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ABSTRACT: Integral membrane proteins are embedded into cell
membranes by spanning the width of the lipid bilayer. They play
an essential role in important biological functions for the survival of
living organisms. Their functions include the transportation of ions
and molecules across the cell membrane and initiating signaling
pathways. The dynamic behavior of integral membrane proteins is
very important for their function. Due to the complex

behavior of integral membrane proteins in the cell membrane, studying their structural dynamics using biophysical approaches is
challenging. Here, we concisely discuss challenges and recent advances in technical and methodological aspects of biophysical
approaches for gleaning dynamic properties of integral membrane proteins to answer pertinent biological questions associated with
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these proteins.

1. INTRODUCTION AND SIGNIFICANCE

Integral or intrinsic membrane proteins associate permanently
with biological membranes. Spanning the membrane, these
proteins are surrounded by annular lipids and can be separated
from the membrane only by detergents, nonpolar solvents, or
denaturing agents. The most common type of integral
membrane proteins that span the entire width of the biological
membrane is known as transmembrane proteins. Single-pass
transmembrane proteins crossing once across the membrane
with their carboxyl-terminus positioned toward the cytosol can
be categorized as Type 1 and amino-terminus positioned toward
the cytosol can be categorized as Type 2. Type 3 contains
multiple transmembrane domains in a single polypeptide. Type
4 assembles several polypeptides together in a channel through
the membrane. Some examples of integral membrane proteins
are bacteriorhodopsin, the prokaryotic potassium channel KcsA,
phospholamban (PLB), voltage gated potassium channel
(KCNQ1), KCNE1, KCNE3, Escherichia coli ferric citrate
transporter FecA, GM2 activator protein, ABC transporter
MsbA and pentameric ligand-gated ion channels (pLGICs).
Integral membrane proteins contain a significant fraction of the
proteins that are encoded in an organism’s genome. Integral
membrane proteins are mobile within the membrane lateral
plane. They can form complexes by numerous molecular
interactions and for various functions.> These molecular
interactions lead to a highly heterogeneous organization of
proteins within the membrane.® The interface region between
the head groups and hydrophobic chains of the lipid bilayer
provides the stability of certain amino acids (e.g., aromatic). The
lateral pressure across the lipid chain develops the complex
environment where protein folding and function occur.*
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Integral membrane proteins are involved in several biological
processes important for the survival of living organisms. They
are involved in the transport of molecules across the bilayer
membrane and the transduction of energy and signals. This
makes integral membrane proteins functionally important and
serve as drug targets.* Membrane-embedded enzymes are
involved in catalyzing chemical reactions.> Misfolding and
mutations of integral membrane proteins lead to several health-
related disorders and diseases such as neuronal channelopathies,
Charcot-Marie-Tooth disease type 1A (CMT1A), long QT
syndrome, and cardiac arrhythmia.®”® The conformational
dynamics of membrane proteins during their interaction with
lipid bilayers is a critical element of their functions. Under-
standing the functional mechanism of integral membrane
proteins requires knowledge of how these proteins are coupled
to their lipid bilayer membrane environment. Despite their
importance, there is an outstanding challenge in obtaining
information about how the complex environment affects the
structure, dynamics, and function of the membrane proteins.
Dynamic properties of integral membrane proteins are essential
to understand their structure—function relationship. Challenges
in accessing the dynamic information on integral membrane
proteins often arise due to low expression, purification yields,
and lack of functional membrane mimetics under physiological
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conditions. Proper sample preparation of integral membrane
proteins is needed for biophysical studies and requires extensive
sample optimizations. In this Perspective, we briefly discuss
challenges, current advances and effect of various membrane
mimetics for studying dynamic properties of integral membrane
proteins using biophysical approaches with emphasis on EPR
spectroscopy.

