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Abstract

Sequence-based neural networks can learn to make accurate predictions from large biological 

datasets, but model interpretation remains challenging. Many existing feature attribution methods 

are optimized for continuous rather than discrete input patterns and assess individual feature 

importance in isolation, making them ill-suited for interpreting non-linear interactions in 

molecular sequences. Building on work in computer vision and natural language processing, we 

developed an approach based on deep learning - Scrambler networks - wherein the most salient 

sequence positions are identified with learned input masks. Scramblers learn to predict Position-

Specific Scoring Matrices (PSSMs) where unimportant nucleotides or residues are scrambled by 

raising their entropy. We apply Scramblers to interpret the effects of genetic variants, uncover non-

linear interactions between cis-regulatory elements, explain binding specificity for protein-protein 

interactions, and identify structural determinants of de novo designed proteins. We show that 

Scramblers enable efficient attribution across large datasets and result in high-quality explanations, 

often outperforming state-of-the-art methods.

Deep Neural Networks have successfully been applied to a diverse set of biological 

sequence prediction problems, including predicting transcription factor binding [1, 2, 3, 

4], chromatin modification and accessibility [5], RNA processing [6, 7, 8, 9], translation 

regulation [10] and protein structure [11, 12]. Neural networks excel at learning complex 

relationships from large datasets without requiring much tuning, but interpreting their 

predictions is challenging because the learned regulatory logic is embedded deep within 

the network layers. Nevertheless, interpretability is necessary to connect network predictions 
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to established biology, learn new regulatory rules or validate sequence designs [13, 14, 15, 

16, 17, 18, 19, 20, 21].

Nonlinear interactions are abundant between biological sequence features. Such 

dependencies make it necessary to consider groups of features and their surrounding 

context when interpreting a model prediction instead of independently evaluating each 

feature in isolation. However, many current neural network attribution methods rely on local 

perturbations, limiting their ability to identify such relationships. For example, 5’ UTRs 

can contain multiple upstream start codons (uAUGs) [22, 23, 24] preceding the primary 

start. Which AUG is chosen as the start of translation depends on the extent to which the 

surrounding context – e.g., competing AUGs – represses its usage. Two nearby uAUGs 

may even “hide” each other, as each AUG is capable of repressing translation initiation 

at the primary start independently. In-silico saturation mutagenesis – which systematically 

exchanges one nucleotide and approximates its importance by predicted functional change – 

would incorrectly conclude both uAUGs are irrelevant: Neither uAUG would be identified 

as repressive, as knocking down only one would not change the prediction. Other local 

approximation methods face similar problems, such as those basing their estimation on 

gradients [25, 26, 27, 28, 29, 30] or local linear models [31].

In this paper, we introduce a feature attribution approach tailored for biological sequence 

predictors and based on previous work in learning interpretable input masks [32, 33, 34, 35, 

36, 37, 38, 39, 40, 41]. We train a deep neural network, referred to as the Scrambler, to 

learn masks that include only the smallest set of features in an input sequence necessary to 

reconstruct the original prediction. A mask that fulfills the inclusion objective overcomes the 

issues with local approximation mentioned above. For example, such a mask would learn to 

include one of the uAUGs from the 5’ UTR example to preserve the repressive prediction. In 

a complementary formulation, we optimize masks to occlude the smallest set of features that 

destroy the prediction. These features may overlap with those identified by inclusion masks 

but are not necessarily identical; for the 5’ UTR example, the occlusion mask would need 

to occlude both of the uAUGS to destroy the repressive prediction. In general, for features 

involved in an OR-relationship, inclusion would identify one feature while occlusion would 

identify all. Conversely, for AND-like features, inclusion would identify all features and 

occlusion just one.

The earliest mask-based attribution methods masked inputs by either fading or blurring 

[32, 34], which is ill-suited for one-hot encoded sequence patterns. More recent methods 

replace masked input features with random samples or counterfactual values to keep 

masked inputs in the distribution of valid predictor patterns [37, 39]. However, these 

recent methods are based on individually optimizing each mask rather than learning a 

parametric model. Here, we combine ideas from deep learning with probabilistic masking 

to interpret biological sequences. Specifically, Scramblers learn to output Position-Specific 

Scoring Matrices (PSSMs) with minimal (inclusion) or maximal (occlusion) conservation 

such that discrete samples either reconstruct or destroy the prediction. A sequence position 

is ‘masked’ by raising the entropy, or temperature, of the underlying feature distribution 

such that samples sent to the predictor become less informative, and the Scrambler is trained 

by backpropagation using a gradient estimator.
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We show that Scramblers avoid overfitting to spurious per-example signals, which can be 

problematic for model-free methods. Furthermore, using a parametric masking model allows 

us to interpret new patterns more efficiently than per-example masking methods. Scramblers 

are also conceptually different from methods such as L2X [35] and INVASE [36], which 

mask input patterns by replacing features with zeros while simultaneously training a new 

ad-hoc predictor model that attempts to reconstruct the original predictions. Re-training the 

predictor is required since the zero-based masks push the patterns out-of-distribution. In 

contrast, Scramblers directly reconstruct the original predictor model without re-training, 

and keep patterns in distribution with a sample-based mask. This allows us to efficiently 

train the Scrambler on a smaller, or more narrowly defined, dataset than the original 

predictor and still obtain high-quality interpretations. We show in our benchmarks that 

L2X and INVASE produce lower-quality interpretations than Scramblers when trained on 

reduced datasets ranging in size from 10, 000-40, 000 sequences, and they converge poorly 

when trained on the full data. See Supp. Table 1 for a summary comparison of all masking 

methods.

