

1 **Nanoparticle-enabled increase of energy efficiency during laser metal additive
2 manufacturing**

3 Minglei Qu^{1,2}, Qilin Guo^{1,2}, Luis Izet Escano^{1,2}, Ali Nabaa^{1,2}, Kamel Fezzaa³, Lianyi Chen^{1,2,*}

4 ¹Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
5 53706, USA

6 ²Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison,
7 Wisconsin 53706, USA

8 ³X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA

9 *Corresponding author: lianyi.chen@wisc.edu

10 Corresponding author address: Department of Mechanical Engineering, University of Wisconsin-
11 Madison, Madison, Wisconsin 53706, USA.

12

13 **Abstract**

14 The low **energy efficiency** of the laser metal additive manufacturing (AM) process is a potential
15 sustainability concern for large-scale industrial production. Explicit investigation of the **energy
16 efficiency for laser melting** requires the direct characterization of melt pool dimension and vapor
17 depression, which is very difficult due to the opaque nature of the molten metal. Here we report
18 the direct observation and quantification of effects of the TiC nanoparticles on the vapor
19 depression and melt pool formation during laser powder bed fusion (LPBF) of Al6061 by in-situ
20 high-speed high-energy x-ray imaging. **Based on the quantification results, we calculated the laser
21 melting energy efficiency (defined here as the ratio of the energy needed to melt the material to
22 the energy delivered by the laser beam) with and without TiC nanoparticles during LPBF of
23 Al6061.** The results show that adding TiC nanoparticles into Al6061 leads to a significant increase

24 of laser melting energy efficiency (114% increase on average, 521% increase under 312 W laser
25 power, 0.4 m/s scan speed). Systematic property measurement, simulation, and x-ray imaging
26 studies enable us, for the first time, to identify that three mechanisms work together to enhance the
27 laser melting energy efficiency: (1) adding TiC nanoparticles increases the absorptivity; (2) adding
28 TiC nanoparticles decreases the thermal conductivity, and (3) adding TiC nanoparticles enables
29 the initiation of vapor depression and multiple reflection at lower laser power (i.e., lowers the laser
30 power threshold for keyholing). The method and mechanisms of using TiC nanoparticles to
31 increase the laser melting energy efficiency during LPBF of Al6061 we reported here may guide
32 the development of feedstock materials for more energy efficient laser metal AM.

33 **Keywords:** Additive manufacturing, laser powder bed fusion, energy efficiency, keyhole, melt
34 pool, x-ray imaging, metal matrix nanocomposites

35 1. Introduction

36 Metal additive manufacturing (AM or 3D printing) is revolutionizing the manufacturing
37 industry due to its advantages of manufacturing parts with complex geometries, reducing the need
38 for tooling and part assembly, and shortening lead time [1–5]. However, the relatively low laser
39 melting energy efficiency (here, is defined as the ratio of the energy needed to melt the material to
40 the energy delivered by the laser beam, which is different from absorptivity, as detailed in
41 Appendix A) during laser metal AM (especially for metals with high reflectivity and high thermal
42 conductivity) is a potential sustainability concern for large-scale industrial production [6–9].
43 During laser metal AM, a large amount of laser energy was wasted, either via the reflection which
44 may potentially damage the optical component [10,11], or via heat dissipation to coarsen
45 microstructure in the heat-affected zone and degrade the mechanical properties [12,13]. Therefore,

46 more efficient use of laser energy cannot only benefit productivity, but also improve the equipment
47 lifetime and product quality.

48 However, explicit study of the laser melting energy efficiency requires actual vapor depression
49 (or called keyhole) and melt pool dimension [14,15], which are very difficult to be obtained by
50 postmortem analysis due to the repeated overlapping of the scan tracks in the laser AM process
51 [16,17]. It is also very difficult to directly visualize the vapor depression and melt pool formation
52 due to the opaque nature of the molten metal. Conventional monitoring techniques, such as the
53 visible light imaging [18,19] and thermography [20] can only capture information from the melt
54 pool surface. Recently, x-ray imaging was applied to capture the vapor depression and melt pool
55 dimension during laser melting [14,21,22]. Inline coherent imaging provides another way to
56 capture the vapor depression depth during the laser melting process [23,24]. Although significant
57 progress has been made in in-situ monitoring, reliable way to improve the laser melting energy
58 efficiency beyond tuning laser processing parameters and the deep understanding of how to
59 improve the laser melting energy efficiency during laser metal AM process have not been reported.

60 Previous studies have reported that adding nanoparticles can alter the properties (e.g., surface
61 tension [25,26], viscosity [27,28], absorptivity [29–31], thermal conductivity [32], specific heat
62 [33]) of metal matrix, which may potentially affect the melt pool volume and laser melting energy
63 efficiency. However, most of the previous works studying the nanoparticle effects on laser melting
64 (either by simulation or theoretical analysis) did not consider the changes of all these properties,
65 due to the lack of measurement data [34–36]. So far, the quantitative understanding of which
66 property change caused by the nanoparticles is the dominant factor in affecting both the melt pool
67 volume and laser melting energy efficiency is lacking. During laser metal AM, vapor depression
68 plays an important role in determining the laser absorption [37–39], which may significantly affect

69 the melt pool dimension. However, the effect of nanoparticles on the vapor depression formation
70 has not been studied due to the difficulties in direct observation of the vapor depression during the
71 laser metal AM process. Previous studies have demonstrated that adding nanoparticles in metal
72 can increase the powder absorptivity (i.e., the absorptivity of the powder layer in LPBF) [30,40–
73 43] and material absorptivity (i.e., the absorptivity of the flat surface) [10]. However, which
74 absorptivity increase number should be used when studying nanoparticle effects on LPBF process
75 is still unclear.

76 Here we report the direct observation and quantification of the effects of TiC nanoparticles
77 on the vapor depression and melt pool formation during LPBF of Al6061 by in-situ high-speed
78 high-energy x-ray imaging, and achieved a significant increase of laser melting energy efficiency
79 (114% increase on average, 521% increase under 312 W laser power, 0.4 m/s scan speed) by TiC
80 nanoparticles. Systematic property measurement, simulation, and x-ray imaging studies enable us,
81 for the first time, to identify that three mechanisms work together to cause the laser melting energy
82 efficiency enhancement: (1) adding TiC nanoparticles increases the absorptivity; (2) adding TiC
83 nanoparticles decreases the thermal conductivity, (3) adding TiC nanoparticles enables the
84 initiation of vapor depression and multiple reflection at lower laser power. Our method and
85 mechanisms of using nanoparticles to increase the laser melting energy efficiency may guide the
86 development of feedstock materials for more energy efficient laser metal AM.

87 **2. Methods and materials**

88 **2.1. Materials**

89 The Al6061 + 4.4 volume percentage of 83 nm TiC nanoparticles system, hereafter referred to
90 as Al6061+4.4vol.%TiC, was used as a model system for this study [22,26,44]. The Al6061
91 powders (17-60 μm , D50: 34 μm) were purchased from Valimet (Stockton, CA, USA). The TiC

92 nanoparticles (83 nm) were purchased from SSnano (Houston, TX, USA). The Al6061 substrate
93 was cut from commercial Al6061 plate (T6511) purchased from McMaster-Carr (Elmhurst, IL,
94 USA). The Al6061+TiC powders were prepared by planetary ball milling (PQ-N04, Across
95 International LLC, Livingston, NJ, USA) of the Al6061 powders with TiC nanoparticles. The
96 Al6061+TiC substrate was prepared by LPBF of Al6061+TiC powders. A self-designed LPBF
97 system was used for printing the Al6061+4.4vol.%TiC samples, which includes a continuous-
98 wave ytterbium fiber laser (IPG YLR-500-AC, IPG Photonics, Oxford, MA, USA), a galvo
99 scanner (hurrySCAN 30, SCANLAB GmbH., Puchheim, Germany), and a stainless steel vacuum
100 chamber. The laser power used is 500 W. The scan speed is 0.2 m/s. **The hatch spacing is 80 μ m.**
101 **The layer thickness is 50 μ m.** The laser beam diameter ($1/e^2$) is $239 \pm 4 \mu\text{m}$, which was measured
102 by the knife edge method [45].

103 **2.2. High-speed x-ray imaging**

104 High-speed high-resolution x-ray imaging was performed at 32-ID beamline of the Advance
105 Photon Source, Argonne National Laboratory. During the experiment, a continuous-wave laser
106 beam irradiated the powder or substrate surface to perform the laser melting experiment. The laser
107 beam diameter ($D4\sigma$) is $94 \pm 1 \mu\text{m}$. The laser power of 208 W, 260 W, 312 W, 364 W, 416 W,
108 468 W and 520 W, and the scan speed of 0.4 m/s, 0.6 m/s and 0.8 m/s were used in the laser melting
109 experiment. During laser melting, the x-ray penetrated through the laser melting region
110 horizontally. The penetrated x-ray carrying the information of vapor depression and melt pool
111 dimension was captured by a downstream high-speed camera at a frame rate of 50 kHz. The
112 resolution of captured x-ray image is 1.93 μm per pixel. For the laser-powder bed melting
113 experiment, the powder layer thickness is 100-120 μm . The laser melting energy efficiency change
114 caused by the layer thickness variation of 20 μm is less than 8%, which is neglectable compared

115 with the average 114% increase in laser melting energy efficiency caused by nanoparticles. The
116 substrate dimensions for both Al6061 and Al6061+4.4vol.%TiC are 40 mm long \times 3 mm high \times
117 0.7 mm thick (x-ray penetration direction). 0.7 mm substrate thickness is used because it is the
118 best substrate condition for achieving (1) sufficient x-ray transparency, (2) fully containing the
119 melt pool width, and (3) neglectable effects of thermal boundary condition on melt pool formation.
120 The thickness for all the substrates is well controlled within 0.7 ± 0.01 mm range to ensure the
121 consistent thermal boundary conditions for all the tests.

122 **2.3. Quantification of vapor depression and melt pool dimension**

123 The vapor depression dimensions (width and depth), melt pool width, and melt pool depth were
124 quantified based on the x-ray images. Our x-ray imaging experiment always captured the middle
125 length (1.5 mm) of the laser scan vector (2.5 mm) in laser melting experiments to avoid any
126 acceleration or deceleration effects from scan mirrors at the starting or ending position of the scan
127 path. Under certain processing parameters, the melt pool length is larger than the horizontal length
128 of the x-ray imaging field of view and cannot be directly measured from a single x-ray image. For
129 this case, the melt pool length was obtained by dividing it into two parts: (1) L_f , the length of melt
130 pool portion displayed in the current field of view; (2) L_r , the length of the rest of melt pool beyond
131 the field of view. To acquire L_f and L_r , two x-ray imaging frames are needed, as detailed in
132 Appendix B. The melt pool width was quantified by measuring the solidified track width using
133 optical microscope (Keyence VHX-5000 digital microscope, Keyence, Osaka, Japan). The average
134 value and standard deviation were calculated and reported for all the dimension quantifications.

135 **2.4. Computational thermo-fluid dynamics simulation**

136 To find out the effects of thermophysical properties on the vapor depression and melt pool
137 dimension, computational thermo-fluid dynamics simulation was performed by FLOW-3D

138 software (FLOW-3D 12.0, Flow Sciences, Santa Fe, NM, USA). Throughout the simulation, the
 139 flow is assumed to be laminar and Newtonian. The governing equations are the continuity equation,
 140 momentum conservation equation and energy conservation equation, as follows [46]:

$$141 \quad \nabla \cdot (\rho \vec{v}) = 0 \quad (1)$$

$$142 \quad \frac{\partial}{\partial t} (\rho \vec{v}) + \nabla \cdot (\rho \vec{v} \otimes \vec{v}) = \nabla \cdot (\mu \nabla \vec{v}) - \nabla p + \rho \vec{g} \quad (2)$$

$$143 \quad \frac{\partial}{\partial t} (\rho h) + \nabla \cdot (\rho \vec{v} h) = q + \nabla \cdot (k \nabla T) \quad (3)$$

144 where ρ is the density, \vec{v} is the velocity vector, t is the time, μ is the viscosity, p is the pressure, \vec{g}
 145 is the gravitational acceleration vector, k is the thermal conductivity, q is the heat source, h is
 146 enthalpy, which is calculated as [46]:

$$147 \quad h = \begin{cases} \rho_s C_s T, & T \leq T_s \\ h(T_s) + h_{sl} \frac{T - T_s}{T_l - T_s}, & T_s < T \leq T_l \\ h(T_l) + \rho_l C_l (T - T_l), & T > T_l \end{cases} \quad (4)$$

148 where ρ_s is the density in solid state, C_s is the specific heat in solid state, T is the temperature, h_{sl}
 149 is the latent heat of melting, ρ_l is the density in liquid state, C_l is the specific heat in liquid state,
 150 T_s is the solidus temperature, and T_l is the liquidus temperature.