2. CURRENT ADVANCES IN MEMBRANE MIMETIC
SYSTEMS FOR STUDYING INTEGRAL MEMBRANE
PROTEINS

In the past, significant efforts have been made to develop
membrane mimetics that can provide a physiologically relevant
membrane state for the biophysical studies of membrane
proteins. However, no mimetic system is universal for studying
all membrane proteins. The most widely used solvent for
membrane proteins for biophysical studies is detergent micelles.
It is easier to extract proteins from the plasma membrane in
detergent micelles. However, the biophysical data obtained for
micelle samples may not reflect the physiological state of the
native lipid bilayer membrane condition due to the lack of lipid
bilayer structure. A mixture of long-chain lipids and short-chain
detergents has been used to solubilize the proteins to form
artificial lipid bilayers known as bicelles.'® Bicelles are smaller in
size and can provide homogeneous sample conditions, but it is
challenging to find a specific combination of lipids and
detergents to solubilize the protein while protecting the
functional integrity of the protein. A more natural mimetic
condition for integral membrane proteins is solubilization in
liposomes. Liposomes form a lipid bilayer membrane, but they
are heterogeneous and larger in size than other mimetic systems.
This limits the application of liposome systems for several
biophysical studies such as NMR spectroscopy.** Nanodiscs or
nanolipoprotein particles (NLPs) are other options for
solubilization of the protein to obtain dispersed sample
preparation suitable to obtain better quality biophysical
measurements. This technique utilizes membrane scaffold
proteins to form specific nanodisc sizes.*>"** This can influence
the optical properties of target proteins. Hence, its application is
challenging for several integral membrane proteins. A recent
emerging approach of using lipodisq nanoparticles or styrene
maleic acid lipid nanoparticles (SMALPs) has been rapidly
gaining popularity for biophysical studies of membrane
proteins.’>™*9 This approach utilizes a styrene and maleic acid
(SMA) copolymer wrapped around protein incorporated
phospholipids without the use of detergent to form lipodisq
nanoparticles or SMALPs.

Lipodisq nanoparticles or SMALPs can maintain the
structural and functional integrity of membrane proteins
which is very dificult for traditional membrane systems.?%*3
Lipodisq nanoparticles can provide better quality experimental
data for various biophysical techniques such as NMR and EPR
for studying the structural dynamics of integral membrane
proteins. Several forms of SMA copolymers are available in
varying sizes and ratios of styrene to maleic acids to solubilize
membrane proteins.*>**%> Various forms of reversible addi-
tion-fragmentation chain transfer (RAFT)-synthesized SMA
polymers and di-isobutylene maleic acid (DIBMA) copolymers
are also available to solubilize membrane proteins.?®~2° Figure 1
shows an illustrative example of KCNQ1 incorporated into
different membrane environments. The dynamic motion of
integral membrane proteins is higher in detergent micelles, while
the dynamic motion is restricted in liposomes when compared
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Figure 1. Cartoon representation of an illustrative example of a
membrane protein (KCNQ1) (PDB ID: 6V00)*° incorporated into
dodecyl phosphatidylcholine (DPC) micelles (A), 1-palmitoyl-2-
oleoyl-phosphatidylcholine (POPC)/1-palmitoyl-2-oleoyl-phosphati-
dylglycerol (POPG) lipid bilayers (B), and nanodisc (C). The image
was prepared using visual molecular dynamics (VMD)?* and molecular
modeling was performed using CHARMM-GUI (http://www.
charmm-gui.org).

to that in micelles and this motion is further restricted in
nanodiscs or lipodisq nanoparticles.*®30-33