In addition to introducing probabilistic masks to biological sequences, we develop several 

improvements for mask-based interpretation. For example, Scramblers can discover multiple 

salient feature sets within a single input pattern using mask dropout- and bias layers, 

enabling users to specify features to include or exclude in the solution at inference time. In 

addition to finding reconstructive features, we alternatively optimize the Scrambler to find 

enhancing or repressive features that either maximize or minimize the prediction. We also 

explore different architectures for interpreting pairwise predictors in the context of protein-

protein interaction. Finally, to reduce interpretation artifacts for predictors where input 

patterns contain a highly variable number of features, we apply per-example optimization 

as a fine-tuning step to the initial Scrambler outputs. Throughout the paper, we show that 

Scramblers learn meaningful feature attributions for several visual- and sequence-predictive 

tasks, including RNA regulation, protein-protein interaction, and protein tertiary structure, 

often outperforming other interpretation methods.

Results

Scrambling Networks

The Scrambler architecture is illustrated in Fig. 1a (left). Given a differentiable pre-trained 

predictor P and a one-hot encoded input pattern x ∈ {0, 1}N×M (representing an N-length 

sequence), we let a trainable network S called the Scrambler predict a set of real-valued 

importance scores S(x) ∈ (0, ∞]N. These scores are used in Eq. 1 below to produce a 

probability distribution which interpolates between the input pattern x and a non-informative 

background distribution b ∈ ℝN × M (Fig. 1b-c).

xS = σ log b + x × S
.
(x) (1)
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Here, σ denotes the softmax σ(l)ij =
e
lij

∑k = 1
M

e
lik

 and S
.
(x) ∈ (0, ∞]N × M represent the 

importance scores S(x) which have been broadcasted at position i to all channels j. In all 

experiments, the Scrambler S is a residual network of dilated convolutions (Extended Data 

Fig. 1a-c) [42]. The output xS becomes a parameterization of a probability distribution of 

the input. Specifically, xS is a set of N categorical softmax-nodes, or a PSSM. The role of b

is to keep samples from this PSSM in distribution and along the manifold of valid patterns, 

and is here taken as the mean input pattern across the training set (Eq. 10). When S(x)i is 

close to 0, xS, i becomes b i (the background distribution) and when S(x)i is close to ∞, xS, i

becomes xi (the original input). S(x)i thus defines the inverse feature sampling temperature 

at position i in the PSSM.

K discrete samples xS
(k)

 drawn from xS are passed to the predictor P and gradients 

are backpropagated to S using either Softmax Straight-Through estimation [43] or the 

Gumbel distribution [44]. By comparing the predictions P(xS
(k)) of the scrambled input 

samples to the original prediction P(x), we train the Scrambler S to minimize a predictive 

reconstruction error subject to a conservation penalty which enforces high entropy. We 

refer to this formulation as the Inclusion-Scrambler, as it must learn to include features 

to reconstruct the original prediction while maintaining high entropy of xS. Alternatively, 

we can train S to find the smallest set of features in x to randomize (i.e., maximizing the 

conservation of xS) to maximally perturb P(xS
(k)) from P(x) (Fig. 1a, right). We refer to 

this inverse formulation as the Occlusion-Scrambler. For both formulations, we define the 

reconstruction error as the KL-divergence KL[P(xS
(k))‖P(x)] between scrambled and original 

predictions. To minimize the conservation of xS while still keeping samples in distribution, 

we optimize the KL-divergence KL[b ‖xS] between xS and the background distribution b . 

We control the expected entropy by fitting KL[b ‖xS] to a target conservation value tbits 

rather than minimizing or maximizing it unbounded. The full training objective for the 

Inclusion-Scrambler is given in Eq. 2.

min
S

1
K

∑
k = 1

K

KL[P(xS
(k))‖P(x)] + λ ⋅ tbits −

1
N

⋅ KL[b ‖xS]
2

(2)

We compare several different attribution methods in our experiments. The baseline method 

used for comparison, Perturb, exchanges the categorical value of one letter or pixel at 

a time and estimates the absolute value in predicted change as the importance score. 

Comparisons are made against Perturb (baseline), Gradient Saliency [25], Guided Backprop 

[27], Integrated Gradients [28], DeepLIFT [29] (using RevealCancel for MNIST and 

Rescale from DeepExplain [45] for the remaining tasks), SHAP DeepExplainer [30], 

the preservation/perturbation methods of Fong et al. (TorchRay) [33], Dabkowski et al. 

(Saliency Model) [34] and Carter et al. (‘SIS’) [39] and, finally, the feature selection 

methods L2X [35] and INVASE [36]. For comparison, we also test a version of the 
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Scrambler with a zero-based masking operator (referred to as Zero Scrambler). See Methods 

for a detailed description of how each method was used and which task(s) were tested. Note 

that for methods that learn ad-hoc interpreter models (e.g., Scramblers, L2X, INVASE), we 

train the ad-hoc models on a reduced data set of ~ 10, 000-40, 000 examples (depending on 

the task), in contrast to the 100, 000s to millions of examples the original predictor models 

were trained on. However, in supplemental analyses we also attempted to train L2X and 

INVASE on the full data.

Finding Salient Pixels in MNIST Images

We first used the Scrambler to visualize important regions in binarized images of the two 

MNIST digits ‘3’ and ‘5’ (Fig. 2a). The predictor was a convolutional neural network (CNN) 

[46] trained to discriminate between all ten digits. We trained one Inclusion-Scrambler (tbits 

= 0.005, λ = 500) and one Occlusion Scrambler (tbits = 0.3, λ = 500). We performed 

two benchmark comparisons to other attribution methods (Fig. 2b, Extended Data Fig. 

2a): first, based on the importance scores of each method, we replaced all but the top 

X% most important pixels with random samples from the background and measured the 

KL-divergence between the predictions of the original and randomized test set images. 

Next, we inversely tested how well these top-ranked features perturbed the prediction by 

replacing only the top X% pixels with random samples. The Scramblers were superior in 

each benchmark, as the median KL-divergence was the lowest and highest, respectively. 

