
2023 IEEE International Conference on Big Data (BigData)

979-8-3503-2445-7/23/$31.00 ©2023 IEEE 325

Multiloss-Based Optimization for Time Series Data

Augmentation

Omar Bahri, Peiyu Li, Soukaı̈na Filali Boubrahimi, Shah Muhammad Hamdi

Department of Computer Science, Utah State University, Logan, UT 84322

Email: {omar.bahri, peiyu.li, soukaina.boubrahimi, s.hamdi}@usu.edu

Abstract—Data augmentation plays an important part in the
current success of machine learning and deep learning models. In
particular, state-of-the-art architectures in the image recognition
field include data augmentation modules as an integral part.
However, there is still room for progress in the time series domain.
In this work, we introduce OptimAug, a novel method for time
series data augmentation. We deviate from the current state-
of-the-art comprised of random transformations, pattern mix-
ing, generative models, and decomposition methods, to develop
the first multiloss-based optimization method. We evaluate our
method with its two variants on datasets from the University of
California Riverside (UCR) archive and compare it to multiple
baseline algorithms from the literature.

Index Terms—Data Augmentation, Time Series Mining

I. INTRODUCTION

The volume of continuously collected and stored time series

data has reached staggering levels. However, processing this

raw data into clean and labeled datasets requires a lot of time

and effort. As pointed out by Iwana et al. [1], the University

of California Riverside (UCR) archive [2], one of the largest

and most commonly used collections of time series datasets,

contains only 12 datasets with a training size higher than

one thousand. In addition, time series datasets from real-life

domains might suffer from class imbalance due to the rarity

of certain events (most likely the desired positive class in the

context of classification). For example, the ECG200 dataset

from the UCR archive contains 133 normal heartbeats and

only 67 myocardial infarctions, and the Earthquakes dataset

contains 368 cases and only 93 positive ones. These problems

become particularly relevant when training data-hungry deep

learning architectures for both classification and forecasting

purposes. Therefore, data augmentation approaches aim to

increase the size of existing datasets by creating synthetic

data samples, allowing trained machine learning models to

expand their decision boundary by exploring new input space,

increasing their generalization ability, and reducing overfitting.

Data augmentation has proved to be the most effective in

the context of image recognition, from simple transformations

ingrained in state-of-the-art Convolutional Neural Network

(CNN) architectures such as cropping, rotating, mirroring,

scaling and color augmenting, to more elaborate autoencoder

and Generative Adversarial Networks (GAN) based models.

Efforts have also been made to develop data augmentation

strategies for time series. According to [1], the current litera-

ture can be categorized into the four following main categories:

random transformations, similar to the aforementioned image

techniques; pattern mixing where multiple instances from the

original dataset are combined to create a new one; generative

models that attempt to learn the feature distribution; and

decomposition that extracts specific features and use them to

generate new elements.

All the aforementioned methods aim to generate new sam-

ples that are distinct from the original ones and extend the

intra-class boundaries of the original samples but are still

within the original distribution. However, to our knowledge, no

previous effort has adopted a loss-based optimization strategy.

In this work, we develop OptimAug, a novel time series data

augmentation method that generates new data samples by

optimizing the trade-off between these desired criteria. For

this purpose, we propose a multi-objective loss function that

uses class prototypes or autoencoders to guide the generation

process. We show that OptimAug succeeds in generating high-

quality augmented data by testing it on a subset of datasets

from the UCR archive and comparing it to state-of-the-art time

series data augmentation methods from the four established

categories. The rest of this paper is organized as follows. In

Section II, we formalize the time series data augmentation

problem and describe our proposed algorithm. In Section III,

we perform an in-depth experimental evaluation, and discuss

results. We conclude with a summary in Section IV.