3. CHALLENGES AND PROGRESSES IN BIOPHYSICAL
METHODS FOR PROBING DYNAMIC PROPERTIES
OF INTEGRAL MEMBRANE PROTEINS

Great advances have been made in the technology and
methodology of structural biology techniques to study structural
and dynamic properties of integral membrane proteins.
Challenges for applying biophysical approaches to study these
proteins arise due to dificulties in obtaining sample conditions
appropriate to a particular biophysical experiment to obtain a
superior quality experimental data. Some modern biophysical
tools that are currently widely utilized to characterize the
dynamic behavior of integral membrane proteins in a lipid
membrane environment are solution and solid-state nuclear

magnetic resonance (NMR) spectroscopy,>*™’ Forster reso-
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Figure 2. A) A predicted topology of KCNE3 in membrane bilayers based on previously published solution NMR studies,”®”* (B) CW-EPR spectra of
nitroxide spin-labeled KCNE3 mutants in 0.5% DPC micelles (left panel) and POPC/POPG bilayered vesicles (right panel), (C) plot of the inverse
EPR central spectral line width as a function of residue position of KCNE3, and (D) plot of the motional parameter as a function of residue position of
KCNE3. Reproduced from ref 31 with permission. Copyright 2022 Elsevier.

nance energy transfer (FRET)®® and electron paramagnetic
resonance (EPR)3°7*2 spectroscopic techniques. X-ray crystal-
lography**** and Cryo-electron microscopy (Cryo-EM)
techniques are used to study structural aspects of membrane
proteins and provide some dynamic information. These
approaches have their own advantages and drawbacks.

NMR spectroscopy is used to obtain structural and dynamic
properties of membrane proteins under physiological con-
ditions. Solution NMR approaches in combination with
nanodiscs can provide a high-precision dynamic information
about every atom of an amino acid in a wide range of time scales

39,45
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from picoseconds to seconds.®”*¢*” However, this method is
challenging to obtain high-quality experimental data due to the
larger size of the membrane-protein complex (>RE50
kDa).>>*#>1 NMR studies of membrane proteins are also
limited by the larger spectral broadening and overlapping of
NMR line widths. NMR experiments also require a large amount
of highly pure and folded membrane protein samples to achieve
better data quality.>*°*™* A probe-based Forster resonance
energy transfer (FRET) technique is another approach to
obtaining conformational dynamics of membrane proteins.>®
This technique utilizes a larger probe to obtain experimental
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Figure 3. (A) Predicted membrane topology of KCNE1 based on previous solution NMR studies’? with spin-labeling sites represented by green filled
circles, (B) CW-EPR spectra of different mutants of KCNE1 in POPC/POPG vesicles and POPC/POPG lipodisq nanoparticles, and (C) plot of the
inverse EPR central spectral line width as a function of residue position of KCNE1. Reproduced from ref 30 with permission. Copyright 2017 American

Chemical Society.