In addition to the upper portions of the digits themselves, the Scramblers identified open 

regions adjacent to the digits as important, indicating that the classifier relies on both 

foreground and background pixels when making its prediction. For example, the open 

background region in the top left quadrant of digit ‘3’ is a unique distinguishing feature 

shared among all examples of ‘3’. These salient ‘background’ features are identified by 

methods such as DeepLIFT and DeepSHAP, but not by other methods that only identify 

foreground pixels.

Identifying Alternate Feature Sets with Dropout and Bias Layers—There are 

often multiple feature sets a classifier can use within a single input pattern to make 

its prediction. Scramblers can be trained to select these alternate salient feature sets 

dynamically using a dropout pattern D which is used to mask some positions in the predicted 

scores S(x). Similarly, bias patterns T are used to encode specific positions to be included 

in the solution. Importantly, the Scrambler S also receives D and T as additional input, 

allowing the network to learn to output alternate (or additional) scores conditioned on which 

positions were dropped or enforced (Fig. 2c, Extended Data Fig. 2b-d; see Methods for 

details). During training, we sample random dropout- and bias patterns. At attribution time, 

we supply specifically crafted patterns to exclude or enforce in the predicted solution to 

enable targeted feature attributions.

For the MNIST classifier, bias patterns allow us to explore features beyond the initial 

salient pixels found by default (Fig. 2d). Conversely, we can use dropout patterns to focus 

attribution to pixels in a subsection of an image to discover new salient features (Fig. 2e). 

In Extended Data Fig. 2e-f, we trained a Scrambler with tunable divergence against the 
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background b , demonstrating how the entropy of the solution can be set dynamically at 

attribution time, thus providing solutions at multiple scales of tbits with a single network.

The cis-Regulatory Code of Alternative Polyadenylation

Next, we used Scramblers to interpret regulatory sequence elements in the 3’ untranslated 

region (UTR) of pre-mRNA (Fig. 3a). Specifically, using APARENT [7] – a CNN capable of 

predicting cleavage and polyadenylation from primary sequence – we trained an Inclusion-

Scrambler to reconstruct isoform predictions for a subset of the original APARENT training 

data (tbits = 0.25, λ = 1). Since we anticipated important polyadenylation features like RNA 

binding protein (RBP) motifs to consist of short subsequences, we regularized the Scrambler 

by fixing the final layer of the network to a Gaussian filter to encourage the selection of 

contiguous nucleotides for masking (reminiscent of a technique proposed by Fong et al. 

[33]). We found that the Inclusion-Scrambler learned to recognize known regulatory binding 

factors associated with alternative polyadenylation (Extended Data Fig. 3a), such as CFIm, 

CstF, HNRNPL, ENOX1, PABPN1, HuR, and RBM4 [47, 48, 49, 50]. When re-training 

the Scrambler under the Occlusion objective, the network learned patterns that resulted in 

more extreme perturbations without the fixed Gaussian filter than with it (Extended Data 

Fig. 3b-c). However, when inspecting these patterns, they clearly exploited the importance of 

scattered T’s in favor of knocking out biologically relevant motifs (Extended Data Fig. 3d).

The Scrambler outperformed other attribution methods when reconstructing the isoform 

predictions of the APARENT model using only the top-ranked nucleotides and replacing the 

remaining positions with random letters (Fig. 3b, Extended Data Fig. 3e-f; Median KL = 

0.32 when keeping the 5% most important features). We next tested how well the discovered 

features generalized to other APA-predictive models. To this end, we again perturbed 

the sequences by keeping only the 5% most important nucleotides when interpreting 

APARENT, but we now tested how well these features reconstructed predictions made by 

DeeReCT-APA, a model trained on Mouse 3’-end sequencing data [51] (Extended Data 

Fig. 3f). The Scrambler reconstructed the DeeReCT-APA predictions the most (Spearman 

r = 0.67 when keeping the 5% most important features, n = 1, 737), but was closely 

followed by DeepLIFT (r = 0.65) and Integrated Gradients (r = 0.66). Finally, we trained 

a deeper version of the Scrambler with 20 residual blocks instead of 4 blocks. While the 

deeper Scrambler reconstructed APARENT predictions even better (Median KL = 0.28), the 

performance marginally decreased on DeeReCT-APA (r = 0.65) (Extended Data Fig. 3f).

Interpreting Genetic Variants of APA—We can interpret the functional impact of 

mutations by running the Scrambler on wild-type and variant human polyadenylation 

signals. For example, the Scrambler correctly detects the creation of a cryptic CstF binding 

site caused by a deleterious variant (108C>T) in the F2 (Prothrombin) gene, which is known 

to cause or contribute to Thrombophilia due to increased polyadenylation efficiency (Fig. 

3c) [52, 53, 54]. The detected CstF motif is qualitatively better separated from the Scrambler 

sequence logo’s background compared to Perturbation. Furthermore, the Scrambler appears 

highly sensitive in detecting loss of RBP binding motifs due to single nucleotide variants for 

several disease-associated human polyadenylation signals [55, 56, 57, 58] (Extended Data 

Fig. 3g).

Linder et al. Page 6

Nat Mach Intell. Author manuscript; available in PMC 2022 August 12.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Reconstructive, Enhancing and Repressive Motifs—Interestingly, with as little as 

0.25 out of 2.0 target bits of mean conservation in the scrambled sequences, there was a very 

high correlation between scrambled and original sequence predictions from the APARENT 

test set (R2 = 0.85; Fig. 3d). In other words, a small set of regulatory features in each 

polyadenylation signal explained most of the variation. Next, we altered the Scrambler 

training objective to find the smallest set of features that maximize or minimize a prediction 

rather than reconstructing it (see Methods for details). We found that the Scrambler could 

partition cis-regulatory elements within polyadenylation signals into enhancing (e.g., CFIm, 

HuR, Cstf) and repressive motifs (e.g., ENOX1, RBM4, PABPN1), in agreement with the 

known function for these motifs and associated RBPs (Fig. 3e, Extended Data Fig. 3h).

