt pool dimension as
much as possible to allow us to study the pure nanoparticle effects on melt flow and surface wave.

At 1070 nm wavelength, the absorptivity of TiC is 0.5 [48], which is higher than the absorptivity
of 0.04 for Al6061 [49]. Therefore, adding TiC nanoparticles into Al6061 will increase the
absorptivity. Hence, different laser powers should be used to create the condition with same or
similar laser energy input. The laser energy input is directly related to the recoil pressure, which
can be estimated by the following equation based on the pressure balance at the keyhole liquid

interface [50]:

20

p,=pigh + & (A.1)

p, is the vapor recoil pressure, p, is the density of liquid, g is the gravity acceleration, / is the
vapor depression depth, o is the surface tension, R is the keyhole curvature, which can be
estimated as laser beam radius.

If we performed the experiment at the same keyhole depth, the difference in the recoil pressure
is only from surface tension difference. The surface tension value for A16061 and Al6061+TiC is
very close: compared with Al6061, the surface tension of Al6061+4.4vol.%TiC is 19% higher,
while the surface tension of Al6061+1.8vol.%TiC is 12% higher, as detailed in Section 3.5. On
the other hand, if we performed the experiment at the same laser processing parameter (e.g, 416

W, 0.4 m/s), the vapor depression depth significantly increased after adding nanoparticles:190 um
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for Al6061, 312 pm for Al6061+1.8vol.%TiC, 362 um for Al6061+4.4vol.%TiC. This will add
more variation in laser energy input and recoil pressure for different materials.

In addition, vapor depression depth determines the melt pool formation. Similar vapor
depression depth usually guarantees a similar melt pool dimension. The melt pool dimension
determines the total inertia of the liquid, which is critical variable controlling the melt flow, vapor
depression/melt pool fluctuation and surface wave generation [28].

Based on above, we believe the comparison under same vapor depression depth is a relatively
fair comparison to exclude the effects from variation of laser energy input, recoil pressure, and
melt pool dimension. We also performed the experiment for A16061 and A16061+4.4vol.%TiC
under the same laser processing parameter (416 W, 0.4 m/s). We observed the same phenomenon
that adding nanoparticles can fully damp the surface wave and improve the surface finish.
Appendix B: Effects of tungsten particles on the melt flow

To trace the melt flow velocity during LPBF of Al6061 and Al6061+TiC, tungsten particles
were added into the melt pool. Therefore, it is necessary to realize the effects of tungsten particles
on the melt flow. Here we quantified the surface wave moving speed during LPBF of A16061 and
Al6061+1vol.%W by x-ray imaging (Fig. B.1). The results show that adding tungsten particles
results in minor decrease of the surface wave moving speed from 3.1 = 0.9 m/s to 3.0 = 0.6 m/s.
Hence, the effects of tungsten particles are neglectable compared with TiC nanoparticles, which
decrease the surface wave moving speed to 2.0 = 0.4 m/s. Moreover, the tungsten particles were
added to both A16061 and A16061+TiC samples to trace the melt flow velocity. Therefore, the melt
flow pattern difference during LPBF of Al6061 and Al6061+TiC indicated by tungsten tracers

should be mostly caused by the added TiC nanoparticles instead of tungsten particles.
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Fig. B.1 Effects of tungsten particles on the melt flow. a-b, X-ray images showing the surface
wave during LPBF of A16061 (a) and A16061+4.4vol.%TiC (b). c, The surface wave moving speed.