151 The multiple reflection model based on the ray-tracing technique is implemented in the
 152 simulation. For each incidence, absorption is calculated by the equation:

$$153 \quad A = 1 - \frac{1}{2} \left(\frac{1 + (1 - \varepsilon \cos \theta)^2}{1 + (1 + \varepsilon \cos \theta)^2} + \frac{\varepsilon^2 - 2\varepsilon \cos \theta + 2 \cos^2 \theta}{\varepsilon^2 + 2\varepsilon \cos \theta + 2 \cos^2 \theta} \right) \quad (5)$$

154 where θ is the incident angle; and ε is a constant. The ε for Al6061 was calibrated by x-ray imaging
 155 data (length and depth of melt pool, depth of vapor depression).

156 The driving forces including recoil pressure, thermocapillary force, gravity force and buoyancy
 157 force are considered in the model. The recoil pressure is considered by the following equation:

158
$$P_r = 0.54 P_0 \exp \left[-\frac{\lambda}{K_B} \left(\frac{1}{T} - \frac{1}{T_b} \right) \right] \quad (6)$$

159 where P_0 is the ambient pressure, λ is the latent heat of vaporization, K_B is the Boltzmann constant,
 160 T is the surface temperature, and T_b is the boiling temperature.

161 The material properties (including density, specific heat, thermal conductivity, surface tension,
 162 viscosity, and absorptivity) used in the simulation are shown in Section 3.3. Other properties
 163 (solidus temperature, liquidus temperature, boiling temperature, latent heat of melting, latent heat
 164 of vaporization, and surface tension coefficient) can be found in reference [26]. The simulation
 165 domain is 3 mm (length) \times 0.7 mm (thickness) \times 0.5 mm (height). The initial temperature is 298
 166 K.

167 **2.5. Measurement of density**

168 The density of Al6061 and Al6061+4.4vol.%TiC was measured by the Archimedes method.
 169 The measurements were performed at room temperature. The alcohol used in the measurement is
 170 99% purity ethanol. The density of the sample was calculated based on the following equation:

171
$$\rho = \frac{W_A}{W_A - W_B} (\rho_0 - \rho_L) + \rho_L \quad (7)$$

172 where ρ is the density of the sample, W_A is the weight of the sample in air, W_B is the weight of
 173 sample in the ethanol, ρ_0 is the density of ethanol at the testing environment (789 kg/m³ at 20 °C),
 174 and ρ_L is the density of air (1.2 kg/m³). For both samples, the density was measured five times.
 175 The average value and standard deviation were reported.

176 **2.6. Measurements of thermal diffusivity and specific heat**

177 The thermal diffusivity and specific heat of Al6061 and Al6061+4.4vol.%TiC were measured
 178 by the laser flash method using NETZSCH LFA 467 equipment (Erich NETZSCH GmbH & Co,
 179 Selb, Germany). During the measurement, a light pulse was used to heat the front surface of the

180 square plate sample (12.7 mm (length) \times 12.7 mm (width) \times 1.8 mm (thickness)). The temperature
181 increase of the rear surface as a function of time was recorded. The thermal diffusivity was
182 calculated by the following equation:

183

$$a = 0.1388 \frac{b^2}{t_{0.5}} \quad (8)$$

184 where a is the thermal diffusivity, b is the sample thickness, and $t_{0.5}$ is the time required for the
185 rear surface to reach half the maximum temperature.

186 In the laser flash experiment, the specific heat is inversely proportional to the maximum
187 temperature of the rear surface. Therefore, the specific heat was determined by a comparison
188 experiment. First, the maximum temperature of the rear surface for the reference sample (POCO
189 graphite) was captured. Then the maximum temperature of the test sample (Al6061 or
190 Al6061+4.4vol.%TiC) was measured under the same experimental conditions (sample dimension,
191 graphite coating, laser power, and laser duration time) as the reference sample. The specific heat
192 of the sample was determined by:

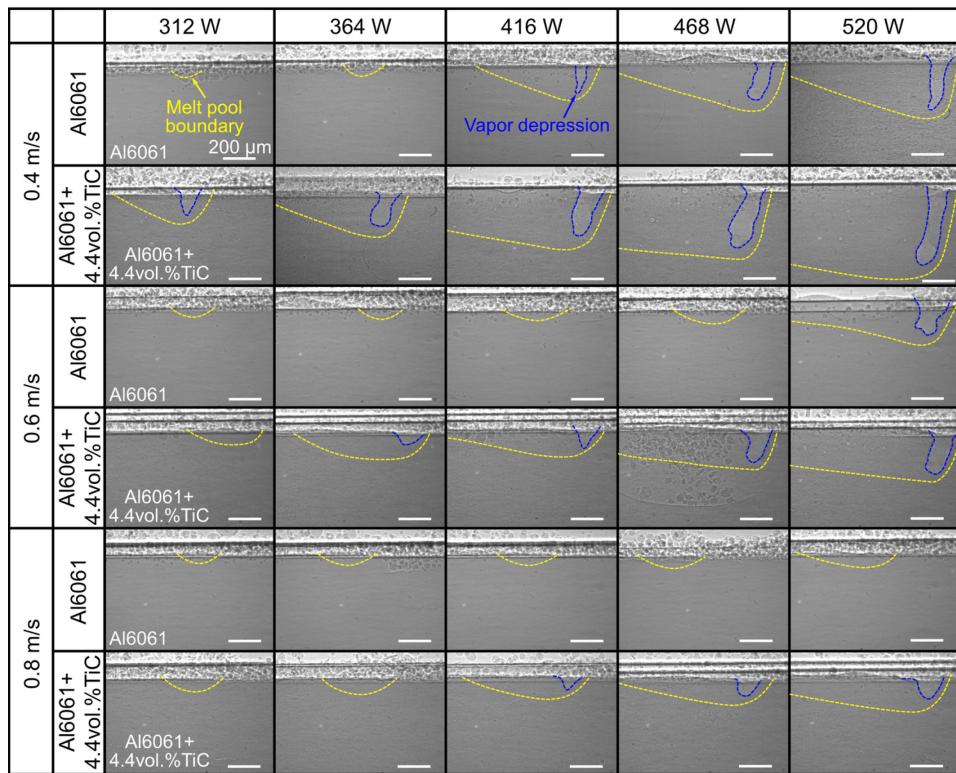
193

$$c_{p, s} = \frac{m_r c_{p, r} \Delta T_r}{m_s \Delta T_s} \quad (9)$$

194 where m_r is the mass of the reference sample, $c_{p, r}$ is the specific heat of the reference sample, ΔT_r
195 is the temperature increase of the rear surface for the reference sample during the experiment, m_s
196 is the mass of the test sample, and ΔT_s is the temperature increase of the rear surface for the test
197 sample during the experiment.

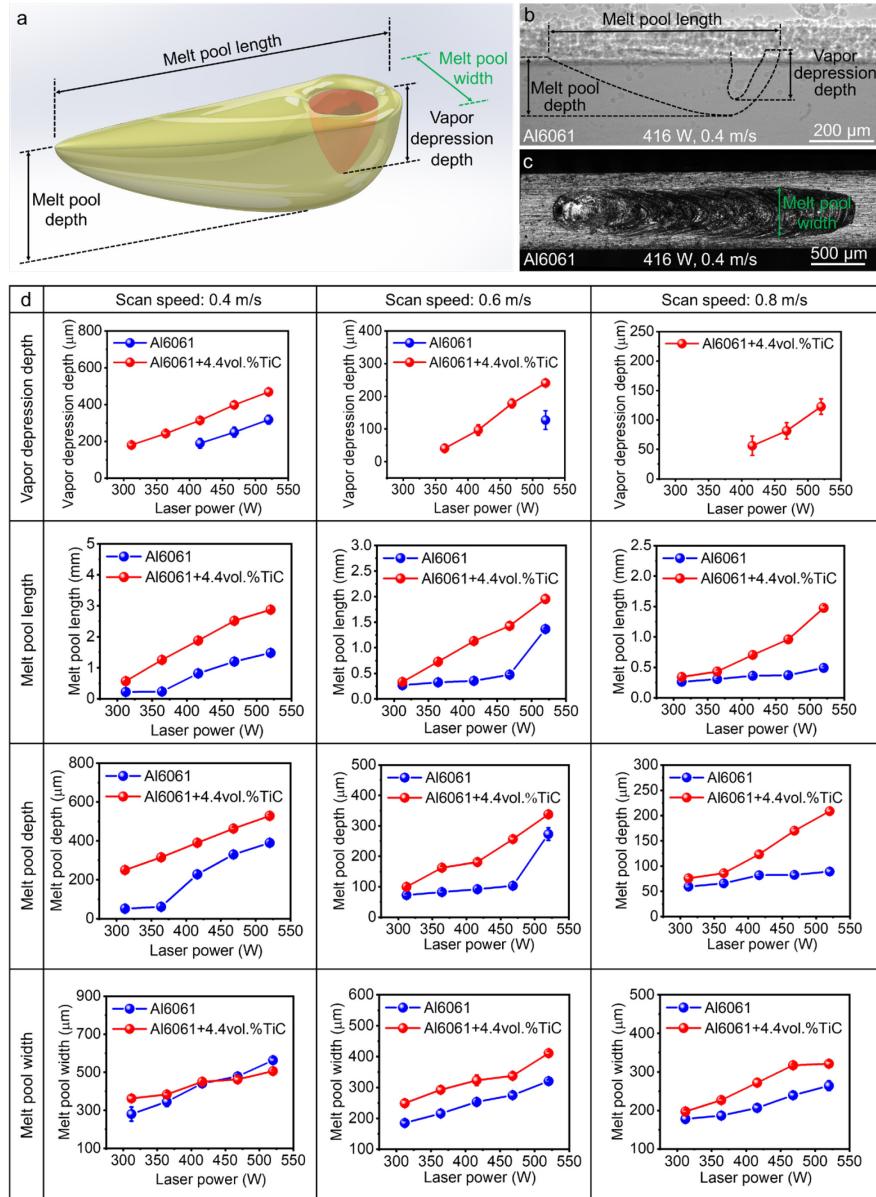
198 For both Al6061 and Al6061+4.4vol.%TiC, the thermal diffusivity and specific heat were
199 measured five times. The average value and standard deviation were reported.

200 **2.7. Measurement of reflectivity**


201 The reflectivity of the Al6061 and Al6061+4.4vol.%TiC bare plates at the wavelength range of
202 600-2000 nm was measured by the Perkin Elmer Lambda 19 UV/Vis/NIR spectrometer
203 (PerkinElmer, Waltham, MA, USA). The step size is 2 nm. Before measurement, the Al6061 and
204 Al6061+4.4vol.%TiC plates (32 mm length × 32 mm width × 5 mm thickness) were carefully
205 grinded by silicon carbide sandpaper and polished down to 50 nm using water-based diamond
206 suspension, followed by ultrasonic cleaning. For both materials, the reflectivity was measured
207 three times to ensure the results are repeatable.

