2023 IEEE International Conference on Big Data (BigData) | 979-8-3503-2445-7/23/$31.00 ©2023 IEEE | DOI: 10.1109/BigData59044.2023.10386614

2023 IEEE International Conference on Big Data (BigData)

Multiloss-Based Optimization for Time Series Data
Augmentation

Omar Bahri, Peiyu Li, Soukaina Filali Boubrahimi, Shah Muhammad Hamdi
Department of Computer Science, Utah State University, Logan, UT 84322
Email: {omar.bahri, peiyu.li, soukaina.boubrahimi, s.hamdi}Qusu.edu

Abstract—Data augmentation plays an important part in the
current success of machine learning and deep learning models. In
particular, state-of-the-art architectures in the image recognition
field include data augmentation modules as an integral part.
However, there is still room for progress in the time series domain.
In this work, we introduce OptimAug, a novel method for time
series data augmentation. We deviate from the current state-
of-the-art comprised of random transformations, pattern mix-
ing, generative models, and decomposition methods, to develop
the first multiloss-based optimization method. We evaluate our
method with its two variants on datasets from the University of
California Riverside (UCR) archive and compare it to multiple
baseline algorithms from the literature.

Index Terms—Data Augmentation, Time Series Mining

I. INTRODUCTION

The volume of continuously collected and stored time series
data has reached staggering levels. However, processing this
raw data into clean and labeled datasets requires a lot of time
and effort. As pointed out by Iwana et al. [1], the University
of California Riverside (UCR) archive [2], one of the largest
and most commonly used collections of time series datasets,
contains only 12 datasets with a training size higher than
one thousand. In addition, time series datasets from real-life
domains might suffer from class imbalance due to the rarity
of certain events (most likely the desired positive class in the
context of classification). For example, the ECG200 dataset
from the UCR archive contains 133 normal heartbeats and
only 67 myocardial infarctions, and the Earthquakes dataset
contains 368 cases and only 93 positive ones. These problems
become particularly relevant when training data-hungry deep
learning architectures for both classification and forecasting
purposes. Therefore, data augmentation approaches aim to
increase the size of existing datasets by creating synthetic
data samples, allowing trained machine learning models to
expand their decision boundary by exploring new input space,
increasing their generalization ability, and reducing overfitting.

Data augmentation has proved to be the most effective in
the context of image recognition, from simple transformations
ingrained in state-of-the-art Convolutional Neural Network
(CNN) architectures such as cropping, rotating, mirroring,
scaling and color augmenting, to more elaborate autoencoder
and Generative Adversarial Networks (GAN) based models.
Efforts have also been made to develop data augmentation

979-8-3503-2445-7/23/$31.00 ©2023 IEEE 325

strategies for time series. According to [1], the current litera-
ture can be categorized into the four following main categories:
random transformations, similar to the aforementioned image
techniques; pattern mixing where multiple instances from the
original dataset are combined to create a new one; generative
models that attempt to learn the feature distribution; and
decomposition that extracts specific features and use them to
generate new elements.

All the aforementioned methods aim to generate new sam-
ples that are distinct from the original ones and extend the
intra-class boundaries of the original samples but are still
within the original distribution. However, to our knowledge, no
previous effort has adopted a loss-based optimization strategy.
In this work, we develop OptimAug, a novel time series data
augmentation method that generates new data samples by
optimizing the trade-off between these desired criteria. For
this purpose, we propose a multi-objective loss function that
uses class prototypes or autoencoders to guide the generation
process. We show that OptimAug succeeds in generating high-
quality augmented data by testing it on a subset of datasets
from the UCR archive and comparing it to state-of-the-art time
series data augmentation methods from the four established
categories. The rest of this paper is organized as follows. In
Section II, we formalize the time series data augmentation
problem and describe our proposed algorithm. In Section III,
we perform an in-depth experimental evaluation, and discuss
results. We conclude with a summary in Section IV.