II. PROPOSED METHODOLOGY

A. Problem Definition

Time series data augmentation is performed in order to

extend existing datasets and to help machine learning models

identify unseen data samples. In particular, samples that fall

close to the class boundaries of the original training dataset

represent a challenge for both classification and regression

models. Therefore, as supported by the literature [1], [3], [4],

augmentation methods should add variability to the dataset

by creating samples that are distinct from the original ones

and that extend the boundaries separating the different dataset

classes. In particular, DeVries and Taylor [4] compared the

product of using the interpolation operator and the extrapo-

lation operator with their proposed augmentation method and

concluded that the data generated using the former is useless

and results in performance loss, whereas the data generated

using the latter improves the performance of trained classifiers.

Authorized licensed use limited to: Utah State University. Downloaded on May 09,2025 at 06:40:02 UTC from IEEE Xplore. Restrictions apply.

326

In addition, the generated data should be realistic, i.e. it should

still respect the class distribution of the original data [1], [3].

In this light, the problem of generating useful time se-

ries data samples from original dataset instances can be

formulated as follows. Consider a time series dataset D =
{TS1, TS2, ..., TSn} such that each sample TSi is assigned

to a class Cl ∈ {C1, C2, ..., CL} and represented by a vector

of T time steps TSi = [(TSi)1, (TSi)2, ...(TSi)T]. Let

fl be the probability distribution function of class Cl, i.e.,

{TSi | TSi ∈ Cl} ∼ fl. A synthetic sample TSnew generated

from TSi should fulfill:

(a) dist(TSnew, TSi) > ϵ, where dist is a distance function

and ϵ > 0. This ensures that the generated samples

introduce variability to the dataset.

(b) TSnew ∼ fl, i.e., TSnew is a sample from fl. This

ensures that the generated samples belong to the original

class distribution.

B. Approach

Following the data generation formalism defined above,

OptimAug generates a new time series sample TSnew from

an original dataset instance TSi ∈ D by minimizing a multi-

objective loss function L that considers (a) and (b).

L = −³La + ´Lb (1)

such that ³, ´ ∈]0, 1[and La is the distance between TSi

and TSnew computed as the L1-norm of their difference , with

(TSnew)init = TSi:

La = ||TSi − TSnew||L1
=

T
∑

t=0

∣

∣(TSi)t − TS(new)t

∣

∣ (2)

By minimizing −La, the objective function L encourages

the generation of samples that are distinct from the original

ones, hence increasing variability. Concerning Lb, OptimAug

implements the two following alternatives.

1) Prototype Loss: A class prototype is a data point that

is the most representative of the class elements. OptimAug

finds the prototype {Pr1, P r2, ..., P rL} of each class Cl

in {C1, C2, ..., CL} by applying Dynamic Time Warping

Barycenter Averaging (DBA) [5], [6] to its elements separately.

DBA is a global averaging technique that computes the average

of a set of sequences. Starting with an initial sequence, DBA

computes its squared distances to each sequence in the set.

Then, it iteratively modifies the initial sequence to minimize

the sum of squared distances. The distance measure used by

DBA is Dynamic Time Warping (DTW) defined in Equation 3.

DTW uses a dynamic programming approach to calculate the

optimal alignment between two sequences s1 and s2 of lengths

T1 and T2 . It creates a two-dimensional matrix D based on

Equation 3, where each element represents the accumulated

distance between two corresponding points in the sequences.

The goal is to find the path through this matrix with the

minimum total distance, which represents the best alignment.

Di,j = dist (s1, s2) + min {Di,j−1, Di−1,j , Di−1,j−1}
s.t : i ∈ [1, T1], j ∈ [1, T2]

(3)

where dist is a distance function, usually the L1-norm.

Let TSi ∈ Cl. To encourage the generated TSnew to remain

within the original class distribution fl of class Cl, the loss

term Lb in OptimAug is set to LPr defined in Equation 4 as the

L1-norm of the difference between TSnew and the prototype

Prl of Cl:

LPr = ||TSnew − Prl||L1
=

T
∑

t=0

|(TSnew)t − (Prl)t| (4)

2) Autoencoder Loss: The second alternative loss term

for keeping generated instances within the original class

distributions makes use of autoencoders. An autoencoder is a

neural network model made of two modules. The first module

consists in an encoder network that transforms the input into

a more compact latent representation in the form of lower

dimensional vector. Then, the second module acts as a decoder

by reconstructing it into the original input.