data that may perturb the structure of the membrane protein. It
is also dificult to incorporate the site-specific FRET probe on
the membrane protein sequence.*? A recent example of using
NMR spectroscopy is the study of Leukotriene B4 receptor 2
(BLT2) in lipid nanodiscs.*” BLT2 receptors are G protein-
coupled receptors (GPCRs). GPCRs represent a large family of
eukaryotic integral membrane proteins. They are involved in
several essential biological processes. Pozza et al. utilized two-
dimensional (2D) *H,3C SOFAST-HMQC NMR spectroscopy
through three transmembrane 3CH, reporters, in residues
M10533>, M197>%* and 1229%4° to study the conformational
ensemble of BLT2 GPCR in POPC/POPG and 1,2-dipalmitoyl-
sn-glycero-3-phosphocholine (DPPC) lipid discs.*” The results
suggested that these three methyl NMR reporters are sensitive
to the conformational plasticity of the receptor. The NMR data
analysis of BLT2 in nanodiscs of various compositions and in the
presence of agonists showed that BLT2 represents a complex
conformational dynamic landscape in eukaryotic membranes
enriched in POPC/POPG or in more rigid DPPC membrane.
EPR spectroscopy is a powerful biophysical technique to
overcome the limitations associated with conventional methods
and provide important structural and dynamic information on
integral membrane proteins incorporated into various mem-
brane environments.**#>>>>° When EPR is combined with
site-directed spin-labeling (SDSL), it can provide structural
dynamics of nitroxide side chain, protein topology, solvent
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polarity, and intra- or intermolecular distances between two
nitroxide spin-labels on membrane proteins.*%41°6586061 |
SDSL, the natural cysteine on the protein sequence is replaced
by alanine or serine, and the site-specific amino acid is replaced
by cysteine. The mutated form of the protein containing cysteine
at the specific site is then reacted with MTSL to generate a stable
nitroxide spin-label having an unpaired electron that is EPR
active. The dynamic behavior of the nitroxide spin-label makes it
easier to introduce them at any desired position of the protein
sequence. This method has no protein size restriction. Recent
improvements in technical and methodological aspects of SDSL
EPR spectroscopy have made it very popular for studying
structural dynamic properties of integral membrane proteins.
EPR spectroscopy combined with SDSL has been widely used to
study dynamic properties of important integral membrane
protein systems.*%*%>%%8 A pulse EPR approach of double
electron—electron resonance (DEER) spectroscopy can be also
used to obtain structural dynamics of integral membrane
proteins by measuring distances and corresponding distance
distributions between two nitroxide spin-labels attached to these
proteins.*#6%53 Details of the application of EPR spectroscopy
to study membrane proteins have been reviewed in the
literature.*>*1°¢ Some of the biologically important integral
membrane protein systems recently investigated using EPR
spectroscopy include transient receptor potential vanilloid 1
(TRPV1) channel, bacteriophage pinholin, KCNE1, KCNE3,
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KCNQ1 voltage-sensing domain (VSD), sensory rhodopsin 11
of Natronomonas pharaonis (NpSRI1),16:31.64-68

A recent example of probing dynamic properties of integral
membrane protein is a study of transient receptor potential
vanilloid 1 (TRPV1) channel.®”®® TRPV1 consists of six
transmembrane domains in which the fifth and sixth trans-
membrane domains are involved in pore formation. TRPV1 is
expressed by primary afferent sensory neurons and contributes
to the pain hypersensitivity mechanisms. It is an essential
component of the cellular mechanism where noxious stimuli
give rise to pain. Velissety et al. performed site-directed spin-
labeling continuous wave (CW)-EPR spectroscopic experi-
ments to probe the dynamics of residues located at the pore
domain (e.g., extracellular vestibule, hydrophobic plug, and TRP
domain) of TRPV1.5” Authors measured mobility parameters
calculated as the inverse central line width of the first derivative
absorption spectra (AH,™") obtained for several spin-labeled
eTRPV1 mutants in DDM detergent micelles as well as in
asolectin liposomes. The data revealed higher mobility values for
the spin-label residues exposed to the aqueous environment
when compared to the residues in a proteinaceous environment
at the intracellular gate and linker domain. The results suggested
that these mobility parameters could potentially monitor
changes in dynamics during activation gating.®’

Another recent illustrative example of the dynamic properties
of an integral membrane protein is the study of KCNE3 using
SDSL EPR spectroscopy.>* KCNE3 is a single membrane-
spanning potassium channel accessory protein that modulates
the function and traficking of voltage-gated potassium channels
such as KCNQJ1. Voltage-gated potassium channels are very
important in several biological functions including cardiac,
nervous, and auditory systems. They are targets of several
modern medical drugs. KCNE3 interacts with KCNQ1 forming
KCNQ1/KCNE3 channels important for the transportation of
potassium ions through epithelial cells during salt homeostasis.
The dysfunction and mutations in KCNE3 have been linked to
several disorders including long QT syndrome (LQTS), cardiac
arrhythmia, cystic fibrosis and secretory diarrhea, periodic
paralysis, tinnitus, and Meniere’s disease. Campbell et al.
performed nitroxide-based SDSL CW-EPR spectroscopic
experiments on KCNE3 in both DPC detergent micelles and
POPC/POPG (3:1) lipid bilayered vesicles to obtain the side
chain mobility and motion parameter of the KCNE3.3* The
spectral line shape analysis suggested that the dynamic motion of
the nitroxide spin-labels is lower in the lipid bilayer membrane
environment when compared to that in detergent micelles.
Figure 2 shows the predicted topology of KCNE3 in lipid
bilayers based on previous solution NMR studies,”® CW-EPR
spectra, inverse central spectral line width, and empirical
motional parameter as a function of residue position. The
motional parameter, also known as rotational correlation time,
describes the time required for the spin-label to rotate an angle
of one radian.