II. PROPOSED METHODOLOGY
A. Problem Definition

Time series data augmentation is performed in order to
extend existing datasets and to help machine learning models
identify unseen data samples. In particular, samples that fall
close to the class boundaries of the original training dataset
represent a challenge for both classification and regression
models. Therefore, as supported by the literature [1], [3], [4],
augmentation methods should add variability to the dataset
by creating samples that are distinct from the original ones
and that extend the boundaries separating the different dataset
classes. In particular, DeVries and Taylor [4] compared the
product of using the interpolation operator and the extrapo-
lation operator with their proposed augmentation method and
concluded that the data generated using the former is useless
and results in performance loss, whereas the data generated
using the latter improves the performance of trained classifiers.

Authorized licensed use limited to: Utah State University. Downloaded on May 09,2025 at 06:40:02 UTC from IEEE Xplore. Restrictions apply.

In addition, the generated data should be realistic, i.e. it should
still respect the class distribution of the original data [1], [3].

In this light, the problem of generating useful time se-
ries data samples from original dataset instances can be
formulated as follows. Consider a time series dataset D =
{TS1,TSs,...,T'S,} such that each sample T'S; is assigned
to a class C; € {C1,C5,...,Cr} and represented by a vector
of T time steps 7'S; = [(T'S;);,(TS:)y,...(T'S;)]. Let
fi be the probability distribution function of class Cj, i.e.,
{TS; | TS; € C;} ~ fi. A synthetic sample T'S,,.., generated
from T'S; should fulfill:

(a) dist(TSpew,TS;) > €, where dist is a distance function
and ¢ > 0. This ensures that the generated samples
introduce variability to the dataset.

(b) T'Snew ~ fi1, 1.6, T'Spew is a sample from f;. This
ensures that the generated samples belong to the original
class distribution.

B. Approach

Following the data generation formalism defined above,
OptimAug generates a new time series sample 7'S),¢,, from
an original dataset instance 7'S; € D by minimizing a multi-
objective loss function L that considers (a) and (b).

L=—aL,+ 8L (D

such that «, 8 €]0,1[and L, is the distance between T'S;
and T'S,,¢,, computed as the L;-norm of their difference , with
(TSnew) = TSZ‘Z

nit

T
L,= HTSz - TSnewHL1 = Z ’(Tsz)t - TS(new)t’ 2
t=0

By minimizing —L,, the objective function L encourages
the generation of samples that are distinct from the original
ones, hence increasing variability. Concerning L;, OptimAug
implements the two following alternatives.

1) Prototype Loss: A class prototype is a data point that
is the most representative of the class elements. OptimAug
finds the prototype {Pry, Pro,...,Prp} of each class C
in {Cy,Cs,...,Cr} by applying Dynamic Time Warping
Barycenter Averaging (DBA) [5], [6] to its elements separately.
DBA is a global averaging technique that computes the average
of a set of sequences. Starting with an initial sequence, DBA
computes its squared distances to each sequence in the set.
Then, it iteratively modifies the initial sequence to minimize
the sum of squared distances. The distance measure used by
DBA is Dynamic Time Warping (DTW) defined in Equation 3.
DTW uses a dynamic programming approach to calculate the
optimal alignment between two sequences s; and s of lengths
Ty and Ty . It creates a two-dimensional matrix [based on
Equation 3, where each element represents the accumulated
distance between two corresponding points in the sequences.
The goal is to find the path through this matrix with the
minimum total distance, which represents the best alignment.

326

Diﬂ' = dist (51, 82) + min {Di,j—l, Di—l,ja Di—l,j—l}

st tie[1,Th],7€[1,Ty]
3

where dist is a distance function, usually the L;-norm.
Let T'S; € C). To encourage the generated 1'S),¢,, to remain
within the original class distribution f; of class Cj, the loss
term L; in OptimAug is set to L p,- defined in Equation 4 as the
L;-norm of the difference between T'S,,.,, and the prototype

PT[of Oli

T

Lp, = HTSne'w - P7’l||L1 = Z ‘(Tsnew)t - (Prl)t| 4)

t=0

2) Autoencoder Loss: The second alternative loss term
for keeping generated instances within the original class
distributions makes use of autoencoders. An autoencoder is a
neural network model made of two modules. The first module
consists in an encoder network that transforms the input into
a more compact latent representation in the form of lower
dimensional vector. Then, the second module acts as a decoder
by reconstructing it into the original input.