While autoencoders are usually trained to take advantage

of the latent space mapping, OptimAug uses autoencoders

by considering the reconstruction loss. If possible, separate

autoencoders {AE1, AE2, ..., AEL} are trained for each class

Cl in {C1, C2, ..., CL} using its elements only. Then, for

TSi ∈ Cl, TSnew is found by optimizing the loss function

in Equation 1 where Lb is set to LAE defined in Equation

5 as the L1-norm of the reconstruction loss of TSnew using

AEl as defined in Equation 5.

LAE = ||TSi −AEl(TSnew)||L1
=

T
∑

t=0

|(TSi)t −AEl(TSnew)t|

(5)

By minimizing LAE , OptimAug ensures that each generated

time series can be accurately reconstructed using the original

class autoencoder AEl, and therefore belongs to the original

class data distribution fl as represented by AEl.

Algorithm 1 describes the steps involved in creating an

augmented sample TSnew from an original dataset instance

TSi using OptimAug. In case a class-specific autoencoder is

provided, OptimAug uses the autoencoder loss. Otherwise,

it defaults to the prototype loss by computing DBA class

prototypes as described above. In what follows, we refer to

the prototype loss version of the algorithm as OptimAug Proto

and to the autoencoder version as OptimAug AE.

III. EXPERIMENTS

A. Baselines and Implementation Details

We compare the performance of OptimAug to 9 baselines:

• SMOTE: [7] interpolates two time series samples (a

random one and its nearest neighbor) to generate a new

one by computing their difference and multiplying it by

a random number between 0 and 1.

Authorized licensed use limited to: Utah State University. Downloaded on May 09,2025 at 06:40:02 UTC from IEEE Xplore. Restrictions apply.

327

Algorithm 1 OptimAug augmentation algorithm

Parameters: ³ and ´

Inputs: Sample TSi from the dataset D. Class Cl of TSi.

Autoencoder AEl trained on class l instances (optional).

Output: Augmented sample TSnew.

1: Initialize TSnew to the original sample TSi:

TSnew ← TSi

2: if AEl is provided as input then use autoencoder loss:

Lb ← LAE =
∑T

t=0 |(TSi)t −AEl(TSnew)t|
3: else Get class l prototype and use prototype loss:

Prl ← DBA(Dl) ▷ Algorithm 1. in [6]

where: Dl is the set of class Cl elements in D
Lb ← LPr =

∑T

t=0 |(TSnew)t − (Prl)t|
4: end if

5: Optimize the loss function L:

TSnew ← argminTSnew

(−³La + ´Lb)

where: La =
∑T

t=0

∣

∣(TSi)t − TS(new)t

∣

∣

6: return TSnew

• ADASYN: [8] an extension of SMOTE that introduces

adaptability to the synthetic sample generation process.

• guided warping: [3] warps the original pattern using

the alignment function of its DTW distance to a teacher

pattern. Random Guided Warping (RGW) selects the

teacher randomly from the dataset elements of the same

class of origin while Discriminative Guided Warping

(DGW) uses a directed one.

• SuboPtimAl Warped time series geNEratoR

(SPAWNER): [9] uses suboptimal time warping to

create new time series. It reduces the flexibility of DTW

by forcing the warping path through a random point. The

alignment path is then used to generate new patterns.

• weighted DTW Barycentric Averaging (wDBA): [10]

adapts DBA [5] for data augmentation. This is done

using one of three weighting schemes. Since the Average

Selected with Distance (ASD) which weights all dataset

elements of the original class according to their distance

to the original pattern had the best results in the original

paper, we use it as our benchmark.

• TimeGAN: [11] a Generative Adversarial

Networks(GAN) model that combines both encoder-

decoder models and adversarial training. It learns

the feature distribution by taking advantage of the

unsupervised adversarial loss and introducing a

supervised loss dictated by the original training data.