208 **3. Results**

209 **3.1. Effects of nanoparticles on vapor depression and melt pool dimension**


210 To quantify the laser melting energy efficiency, direct characterization of vapor depression and
211 melt pool dimension was needed to calculate the melt pool volume and, thereby, laser melting
212 energy efficiency. To characterize the vapor depression and melt pool dimension, we performed
213 in-situ high-speed x-ray imaging experiments for Al6061 and Al6061+4.4vol.%TiC under various
214 laser processing parameters (laser power of 312 W, 364 W, 416 W, 468 W and 520 W, scan speed
215 of 0.4 m/s, 0.6 m/s and 0.8 m/s). The x-ray imaging and quantified results (Fig. 1, 2) show that for
216 both Al6061 and Al6061+4.4vol.%TiC, increasing laser power altered the melting mode from
217 conduction mode (i.e., without vapor depression) to keyhole mode (i.e., with vapor depression)
218 and further increased the vapor depression (mainly depth) and melt pool dimension as the laser
219 power increased. Comparing Al6061+4.4vol.%TiC with Al6061, adding TiC nanoparticles
220 reduced the laser power required to generate the vapor depression. Under 0.4 m/s scan speed, the
221 laser power required to generate the vapor depression for Al6061 is 416 W, while that for
222 Al6061+4.4vol.%TiC is less than 312 W. The same trend was also observed at 0.6 m/s (520 W for
223 Al6061 and 364 W for Al6061+4.4vol.%TiC to generate the vapor depression) and 0.8 m/s scan

224 speed (416 W for Al6061+4.4vol.%TiC to generate the vapor depression, while for Al6061, no
 225 vapor depression formed even with the highest laser power of 520 W). When the vapor depression
 226 was generated, under the same laser processing parameter (416 W, 0.4 m/s), adding nanoparticles
 227 significantly increased the vapor depression depth ($190 \pm 26 \mu\text{m}$ for Al6061, $324 \pm 10 \mu\text{m}$ for
 228 Al6061+4.4vol.%TiC), the melt pool length ($821 \pm 7 \mu\text{m}$ for Al6061, $1781 \pm 11 \mu\text{m}$ for
 229 Al6061+4.4vol.%TiC) and melt pool depth ($228 \pm 1 \mu\text{m}$ for Al6061, $390 \pm 4 \mu\text{m}$ for
 230 Al6061+4.4vol.%TiC). For melt pool width, under most of the laser processing parameters we
 231 studied, adding nanoparticles increased the melt pool width, except for laser parameters with
 232 higher energy input (laser power of 468 W, 520 W, scan speed of 0.4 m/s), where we observed
 233 that adding TiC nanoparticles decreased the melt pool width.

234
 235
 236 **Fig. 1. X-ray images showing the effects of nanoparticles on the vapor depression and melt pool**
 237 **formation during LPBF process.** Under the same processing parameter, adding nanoparticles
 238 increased the vapor depression depth and melt pool dimension. Blue dashed lines indicate the
 239 vapor depression boundary. Yellow dashed lines indicate the melt pool boundary. The laser power

240 used is 312 W, 364 W, 416 W, 468 W and 520 W. The scan speed used is 0.4 m/s, 0.6 m/s and 0.8
 241 m/s. The materials are Al6061 and Al6061+4.4vol.%TiC.
 242

243
 244
 245 **Fig. 2. Quantification of effects of nanoparticles on vapor depression and melt pool dimension**
 246 **during LPBF process.** (a) Schematic showing the vapor depression and melt pool dimensions.
 247 The red color represents the vapor depression. The yellow color represents the melt pool. (b) The
 248 vapor depression depth, melt pool length, and melt pool depth obtained based on the x-ray image.
 249 (c) The melt pool width obtained based on the optical image of solidified scan track. (d)
 250 Quantification results of the effects of nanoparticles on vapor depression depth, melt pool depth,
 251 melt pool length, and melt pool width during LPBF process. The error bars represent the standard
 252 deviation.
 253

254 **3.2 Effects of nanoparticles on laser melting energy efficiency**

255 Based on the vapor depression dimension and melt pool dimension, we calculated the melt pool
 256 volume and laser melting energy efficiency. The melt pool volume was calculated by subtracting
 257 the vapor depression volume (indicated by the red color in Fig. 2a) from the total melt pool volume
 258 (indicated by the yellow color in Fig. 2a) [14]. During the calculation, the vapor depression and
 259 melt pool were assumed in cone shape. Therefore, the vapor depression volume was calculated by:

$$260 \quad V_v = \frac{S_v h_v}{3} = \frac{\pi d^2 h_v}{12} \quad (10)$$

261 where V_v is the vapor depression volume, S_v is the vapor depression opening area at top surface,
 262 h_v is the vapor depression depth, and d is the vapor depression width, as illustrated in Fig. 3a.

263 The total melt pool volume (including the vapor depression) was calculated by:

$$264 \quad V_m = \frac{S_m h_m}{3} \quad (11)$$

265 where V_m is the total melt pool volume, h_m is the melt pool depth (Fig. 3a), S_m is the area of the
 266 melt pool top surface, which was calculated by (assuming the top surface of melt pool is elliptical):

$$267 \quad S_m = \frac{\pi w L}{4} \quad (12)$$

268 where w is the melt pool width (Fig. 3b), and L is the melt pool length (Fig. 3a). Therefore, the
 269 real melt pool volume (V) was calculated by subtracting the vapor depression volume from the
 270 total melt pool volume:

$$271 \quad V = V_m - V_v = \frac{\pi w L h_m}{12} - \frac{\pi d^2 h_v}{12} \quad (13)$$

272 The quantified results (Fig. 3c-e) show that adding nanoparticles significantly increased the melt
 273 pool volume. Under certain conditions of Al6061+4.4vol.%TiC with vapor depression but Al6061
 274 without vapor depression, we saw one order of magnitude increase of melt pool volume (e.g.,

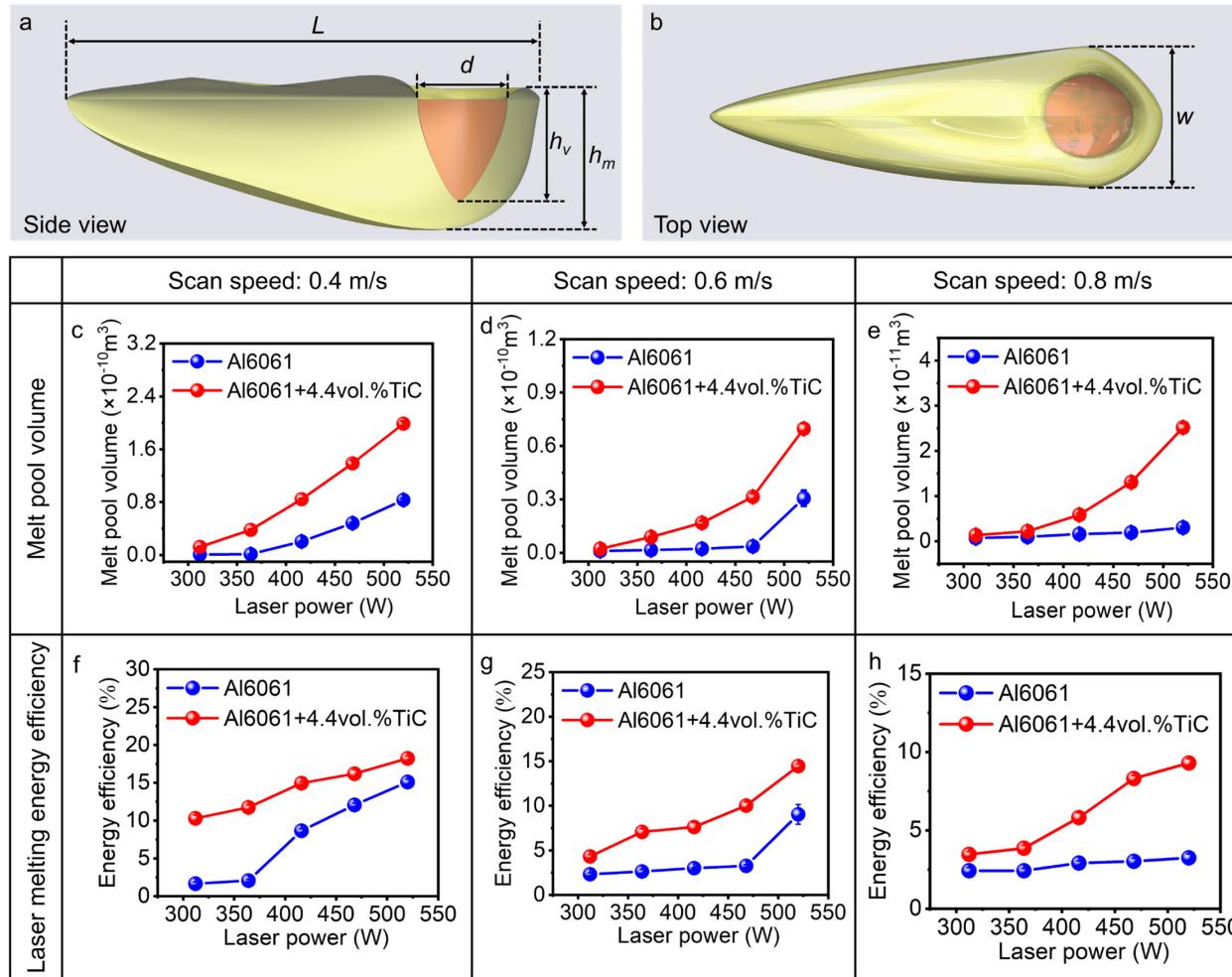
275 under 364 W laser power and 0.4 m/s scan speed, the melt pool volume of Al6061 is 1.3×10^{-12}
276 m³, while the melt pool volume of Al6061+4.4vol.%TiC is 3.8×10^{-11} m³).

277 Based on the melt pool volume, the laser melting energy efficiency was calculated as:

278

$$\eta = \frac{E_m}{E_{in}} \quad (14)$$

279 where η is the laser melting energy efficiency, E_{in} is the energy delivered by the laser beam, which
280 can be calculated as $E_{in} = Pt = PL/v$, where P is the laser power, t is the laser exposure time, L is
281 the melt pool length, and v is the laser scan speed [14]. E_m is the energy required to melt the
282 material, which includes the energy required to heat the material from the room temperature to the
283 solidus temperature and the energy required to convert the material from the solid state to the liquid
284 state (i.e., latent heat of melting), calculated using the following equation:


285

$$E_m = \rho V \int_{T_0}^{T_s} c_p dT + \rho V (1-\omega) L_{Al} \quad (15)$$

286 where ρ is density of Al6061 or Al6061+TiC, V is the volume of the melt pool calculated
287 according to Equation (10-13). c_p is the specific heat of Al6061 or Al6061+TiC, which were
288 measured and will be detailed in Section 3.3. ω is the weight fraction of TiC (for Al6061, $\omega = 0$;
289 for Al6061+4.4vol.%TiC, $\omega = 7.9\%$), L_{Al} is the latent heat of melting for Al6061 (3.4×10^5 J/kg),
290 T_0 is the room temperature (298 K), and T_s is the solidus temperature of Al6061 (873 K).

291 The calculated results of laser melting energy efficiency show that adding TiC nanoparticles
292 (Al6061+4.4vol.%TiC) increased the laser melting energy efficiency under all the laser processing
293 conditions we investigated (Fig. 3f-h). Compared with Al6061, the average increase of laser
294 melting energy efficiency caused by the TiC nanoparticles is 114% (from 4.9% to 10.5%) for all
295 the laser parameters we studied. Under 312 W laser power and 0.4 m/s scan speed, adding TiC
296 nanoparticles increases the laser melting energy efficiency by 521% (from 1.6% to 10.3%). This

297 suggested that adding nanoparticles can significantly improve the laser melting energy efficiency
 298 during LPBF process.

299
 300 **Fig. 3. Effects of nanoparticles on melt pool volume and laser melting energy efficiency.** (a)
 301 Side view of melt pool showing the required dimensions (melt pool length L , vapor depression
 302 width d , vapor depression depth h_v , melt pool depth h_m) for calculating the melt pool volume. (b)
 303 Top view of melt pool showing the melt pool width (w) for calculating the melt pool volume. (c-e)
 304 Effects of nanoparticles on the melt pool volume under laser scan speed of 0.4 m/s (c), 0.6 m/s (d),
 305 and 0.8 m/s (e). (f-h) Effects of nanoparticles on the laser melting energy efficiency under laser
 306 scan speed of 0.4 m/s (f), 0.6 m/s (g), and 0.8 m/s (h). The error bars represent the standard
 307 deviation.
 308

309 **3.3. Effects of nanoparticles on properties**

310 The nanoparticle-induced increase of laser melting energy efficiency may be attributed to the
311 nanoparticle-induced change of material properties (e.g., specific heat, thermal conductivity,
312 surface tension, viscosity, absorptivity), which may affect the heat transfer and melt pool
313 dimension during laser metal AM process. However, due to the lack of systematic measurement,
314 the quantitatively understanding of the effects of these property changes caused by nanoparticles
315 on the melt pool volume and laser melting energy efficiency is unclear. In this study, we performed
316 systematic measurements of the properties including density, specific heat, thermal conductivity,
317 surface tension, viscosity, and absorptivity for Al6061 and Al6061+4.4vol.%TiC.