While autoencoders are usually trained to take advantage
of the latent space mapping, OptimAug uses autoencoders
by considering the reconstruction loss. If possible, separate
autoencoders {AF1, AE,, ..., AEL} are trained for each class
Cy in {C1,C4,...,CL} using its elements only. Then, for
TS; € Cj, TSpew is found by optimizing the loss function
in Equation 1 where L; is set to L g defined in Equation
5 as the Li-norm of the reconstruction loss of 7'S,¢,, using
AE; as defined in Equation 5.

T

LAE == ||TSz - AEZ (Tsnew)HLl = Z |(Tsv)t - AEI (TSnew)tl
t=0

(%)

By minimizing L 4 g, OptimAug ensures that each generated
time series can be accurately reconstructed using the original
class autoencoder AF;, and therefore belongs to the original
class data distribution f; as represented by AFE;.

Algorithm 1 describes the steps involved in creating an
augmented sample 7'S,,.,, from an original dataset instance
TS, using OptimAug. In case a class-specific autoencoder is
provided, OptimAug uses the autoencoder loss. Otherwise,
it defaults to the prototype loss by computing DBA class
prototypes as described above. In what follows, we refer to
the prototype loss version of the algorithm as OptimAug Proto
and to the autoencoder version as OptimAug AE.

III. EXPERIMENTS
A. Baselines and Implementation Details

We compare the performance of OptimAug to 9 baselines:

« SMOTE: [7] interpolates two time series samples (a
random one and its nearest neighbor) to generate a new
one by computing their difference and multiplying it by
a random number between 0 and 1.

Authorized licensed use limited to: Utah State University. Downloaded on May 09,2025 at 06:40:02 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 OptimAug augmentation algorithm
Parameters: o and

Inputs: Sample T'S; from the dataset D. Class C; of T'S;.
Autoencoder AFE; trained on class [instances (optional).
Output: Augmented sample 7'S;,c..

1: Initialize T'S,,¢,, to the original sample 7'S;:
TShnew < T5S;
2: if AE; is provided as input then use autoencoder loss:
Ly« Lag = (o |(T'S:), — AE(T Spew),|
3: else Get class [prototype and use prototype loss:
Pr; < DBA(D,) > Algorithm 1. in [6]
where: D is the set of class C; elements in D
Ly < Lpr = 1o (TSnew), — (Pr1),]
4: end if
5: Optimize the loss function L:
T'Spew < argmingg (—aLq + BLy)
where: Lo = Y2, [(T'Si); — TS (new),|
6: return T'S,,c.,

o ADASYN: [8] an extension of SMOTE that introduces
adaptability to the synthetic sample generation process.

o guided warping: [3] warps the original pattern using
the alignment function of its DTW distance to a teacher
pattern. Random Guided Warping (RGW) selects the
teacher randomly from the dataset elements of the same
class of origin while Discriminative Guided Warping
(DGW) uses a directed one.

o SuboPtimAl Warped time series geNEratoR
(SPAWNER): [9] uses suboptimal time warping to
create new time series. It reduces the flexibility of DTW
by forcing the warping path through a random point. The
alignment path is then used to generate new patterns.

« weighted DTW Barycentric Averaging (WDBA): [10]
adapts DBA [5] for data augmentation. This is done
using one of three weighting schemes. Since the Average
Selected with Distance (ASD) which weights all dataset
elements of the original class according to their distance
to the original pattern had the best results in the original
paper, we use it as our benchmark.

o TimeGAN: [11] a Generative Adversarial
Networks(GAN) model that combines both encoder-
decoder models and adversarial training. It learns
the feature distribution by taking advantage of the
unsupervised adversarial loss and introducing a
supervised loss dictated by the original training data.
TimeGAN also develops an embedding model that
reduces the high-dimensionality of the adversarial
training space by acting as a two-way mapping between
features and latent representations.

o Recurrent Conditional GAN (RCGAN): [12] a GAN
architecture with two recurrent neural networks as the
discriminator and generator, conditioned with additional
information in order to generate labeled data. The condi-
tioning in RCGAN is done by augmenting the inputs at

327

each time step through concatenation.