Appendix C: Surface wave generation conditions and mechanisms

The surface waves were observed under both conduction mode and keyhole mode in our in-situ
x-ray imaging experiment. However, the surface wave formation mechanisms are different for
conduction mode and keyhole mode. Under conduction mode, the surface wave initiates at the
laser-metal interaction position, which is probably due to the strong and unstable Marangoni flow
at that area with extremely high temperature gradient (indicated by the white arrow in Fig. C.1a).
Under keyhole mode, the surface wave is generated accompanied by the keyhole fluctuation. To
be specific, when the keyhole suddenly expands, the liquid around the keyhole is squeezed out and
the surface wave is generated at the keyhole rear rim (Fig. C.1b, c¢). Given that the amplitude of
the surface wave under conduction mode is much smaller than that in keyhole mode and keyhole
mode is widely adopted in laser metal AM [24], in the main text, we study the effects of

nanoparticles on the surface wave behavior under keyhole mode.
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Fig. C.1 Surface wave formation mechanism. a, X-ray image showing that the surface wave is
induced by the strong and unstable Marangoni flow at the laser material interaction area under
conduction mode. The Marangoni flow is indicated by the white arrow. b-c, X-ray images
showing that the surface wave is induced by the keyhole expansion under keyhole mode.
Appendix D: Nanoparticle-enabled damping of stochastic surface wave caused by the strong
Marangoni flow

We have demonstrated that nanoparticles can damp the periodic surface wave originated from
periodic oscillation of vapor depression. It was reported that the strong Marangoni flow can induce
another type of stochastic surface wave at the melt pool tail region [51]. To be specific, when the
strong Marangoni flow collides with the solidification front, it causes the rapid deceleration of
fluid. According to Bernoulli’s principle, the decrease of fluid speed increases the fluid static
pressure and pushes the pool surface upward, resulting in the generation of stochastic surface wave

at the melt pool end region. The amplitude of the surface fluctuation induced by the stochastic

wave can be estimated as [52]:

2.2
a= (1K) (WT“’> (D.1)

where a is the amplitude, K, is coefficient of energy loss induced by viscous dissipation and the
collision between the surface flow and solidification front at the end of the melt pool, p is the fluid
density, o is the melt pool width, o is the surface tension, u is the fluid speed before reaching the
end of the melt pool, which is taken as flowing speed at melt pool surface 200 pum from the end of
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the melt pool. Assuming K, is zero, which means that all the inertial pressure induced by
flowing momentum is used to push the pool surface upward. The calculated amplitudes of A16061,
Al6061+1.8vol.%TiC, Al6061+4.4vol.%TiC are 115 um, 7.2 um, and 0 pm, respectively. This
suggests that nanoparticles can also damp the stochastic surface wave by slowing down the melt
flow reaching the end of the melt pool. After damping both the periodic surface wave caused by
the vapor depression fluctuation and stochastic surface wave caused by the strong Marangoni flow,

the surface finish was significantly improved after adding nanoparticles.

Appendix E: Estimation of the boundary layer thickness at the melt pool surface

The liquid flow during laser metal AM is very similar to the liquid flow on a flat plate, where
there is a boundary layer (sudden velocity change) at the liquid-plate interface due to the shear
stress between the liquid and plate. Here in laser metal AM, the shear stress is induced by the

Marangoni force at the melt pool surface. Therefore, the boundary layer thickness at the top pool

55]{% (E.1)

where ¢ is the boundary layer thickness with the unit of m, u is the dynamic viscosity with the unit

surface can be simply estimated as [53]:

of Pa-s, x is the distance from vapor depression rear wall with the unit of m, p is the liquid density
(2415 kg/m), U is the relative velocity between the melt pool surface and melt pool main body
with the unit of m/s, here the propagation speed of surface wave in Fig. 7e was used. The calculated
boundary layer thickness of the Al6061 increases from 0 to 105 um as it develops along the melt
pool surface (Fig. E.1). The size of the velocity quantification cell is 50 um, which is within the

range of boundary layer thickness, suggesting that there is a sudden velocity change within the
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cell. This explains why the surface wave moving speed is higher than the average flow speed of

the W-tracers in the uppermost quantification cells of the melt pool.
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Fig. E.1. The boundary layer thickness at the melt pool surface as a function of the distance
from vapor depression rear wall.
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