318 The density was measured by the Archimedes method. The measured density of Al6061
319 (commercial T6) is $2705 \pm 3 \text{ kg m}^{-3}$. The measured density of as-printed Al6061+4.4vol.%TiC is
320 $2801 \pm 4 \text{ kg/m}^3$ (Fig. 4a). The increase of density was attributed to the higher density of TiC (4930
321 kg/m^3) than Al6061. According to the mixture rule, the density of fully dense
322 Al6061+4.4vol.%TiC can be calculated as:

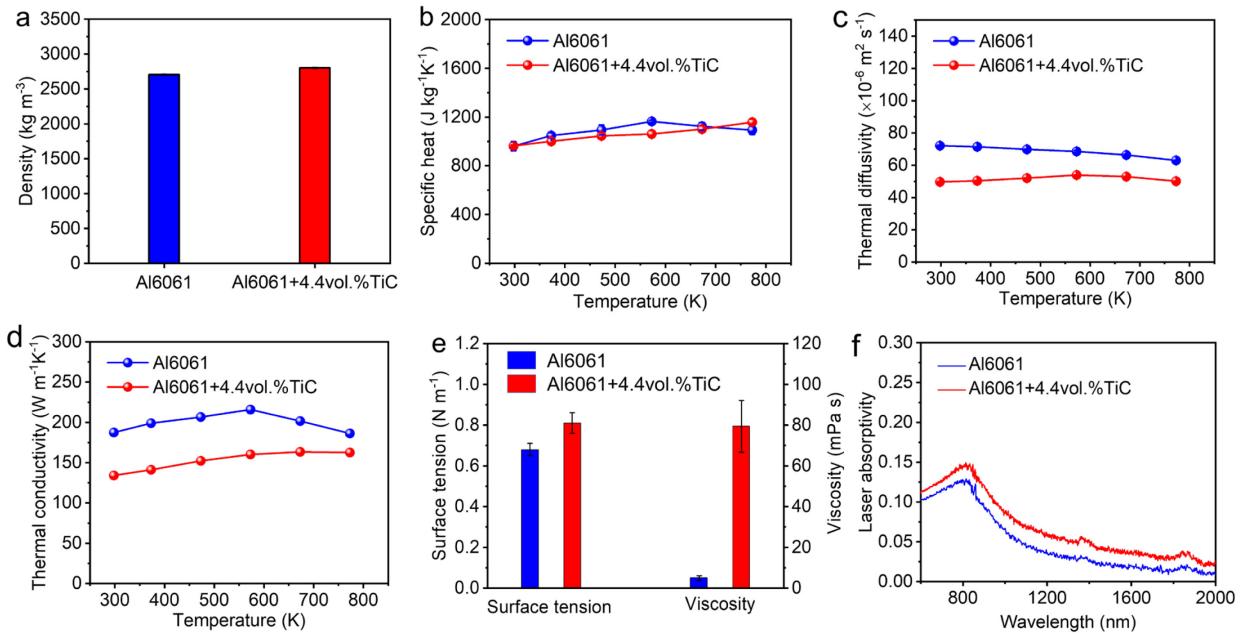
323
$$\rho_c = \rho_{Al}(1-f) + \rho_{TiC}f \quad (16)$$

324 where ρ_c is the density of Al6061+4.4vol.%TiC, ρ_{Al} is the density of Al6061, f is the volume
325 fraction of TiC nanoparticles, and ρ_{TiC} is the density of TiC. The calculated density of fully dense
326 Al6061+4.4vol.%TiC is 2802 kg m^{-3} . Therefore, the densification level of our as-printed
327 Al6061+4.4vol.%TiC is 99.96%.

328 The specific heat and thermal diffusivity of Al6061 and Al6061+4.4vol.%TiC (at 298 K, 373 K,
329 473 K, 573 K, 673 K and 773 K) were measured by the laser flash analysis (Fig. 4b, c). The
330 measured specific heat of Al6061 and Al6061+4.4vol.%TiC is very close (less than 10% difference
331 for all temperatures), which can be attributed to the similar specific heat value of Al6061 and TiC
332 [26,47]. The measured thermal diffusivity of Al6061+4.4vol.%TiC is 25% smaller (on average)

333 than that of the Al6061. Based on the density, specific heat and thermal diffusivity, the thermal
334 conductivity of Al6061 and Al6061+4.4vol.%TiC was calculated using the equation [48]:

335
$$k = a\rho c_p \quad (17)$$

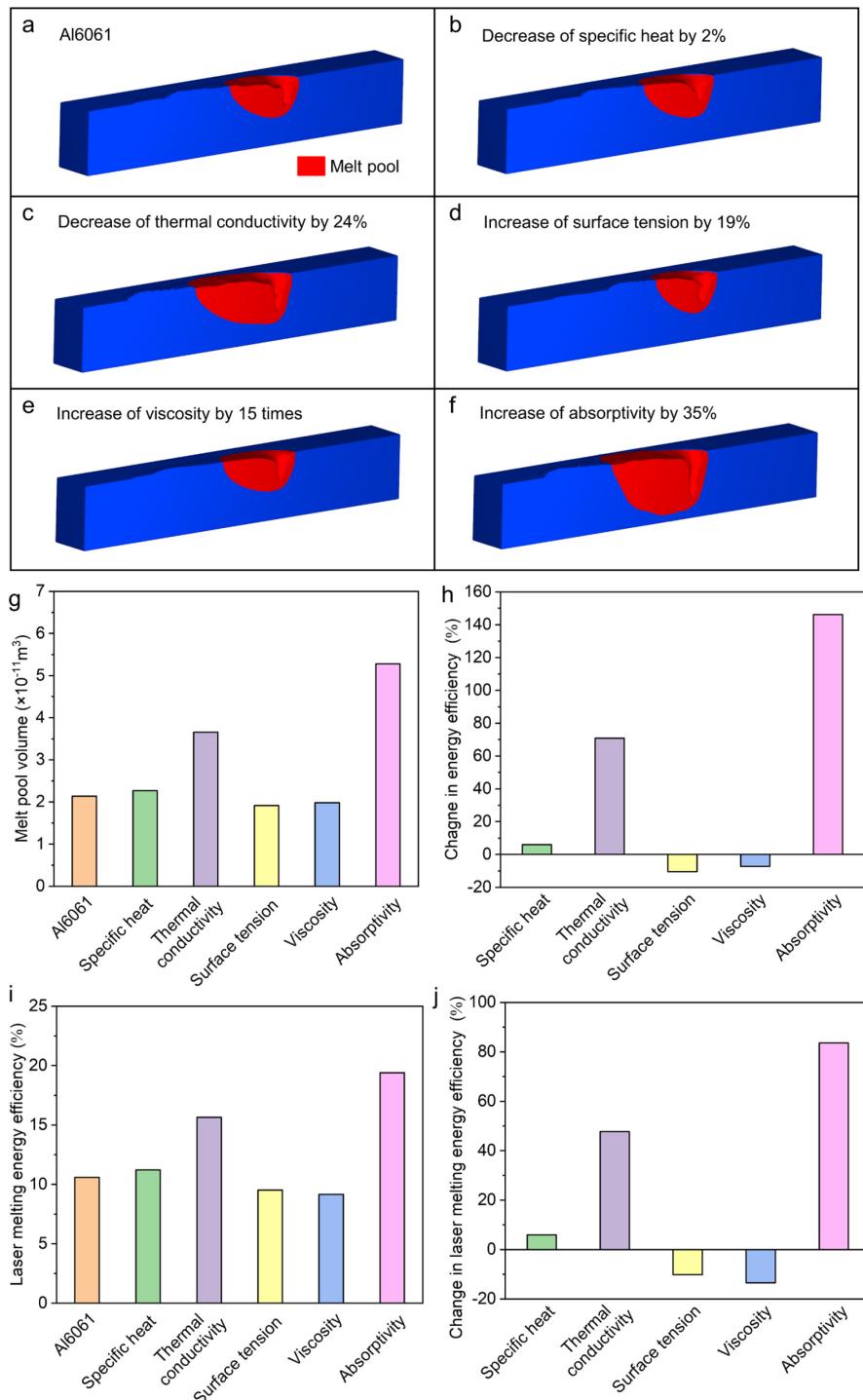

336 where k is the thermal conductivity, a is the thermal diffusivity, ρ is the density, c_p is the specific
337 heat. The results show that the thermal conductivity of Al6061+4.4vol.%TiC is 24% (on average)
338 lower than that of Al6061 (Fig. 4d). This can be attributed to: (1) the thermal conductivity of TiC
339 is lower than that of Al6061 [49]; (2) the thermal resistance exists at the interface between the
340 Al6061 and TiC nanoparticles [50].

341 The surface tension and viscosity were measured by the oscillating droplet method, as detailed
342 in reference [26]. To minimize the effects of oxygen content variation on the testing results for
343 different samples [51,52], we evacuated the chamber (less than 10 Pa for each iteration) and
344 refilled with Argon gas (1.01×10^5 Pa for each iteration) three times to create a consistent clean
345 environment for the oscillating droplet experiment for all the samples. The measured surface
346 tension (Fig. 4e) of Al6061+4.4vol.%TiC ($0.81 \pm 0.06 \text{ N}\cdot\text{m}^{-1}$) is 19% higher than that of the
347 Al6061 ($0.68 \pm 0.03 \text{ N}\cdot\text{m}^{-1}$). The measured viscosity (Fig. 4e) of Al6061+4.4vol.%TiC ($79.4 \pm$
348 $12.7 \text{ mPa}\cdot\text{s}$) is 15 times higher than that of the Al6061 ($4.9 \pm 1.2 \text{ mPa}\cdot\text{s}$).

349 To obtain the absorptivity, we first measured the reflectivity of Al6061 and
350 Al6061+4.4vol.%TiC bare plates at wavelength of 600-2000 nm by the Perkin Elmer Lambda 19
351 UV/Vis/NIR spectrometer (see details in Method). Since the absorption lengths of Al and TiC at
352 1070 nm wavelength are much smaller (8.2 nm and 23.3 nm, respectively) [26] than the bare plate
353 thickness, the absorptivity of Al6061 and Al6061+4.4vol.%TiC was then calculated by:

354
$$A = 1 - R \quad (18)$$

355 where A is the absorptivity, R is the reflectivity. The results (Fig. 4f) show that adding
 356 nanoparticles causes a 35% increase of the absorptivity from 0.051 for Al6061 to 0.069 for
 357 Al6061+4.4vol.%TiC at 1070 nm wavelength. Adding TiC nanoparticles increases the
 358 absorptivity because TiC has higher absorptivity than Al at 1070 nm wavelength [53,54]. Here we
 359 measured the bare plate absorptivity instead of powder absorptivity because bare plate absorptivity
 360 can better characterize the absorptivity of material itself with almost no geometric effects. We also
 361 estimated the material absorptivity of Al6061 and Al6061+4.4vol.%TiC based on the refractive
 362 index and Fresnel equations, as detailed in Appendix C. The estimated results are very close to the
 363 measured results, which further confirms the nanoparticle-induced increase of the material
 364 absorptivity.