+ Time-Conditional Generative Adversarial Network
(T-CGAN): [13] originally proposed for irregularly sam-
pled time series data, it consists in a conditional GAN
architecture where the generator module is represented by
a deconvolutional network and the discriminator module
by a convolutional network.

We adopted the implementations provided by the authors
of [1]', [12]?, and [13]. For TimeGAN, we used the imple-
mentation available in YData Synthetic Python package*, and
for SMOTE and ADASYN, we used the implementations in
the imbalanced-learn Python package’. We used the default
configurations for all algorithms. The code for OptimAug
is available in the project’s GitHub repository®. In theory,
since all the loss terms described in Section II are fully
differentiable, any first-order optimization algorithm should
work for OptimAug. In the following experiments, we used
the Adam optimizer. To test OptimAug AE, we trained simple,
shallow class autoencoders consisting of two Long Short-Term
Memory (LSTM) layers, with the second layer outputting a
sequence with the original time series length, followed by
the same dense layer applied to each time step individually.
We used the Adam optimizer, the Scaled Exponential Linear
Unit (SELU) activation function for the LSTM layers, and
L2 regularization. The only tuning we performed was for
the learning rate and regularization, with the only purpose of
avoiding training problems such as the exploding gradient.

B. Evaluation Criteria

1) Performance Gain: To assess the performance of Opti-
mAug in comparison to the nine time series data augmentation
baselines, we compare the classification performance gained
from augmenting the original datasets to double the original
size with each method. For this purpose, we use two state-
of-the-art machine learning classifiers: (a) Residual Network
(ResNet), a deep neural network that was first introduced for
time series classification by Wang et al. [14] and that achieved
state-of-the-art performance for classifying UCR datasets [15]
and (b) RandOm Convolutional KErnel Transform (ROCKET)
which had the highest rank and the fastest running time
among all models benchmarked in an extensive time series
classification survey [16].

a) ResNet:: First, we split the original dataset into train-
ing, test, and validation splits and train a ResNet model for
1500 epochs using the Adam optimizer, following the original
configuration in [14]. During training, we save the weights
of the model that performed the best on the validation split
and use them to evaluate the classification performance on the
test set. For more robustness, we train three different models
with different initial weights for each dataset and report the

Uhttps://github.com/uchidalab/time_series_augmentation
Zhttps://github.com/ratschlab/RGAN
3https://github.com/gioramponi/GAN_Time_Series
“https://github.com/ydataai/ydata-synthetic
Shttps://imbalanced-learn.org/stable/
Shttps://github.com/omarbahri/OptimAug

Authorized licensed use limited to: Utah State University. Downloaded on May 09,2025 at 06:40:02 UTC from IEEE Xplore. Restrictions apply.

mean scores. Since the dataset might not be balanced across
all classes, we adopt the fl-score as classification measure.

Then, for each data augmentation method, we combine the
original training sets with the augmented data, and repeat the
above to train three new models. Finally, we compare the mean
fl-scores of the new models on the original test sets to the
previous ones to assess the of each augmentation method.

b) ROCKET:: We repeat the same procedure described
for ResNet. Since ROCKET training time is considerably
lower, we train each model ten times instead of three and
consider the mean fl-score for each method.

2) Novelty Detection: The augmented data samples have
to respect the original dataset distribution. To ensure that
OptimAug fulfills this condition, we introduce an evaluation
criterion in the form of outlier detection. For this purpose,
we adopt three novelty detection methods and apply them to
OptimAug and the baselines. The first method is the Local
Outlier Factor (LOF) [17] which computes the local density
deviation of every sample with reference to its neighboring
data points. The data samples with low density values are
detected as outliers. The second method is Isolation Forest
(IF) [18] which focuses on the distance of each data sample
to the entire dataset. The third method is the One Class
Support Vector Machine (OC-SVM) [19] method that learns
a hypersphere encompassing all original instances and flags
samples that lie outside as outliers. We apply each method to
the data generated by the augmentation baselines in this study
and rank them according to the percentage of detected outliers.