TimeGAN also develops an embedding model that

reduces the high-dimensionality of the adversarial

training space by acting as a two-way mapping between

features and latent representations.

• Recurrent Conditional GAN (RCGAN): [12] a GAN

architecture with two recurrent neural networks as the

discriminator and generator, conditioned with additional

information in order to generate labeled data. The condi-

tioning in RCGAN is done by augmenting the inputs at

each time step through concatenation.

• Time-Conditional Generative Adversarial Network

(T-CGAN): [13] originally proposed for irregularly sam-

pled time series data, it consists in a conditional GAN

architecture where the generator module is represented by

a deconvolutional network and the discriminator module

by a convolutional network.

We adopted the implementations provided by the authors

of [1]1, [12]2, and [13]3. For TimeGAN, we used the imple-

mentation available in YData Synthetic Python package4, and

for SMOTE and ADASYN, we used the implementations in

the imbalanced-learn Python package5. We used the default

configurations for all algorithms. The code for OptimAug

is available in the project’s GitHub repository6. In theory,

since all the loss terms described in Section II are fully

differentiable, any first-order optimization algorithm should

work for OptimAug. In the following experiments, we used

the Adam optimizer. To test OptimAug AE, we trained simple,

shallow class autoencoders consisting of two Long Short-Term

Memory (LSTM) layers, with the second layer outputting a

sequence with the original time series length, followed by

the same dense layer applied to each time step individually.

We used the Adam optimizer, the Scaled Exponential Linear

Unit (SELU) activation function for the LSTM layers, and

L2 regularization. The only tuning we performed was for

the learning rate and regularization, with the only purpose of

avoiding training problems such as the exploding gradient.

B. Evaluation Criteria

1) Performance Gain: To assess the performance of Opti-

mAug in comparison to the nine time series data augmentation

baselines, we compare the classification performance gained

from augmenting the original datasets to double the original

size with each method. For this purpose, we use two state-

of-the-art machine learning classifiers: (a) Residual Network

(ResNet), a deep neural network that was first introduced for

time series classification by Wang et al. [14] and that achieved

state-of-the-art performance for classifying UCR datasets [15]

and (b) RandOm Convolutional KErnel Transform (ROCKET)

which had the highest rank and the fastest running time

among all models benchmarked in an extensive time series

classification survey [16].

a) ResNet:: First, we split the original dataset into train-

ing, test, and validation splits and train a ResNet model for

1500 epochs using the Adam optimizer, following the original

configuration in [14]. During training, we save the weights

of the model that performed the best on the validation split

and use them to evaluate the classification performance on the

test set. For more robustness, we train three different models

with different initial weights for each dataset and report the

1https://github.com/uchidalab/time series augmentation
2https://github.com/ratschlab/RGAN
3https://github.com/gioramponi/GAN Time Series
4https://github.com/ydataai/ydata-synthetic
5https://imbalanced-learn.org/stable/
6https://github.com/omarbahri/OptimAug

Authorized licensed use limited to: Utah State University. Downloaded on May 09,2025 at 06:40:02 UTC from IEEE Xplore. Restrictions apply.

328

mean scores. Since the dataset might not be balanced across

all classes, we adopt the f1-score as classification measure.

Then, for each data augmentation method, we combine the

original training sets with the augmented data, and repeat the

above to train three new models. Finally, we compare the mean

f1-scores of the new models on the original test sets to the

previous ones to assess the of each augmentation method.

b) ROCKET:: We repeat the same procedure described

for ResNet. Since ROCKET training time is considerably

lower, we train each model ten times instead of three and

consider the mean f1-score for each method.