365
 366 **Fig. 4. Effects of nanoparticles on physical properties.** (a) Density of Al6061 and
 367 Al6061+4.4vol.%TiC. The density was measured by the Archimedes method. (b-d) Specific heat
 368 (b), thermal diffusivity (c) and thermal conductivity (d) of Al6061 and Al6061+4.4vol.%TiC. The
 369 specific heat and thermal diffusivity were measured by the laser flash method. The thermal
 370 conductivity was calculated based on the specific heat, thermal diffusivity and density. (e) Surface
 371 tension and viscosity of Al6061 and Al6061+4.4vol.%TiC. The surface tension and viscosity were
 372 measured by the oscillating droplet method. (f) The absorptivity of Al6061 and
 373 Al6061+4.4vol.%TiC. The error bars represent the standard deviation.

374 **4. Discussion**375 **4.1. Effects of nanoparticle-induced property change on laser melting energy efficiency**

376 The measured properties of Al6061 and Al6061+4.4vol.%TiC were input into simulation to
377 study the effects of each property change caused by nanoparticles on the melt pool formation and
378 laser melting energy efficiency. Totally six simulations were performed under the same laser
379 processing condition (laser power of 416 W, laser scan speed of 0.4 m/s). The first simulation was
380 the reference simulation using all the properties from Al6061 (Fig. 5a). The other five simulations
381 (Fig. 5b-f) were performed with each simulation using one property (specific heat, thermal
382 conductivity, surface tension, viscosity, absorptivity, or respectively) from Al6061+4.4vol.%TiC,
383 while other properties were from Al6061. The results (Fig. 5g, h) show that nanoparticle-induced
384 change of specific heat, thermal conductivity, surface tension, viscosity, and absorptivity results
385 in a melt pool volume change of 6%, 71%, -11%, -7%, and 146%, respectively (negative means
386 decrease). This suggested that the nanoparticle-induced change of the absorptivity and thermal
387 conductivity are the two main reasons for the increase of the melt pool dimension observed in our
388 experiment.

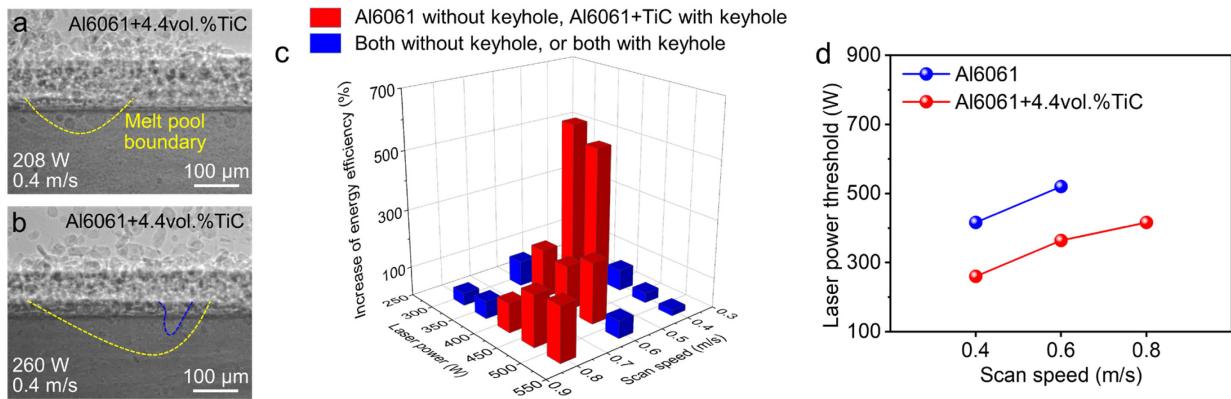
389 The decrease of the melt pool width after adding nanoparticles under the laser powers of 468 W
390 and 520 W, scan speed of 0.4 m/s (mentioned in Section 3.1) may be because adding nanoparticles
391 increases the viscosity [26], which impairs the thermocapillary flow and reduces the lateral spread
392 of the liquid metal. Under certain condition with high energy input, the deep vapor depression
393 causes more energy to be absorbed beneath the surface [14,55,56]. Therefore, the effect of
394 nanoparticle-induced increase of absorptivity on the surface (tends to increase melt pool width) is
395 diminished. The melt pool widening effect caused by the nanoparticle-induced increase of
396 absorptivity and decrease of thermal conductivity was overcame by the narrowing effect caused

397 by the nanoparticle-induced increase of viscosity. This explained why under certain parameters
 398 (with higher energy input), we observed that adding nanoparticles decreased the melt pool width.

399
 400 **Fig. 5. Simulation results showing effects of property change caused by nanoparticles on melt**
 401 **pool volume and laser melting energy efficiency. (a) Simulation of laser melting of Al6061. (b-f)**
 402 **Simulation of laser melting process using the nanoparticle-modified property of specific heat (b),**

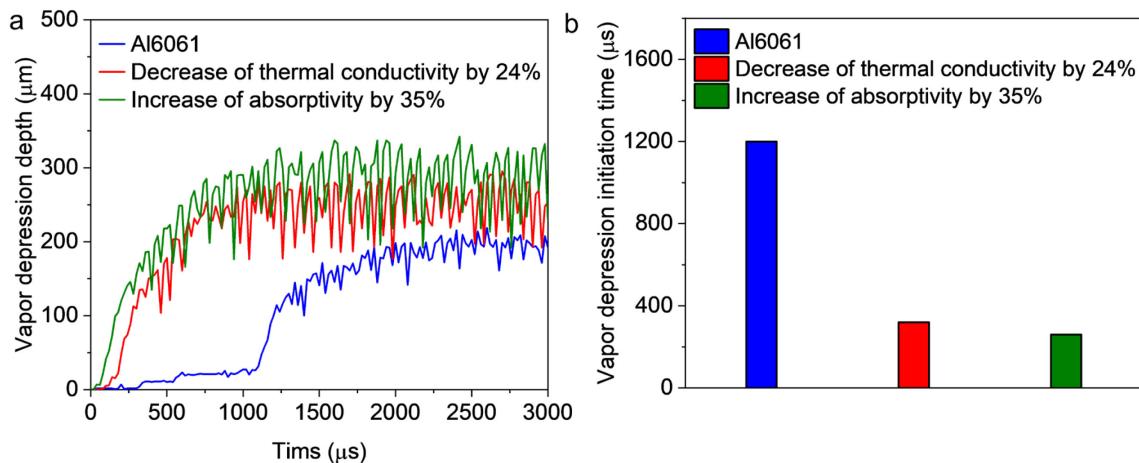
403 *thermal conductivity (c), surface tension (d), viscosity (e), and absorptivity (f). Other properties*
404 *are from Al6061. The melt pool is indicated by the red color. (g) Effects of each property change*
405 *on the melt pool volume. (h) Effects of each property change on the percentage change of melt*
406 *pool volume compared with Al6061. (i) Effects of each property change on the laser melting energy*
407 *efficiency. (j) Effects of each property change on the percentage change of laser melting energy*
408 *efficiency compared with Al6061. The quantification of (g-j) was based on the vapor depression*
409 *and melt pool dimension in simulation results.*

410


411 Based on the vapor depression and melt pool dimension in simulation results, we calculated the
412 effect of each property change on the laser melting energy efficiency. Consistent with the trend
413 observed in the melt pool volume, we observed that nanoparticle-induced change of specific heat,
414 thermal conductivity, surface tension, viscosity, absorptivity results in laser melting energy
415 efficiency changes of 6%, 48%, -10%, -14%, 84%, respectively (Fig. 5i, j). This suggests that,
416 among all the properties we measured, the nanoparticle-induced change of the absorptivity and
417 thermal conductivity are the two main ones accounting for the improvement of the laser melting
418 energy efficiency.

419 **4.2. Effects of nanoparticle-induced reduction of vapor depression threshold on laser melting**
420 **energy efficiency**

421 Another mechanism we found for the nanoparticle-induced laser melting energy efficiency
422 improvement is that adding nanoparticles reduces the laser power needed to generate the vapor
423 depression. Since the laser power threshold for Al6061+4.4vol.%TiC to generate the vapor
424 depression under 0.4 m/s scan speed was not captured within the utilized laser power range of 312
425 W to 520 W (Fig. 1), we performed further in-situ x-ray imaging experiments with laser power of
426 208 and 260 W. The results show that the minimum laser power needed for Al6061+4.4vol.%TiC
427 to generate the vapor depression under 0.4 m/s scan speed is 260 W (Fig. 6a, b), compared with
428 416 W for Al6061 (Fig. 1). The same phenomenon that compared with Al6061, less laser power


429 was needed for Al6061+4.4vol.%TiC to generate the vapor depression was also observed under
 430 0.6 m/s and 0.8 m/s scan speed (as detailed in Section 3.1 and Fig. 6d).

431 The nanoparticle induced vapor depression initiation under lower laser power results in a
 432 significant enhancement of the absorption for Al6061+4.4vol.%TiC under certain parameters
 433 (when Al6061 without vapor depression, Al6061+4.4vol.%TiC with vapor depression), due to the
 434 multiple reflection inside the vapor depression [37–39]. Therefore, under these parameters, there
 435 is a substantial increase of the melt pool volume and laser melting energy efficiency. The average
 436 laser melting energy efficiency increase (caused by the nanoparticles) is 268% under the condition
 437 of Al6061+4.4vol.%TiC with vapor depression but Al6061 without vapor depression, compared
 438 to 59% under the condition of both Al6061 and Al6061+4.4vol.%TiC with vapor depression or
 439 both without vapor depression (Fig. 6c).

440
 441 **Fig. 6. Nanoparticle-enabled vapor depression initiation at lower laser power.** (a, b) X-ray
 442 images showing the laser power threshold for Al6061+4.4vol.%TiC to generate the vapor
 443 depression under laser scan speed of 0.4 m/s. In a, no vapor depression was generated at 208 W
 444 laser power. In b, vapor depression was generated at 260 W laser power. Blue dashed line
 445 indicates the vapor depression boundary. Yellow dashed lines indicate the melt pool boundary. (c)
 446 The laser melting energy efficiency increase induced by the nanoparticles under different laser
 447 processing parameters. Red columns represent the condition of Al6061+4.4vol.%TiC with vapor
 448 depression but Al6061 without vapor depression. Blue columns represent the condition of both
 449 Al6061 and Al6061+4.4vol.%TiC with vapor depression or both without vapor depression. (d)
 450 The laser power threshold for Al6061 and Al6061+4.4vol.%TiC to generate the vapor depression.
 451 Under 0.8 m/s scan speed, even though we used highest laser power of our laser system (520 W),
 452 no vapor depression was generated for Al6061.

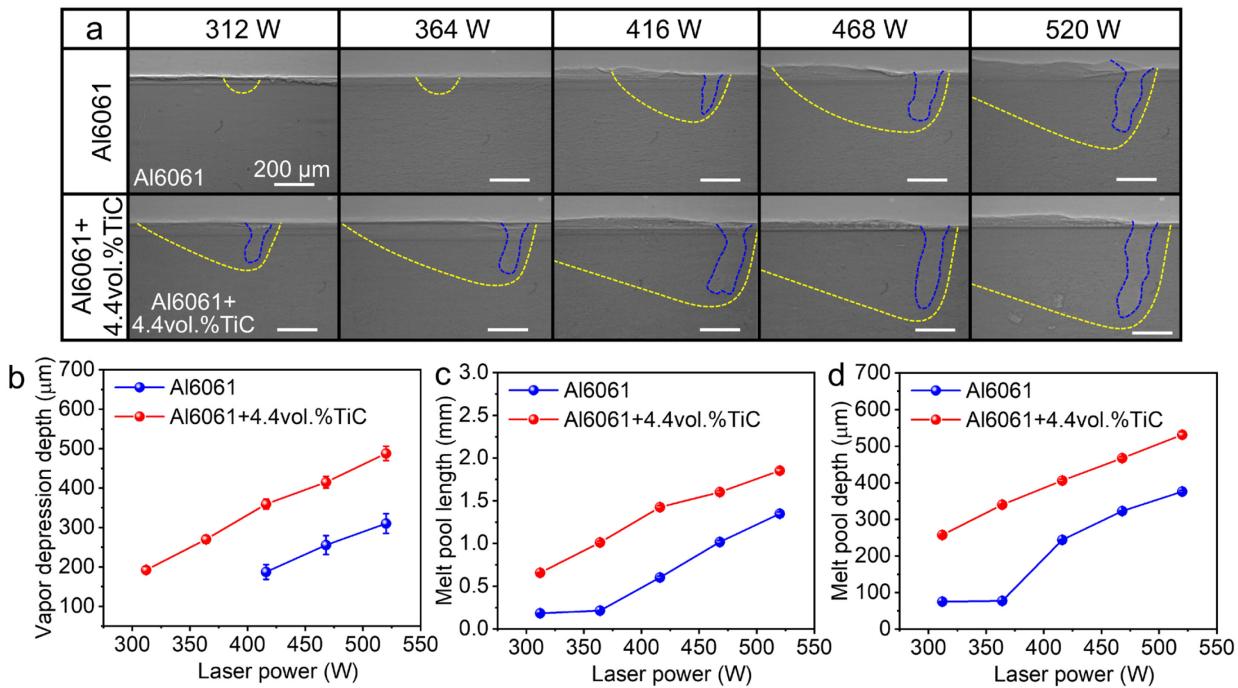
453
 454 We propose that the nanoparticle-induced initiation of vapor depression at lower laser power is
 455 caused by the nanoparticle-induced increase of absorptivity and decrease of thermal conductivity.
 456 To study the effects of nanoparticle-induced absorptivity change and thermal conductivity change
 457 on the vapor depression initiation, we quantified the vapor depression depth as a function of time
 458 for three of the simulations mentioned in Section 4.1: (1) simulation using Al6061 properties, (2)
 459 simulation with 24% decrease of thermal conductivity, (3) simulation with 35% increase of
 460 absorptivity. The results show that decreasing the thermal conductivity and increasing the
 461 absorptivity both cause earlier initiation of the vapor depression (Fig. 7a).