The Rules of Translation Efficiency in the 5’ UTR

The translation efficiency of mRNA is controlled by complex regulatory logic in its 5’ UTR. 

For example, an in-frame (IF) start and stop codon create an IF upstream open reading frame 

(uORF), which typically represses translation, while neither an IF upstream start or upstream 

stop codon individually represses translation (NAND logic). Sequences with multiple IF 

starts and stops can further complicate translational logic by creating NAND-OR hybrid 

functions with overlapping IF uORFs.

We trained an Inclusion-Scrambler to reconstruct the mean ribosome load (MRL – a proxy 

for translation efficiency) of 10, 000 5’ UTRs as predicted by the CNN Optimus 5-Prime 

(Fig. 4a) [10]. To test how well attribution methods detect multiple regulatory elements, we 

generated synthetic 5’ UTR test sets with one (1 IF start, 1 IF stop), two (1 IF start/2 IF 

stops or 2 IF starts/1 IF stop), or four (2 IF starts/2 IF stops) overlapping IF uORFs. We 

then measured to what extent the most important nucleotides of each method corresponded 

to the IF start and stop positions (Fig. 4b, Extended Data Fig. 4a-b). In the simplest case of 

a single start and stop, nearly all methods had high accuracy for recovering these elements. 

However, as the number of IF uORFs increased, the Scrambler often outperformed other 

methods considerably. An example 5’ UTR with multiple IF uORFs is shown in Fig. 4c; 

here, the multiple stops effectively hide one another from many local attribution methods. 

Furthermore, L2X, which trains a new predictor model simultaneously as the interpreter is 

learned, overfits by only selecting one of the nucleotides in each of the ‘ATG’ and ‘TAG’ 

motifs (hence the low accuracy). The results did not improve for L2X even when trained on 

the full 5’ UTR dataset (Extended Data Fig. 4c).

Interpreting Genetic Variants in the 5’ UTR—The combinatorial nature of out-of-

frame start codons (OOF uAUGs) and IF uORFs makes variant interpretation in human 5’ 

UTRs complicated [22, 23, 24]. In Fig. 4d, we interpret a variant, rs1160558441, which 

creates an OOF uAUG that Optimus 5-Prime predicts to be functionally silent. The OOF 

uAUG is created within an IF uORF, which hides its effect, as either element alone is 

sufficient to repress translation. Therefore, the variant sequence is not interpretable by 

Perturbation as the uAUGs are not found. A Scrambler trained with a low entropy penalty 

(tbits = 0.125, λ = 1) detects both possible interpretations. With a higher penalty (λ = 10), 

the Scrambler must find a smaller set of salient features and marks only the OOF uAUG as 

important, which is sufficient to explain the repression. However, rather than just identifying 
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‘ATG’, the Scrambler identifies the subsequence ‘ATGA’, even though the trailing adenine 

is not important for the explanation. This occurs because the number of salient features is 

highly variable in any given 5’ UTR, and so a Scrambler trained for a target entropy tbits 

may ‘over-interpret’ some examples.

Per-example Fine-tuning Removes Interpreter Artifacts—To overcome issues with 

over-interpretation for datasets with a highly variable number of important features, we 

apply a per-example fine-tuning step: starting with S(x), we optimize new scores s 

by gradient descent which are specific to x and remove excessive features of S(x) by 

maximizing the entropy of the PSSM unbounded. Specifically, s is optimized to subtract 

scores from S(x) in order to maximize the PSSM entropy KL[b ‖xs] unbounded, while 

still minimizing the predictive reconstruction error KL[P(xs
(k))‖P(x)]. As seen with the 

variant example (Fig. 4d), fine-tuning of the Low entropy-penalty Scrambler removes the 

trailing ‘A’. We also compared the Scrambler with and without fine-tuning to interpret 

silent uORF-altering and gain-of-function mutations (Extended Data Fig. 4d). Importantly, 

when compared on one of the benchmarks of Fig. 4b, we find that applying per-example 

fine-tuning to the pre-trained Scrambler scores produces more robust attribution results than 

individual per-example optimization of importance scores (Extended Data Fig. 4e). This 

is likely because the latter approach can become stuck in local minima or produce poorly 

generalizable interpretations, essentially ‘overfitting’ to spurious predictor signals.

Dropout for Alternate Open Reading Frame Discovery—Sequences with multiple 

IF uORFs are examples of patterns with redundant salient feature sets. By adding an 

importance score dropout layer to the Inclusion-Scrambler and training it on random dropout 

patterns, we obtain a model capable of dynamically proposing different IF uORFs as 

attributions (Extended Data Fig. 4f-g). Without dropout and a low entropy penalty (tbits 

= 0.125, λ = 1), the Scrambler marks all IF starts and stops (i.e. all IF uORFs) as important 

in the example shown in Extended Data Fig. 4f. However, with a higher penalty (λ = 10), 

the Scrambler finds a smaller interpretation with only one IF uORF. When using dropout 

patterns to exclude either of the IF starts and stops, the Scrambler dynamically finds the 

alternate operands.

The Determinants of Protein-Protein Interactions

Here we apply Scramblers to interpret predicted interactions for pairs of proteins. This 

can be challenging, as proteins are defined along a narrow manifold of stably folded 

sequences. Any interpretation method must ensure that masked or perturbed sequences 

stay in distribution for predictions to remain accurate. We focused on a set of rationally 

designed coiled-coil heterodimers, where binding specificity is induced by hydrogen bond 

networks (HBNets) at the dimer interface [59, 60]. Using approximately 180, 000 designed 

heterodimers as positive training data and randomly paired monomers as a negative set, we 

trained a recurrent neural network (RNN) to predict dimer binding (Fig. 5a, Extended Data 

Fig. 5a; AUC = 0.96 on held-out test data, n = 26, 459). These coiled-coil proteins follow 

a conserved heptad repeat structure, but binder sequences of different lengths have their 

heptad motifs shifted by different offsets. Consequently, when training Scrambler networks 
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on this data, we used a separate background distribution for each sequence length. A test set 

of 478 designed heterodimers was used to investigate how well different attribution methods 

could capture HBNet positions and residues important for complex stability.