One example of studying dynamic properties of an integral
membrane protein is a study of potassium channel accessory
protein KCNE1 using EPR spectroscopy. KCNE1 is a single-
pass transmembrane protein containing 129 amino acids. It is
involved in modulating the function of several voltage-gated
potassium channels including KCNQ1.72774 KCNE1 forms a
complex with KCNQ1 in the human heart and generates the
slow delayed rectifier current. This is represented by its slow
activation and deactivation kinetics.”® This is very important for
the cardiac action potential repolarization phase. Sahu et al.
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performed CW-EPR spectral line shape analysis on several spin-
label sites of the transmembrane domain of KCNE1 in POPC/
POPG lipid bilayers and POPC/POPG lipodisq nano-
particles.®® The results showed a significant increase in EPR
spectral line broadening and corresponding inverse central line
width of spin-labeled KCNE1 residues for lipodisq nanoparticles
samples decreases when compared to lipid vesicle samples. This
suggested the spin-label side chain motion of KCNE1 is
restricted in POPC/POPG lipodisq nanoparticles when
compared to that in POPC/POPG liposomes. Figure 3 shows
a cartoon representation of the membrane topology of KCNE1
with spin-labeling sites and CW-EPR spectra and inverse central
line width data of KCNE3 in difference membrane mim-
etics.2%’? The arrows on the spectra represent two spectral
components with slower/rigid components (left arrows) and
faster/higher motional components (right arrows).

Another recent example of the investigation of dynamic
properties of an integral membrane protein is a study of a
biologically significant integral membrane protein antipinholin
(5*'68.) in 1,2-dimyristoyl-sn-glycero-3-phosphocholine
(DMPC) proteoliposomes.®* Antipinholin has 71 amino acids
containing two transmembrane domains (TMDs) embedded
into the inner cytoplasmic membrane. This makes the N- and C-
termini stay in the cytoplasm. Antipinholin is responsible for
delaying the formation of the active dimer required for the
formation of the pinholes. Ahmmad et al. performed nitroxide-
based SDSL CW-EPR experiments on 35 different nitroxide
spin-label (R1) side chains of antipinholin (S?!68,) in DMPC
liposomes.®* CW-EPR spectral line shape analysis was carried
out to obtain relative mobility and the rotational correlational
times of R1 side chains in DMPC liposomes. The results
suggested a restricted mobility of both TMDs when compared
to the N- and C-termini.

Another recent example of conformational dynamics study of
an integral membrane protein is the study of Sensory rhodopsin
Il in nanolipoprotein and styrene-maleic acid lipid particles
using EPR spectroscopy.®® The NpSRIl is a membrane-
embedded photoreceptor that moderates the photorepellent
response to potentially harmful blue light. The NpSRII forms a
transmembrane complex with its conjugate transducer NpHtrll.
This complex plays a key role in negative phototaxis. It can be
used as a unique model system for studying the light-induced
transfer of a conformational signal between two integral
membrane proteins. Mosslehy et al. utilized site-directed spin-
labeling CW-EPR spectroscopic data to compare the conforma-
tional dynamics of NpSRI12/NpHtrll2 complex reconstituted
into SMALPs with that reconstituted into nanolipoprotein
particles (NLPs) and liposomes.°® The researchers recorded
CW-EPR spectra for R1 spin-labeled NpSRII-L159R1 with and
without the transducer NpHtrll,.; in liposomes, NLPs and
SMALPs. The spectra of L159R1 were almost identical in all
three environments showing a spectral powder pattern
(immobile) with a resolved hyperfine line in the high field
region.® These data revealed that the nitroxide side chain
dynamics in the interior of NpSRII were not affected by different
lipid environments, suggesting that the tertiary structure of the
protein close to position 159 was not influenced. Additionally,
the CW-EPR spectra of NpSRII/NpHtrll ,.,-A94R1 in lip-
osomes, NLPs, and SMALPs showed a composite spectral
shape, indicating the presence of at least two components related
to mobile and immobile fractions of the spin-label side chain.
The dynamics of the NpHtrll157-A94R1 side chain with the
protein reconstituted into NLPs was similar to that of the