462
 463 **Fig. 7. Effects of nanoparticle-induced decrease of thermal conductivity and increase of**
 464 **absorptivity on vapor depression initiation.** (a), Vapor depression depth as a function of time
 465 obtained from laser melting simulation of Al6061, decreasing thermal conductivity by 24%, and
 466 increasing absorptivity by 35%. (b), The vapor depression initiation time obtained from laser
 467 melting simulation of Al6061, decreasing thermal conductivity by 24%, and increasing
 468 absorptivity by 35%.

469
 470 We calculated the initiation time of the vapor depression, which is defined as the time it takes
 471 for the vapor depression to reach half of the static vapor depression depth. The vapor depression
 472 initiation times after decreasing the thermal conductivity and increasing of the absorptivity are 320
 473 μs and 260 μs, respectively, compared with the initiation time of 1200 μs for Al6061 (Fig. 7b).

474 This suggests that adding nanoparticles can facilitate the vapor depression initiation by increasing
475 the absorptivity and decreasing the thermal conductivity.

476 Decreasing thermal conductivity can promote the vapor depression initiation because decreasing
477 thermal conductivity reduces the heat dissipation, resulting in the fast increase of localized
478 temperature and recoil pressure at melt pool surface to cause earlier initiation of vapor depression.
479 When the absorptivity increases, it also causes the significant increase of the temperature at melt
480 pool surface due to the larger amount of laser energy absorbed, which increases the recoil pressure
481 and facilitates the vapor depression initiation.


482 **4.3. Powder absorptivity or material absorptivity to affect melt pool dimension**

483 Previous studies have demonstrated that adding nanoparticles in metal can increase the powder
484 absorptivity (i.e., the absorptivity of the powder layer in LPBF) [30,40–43], and material
485 absorptivity (i.e., the absorptivity of the flat surface) [10]. To find out which absorptivity should
486 be used when studying nanoparticle effects on LPBF process, we further performed in-situ x-ray
487 imaging experiments using bare substrates (Fig. 8), and then compare the experimental results
488 using the bare substrate with those using the powder bed. The results indicate that whether the
489 powder absorptivity or the material absorptivity should be used depends on whether the laser
490 interacts with the powder or the liquid metal during the LPBF process.

491 In the keyhole mode where the laser mostly interacts with the liquid metal [57], the vapor
492 depression and melt pool dimensions in the laser melting of bare substrate experiment are very
493 close to those in the powder bed experiment for both Al6061 and Al6061+4.4vol.%TiC: the
494 difference of the melt pool depth between the powder bed experiment and the bare substrate
495 experiment is less than 10% for both Al6061 and Al6061+4.4vol.%TiC under all the parameters
496 in the keyhole mode (Fig. 2d, Fig. 8d). More importantly, the nanoparticle-induced increase of

497 vapor depression depth and melt pool dimension was still observed in the laser bare substrate
 498 melting experiment (Fig. 8a-d). This suggests that powders have negligible effects, and the
 499 nanoparticle-induced material absorptivity enhancement should be used when studying
 500 nanoparticle effects on vapor depression and melt pool formation in keyhole mode.

501 In the conduction mode, laser interacts more with powders [58]. Therefore, the proportion of
 502 energy absorbed by powders in the overall absorption process increases. However, in the melt pool
 503 formation study, the powder absorptivity should only be used when (1) the laser mostly interacts
 504 with powders instead of liquid metal, (2) the laser-heated powders are finally merged into the melt
 505 pool instead of being ejected as spatters.

506
 507 **Fig. 8. Effects of nanoparticles on the vapor depression and melt pool dimension during laser**
 508 **melting of bare substrate.** (a) X-ray images showing the effects of nanoparticle on vapor
 509 depression and melt pool formation during laser melting of bare substrate. Blue dashed lines
 510 indicate the vapor depression boundary. Yellow dashed lines indicate the melt pool boundary. The
 511 laser powers used are 312 W, 364 W, 416 W, 468 W and 520 W. The scan speed used is 0.4 m/s.
 512 (b-d) Quantification results showing effects of nanoparticles on the vapor depression depth (b),
 513 melt pool length (c), and melt pool depth (d). The error bars represent the standard deviation.

516 **5. Conclusion**

517
518 This work presents the quantification of the effects of TiC nanoparticles on the laser melting
519 energy efficiency by direct characterization of vapor depression and melt pool dimension during
520 LPBF of Al6061. A significant increase of laser melting energy efficiency is achieved by adding
521 TiC nanoparticles. The mechanisms of laser melting energy efficiency improvement induced by
522 TiC nanoparticles are identified. The major conclusions are as follows:

523 (1) We quantified the nanoparticle-induced improvement of laser melting energy efficiency by
524 direct measurement of vapor depression and melt pool dimensions. The results show that adding
525 TiC nanoparticles increased the laser melting energy efficiency by 114% on average under all the
526 parameters we studied, and by 521% under 312 W laser power, 0.4 m/s scan speed during LPBF
527 of Al6061.

528 (2) Among all the property changes caused by the TiC nanoparticles we studied, we identified
529 that nanoparticle-induced increase of absorptivity and decrease of thermal conductivity play
530 dominant role in increasing melt pool dimension and improving laser melting energy efficiency
531 during LPBF of Al6061.

532 (3) In addition to the nanoparticle-induced property change, we found another mechanism
533 causing the laser melting energy efficiency improvement during LPBF of Al6061: adding TiC
534 nanoparticle enables the initiation of vapor depression at lower laser power (i.e., lowers the laser
535 power threshold for keyholing), resulting in significant increase of laser melting energy efficiency
536 through multiple reflection. The average laser melting energy efficiency increase (caused by the
537 TiC nanoparticles) is 268% under the processing condition that Al6061+4.4vol.%TiC has vapor
538 depression but Al6061 does not have vapor depression, which is much higher than the 59%

539 increase under the processing condition of both Al6061 and Al6061+4.4vol.%TiC with vapor
540 depression or both without vapor depression.

541 (4) By comparing the laser powder bed experiment with laser bare substrate melting experiment,
542 we further identified that powders have negligible effects in the keyhole mode. Therefore, the
543 material absorptivity enhancement (instead of powder absorptivity enhancement) and thermal
544 conductivity reduction induced by the TiC nanoparticles are the main mechanisms causing the
545 increase of the vapor depression, melt pool dimensions and laser melting energy efficiency in
546 keyhole-mode LPBF process.

547 Our research provides a potential method and mechanisms to increase the laser melting energy
548 efficiency during laser metal AM process. More work will be done in the future to study the effects
549 of different nanoparticles (with different thermophysical properties) and nanoparticle volume
550 fraction on the laser melting efficiency to develop a general guideline for selecting/designing
551 nanoparticles for different alloy systems to achieve more energy efficient laser metal AM process.

552

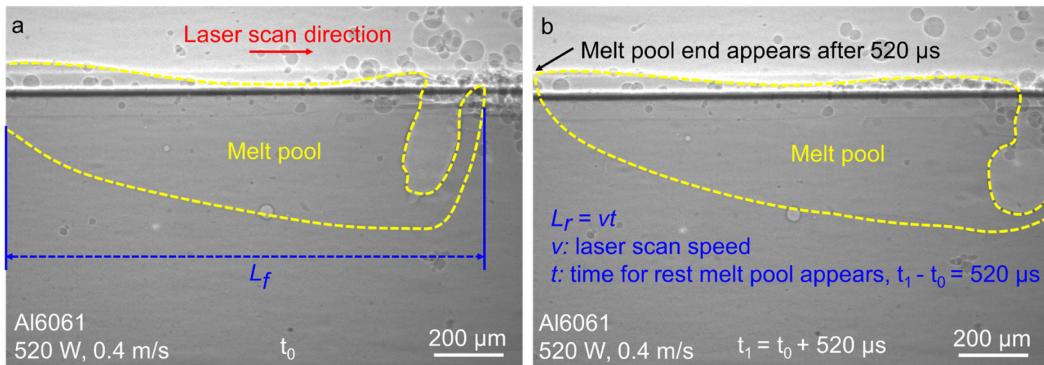
553 **Acknowledgements**

554 This work is supported by US National Science Foundation and University of Wisconsin-
555 Madison Startup Fund. This research used resources of the Advanced Photon Source, a U.S.
556 Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of
557 Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

558

559 **Appendix A: Laser melting energy efficiency versus absorptivity**

560 The term “laser melting energy efficiency” used in this paper is different from the “absorptivity”
561 used in previous works. The definition of laser melting energy efficiency is the energy needed to
562 melt the material to form a melt pool with a certain volume to the energy delivered by the laser
563 beam. The melt volume formed does not only depend on the absorptivity. The thermal conductivity


564 (influencing heat dissipation to the substrate), the heat capacity, the viscosity (influencing the melt
565 flow induced heat transfer within the melt pool) and surface tension (influencing the vapor
566 depression development) also affect the melt pool volume. One of the major findings in our work
567 is that adding nanoparticles can enlarge the melt pool volume under the same processing parameter.
568 Also, we identify that apart from absorptivity increase, nanoparticle-induced decrease of thermal
569 conductivity also makes significant contribution to the melt pool volume increase.

570 Therefore, we developed a new parameter of “laser melting energy efficiency” which directly
571 connects the melt pool volume with laser energy input (Equation 14-15) by considering all the
572 thermophysical properties governing the melt pool formation: except the absorptivity, it also
573 considers thermal conductivity, specific heat, surface tension and viscosity. To further study the
574 mechanism of nanoparticle-induced melt pool expansion, we systematically measured all the
575 relevant thermophysical properties (absorptivity, thermal conductivity, specific heat, surface
576 tension, viscosity) for the sample with and without nanoparticles and quantified their contribution
577 to the melt pool volume and the laser melting energy efficiency. Compared with previous research
578 studying nanoparticle-induced absorptivity change, our work using laser melting energy efficiency
579 is a further study of effects of all the thermophysical property changes on the melt pool formation.