Unlike the DNA attribution tasks above, each dimerization prediction involves two input 

sequences. Consequently, there are multiple ways in which to define the Scrambler 

architecture. We first tested a joint Occlusion-Scrambler (Fig. 5b; left), which receives 

both sequences as input and can learn to recognize partner-specific binding features. After 

training, this architecture identified a subset of HBNet positions and hydrophobic residues 

at the interface necessary for binding specifically to the cognate partner (Fig. 5d). We also 

tested a siamese architecture, which saw only one input sequence at a time and was therefore 

constrained to learn global, partner-independent features (Fig. 5b; right). This architecture 

learned to identify nearly all HBNets, as these are the best determinants of binding 

specificity to any possible partner (Fig. 5c-d). We compared these Scrambler architectures 

to other attribution methods based on how much the positions with largest absolute-valued 

score either preserved or perturbed the RNN predictions (Fig. 5e; tbits = 0.25, Inclusion; tbits 

= 2.4, Occlusion). The siamese Inclusion-Scrambler and joint Occlusion-Scrambler had the 

best (lowest and highest) median KL-divergence for these tasks.

Importance Scores Reflect Dimer Stability and Hydrogen Bonds—Next, using 

in-silico Alanine scanning, we estimated the mean difference in ΔΔG between the original 

and mutated dimers for the eight most important residues per binder and attribution method 

[61]. We also compared the methods by their ability to discover HBNet positions based 

on their importance scores. We found that the joint Occlusion-Scrambler identified residues 

that destabilized the complex the most (mean difference ΔΔG = 2.20, Fig. 5f), while the 

siamese model discovered significantly more HBNet positions (AUPRC = 0.61). These 

results support the idea that the siamese architecture learned discriminative features for 

both interacting and non-interacting pairs – HBNet residues – while the joint model learned 

features important for positive interaction, such as hydrophobic residues at the interface. 

While Integrated Gradients and DeepSHAP perturbed the RNN predictions more when 

considering only their positive-valued scores, the Scramblers had better ΔΔG scores and 

HBNet discovery rates (Extended Data Fig. 5b). This suggests that using a parametric 

masking model results in more generalizable features by overcoming spurious RNN signals. 

We performed additional comparisons to other attribution methods in Extended Data Fig. 

5c-d and 6. We found that the temperature-based masking operator of Eq. 1 consistently 

outperforms other masks, that model-based interpretations were better than per-example 

masking approaches, and that methods such as L2X and INVASE failed to converge when 

trained on the full set of binders.

Finally, we tested the Scrambler against different versions of the ‘hot-deck’ SIS method 

(Extended Data Fig. 5e) [39, 40]: For each iteration of SIS, we sampled a number of 

background sequences and used these to mask de-selected features. The mean sample 

prediction was used as the function value. Similarly, we varied the number of Gumbel 

patterns sampled from the Scrambler PSSM during training (K in Eq. 2). The Scrambler 

operated well with few (≥ 4) samples and consistently outperformed SIS with 32 samples, 

both in predictive reconstruction and ground-truth comparisons. Additionally, the total 
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number of predictor queries required to interpret the entire dataset with comparable quality 

was ~ 70 times lower than SIS. Interestingly, using a simple masking scheme such as mean 

features resulted in poor interpretations for the dimer RNN predictor.

Interpreting Protein Structure Predictions

Recent advances in deep learning have made homology-free protein structure prediction 

possible. Such neural networks use the primary sequence and corresponding multiple 

sequence alignment (MSA) as input to predict three-dimensional atom-atom distances and 

backbone torsion angles [11]. Here, we apply Scramblers to the predictor trRosetta [12] 

to detect important sequence features for predicted structures. Since it is computationally 

heavy to query the predictor – and would likely require many iterations to train a Scrambler 

network – we demonstrate the approach for a single protein at a time (Fig. 6a). A trainable 

vector of scrambler scores (PSSM temperatures) is used to perturb the input sequence 

and MSA to minimize or maximize the total KL-divergence between predicted contact 

distributions (see Methods for details). We tested our approach on one of the alpha-helical 

hairpin binders from the previous dimer data set (Fig. 6b). PSSMs for the hairpin binder 

were optimized for the Inclusion (Fig. 6c) and Occlusion objectives (Fig. 6d). Both 

PSSMs used hydrophobic leucines and a symmetry-breaking glycine in the hairpin region 

to reconstruct or distort the original hairpin structure prediction, which aligns well with 

previous results [60]. We further tested the method on naturally occurring proteins with 

more complex 3D structures (Extended Data Fig. 7a-b).

Next, we altered the Scrambling architecture to enable MSA-free interpretation of de 

novo engineered proteins lacking natural sequence homology (Extended Data Fig. 7c). We 

optimized Inclusion-PSSMs to reconstruct the structure prediction of four proteins designed 

by deep network hallucination [62] (Fig. 6e). Important features found by the Scrambler 

included hydrophobic residues in the core for all four proteins. For validation, each protein’s 

structure prediction was relaxed, and the per-residue breakdown of the Rosetta score 

function was computed [63]. We found that the per-residue energy values agreed reasonably 

well with the Scrambler importance scores (mean top 10 residue agreement = 0.425). 

However, note that some features marked by the Scrambler as important for the structure 

prediction are missed by the Rosetta energy breakdown. For example, as can be seen in Fig. 

6e, the Scrambler marked loop glycines between alpha-helices as important for the structure 

prediction, even though they do not have a large energetic contribution to overall stability. 

Glycines frequently occur in loops and turns and are thought to be important for maintaining 

protein loop structure due to their size and flexibility compared to other residues [64, 65]. 

The MSA-free approach was also tested on a hairpin-like protein engineered by Activation 

Maximization (Extended Data Fig. 7d-e) [66].