2) Novelty Detection: The augmented data samples have

to respect the original dataset distribution. To ensure that

OptimAug fulfills this condition, we introduce an evaluation

criterion in the form of outlier detection. For this purpose,

we adopt three novelty detection methods and apply them to

OptimAug and the baselines. The first method is the Local

Outlier Factor (LOF) [17] which computes the local density

deviation of every sample with reference to its neighboring

data points. The data samples with low density values are

detected as outliers. The second method is Isolation Forest

(IF) [18] which focuses on the distance of each data sample

to the entire dataset. The third method is the One Class

Support Vector Machine (OC-SVM) [19] method that learns

a hypersphere encompassing all original instances and flags

samples that lie outside as outliers. We apply each method to

the data generated by the augmentation baselines in this study

and rank them according to the percentage of detected outliers.

C. Illustrative Example: Cylinder-Bell-Funnel (CBF) Dataset

The Cylinder-Bell-Funnel (CBF) is a dataset from the UCR

archive that consists of simulated time series with 128 time

steps divided across three classes and split into a training set of

size 30 and a test set of size 900. The time series are generated

as standard normal noise plus a different offset term for each

class. We select CBF as a starting point for the evaluation

of OptimAug because of its simplicity and small number of

samples in the training set.

1) Performance Gain: As this is the first dataset we apply

OptimAaug to, we used it to tune the two hyperparameters ³

and ´ based on the ResNet performance gain. For this purpose,

we performed a non-exhaustive grid search and settled on

³ = 10−10 and ´ = 1.1 or ´ = 10−6 for OptimAug

Proto loss or OptimAug AE respectively. For the rest of the

experiments with different datasets in this paper, we kept the

same parameters values.

Given that the mean f1-score using ResNet on the original

CBF dataset –without data augmentation– is already high

with a value of 99.61%, the main purpose of this test is

to ensure that the data generated is not radically different

from the original dataset, which might lead to significant

performance loss. After adding the data samples generated

using OptimAug Proto, the mean f1-score slightly increased

to 99.67%, while Optimaug AE resulted in an non-significant

decrease to 99.41%. Table I shows that the only augmentation

method that significantly affects the model performance is

(a) SMOTE

(d) RGW

(c) SPAWNER(b) ADASYN

(e) DGW (f) wDBA

(i) TimeGAN(h) T-CGAN(g) RCGAN

(j) OptimAug Proto (k) OptimAug AE

Fig. 1: Visualizing the distributions of augmented data

samples (unfilled shapes) compared to the original ones

(filled shapes) on the PCA space for the CBF dataset. Each

color and shape represents a different class.

RCGAN. On the other hand, the data generated by DGW

achieved the highest increase with 99.85%.

2) Novelty Detection: As shown in Table I, the percent-

ages of instances detected as outliers by the three novelty

detection methods in the samples generated by OptimAug

are low compared to the data produced by the baselines. In

fact, OptimAug Proto is the only method that generated data

without outliers according to all the benchmarks. On the other

hand, 4.67% of Optimaug AE’s instances have been flagged by

the IF algorithm, a percentage slightly higher than SMOTE’s,

ADASYN’s, and wDBA’s, but still a good result given that

these methods rely on interpolation and generate samples close

to the original ones (as we discuss in the next section).

Table I also shows that, consistent with the previous perfor-

mance gain results, the data generated by RCGAN is largely

out of distribution. In addition, T-CGAN, TimeGAN, and to

a certain extent RGW, have also generated a considerable

number of outlier data points. This confirms the importance of

the novelty detection test to identify unrealistic data regardless

of whether or not it benefits classification or prediction.

3) Visualizing Data Distributions: We use Principal Com-

ponent Analysis (PCA) to project the distributions of the

datasets generated by OptimAug and the different baselines

on a 2D space and visualize them in Fig 1. The filled shapes

represent the original data and the unfilled shapes represent the

generated samples. The elements of each class are represented

by a unique color and shape.

Authorized licensed use limited to: Utah State University. Downloaded on May 09,2025 at 06:40:02 UTC from IEEE Xplore. Restrictions apply.