C. Illustrative Example: Cylinder-Bell-Funnel (CBF) Dataset

The Cylinder-Bell-Funnel (CBF) is a dataset from the UCR
archive that consists of simulated time series with 128 time
steps divided across three classes and split into a training set of
size 30 and a test set of size 900. The time series are generated
as standard normal noise plus a different offset term for each
class. We select CBF as a starting point for the evaluation
of OptimAug because of its simplicity and small number of
samples in the training set.

1) Performance Gain: As this is the first dataset we apply
OptimAaug to, we used it to tune the two hyperparameters «
and J based on the ResNet performance gain. For this purpose,
we performed a non-exhaustive grid search and settled on
a = 10719 and B = 1.1 or B = 1075 for OptimAug
Proto loss or OptimAug AE respectively. For the rest of the
experiments with different datasets in this paper, we kept the
same parameters values.

Given that the mean fl-score using ResNet on the original
CBF dataset —without data augmentation— is already high
with a value of 99.61%, the main purpose of this test is
to ensure that the data generated is not radically different
from the original dataset, which might lead to significant
performance loss. After adding the data samples generated
using OptimAug Proto, the mean fl-score slightly increased
to 99.67%, while Optimaug AE resulted in an non-significant
decrease to 99.41%. Table I shows that the only augmentation
method that significantly affects the model performance is

328

(a) SMOTE (b) ADASYN (¢c) SPAWNER

(d) RGW (e) DGW () wDBA

(g) RCGAN (h) T-CGAN (i) TimeGAN

() OptimAug Proto (k) OptimAug AE

Fig. 1: Visualizing the distributions of augmented data
samples (unfilled shapes) compared to the original ones
(filled shapes) on the PCA space for the CBF dataset. Each
color and shape represents a different class.

RCGAN. On the other hand, the data generated by DGW
achieved the highest increase with 99.85%.

2) Novelty Detection: As shown in Table I, the percent-
ages of instances detected as outliers by the three novelty
detection methods in the samples generated by OptimAug
are low compared to the data produced by the baselines. In
fact, OptimAug Proto is the only method that generated data
without outliers according to all the benchmarks. On the other
hand, 4.67% of Optimaug AE’s instances have been flagged by
the IF algorithm, a percentage slightly higher than SMOTE’s,
ADASYN’s, and wDBA’s, but still a good result given that
these methods rely on interpolation and generate samples close
to the original ones (as we discuss in the next section).

Table I also shows that, consistent with the previous perfor-
mance gain results, the data generated by RCGAN is largely
out of distribution. In addition, T-CGAN, TimeGAN, and to
a certain extent RGW, have also generated a considerable
number of outlier data points. This confirms the importance of
the novelty detection test to identify unrealistic data regardless
of whether or not it benefits classification or prediction.

3) Visualizing Data Distributions: We use Principal Com-
ponent Analysis (PCA) to project the distributions of the
datasets generated by OptimAug and the different baselines
on a 2D space and visualize them in Fig 1. The filled shapes
represent the original data and the unfilled shapes represent the
generated samples. The elements of each class are represented
by a unique color and shape.

Authorized licensed use limited to: Utah State University. Downloaded on May 09,2025 at 06:40:02 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Mean ResNet Fl-scores and percentage (%) of generated instances detected as outliers by the novelty detection
methods (CBF dataset)