https://doi.org/10.1021/acs.jpcb.2c07324
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complex into liposomes, suggesting no effect on the equilibrium
between the mobile and immobile components. However, the
motion of the transducer R1 side chain in SMALPs was more
restricted indicated by the more pronounced immobile
component, suggesting the shift in the equilibrium between
the mobile and immobile toward the immobile component.
These results suggested less flexibility of the protein in
SMALPs.%®

4. CONCLUSION AND FUTURE PERSPECTIVE

Integral membrane proteins are crucial for several biological
functions needed for the survival of living beings. Due to the
complex behavior of integral membrane proteins in cell
membranes, a suitable solvent condition is required for
extracting the protein from the cell membrane to obtain
dynamic properties. Large improvements have been achieved in
developing membrane mimetic environments appropriate for
biophysical approaches for studying dynamic properties of
integral membrane proteins. Despite recent improvements in
methodology and biophysical approaches, the major challenge
in this field is to develop sample preparation conditions for the
improvement of the expression yield and stability of the integral
membrane protein in physiological lipid bilayer membrane
environments. It is also very challenging to find the integral
membrane protein solubilization condition that can maintain
physiological conditions while obtaining superior quality
experimental data from biophysical measurements to answer
structural dynamics-related questions. There are still open
questions for researchers in structural biology fields such as, is
there a universal membrane mimetic system that can be suitable
for all integral membrane protein systems for biophysical
studies? The EPR studies have suggested a reduced spin-label
side chain motion of the protein when moving from detergent
micelles to lipid bilayer membranes and further to the
SMALPs.2%7% The degree of the reduction in the spin-label
side chain motion varies depending upon the protein-lipid
systems studied. The incorporation of the protein-lipid
complex into SMALPs increases the viscosity of the system
causing a reduction of the global tumbling motion.?® This can
help to understand the local spin-label side chain motion of the
protein such as protein backbone dynamics. However, there are
not enough biophysical studies available in the field to generalize
this behavior. Additional future studies will help understand
dynamic behavior of the protein with respect to various
membrane mimetic systems. The ongoing progress in
developing new derivatives of SMA copolymers for solubilizing
membrane proteins will open the path for obtaining reliable
structural dynamic information on integral membrane proteins
using biophysical methods. The In-cell EPR approaches will also
provide avenues for obtaining reliable structural dynamic
information on these proteins.”®
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styrene maleic acid lipid particles; SMA, styrene maleic acid;
NMR, nuclear magnetic resonance; FRET, Forster resonance
energy transfer; Cryo-EM, cryogenic electron microscopy; EPR,
electron paramagnetic resonance; CW-EPR, continuous-wave
electron paramagnetic resonance; DPC, dodecyl phosphatidyl-
choline; DDM, n-dodecyl-8-maltoside; POPC, 1-palmitoyl-2-
oleoyl-sn-glycero-3-phosphocholine; POPG, 1-palmitoyl-2-
oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt);
DMPC, (1,2-dimyristoyl-sn-glycero-3-phosphocholine
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