329

TABLE I: Mean ResNet F1-scores and percentage (%) of generated instances detected as outliers by the novelty detection

methods (CBF dataset)

Method No Aug SMOTE ADASYN wDBA SPAWNER RGW DWG RCGAN T-CGAN TimeGAN OptimAug Proto Optimaug AE
F1-Score 99.61 99.74 99.37 99.78 98.93 99.19 99.85 98.93 97.2 98.89 99.67 99.41

LOF N/A 0.00 0.00 0.00 0.00 0.00 0.00 21.00 0.00 0.00 0.00 0.00
IF N/A 1.67 1.29 0.67 7.33 7.67 5.33 57.08 58.21 72.00 0.00 4.67

OC-SVM N/A 3.00 0.00 0.00 7.00 30.00 13.00 50.00 50.00 33.00 0.00 0.00

wDBA DGW OptimAug Proto OptimAug AE

Class 1

Class 2

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: Visually inspecting augmented data samples generated from two different classes of the CBF dataset using wDBA in

(a) and (c), DGW in (b) and (f), Optimaug Proto in (c) and (g), and Optimaug AE in (d) and (h).

By looking at Fig. 1.g, Fig. 1.h, and Fig. 1.i, it is clear that

the samples generated by RCGAN, T-CGAN, and TimeGAN

are complete outliers, confirming the previous novelty detec-

tion results. As to SMOTE, ADASYN, and wDBA, the data

generated is too similar and close to the original. The reason

is that the three methods leverage direct interpolation between

dataset samples to create new ones. Therefore, as shown in,

Fig. 1.a, Fig. 1.b, and Fig. 1.f, they do not significantly

increase the variability and diversity of the dataset. This

also explains their good performance in the novelty detection

test (Table I). SPAWNER introduces more variability to the

dataset. However, a considerable number of samples generated

are out-of-distribution (at the center of the ’U’ outlined by

the dataset). RGW, DGW, and OptimAug do a good job in

extending the intra and inter-class boundaries while respecting

the overall dataset distribution. However, RGW and DGW

occasionally generate data points outside of the original class

distribution and sometimes totally belonging to other classes

(e.g. the green points close to the red area for RGW and

DGW, and the red point in the blue area for RGW). Therefore,

OptimAug generates more diverse samples, introduces more

variability to the dataset, extends the class boundaries in

different directions while remaining within the respective class

distributions, and should in theory be more beneficial for

classification tasks.

4) Visualizing Augmented Data Samples: Finally, we vi-

sually inspect a few augmented samples from two different

classes of the dataset and plot them in Fig.2. In each subfigure,

the two gray plots represent original dataset instances and the

two red ones represent the samples generated from them. We

compare OptimAug’s data to wDBA’s and DGW’s, since they

achieved the best performance in the novelty detection test and

performance gain test respectively. Fig 2. serves two purposes.

Firstly, it shows that the samples generated by OptimAug Proto

(Fig. 2.c and Fig. 2.g) and OptimAug AE (Fig. 2.d and Fig.

2.h) look (1) realistic, i.e. visually comparable to the original

instances from the same class, (2) different from the original

instances, thus introducing variability, and (3) different from

each other. Secondly, it confirms previous conclusions such

as the fact that wDBA produces similar data instances (the

augmented data plots in Fig. 2.a and Fig. 2.e are overlapping)

and that DGW occasionally generates outliers (notice the

horizontal segment in the middle of Augmented 1 in Fig. 2.b).

D. Evaluation on Different Time Series Datasets

In addition to the CBF dataset, we experiment on 15 more

datasets from the UCR time series classification archive [2],

spanning eight domains: simulated, traffic, spectro, device,

image, EOG, motion, and sensor data, to evaluate OptimAug

and compare it to the baseline algorithms. Due to space

restrictions, we only present the average ranks in Table II.