Discussion

Here we introduced a new attribution method – Scrambler Networks – that builds on and 

extends earlier work in input masking approaches. The goal is to explain an input pattern 

for a machine learning model by finding the smallest set of features which either reconstruct 

or destroy its prediction [32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. Scrambler networks are 
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based on learning a parametric model that predicts a set of real-valued importance scores 

given an input pattern. These predicted scores are used as sampling temperatures within 

a PSSM that interpolates between the current input and a non-informative background 

distribution. We demonstrated the performance of Scramblers on several attribution tasks, 

ranging from identifying cis-regulatory elements in RNA sequences to protein-protein 

interactions and protein tertiary structure. Furthermore, Scramblers can be trained to find 

not only reconstructive, but also enhancing and repressive features, and can be used to 

dynamically find multiple salient feature sets within a single input pattern. For prediction 

problems where the salient feature sets vary widely in size, per-example fine-tuning can be 

employed to correct positions that were misidentified as important.

At the core of mask-based interpretation is the masking operator, which must be carefully 

chosen according to the problem domain. Earlier work in computer vision masked input 

patterns by fading or blurring [32, 33, 34], and other methods for discrete variable selection 

masked features with zeros [35, 36]. Neither of these operators are suitable for predictors 

trained on biological sequences, which expect discrete one-hot encoded patterns as input 

and predict poorly on patterns outside of the training data manifold. The Scrambler masking 

operator is conceptually similar to ‘hot-deck’ masking proposed in the SIS method by Carter 

et al. [39] and in the interpretation method of Zintgraf et al. [38], where deactivated features 

are replaced with random samples from the marginal distribution of that input. Scramblers 

generalize this concept by maintaining a categorical feature sampling distribution at each 

position in the sequence, where the predicted temperature (inverse importance score) 

defines how random a sample from that position will be on a continuous scale. An 

immediate benefit is that, in contrast to SIS, Scramblers output real-valued importance 

scores that reflect an internal ranking of feature importance. This masking operator also 

shares similarities with the counterfactual masking introduced by Chang et al. [37], but 

the temperature-based operator is simpler as it does not require training a generative fill-in 

model.

We showed in extensive benchmarks that temperature-based masking outperforms the hot-

deck masking done with SIS and any of the fade-, blur- or mean-masking schemes used 

in [32, 33, 34]. By training a parametric model, we end up with a more sample-efficient 

method at interpreting patterns than per-example methods [32, 39]. We also showed that 

Scramblers produced better interpretations than L2X [35] and INVASE [36], which either 

overfit their interpretations when trained on the reduced datasets or did not converge well 

when trained on the full data. This highlights the difficulty in jointly training a sparse feature 

selector and a predictor on very heterogeneous data and showcases the potential in applying 

post-hoc interpretation to rich, pre-trained predictors. By optimizing over a sufficiently 

large training set, Scramblers avoid overfitting to spurious per-example signals and learn to 

generalize feature importance. Generalizable attributions are highly desirable in genomics 

and proteomics as they allow us to infer higher-quality biological discoveries from trained 

predictors, thereby offering richer insights into molecular processes that were previously 

considered black boxes. We envision that Scramblers will be particularly useful for rational 

sequence design, where they can be employed to either validate known design rules (as 

demonstrated on the protein-protein interaction task) or – as demonstrated on the protein 

structure task – to discover determinants which data-driven design methods have produced.
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Methods

Scrambling Neural Network Definition

Masking Operator—Let x ∈ {0, 1}N×M be a one-hot-encoded sequence and let 

S(x) ∈ (0, ∞]N be the corresponding real-valued importance scores predicted by Scrambler 

network S. The channel-broadcasted importance scores S
.
(x) ∈ (0, ∞]N × M are defined as 

S
.
(x)ij = S

.
(x)i, ∀i, j. S

.
(x) are used as (differentiable) interpolation coefficients in log-space 

between background distribution b  and the current input pattern x according to Eq. 1 for 

the Inclusion objective. Conversely, the scrambling operation for the Occlusion-model is 

defined in Eq. 3 below. Here, the expression x × S
.
(x) has been replaced with x ∕ S

.
(x). Either 

of these formulas return a softmax-relaxed distribution (a Position-Specific Scoring Matrix; 

PSSM) xS ∈ [0, 1]N × M, which can be interpreted as a representation of the input sequence 

where the information content at position i has been perturbed according to the sampling 

temperature S(x)i predicted by the Scrambler.

xS = σ log b + x ∕ S
.
(x) (3)

Given the scrambled PSSM xS, we sample approximate discrete one-hot-coded patterns xS
(k)

using the Concrete distribution (or Gumbel-distribution) [44], enabling differentiation:

xS
(k) = {ℂi}i = 1

N , ℂi ∼ Concrete(xSi1, …, xSiM) (4)

Alternatively, we sample exact discrete patterns xS
(k)

 from xS and use the Softmax Straight-

Through Estimator (ST-sampling) [43] to approximate the gradient ∇W S
xS

(k)
 of the input 

pattern with respect to the Scrambler network weights. To reduce variance during training, 

we draw K samples {xS
(k)}k = 1

K  at each iteration of gradient descent and walk down the 

average gradient (by default, K = 32).

Objective Functions—Given the scrambled PSSM xS, a collection of differentiable 

sequence samples {xS
(k)}k = 1

K  and the background distribution b , the Scrambler is trained 

by backpropagation to either minimize Eq. 2 (Inclusion) or Eq. 5 below (Occlusion). 