580 **Appendix B: Melt pool length measurement**

581 The melt pool length was measured based on the x-ray image. The horizontal length of the x-
582 ray image view window is 1482 μm (768 pixels \times 1.93 $\mu\text{m}/\text{pixel}$). For the melt pool length smaller
583 than the horizontal length of x-ray imaging view window, we measured the melt pool length
584 directly from the x-ray image (i.e., the number of pixels between the melt pool head and the melt
585 pool end in the horizontal direction \times 1.93 $\mu\text{m}/\text{pixel}$). For the melt pool length larger than the
586 horizontal length of the field of view, the melt pool length is divided into two parts: (1) the length

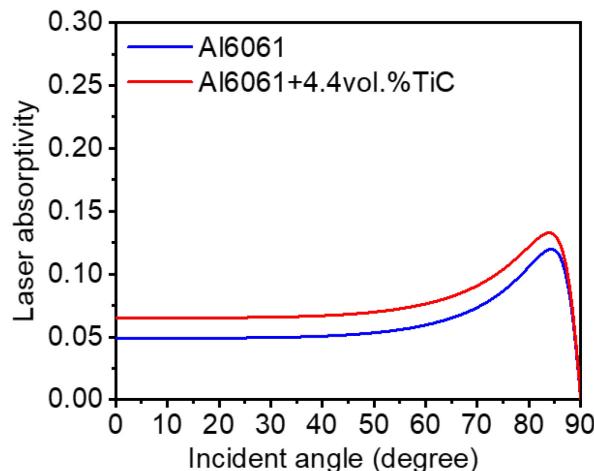
587 of the melt pool portion displayed in the current field of view L_f , (2) the length of the rest of the
 588 melt pool beyond the field of view L_r . L_f is directly obtained from the x-ray image (Fig. B.1a). L_r
 589 is calculated by multiplying the melt pool moving speed (assumed the same as laser scan speed)
 590 and the time it takes for the rest of the melt pool moves into the field of view, as illustrated in Fig.
 591 B.1b. The total melt pool length was calculated as $L=L_f+L_r$.

592
 593 *Fig. B.1. Melt pool length measurement. (a), X-ray image illustrating the measurement of L_f (the
 594 melt pool length in current frame). (b), X-ray image illustrating the calculation of L_r (the length
 595 of the rest of the melt pool). The total melt pool length is calculated as $L=L_f+L_r$.*

596
 597 **Appendix C. Estimation of absorptivity based on the Fresnel equations**
 598 We estimated the material absorptivity of Al6061 and Al6061+TiC based on the refractive index
 599 and Fresnel equations. The absorptivity of Al6061 was calculated according to the Fresnel
 600 equation [59]:

601
$$A=1-(r_{TM}+r_{TE})/2 \quad (C.1)$$

602
$$r_{TM}=\frac{\left(n-\frac{1}{\cos\theta}\right)^2+k^2}{\left(n+\frac{1}{\cos\theta}\right)^2+k^2} \quad (C.2)$$


603
$$r_{TE}=\frac{(n-\cos\theta)^2+k^2}{(n+\cos\theta)^2+k^2} \quad (C.3)$$

604 where A is the absorptivity, r_{TM} is the reflectivity of the P polarization mode (TM, transverse-
 605 magnetic), r_{TE} is the reflectivity of the S polarization mode (TE, transverse-electric), θ is the
 606 incident angle, n and k are the real part and imaginary part of the complex refractive index,
 607 respectively. For Al, $n = 1.37$, $k = 10.3$ at 1070 nm wavelength [54].

608 The absorptivity of Al6061+TiC was calculated based on the mixture rule:

609
$$A_c = A_{\text{Al}}(1-f) + A_{\text{TiC}}f \quad (\text{C.4})$$

610 where A_c is the absorptivity of Al6061+TiC, A_{Al} is the absorptivity of Al6061, f is the volume
 611 fraction of TiC, A_{TiC} is the absorptivity of TiC, which was calculated based on the Equation (C.1-
 612 C.3) and refractive index of TiC at 1070 nm wavelength ($n=3.96$, $k=3.68$ [60]). The calculated
 613 absorptivity of Al6061+4.4vol.%TiC is 32% higher (on average for all incident angles) than that
 614 of Al6061 (Fig. C.1), which is very close to the measurement results (absorptivity of
 615 Al6061+4.4vol.%TiC is 35% higher than that of Al6061) in Section 3.3.

616
 617 *Fig. C.1. Laser absorptivity of Al6061 and Al6061+TiC estimated based on the refractive index
 618 and Fresnel equations.*

619

620

621 **Reference**

622 [1] M.S. Pham, C. Liu, I. Todd, J. Lertthanasarn, Damage-tolerant architected materials

623 inspired by crystal microstructure, *Nature*. 565 (2019) 305–311.
624 <https://doi.org/10.1038/s41586-018-0850-3>.

625 [2] T. Wohlers, *Wohlers Report 2020: 3D Printing and Additive Manufacturing Global State*
626 of the Industry, Wohlers Associates, Inc., 2020.

627 [3] T. DebRoy, T. Mukherjee, H.L. Wei, J.W. Elmer, J.O. Milewski, *Metallurgy, mechanistic*
628 *models and machine learning in metal printing*, *Nat. Rev. Mater.* 6 (2021) 48–68.
629 <https://doi.org/10.1038/s41578-020-00236-1>.

630 [4] T. DebRoy, T. Mukherjee, J.O. Milewski, J.W. Elmer, B. Ribic, J.J. Blecher, W. Zhang,
631 *Scientific, technological and economic issues in metal printing and their solutions*, *Nat.*
632 *Mater.* 18 (2019) 1026–1032. <https://doi.org/10.1038/s41563-019-0408-2>.

633 [5] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M.
634 Beese, A. Wilson-Heid, A. De, W. Zhang, *Additive manufacturing of metallic*
635 *components – process, structure and properties*, *Prog. Mater. Sci.* 92 (2018) 112–224.
636 <https://doi.org/10.1016/j.pmatsci.2017.10.001>.

637 [6] T. Gutowski, S. Jiang, D. Cooper, G. Corman, M. Hausmann, J.A. Manson, T. Schudeleit,
638 K. Wegener, M. Sabelle, J. Ramos-Grez, D.P. Sekulic, *Note on the rate and energy*
639 *efficiency limits for additive manufacturing*, *J. Ind. Ecol.* 21 (2017) S69–S79.
640 <https://doi.org/10.1111/jiec.12664>.

641 [7] K. Salonitis, *Energy efficiency of metallic powder bed additive manufacturing processes*,
642 in: S.S. Muthu, M.M. Savalani, *Handbook of Sustainability in Additive Manufacturing*,
643 Springer Singapore, Singapore, 2016, pp. 1–29. https://doi.org/10.1007/978-981-10-0606-7_1.

645 [8] Z.Y. Liu, C. Li, X.Y. Fang, Y.B. Guo, *Energy consumption in additive manufacturing of*
646 *metal parts*, 26 (2018) 834–845. <https://doi.org/10.1016/j.promfg.2018.07.104>.

647 [9] S. Kou, *Welding metallurgy*, Wiley Interscience, New Jersey, 2003.

648 [10] O.A. Tertuliano, P.J. DePond, D. Doan, M.J. Matthews, X.W. Gu, W. Cai, A.J. Lew,
649 *Nanoparticle-enhanced absorptivity of copper during laser powder bed fusion*, *Addit.*
650 *Manuf.* 51 (2022) 102562. <https://doi.org/10.1016/j.addma.2021.102562>.

651 [11] S.D. Jadhav, S. Dadbakhsh, L. Goossens, J.P. Kruth, J. Van Humbeeck, K. Vanmeensel,
652 *Influence of selective laser melting process parameters on texture evolution in pure*
653 *copper*, *J. Mater. Process. Technol.* 270 (2019) 47–58.
654 <https://doi.org/10.1016/j.jmatprotec.2019.02.022>.

655 [12] Q. Han, R. Setchi, F. Lacan, D. Gu, S.L. Evans, *Selective laser melting of advanced Al-*
656 *Al₂O₃ nanocomposites: Simulation, microstructure and mechanical properties*, *Mater. Sci.*
657 *Eng. A.* 698 (2017) 162–173. <https://doi.org/10.1016/j.msea.2017.05.061>.

658 [13] Z. Wang, T.A. Palmer, A.M. Beese, *Effect of processing parameters on microstructure*
659 *and tensile properties of austenitic stainless steel 304L made by directed energy deposition*
660 *additive manufacturing*, *Acta Mater.* 110 (2016) 226–235.
661 <https://doi.org/10.1016/j.actamat.2016.03.019>.

662 [14] Q. Guo, C. Zhao, M. Qu, L. Xiong, L.I. Escano, S.M.H. Hojjatzadeh, N.D. Parab, K.
663 Fezzaa, W. Everhart, T. Sun, L. Chen, *In-situ characterization and quantification of melt*
664 *pool variation under constant input energy density in laser powder bed fusion additive*
665 *manufacturing process*, *Addit. Manuf.* 28 (2019) 600–609.
666 <https://doi.org/10.1016/j.addma.2019.04.021>.

667 [15] R.R. Unocic, J.N. DuPont, *Process efficiency measurements in the laser engineered net*
668 *shaping process*, *Metall. Mater. Trans. B*. 35 (2004) 143–152.

669 https://doi.org/10.1007/s11663-004-0104-7.

670 [16] P. Kürnsteiner, M.B. Wilms, A. Weisheit, B. Gault, E.A. Jägle, D. Raabe, High-strength
671 Damascus steel by additive manufacturing, *Nature*. 582 (2020) 515–519.
672 https://doi.org/10.1038/s41586-020-2409-3.

673 [17] M. Tang, P.C. Pistorius, J.L. Beuth, Prediction of lack-of-fusion porosity for powder bed
674 fusion, *Addit. Manuf.* 14 (2017) 39–48. https://doi.org/10.1016/j.addma.2016.12.001.

675 [18] P. Bidare, I. Bitharas, R.M. Ward, M.M. Attallah, A.J. Moore, Fluid and particle dynamics
676 in laser powder bed fusion, *Acta Mater.* 142 (2018) 107–120.
677 https://doi.org/10.1016/j.actamat.2017.09.051.

678 [19] U. Scipioni Bertoli, G. Guss, S. Wu, M.J. Matthews, J.M. Schoenung, In-situ
679 characterization of laser-powder interaction and cooling rates through high-speed imaging
680 of powder bed fusion additive manufacturing, *Mater. Des.* 135 (2017) 385–396.
681 https://doi.org/10.1016/j.matdes.2017.09.044.

682 [20] H. Krauss, T. Zeugner, M.F. Zaeh, Layerwise monitoring of the Selective Laser Melting
683 process by thermography, *Phys. Procedia*. 56 (2014) 64–71.
684 https://doi.org/10.1016/j.phpro.2014.08.097.

685 [21] C. Zhao, K. Fezzaa, R.W. Cunningham, H. Wen, F. De Carlo, L. Chen, A.D. Rollett, T.
686 Sun, Real-time monitoring of laser powder bed fusion process using high-speed X-ray
687 imaging and diffraction, *Sci. Rep.* 7 (2017) 3602. https://doi.org/10.1038/s41598-017-
688 03761-2.

689 [22] M. Qu, Q. Guo, L.I. Escano, J. Yuan, S.M.H. Hojjatzadh, S.J. Clark, K. Fezzaa, T. Sun, L.
690 Chen, Controlling melt flow by nanoparticles to eliminate surface wave induced surface
691 fluctuation, *Addit. Manuf.* 59 (2022) 130873.
692 https://doi.org/10.1016/j.addma.2022.103081.

693 [23] J.A. Kanko, A.P. Sibley, J.M. Fraser, In situ morphology-based defect detection of
694 selective laser melting through inline coherent imaging, *J. Mater. Process. Technol.* 231
695 (2016) 488–500. https://doi.org/10.1016/j.jmatprot.2015.12.024.

696 [24] T.R. Allen, W. Huang, J.R. Tanner, W. Tan, J.M. Fraser, B.J. Simonds, Energy-coupling
697 mechanisms revealed through simultaneous keyhole depth and absorptance measurements
698 during laser-metal processing, *Phys. Rev. Appl.* 13 (2020) 064070.
699 https://doi.org/10.1103/PHYSREVAPPLIED.13.064070.

700 [25] C. Ma, J. Zhao, C. Cao, T.C. Lin, X. Li, Fundamental study on laser interactions with
701 nanoparticles-reinforced metals-part II: Effect of nanoparticles on surface tension,
702 viscosity, and laser melting, *J. Manuf. Sci. Eng.* 138 (2016) 121002.
703 https://doi.org/10.1115/1.4033446.