The detailed results and a summary of the datasets’ statistics

can be found in our project website7.

a) ResNet: Table II shows the average rank of each

augmentation method, in addition to the performance of the

original dataset (without data augmentation). While most

algorithms have resulted in scores higher than the original ones

on average, SPAWNER, RCGAN, and T-CGAN have actually

resulted in significant performance loss. OptimAug Proto and

OptimAug AE achieved the highest average performance gain

with average ranks of 3.63 and 3.56 respectively. The dataset

that benefited the most from the augmentation process was

Herring with a performance gain of 33%, from 53.87% to

71.43%, which was achieved by OptimAug Proto7.

b) Rocket: Table II shows that the Rocket models did

not benefit from the data augmentation process as much as

the ResNet models. By examining the average f1-scores7, it

is interesting to note that seven out of the nine time series

augmentation baselines have in fact hurt the classification

performance of the original datasets. Besides OptimAug, only

7https://sites.google.com/view/OptimAug/home

Authorized licensed use limited to: Utah State University. Downloaded on May 09,2025 at 06:40:02 UTC from IEEE Xplore. Restrictions apply.

330

TABLE II: Performance gain and outlier detection average ranks.

No Aug SMOTE ADASYN wDBA SPAWNER RGW DGW T-CGAN RCGAN TimeGAN Optimaug Proto OptimAug AE

ResNet Performance Gain 5.94 5.31 5.44 4.94 6.19 5.63 4.44 8.25 5.88 5.69 3.63 3.56

ROCKET Performance Gain 5.13 4.94 4.56 6.44 7.06 5.75 7.06 8.50 8.00 7.25 3.94 4.36

LOF Outlier Detection N/A 1.56 2.06 1.31 5.56 5.31 6.19 6.73 7.38 7.31 2.38 3.31

IF Outlier Detection N/A 3.44 4.06 2.00 6.06 6.81 7.63 7.75 8.06 8.00 3.19 6.00

OC-SVM Outlier Detection N/A 1.69 1.44 1.75 6.13 7.56 7.88 8.27 8.44 7.31 2.63 4.56

SMOTE and ADASYN resulted in performance gain on av-

erage. OptimAug Proto had the highest rank with a value of

3.94, followed by OptimAug AE with 4.38.

Table II also shows that the augmentation methods that

rely on interpolation to generate new samples (i.e. SMOTE,

ADASYN, and wDBA) produce the lowest amount of outliers.

As we discussed in section III.C, this stems from the fact that

these methods do not significantly increase the variability of

the datasets, and neither do they extend the inter- and intra-

class boundaries. OptimAug Proto and OptimAug AE rank

right after the three aforementioned methods according to the

three novelty detection algorithms. Therefore, OptimAug is

the algorithm that introduces the most variability with the

minimum number of outliers.

E. OptimAug Proto or OptimAug AE?

Following the results of the previous experiments, it seems

that OptimAug Proto and OptimAug AE perform at a sim-

ilar level. Therefore, when should either of them be used?

Going back to the mean f1-scores8 and focusing on the

Computers and Herring datasets, we note that OptimAug AE

outperforms OptimAug Proto on the former and vice-versa

on the latter. Upon inspecting the class autoencoders used by

OptimAug AE, we noticed that the Computers ones produce

significantly more accurate reconstructions of the test set

instances compared to the Herring autoencoders. One apparent

contributing factor is the higher size of the Computers training

set. Thus, we recommend using OptimAug AE when accurate

class autoencoders are available. In addition, OptimAug Proto

generates fewer outliers8. This can be explained by the fact

that we only trained shallow class autoencoders with minimal

hyperparameter tuning.

IV. CONCLUSION

OptimAug is a novel time series data augmentation method

that optimizes a multi-objective loss function to generate new

data samples. To our knowledge, this is the first effort to

use a simple optimization-based algorithm for the time series

augmentation task. Using several datasets from the UCR

time series classification archive, we showed that OptimAug

introduces variability to the original data space and extends

the boundaries within and between classes while respecting

the original class distributions, proving its superiority to nine

state-of-the-art baseline methods.

Acknowledgments This project has been supported in

part by funding from GEO Directorate under NSF awards

8 https://sites.google.com/view/OptimAug/home

#2204363, #2240022, and #2301397 and the CISE Directorate

under NSF award #2305781.