For predictor models P with a sigmoid or softmax output (classification), the prediction 

reconstruction error between P(x) and P(xS
(k)) is the standard cross-entropy error. For 

regression tasks, the cost is defined as the mean squared error. The cost parameter tbits 

defines the target per-position PSSM conservation and λ defines the conservation penalty 

weight. With a smaller value of λ, the Scrambler is allowed to output PSSMs with a larger 

spread of conservation around the target tbits (example: for one input pattern, the scrambled 

PSSM may have a mean conservation of 0.05, for another pattern, it may be 0.25). With a 

larger λ, the conservation values are forced closer to tbits.
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min
S

−
1
K

∑
k = 1

K

KL[P(xS
(k))‖P(x)] + λ ⋅ tbits −

1
N

⋅ KL[b ‖xS]
2

(5)

Rather than optimizing the Scrambler to reconstruct predictions using a small feature set, 

we can train the model to find feature sets that either positively or negatively influence 

the prediction. For classification tasks, we either maximize or minimize the log-probability 

log P(xS
(k)) (Eq. 6-7). For regression tasks, we either maximize or minimize the regressor 

P(xS
(k)) (Eq. 8-9).

min
S

−
1
K

∑
k = 1

K

log P(xS
(k)

) + λ ⋅ tbits −
1
N

⋅ KL[b ‖xS]
2

(6)

min
S

−
1
K

∑
k = 1

K

log (1 − P(xS
(k)

)) + λ ⋅ tbits −
1
N

⋅ KL[b ‖xS]
2

(7)

min
S

−
1
K

∑
k = 1

K

P(xS
(k)

) + λ ⋅ tbits −
1
N

⋅ KL[b ‖xS]
2

(8)

min
S

1
K

∑
k = 1

K

P(xS
(k)

) + λ ⋅ tbits −
1
N

⋅ KL[b ‖xS]
2

(9)

Note that we could have defined the conservation penalty of Eq. 2-5 and 6-9 in many 

other ways. The KL-divergence KL[b ‖xS] corresponds to the generalized entropy of xS and 

is particularly suitable for the Inclusion-Scrambler: the expression reaches 0 when xS is 

maximally entropic (with respect to b ). For the Occlusion-Scrambler where entropy should 

be minimized, it may seem more appropriate to minimize the KL-divergence KL[xS‖x]

to the original input pattern rather than maximizing KL[b ‖xS], as this cost corresponds 

to the cross-entropy of xS with respect to x and is 0 at minimum entropy. Alternatively, 

for both Scramblers, we could simply minimize the area scrambled by the importance 

scores, σ(S(x)) × 2 − 1 (we refer to these as lum values). Overall, KL[b ‖xS] resulted in better 

performance, which we hypothesize has to do with the information content of b  otherwise 

being lost.

Background Distribution—The background distribution b  is intended to keep the 

scrambled sequence samples in distribution and along the manifold of valid patterns, no 

matter where on the interpolation line between b  and x the scrambled distribution xS is. 

There are several possible choices of b , with varying degrees of complexity:
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(0‐BG) b ij = P (xi = j) =
∑k = 1

N
1xi

(k) = j

N
(10)

(H‐BG) b ij(x) = P (xi = j ∣ xi − H, …, xi + H) =
∑k = 1

N
1xi

(k) = j ∩ xi − H
(k)

= …

∑k = 1
N

1xi − H
(k)

= …

(11)

(DATA) b ij = xij
(K), K ∼ {1, …, N} (12)

(GEN) b ij(x) = G(z, x, S(x))ij, z ∼ N(0, 1)d
(13)

The simplest background distribution, 0-BG, corresponds to the mean input pattern across 

the training set (i.e. marginal feature probabilities). A more complex background, H-BG, is 

the distribution of a particular feature conditioned on its neighboring features [38]. Finally, 

the DATA- and GEN distributions consist of input patterns randomly chosen from the dataset 

(DATA), or patterns generated by a distribution-capturing model such as a conditional GAN 

or Variational Autoencoder (GEN) [37]. In all of our experiments, we relied on the simplest 

background distribution, 0-BG, since all tested sequence-predictive models behaved well on 

such samples. Still, for more narrowly defined manifolds, H-BG or DATA/GEN may be 

more appropriate to stay in distribution.

Network Architecture—The Scrambler is based on a Residual Neural Network 

architecture with dilated convolutions (Extended Data Fig. 1) [42]. For the MNIST, 5’ UTR, 

and protein binder attribution tasks, the network consisted of 5 groups of 4 dilated residual 

blocks (20 blocks in total), with filter width 3. For the alternative polyadenylation task, the 

network had just one group of 4 residual blocks, with filter width 8.

Mask Dropout and Biasing—Scramblers can find multiple salient feature set solutions 

for an input pattern using input-masking layers such as dropout- or biasing layers, which 

either disallow or enforce specific sequence positions in the retained feature set. Specifically, 

we let D, T ∈ {0, 1}N be the dropout- and biasing masks and apply them to the importance 

scores by element-wise multiplication and addition respectively:

xS = σ(log b + x × (S
.
(x, D, T ) × D

.
+ T

.
⋅ c)) (14)

Here c is the temperature of the biasing mask T (smaller c allows more randomness in 

selecting the letter at a biased position, a larger c makes it more likely to select the current 

input letter at the biased position). The Scrambler network S also receives D and T as 

additional input, allowing the network to learn to output alternate scores conditioned on 

which positions were dropped or enforced. During training, we use random samples of D 

and T (various training schemes are illustrated in Extended Data Fig. 2; for the MNIST task, 
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we used all three schemes; for the 5’ UTR task we used only the first scheme, i.e. uniform 

random training patterns consisting of squares). After training on randomized dropout and 

biasing patterns, we can provide hand-crafted patterns at inference time to detect alternate 

feature sets of new input examples.

Fine-tuning and Per-example Optimization—For heterogeneous datasets where the 

number of important features per example is highly variable, we apply a per-example 

fine-tuning step to the importance scores predicted by the (pre-trained) Scrambler network 

S to remove any excessive (or redundant) features. Specifically, for each input pattern x, we 

predict Scrambler scores S(x) and optimize the subtraction scores s according to Eq. 15-16 

(for Inclusion) or Eq. 17-18 (for Occlusion) below. The scrambling Eq. is reformulated 

with the expression max[S
.
(x) − s, 0]; this forces the resulting fine-tuned importance scores 

to select a subset of the features identified by the original scores S(x), i.e., the new 

scores cannot find a new alternate explanation for example x. This restriction prevents 

‘overfitting’ to the predictor, which is otherwise a problem with per-example optimization. 