Method No Aug | SMOTE | ADASYN | wDBA | SPAWNER | RGW | DWG | RCGAN | T-CGAN | TimeGAN | OptimAug Proto | Optimaug AE
FI1-Score 99.61 99.74 99.37 99.78 98.93 99.19 | 99.85 98.93 97.2 98.89 99.67 99.41
LOF N/A 0.00 0.00 0.00 0.00 0.00 0.00 21.00 0.00 0.00 0.00 0.00
IF N/A 1.67 1.29 0.67 733 7.67 533 57.08 58.21 72.00 0.00 4.67
OC-SVM N/A 3.00 0.00 0.00 7.00 30.00 13.00 50.00 50.00 33.00 0.00 0.00
wDBA DGW OptimAug Proto OptimAug AE
,\m \V "v\/\
il " i "t
Class 1 \’/\’\A } mﬂm‘ A . my|" ! V\’M/W\f v }[\ X “‘ M’\A/‘ i e
N \1\«}\, W\A\f M‘rN \{W\V,h‘y A\ v’u\w M .‘;’ VA \/J\/‘\,\A/’\\YW *Wq/ \/ WW\[VVW‘{ [,AV"(\{\J\I\}J W V’V'\/\,W\N\N
@) (®) © (C))
]) A b M
\‘W“\ W %l \j‘"w/\m\w\/"v\p (v g/l A‘NW |
Class 2 ‘ K) \ . ‘R UALAL'a" \A/\,/L.\nm\'m/\/‘\/
| &g A AT i} vy
A\/\/ it M N W ‘\J‘ L\y W ‘w'\f\} ‘V“ Vi \\4‘\\,'5.:. y
(©) (€3] (€=3))

Fig. 2: Visually inspecting augmented data samples generated from two different classes of the CBF dataset using wDBA in

(a) and (c), DGW in (b) and (f), Optimaug Proto

By looking at Fig. 1.g, Fig. 1.h, and Fig. 1.i, it is clear that
the samples generated by RCGAN, T-CGAN, and TimeGAN
are complete outliers, confirming the previous novelty detec-
tion results. As to SMOTE, ADASYN, and wDBA, the data
generated is too similar and close to the original. The reason
is that the three methods leverage direct interpolation between
dataset samples to create new ones. Therefore, as shown in,
Fig. l.a, Fig. 1.b, and Fig. 1.f, they do not significantly
increase the variability and diversity of the dataset. This
also explains their good performance in the novelty detection
test (Table I). SPAWNER introduces more variability to the
dataset. However, a considerable number of samples generated
are out-of-distribution (at the center of the U’ outlined by
the dataset). RGW, DGW, and OptimAug do a good job in
extending the intra and inter-class boundaries while respecting
the overall dataset distribution. However, RGW and DGW
occasionally generate data points outside of the original class
distribution and sometimes totally belonging to other classes
(e.g. the green points close to the red area for RGW and
DGW, and the red point in the blue area for RGW). Therefore,
OptimAug generates more diverse samples, introduces more
variability to the dataset, extends the class boundaries in
different directions while remaining within the respective class
distributions, and should in theory be more beneficial for
classification tasks.

4) Visualizing Augmented Data Samples: Finally, we vi-
sually inspect a few augmented samples from two different
classes of the dataset and plot them in Fig.2. In each subfigure,
the two gray plots represent original dataset instances and the
two red ones represent the samples generated from them. We
compare OptimAug’s data to wDBA’s and DGW’s, since they
achieved the best performance in the novelty detection test and
performance gain test respectively. Fig 2. serves two purposes.
Firstly, it shows that the samples generated by OptimAug Proto
(Fig. 2.c and Fig. 2.g) and OptimAug AE (Fig. 2.d and Fig.
2.h) look (1) realistic, i.e. visually comparable to the original

329

in (c) and (g), and Optimaug AE in (d) and (h).

instances from the same class, (2) different from the original
instances, thus introducing variability, and (3) different from
each other. Secondly, it confirms previous conclusions such
as the fact that wDBA produces similar data instances (the
augmented data plots in Fig. 2.a and Fig. 2.e are overlapping)
and that DGW occasionally generates outliers (notice the
horizontal segment in the middle of Augmented 1 in Fig. 2.b).