REFERENCES

[1] B. K. Iwana and S. Uchida, “An empirical survey of data augmentation
for time series classification with neural networks,” PLOS ONE, vol. 16,
no. 7, p. e0254841, jul 2021.

[2] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,
C. A. Ratanamahatana, and E. Keogh, “The UCR Time Series Archive,”
oct 2018.

[3] B. K. Iwana and S. Uchida, “Time Series Data Augmentation for Neural
Networks by Time Warping with a Discriminative Teacher,” apr 2020.

[4] T. DeVries and G. W. Taylor, “Dataset Augmentation in Feature Space,”
feb 2017.

[5] F. Petitjean, A. Ketterlin, and P. Gançarski, “A global averaging method
for dynamic time warping, with applications to clustering,” Pattern

Recognition, vol. 44, no. 3, pp. 678–693, mar 2011.
[6] F. Petitjean, G. Forestier, G. I. Webb, A. E. Nicholson, Y. Chen,

and E. Keogh, “Dynamic Time Warping Averaging of Time Series
Allows Faster and More Accurate Classification,” Proceedings - IEEE

International Conference on Data Mining, ICDM, vol. 2015-January, no.
January, pp. 470–479, jan 2014.

[7] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic Minority Over-sampling Technique,” Journal of

Artificial Intelligence Research, vol. 16, pp. 321–357, jun 2002.
[8] H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive synthetic

sampling approach for imbalanced learning,” in Proceedings of the

International Joint Conference on Neural Networks, 2008, pp. 1322–
1328.

[9] K. Kamycki, T. Kapuscinski, and M. Oszust, “Data Augmentation with
Suboptimal Warping for Time-Series Classification,” Sensors, vol. 20,
no. 1, p. 98, dec 2019.

[10] G. Forestier, F. Petitjean, H. A. Dau, G. I. Webb, and E. Keogh, “Gener-
ating synthetic time series to augment sparse datasets,” in Proceedings

- IEEE International Conference on Data Mining, ICDM, vol. 2017-
Novem, dec 2017, pp. 865–870.

[11] J. Yoon, D. Jarrett, and M. Van Der Schaar, “Time-series Generative
Adversarial Networks,” Tech. Rep., 2019.

[12] C. Esteban, S. L. Hyland, and G. Rätsch, “Real-valued (Medical) Time
Series Generation with Recurrent Conditional GANs,” jun 2017.

[13] G. Ramponi, P. Protopapas, M. Brambilla, and R. Janssen, “T-
CGAN: Conditional Generative Adversarial Network for Data Aug-
mentation in Noisy Time Series with Irregular Sampling,” nov 2018,
arXiv:1811.08295.

[14] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in Proceedings of the

International Joint Conference on Neural Networks, vol. 2017-May, jun
2017, pp. 1578–1585.

[15] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. A. Muller,
“Deep learning for time series classification: a review,” Data Mining and

Knowledge Discovery, vol. 33, no. 4, pp. 917–963, jul 2019.
[16] A. Pasos Ruiz, M. Flynn, J. Large, ·. M. Middlehurst, and ·. A. Bagnall,

“The great multivariate time series classification bake off: a review and
experimental evaluation of recent algorithmic advances,” Data Mining

and Knowledge Discovery, vol. 35, pp. 401–449, 2021.
[17] M. M. Breuniq, H. P. Kriegel, R. T. Ng, and J. Sander, “LOF,” ACM

SIGMOD Record, vol. 29, no. 2, pp. 93–104, may 2000.
[18] F. T. Liu, K. M. Ting, and Z. H. Zhou, “Isolation forest,” Proceedings

- IEEE International Conference on Data Mining, ICDM, pp. 413–422,
2008.

[19] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the Support of a High-Dimensional Distribu-
tion,” Neural Computation, vol. 13, no. 7, pp. 1443–1471, jul 2001.

Authorized licensed use limited to: Utah State University. Downloaded on May 09,2025 at 06:40:02 UTC from IEEE Xplore. Restrictions apply.