704 [26] M. Qu, Q. Guo, L.I. Escano, A. Nabaa, S.M.H. Hojjatzadeh, Z.A. Young, L. Chen,
705 Controlling process instability for defect lean metal additive manufacturing, *Nat.*
706 *Commun.* 13 (2022) 1079. https://doi.org/10.1038/s41467-022-28649-2.

707 [27] B. Song, S. Dong, P. Coddet, G. Zhou, S. Ouyang, H. Liao, C. Coddet, Microstructure and
708 tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by
709 selective laser melting, *J. Alloys Compd.* 579 (2013) 415–421.
710 https://doi.org/10.1016/j.jallcom.2013.06.087.

711 [28] L.Y. Chen, J.Y. Peng, J.Q. Xu, H. Choi, X.C. Li, Achieving uniform distribution and
712 dispersion of a high percentage of nanoparticles in metal matrix nanocomposites by
713 solidification processing, *Scr. Mater.* 69 (2013) 634–637.
714 https://doi.org/10.1016/j.scriptamat.2013.07.016.

715 [29] C.L.A. Leung, I. Elizarova, M. Isaacs, S. Marathe, E. Saiz, P.D. Lee, Enhanced near-
716 infrared absorption for laser powder bed fusion using reduced graphene oxide, *Appl.*
717 *Mater. Today*. 23 (2021) 101009. <https://doi.org/10.1016/j.apmt.2021.101009>.

718 [30] S.Y. Zhou, Z.Y. Wang, Y. Su, H. Wang, G. Liu, T.T. Song, M. Yan, Effects of
719 micron/submicron TiC on additively manufactured AlSi10Mg: a comprehensive study
720 from computer simulation to mechanical and microstructural analysis, *JOM*. 72 (2020)
721 3693–3704. <https://doi.org/10.1007/s11837-019-03984-w>.

722 [31] T.C. Lin, C. Cao, M. Sokoluk, L. Jiang, X. Wang, J.M. Schoenung, E.J. Lavernia, X. Li,
723 Aluminum with dispersed nanoparticles by laser additive manufacturing, *Nat. Commun.*
724 10 (2019) 4124. <https://doi.org/10.1038/s41467-019-12047-2>.

725 [32] A. Fathy, O. El-Kady, Thermal expansion and thermal conductivity characteristics of Cu-
726 Al₂O₃ nanocomposites, *Mater. Des.* 46 (2013) 355–359.
727 <https://doi.org/10.1016/j.matdes.2012.10.042>.

728 [33] C. Ma, J. Zhao, C. Cao, T.C. Lin, X. Li, Fundamental study on laser interactions with
729 nanoparticles-reinforced metals part I: Effect of nanoparticles on optical reflectivity,
730 specific heat, and thermal conductivity, *J. Manuf. Sci. Eng.* 138 (2016) 121001.
731 <https://doi.org/10.1115/1.4033392>.

732 [34] W.H. Yu, S.L. Sing, C.K. Chua, C.N. Kuo, X.L. Tian, Particle-reinforced metal matrix
733 nanocomposites fabricated by selective laser melting: A state of the art review, *Prog.*
734 *Mater. Sci.* 104 (2019) 330–379. <https://doi.org/10.1016/j.pmatsci.2019.04.006>.

735 [35] J. Shi, Y. Wang, Development of metal matrix composites by laser-assisted additive
736 manufacturing technologies: a review, *J. Mater. Sci.* 55 (2020) 9883–9917.
737 <https://doi.org/10.1007/s10853-020-04730-3>.

738 [36] B. AlMangour, D. Grzesiak, T. Borkar, J.M. Yang, Densification behavior,
739 microstructural evolution, and mechanical properties of TiC/316L stainless steel
740 nanocomposites fabricated by selective laser melting, *Mater. Des.* 138 (2018) 119–128.
741 <https://doi.org/10.1016/j.matdes.2017.10.039>.

742 [37] A.A. Martin, N.P. Calta, J.A. Hammons, S.A. Khairallah, M.H. Nielsen, R.M.
743 Shuttlesworth, N. Sinclair, M.J. Matthews, J.R. Jeffries, T.M. Willey, J.R.I. Lee, Ultrafast
744 dynamics of laser-metal interactions in additive manufacturing alloys captured by in situ
745 X-ray imaging, *Mater. Today Adv.* 1 (2019) 100002.
746 <https://doi.org/10.1016/j.mtadv.2019.01.001>.

747 [38] N. Kouraytem, X. Li, R. Cunningham, C. Zhao, N. Parab, T. Sun, A.D. Rollett, A.D.
748 Spear, W. Tan, Effect of laser-matter interaction on molten pool flow and keyhole
749 dynamics, *Phys. Rev. Appl.* 11 (2019) 064054.
750 <https://doi.org/10.1103/PhysRevApplied.11.064054>.

751 [39] J.H. Cho, S.J. Na, Implementation of real-time multiple reflection and Fresnel absorption
752 of laser beam in keyhole, *J. Phys. D. Appl. Phys.* 39 (2006) 5372–5378.
753 <https://doi.org/10.1088/0022-3727/39/24/039>.

754 [40] W. Zhou, X. Sun, K. Kikuchi, N. Nomura, K. Yoshimi, A. Kawasaki, Carbon nanotubes
755 as a unique agent to fabricate nanoceramic/metal composite powders for additive
756 manufacturing, *Mater. Des.* 137 (2018) 276–285.
757 <https://doi.org/10.1016/j.matdes.2017.10.034>.

758 [41] M. Chen, X. Li, G. Ji, Y. Wu, Z. Chen, W. Baekelant, K. Vanmeensel, H. Wang, J.P.
759 Kruth, Novel composite powders with uniform TiB₂ nano-particle distribution for 3D
760 printing, *Appl. Sci.* 7 (2017) 250. <https://doi.org/10.3390/app7030250>.

761 [42] D. Gu, Y. Yang, L. Xi, J. Yang, M. Xia, Laser absorption behavior of randomly packed
762 powder-bed during selective laser melting of SiC and TiB₂ reinforced Al matrix
763 composites, *Opt. Laser Technol.* 119 (2019) 105600.
764 <https://doi.org/10.1016/j.optlastec.2019.105600>.

765 [43] X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang, J. Vleugels, J. Van Humbeeck,
766 J.P. Kruth, Selective laser melting of nano-TiB₂ decorated AlSi10Mg alloy with high
767 fracture strength and ductility, *Acta Mater.* 129 (2017) 183–193.
768 <https://doi.org/10.1016/j.actamat.2017.02.062>.

769 [44] M. Qu, Q. Guo, L.I. Escano, S.J. Clark, K. Fezzaa, L. Chen, Mitigating keyhole pore
770 formation by nanoparticles during laser powder bed fusion additive manufacturing, *Addit.
771 Manuf. Lett.* 3 (2022) 100068. <https://doi.org/10.1016/j.addlet.2022.100068>.

772 [45] M. González-Cardel, P. Arguijo, R. Díaz-Uribe, Gaussian beam radius measurement with
773 a knife-edge: A polynomial approximation to the inverse error function, *Appl. Opt.* 52
774 (2013) 3849–3855. <https://doi.org/10.1364/AO.52.003849>.

775 [46] W. Yan, W. Ge, Y. Qian, S. Lin, B. Zhou, W.K. Liu, F. Lin, G.J. Wagner, Multi-physics
776 modeling of single/multiple-track defect mechanisms in electron beam selective melting,
777 *Acta Mater.* 134 (2017) 324–333. <https://doi.org/10.1016/j.actamat.2017.05.061>.

778 [47] B. Jiang, K. Huang, Z. Cao, H. Zhu, Thermodynamic study of titanium oxycarbide,
779 *Metall. Mater. Trans. A* 43 (2012) 3510–3514. <https://doi.org/10.1007/s11661-011-1032-1>.

780 [48] H. Capacity, Flash method of determining thermal diffusivity, *Encycl. Therm. Stress.*
781 1679 (2014) 1683–1683. https://doi.org/10.1007/978-94-007-2739-7_100240.

782 [49] P. Yuan, D. Gu, Molten pool behaviour and its physical mechanism during selective laser
783 melting of TiC/AlSi10Mg nanocomposites: Simulation and experiments, *J. Phys. D. Appl.
784 Phys.* 48 (2015) 035303. <https://doi.org/10.1088/0022-3727/48/3/035303>.

785 [50] C.W. Nan, R. Birringer, D.R. Clarke, H. Gleiter, Effective thermal conductivity of
786 particulate composites with interfacial thermal resistance, *J. Appl. Phys.* 81 (1997) 6692–
787 6699. <https://doi.org/10.1063/1.365209>.

788 [51] A.E. Gheribi, P. Chartrand, Temperature and oxygen adsorption coupling effects upon the
789 surface tension of liquid metals, *Sci. Rep.* 9 (2019) 7113. <https://doi.org/10.1038/s41598-019-43500-3>.

790 [52] E.S. Elton, T.C. Reeve, L.E. Thornley, I.D. Joshipura, P.H. Paul, A.J. Pascall, J.R.
791 Jeffries, Dramatic effect of oxide on measured liquid metal rheology, *J. Rheol. (N. Y. N.
792 Y.)* 64 (2020) 119–128. <https://doi.org/10.1122/1.5117144>.

793 [53] B. Karlsson, J.E. Sundgren, B.O. Johansson, Optical constants and spectral selectivity of
794 titanium carbonitrides, *Thin Solid Films.* 87 (1982) 181–187.
795 [https://doi.org/10.1016/0040-6090\(82\)90273-5](https://doi.org/10.1016/0040-6090(82)90273-5).

796 [54] A.D. Rakić, Algorithm for the determination of intrinsic optical constants of metal films:
797 application to aluminum, *Appl. Opt.* 34 (1995) 4755.
798 <https://doi.org/10.1364/ao.34.004755>.

799 [55] B.J. Simonds, J. Tanner, A. Artusio-Glimpse, P.A. Williams, N. Parab, C. Zhao, T. Sun,
800 The causal relationship between melt pool geometry and energy absorption measured in
801 real time during laser-based manufacturing, *Appl. Mater. Today.* 23 (2021) 101049.
802 <https://doi.org/10.1016/j.apmt.2021.101049>.

803 [56] M. Matthews, J. Trapp, G. Guss, A. Rubenchik, Direct measurements of laser absorptivity
804 during metal melt pool formation associated with powder bed fusion additive

805

807 manufacturing processes, *J. Laser Appl.* 30 (2018) 032302.
808 <https://doi.org/10.2351/1.5040636>.

809 [57] C. Zhao, N.D. Parab, X. Li, K. Fezzaa, W. Tan, A.D. Rollett, T. Sun, Critical instability at
810 moving keyhole tip generates porosity in laser melting, *Science*. 370 (2020) 1080–1086.
811 <https://doi.org/10.1126/science.abd1587>.

812 [58] J. Trapp, A.M. Rubenchik, G. Guss, M.J. Matthews, In situ absorptivity measurements of
813 metallic powders during laser powder-bed fusion additive manufacturing, *Appl. Mater.*
814 *Today*. 9 (2017) 341–349. <https://doi.org/10.1016/j.apmt.2017.08.006>.

815 [59] Y. Yang, D. Gu, D. Dai, C. Ma, Laser energy absorption behavior of powder particles
816 using ray tracing method during selective laser melting additive manufacturing of
817 aluminum alloy, *Mater. Des.* 143 (2018) 12–19.
818 <https://doi.org/10.1016/j.matdes.2018.01.043>.

819 [60] D.W. Lynch, C.G. Olson, D.J. Peterman, J.H. Weaver, Optical properties of
820 $TiCx (0.64 \leq x \leq 0.90)$ from 0.1 to 30 eV, *Phys. Rev. B*. 22 (1980) 3991.

821
822
823
824
825

826 **CRediT author statement**

827 **Minglei Qu:** Conceptualization, Formal analysis, Investigation, Methodology, Writing – original
828 draft, Writing – review & editing. **Qilin Guo:** Investigation, Methodology. **Luis I. Escano:**
829 Investigation. **Ali Nabaa:** Investigation. **Kamel Fezzaa:** Investigation. **Lianyi Chen:**
830 Conceptualization, Supervision, Funding acquisition, Investigation, Methodology, Project
831 administration, Resources, Writing – review & editing.

832