D. Evaluation on Different Time Series Datasets

In addition to the CBF dataset, we experiment on 15 more
datasets from the UCR time series classification archive [2],
spanning eight domains: simulated, traffic, spectro, device,
image, EOG, motion, and sensor data, to evaluate OptimAug
and compare it to the baseline algorithms. Due to space
restrictions, we only present the average ranks in Table II.
The detailed results and a summary of the datasets’ statistics
can be found in our project website’.

a) ResNet: Table II shows the average rank of each
augmentation method, in addition to the performance of the
original dataset (without data augmentation). While most
algorithms have resulted in scores higher than the original ones
on average, SPAWNER, RCGAN, and T-CGAN have actually
resulted in significant performance loss. OptimAug Proto and
OptimAug AE achieved the highest average performance gain
with average ranks of 3.63 and 3.56 respectively. The dataset
that benefited the most from the augmentation process was
Herring with a performance gain of 33%, from 53.87% to
71.43%, which was achieved by OptimAug Proto’.

b) Rocket: Table II shows that the Rocket models did
not benefit from the data augmentation process as much as
the ResNet models. By examining the average fl-scores’, it
is interesting to note that seven out of the nine time series
augmentation baselines have in fact hurt the classification
performance of the original datasets. Besides OptimAug, only

"https://sites.google.com/view/OptimAug/home

Authorized licensed use limited to: Utah State University. Downloaded on May 09,2025 at 06:40:02 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Performance gain and outlier detection average ranks.

No Aug | SMOTE | ADASYN | wDBA | SPAWNER | RGW DGW T-CGAN | RCGAN | TimeGAN | Optimaug Proto | OptimAug AE
ResNet Performance Gain 5.94 5.31 5.44 4.94 6.19 5.63 4.44 8.25 5.88 5.69 3.63 3.56
ROCKET Performance Gain 5.13 4.94 4.56 6.44 7.06 5.75 7.06 8.50 8.00 7.25 3.94 4.36
LOF Outlier Detection N/A 1.56 2.06 131 5.56 5.31 6.19 6.73 7.38 7.31 2.38 3.31
IF Outlier Detection N/A 3.44 4.06 2.00 6.06 6.81 7.63 7.75 8.06 8.00 3.19 6.00
OC-SVM Outlier Detection N/A 1.69 1.44 1.75 6.13 7.56 7.88 8.27 8.44 7.31 2.63 4.56

SMOTE and ADASYN resulted in performance gain on av-
erage. OptimAug Proto had the highest rank with a value of
3.94, followed by OptimAug AE with 4.38.

Table II also shows that the augmentation methods that
rely on interpolation to generate new samples (i.e. SMOTE,
ADASYN, and wDBA) produce the lowest amount of outliers.
As we discussed in section III.C, this stems from the fact that
these methods do not significantly increase the variability of
the datasets, and neither do they extend the inter- and intra-
class boundaries. OptimAug Proto and OptimAug AE rank
right after the three aforementioned methods according to the
three novelty detection algorithms. Therefore, OptimAug is
the algorithm that introduces the most variability with the
minimum number of outliers.

E. OptimAug Proto or OptimAug AE?

Following the results of the previous experiments, it seems
that OptimAug Proto and OptimAug AE perform at a sim-
ilar level. Therefore, when should either of them be used?
Going back to the mean fl-scores® and focusing on the
Computers and Herring datasets, we note that OptimAug AE
outperforms OptimAug Proto on the former and vice-versa
on the latter. Upon inspecting the class autoencoders used by
OptimAug AE, we noticed that the Computers ones produce
significantly more accurate reconstructions of the test set
instances compared to the Herring autoencoders. One apparent
contributing factor is the higher size of the Computers training
set. Thus, we recommend using OptimAug AE when accurate
class autoencoders are available. In addition, OptimAug Proto
generates fewer outliers®. This can be explained by the fact
that we only trained shallow class autoencoders with minimal
hyperparameter tuning.

IV. CONCLUSION

OptimAug is a novel time series data augmentation method
that optimizes a multi-objective loss function to generate new
data samples. To our knowledge, this is the first effort to
use a simple optimization-based algorithm for the time series
augmentation task. Using several datasets from the UCR
time series classification archive, we showed that OptimAug
introduces variability to the original data space and extends
the boundaries within and between classes while respecting
the original class distributions, proving its superiority to nine
state-of-the-art baseline methods.

Acknowledgments This project has been supported in
part by funding from GEO Directorate under NSF awards

8 https://sites.google.com/view/OptimAug/home

330

#2204363, #2240022, and #2301397 and the CISE Directorate
under NSF award #2305781.

REFERENCES
[1]

B. K. Iwana and S. Uchida, “An empirical survey of data augmentation
for time series classification with neural networks,” PLOS ONE, vol. 16,
no. 7, p. 0254841, jul 2021.

H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,
C. A. Ratanamahatana, and E. Keogh, “The UCR Time Series Archive,”
oct 2018.

B. K. Iwana and S. Uchida, “Time Series Data Augmentation for Neural
Networks by Time Warping with a Discriminative Teacher,” apr 2020.

T. DeVries and G. W. Taylor, “Dataset Augmentation in Feature Space,”
feb 2017.

F. Petitjean, A. Ketterlin, and P. Gancarski, “A global averaging method
for dynamic time warping, with applications to clustering,” Pattern
Recognition, vol. 44, no. 3, pp. 678-693, mar 2011.

F. Petitjean, G. Forestier, G. 1. Webb, A. E. Nicholson, Y. Chen,
and E. Keogh, “Dynamic Time Warping Averaging of Time Series
Allows Faster and More Accurate Classification,” Proceedings - IEEE
International Conference on Data Mining, ICDM, vol. 2015-January, no.
January, pp. 470-479, jan 2014.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic Minority Over-sampling Technique,” Journal of
Artificial Intelligence Research, vol. 16, pp. 321-357, jun 2002.

H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive synthetic
sampling approach for imbalanced learning,” in Proceedings of the
International Joint Conference on Neural Networks, 2008, pp. 1322—
1328.

K. Kamycki, T. Kapuscinski, and M. Oszust, “Data Augmentation with
Suboptimal Warping for Time-Series Classification,” Sensors, vol. 20,
no. 1, p. 98, dec 2019.

G. Forestier, F. Petitjean, H. A. Dau, G. I. Webb, and E. Keogh, “Gener-
ating synthetic time series to augment sparse datasets,” in Proceedings
- IEEE International Conference on Data Mining, ICDM, vol. 2017-
Novem, dec 2017, pp. 865-870.

J. Yoon, D. Jarrett, and M. Van Der Schaar, “Time-series Generative
Adversarial Networks,” Tech. Rep., 2019.

C. Esteban, S. L. Hyland, and G. Ritsch, “Real-valued (Medical) Time
Series Generation with Recurrent Conditional GANs,” jun 2017.

G. Ramponi, P. Protopapas, M. Brambilla, and R. Janssen, “T-
CGAN: Conditional Generative Adversarial Network for Data Aug-
mentation in Noisy Time Series with Irregular Sampling,” nov 2018,
arXiv:1811.08295.

Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in Proceedings of the
International Joint Conference on Neural Networks, vol. 2017-May, jun
2017, pp. 1578-1585.

H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. A. Muller,
“Deep learning for time series classification: a review,” Data Mining and
Knowledge Discovery, vol. 33, no. 4, pp. 917-963, jul 2019.

A. Pasos Ruiz, M. Flynn, J. Large, -. M. Middlehurst, and -. A. Bagnall,
“The great multivariate time series classification bake off: a review and
experimental evaluation of recent algorithmic advances,” Data Mining
and Knowledge Discovery, vol. 35, pp. 401-449, 2021.

M. M. Breuniq, H. P. Kriegel, R. T. Ng, and J. Sander, “LOF,” ACM
SIGMOD Record, vol. 29, no. 2, pp. 93—-104, may 2000.

F. T. Liu, K. M. Ting, and Z. H. Zhou, “Isolation forest,” Proceedings
- IEEE International Conference on Data Mining, ICDM, pp. 413-422,
2008.

B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the Support of a High-Dimensional Distribu-
tion,” Neural Computation, vol. 13, no. 7, pp. 1443-1471, jul 2001.

[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

Authorized licensed use limited to: Utah State University. Downloaded on May 09,2025 at 06:40:02 UTC from IEEE Xplore. Restrictions apply.