Architecturally, we do not optimize s directly; we optimize parameters w, which are 

instance-normalized and softplus-transformed (s = Softplus(IN(w))). In our experiments, 

we optimize w for 300 iterations of gradient descent (Adam, learning rate = 0:01).

min
s

1
K

∑
k = 1

K

KL[P(xs
(k))‖P(x)] + λ ⋅

1
N

⋅ KL[b ‖xs] (15)

xs = σ log b + x × max[S
.
(x) − s, 0] (16)

min
s

−
1
K

∑
k = 1

K

KL[P(xs
(k))‖P(x)] − λ ⋅

1
N

⋅ KL[b ‖xs] (17)

xs = σ log b + x ∕ max[S
.
(x) − s, ϵ] , lim

ϵ + 0
(18)

For comparison, we also perform per-example optimization from scratch (i.e., we start 

with randomly initialized values rather than pre-trained Scrambler scores). To this end, we 

optimize Eq. 15 (for Inclusion) or Eq. 17 (for Occlusion). The perturbation operators are 

identical to Eq. 1 and 3, but with individual scores s per pattern x:xs = σ( log b + x × s
.
)

(Inclusion), xs = σ( log b + x ∕ s
.
) (Occlusion).

Attribution Tasks and Predictors

MNIST: The predictor was a CNN with 2 convolutional layers, 1 max-pool layer and a 

single fully connected hidden layer. The network was trained for this study. Predicts a 

10-way classification score P(x) ∈ ℝ10 (softmax) given a binarized MNIST image x ∈ {0, 

1}28×28 as input.
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APA (3’ UTR): [7] The predictor was a pre-trained CNN (APARENT) which predicts 

relative alternative polyadenylation isoform abundance P(x) ∈ [0, 1] given a 206 nt one-hot 

DNA sequence x ∈ {0, 1}206×4 as input. The trained model was downloaded from: https://

github.com/johli/aparent/tree/master/saved_models.

Translation (5’ UTR): [10] The predictor was a CNN (Optimus 5-Prime) which predicts 

mean ribosome load P(x) ∈ ℝ given a 50 nt one-hot DNA sequence x ∈ {0, 1}50×4 as input. 

The model was re-trained for this study but the training procedure was based on the code 

from: https://github.com/pjsample/human_5utr_modeling.

Protein heterodimer binders: The predictor was a RNN with siamese recurrent GRU 

layers, a dropout layer and a single fully connected hidden layer. The network was trained 

for this study. Predicts protein dimer binding probability P(x) ∈ [0, 1] (sigmoid activation) 

given two right-padded, 81 residues long protein binder sequences x1, x2 ∈ {0, 1}81×20 

as input. Note: When training Scrambler networks on these data, we used a separate 

background distribution b  for each unique protein sequence length.

Protein structure: [12] Predicts distance and angle distributions of backbone atoms in 

3D given an input primary sequence. The trained model was downloaded from: https://

files.ipd.uw.edu/pub/trRosetta/model2019_07.tar.bz2.

Given a one-hot-encoded sequence pattern x ∈ {0, 1}N×20 and Multiple Sequence Alignment 

MSA ∈ {0, 1}K×N×21, trRosetta predicts the atom-atom distance distribution D(x, MSA) 

∈ [0, 1]N×N×37 and backbone torsion angle distributions θ(x, MSA), ω(x, MSA) ∈ [0, 

1]N×N×24, ϕ(x, MSA) ∈ [0, 1]N×N×12. In the paper, we performed per-example scrambling to 

interpret example protein structures, i.e. we did not train a discriminative Scrambler model 

to predict importance scores. Instead, this method optimizes a set of importance scores s for 

each pattern x that we wish to interpret. In the context of inclusion-scrambling, we find the 

smallest set of residues that minimizes the total KL-divergence of the target structure:

min
s

1
K

∑
k = 1

K

KL[D(xs
(k), MSAs

(k))‖D(x, MSA)]

+ KL[θ(xs
(k), MSAs

(k))‖θ(x, MSA)]

+ KL[ω(xs
(k), MSAs

(k))‖ω(x, MSA)]

+KL[ϕ(xs
(k), MSAs

(k))‖ϕ(x, MSA)]

+ λ ⋅ tbits −
1
N

⋅ KL[b ‖xs]
2

For occlusion-scrambling, we optimize the inverse objective:
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min
s

1
K

− ∑
k = 1

K

KL[D(xs
(k), MSAs

(k))‖D(x, MSA)]

− KL[θ(xs
(k), MSAs

(k))‖θ(x, MSA)]

− KL[ω(xs
(k), MSAs

(k))‖ω(x, MSA)]

−KL[ϕ(xs
(k), MSAs

(k))‖ϕ(x, MSA)]

+ λ ⋅ tbits −
1
N

⋅ KL[b ‖xs]
2

In the above formulations, we define xs
(k), MSAs

(k) ∼ xs, MSAs (letter-by-letter Gumbel-

sampling). For inclusion-scrambling, we define:

xs = σ( log b + x × s
.
)

MSAs = σ( log b + MSA × s̈)

For occlusion-scrambling, we define:

xs = σ( log b + x ∕ s
.
)

MSAs = σ( log b + MSA ∕ s̈)

Here s
.

∈ ℝN × M is a channel-broadcasted copy of the importance scores s ∈ ℝN and 

s̈ ∈ ℝK × N × M is a MSA-broadcasted copy. We obtain s from a vector of real-valued 

(trainable) numbers that we instance-normalize and apply the softplus activation on. We 

train s until convergence using the Adam optimizer with learning rate = 0.01, β1 = 0.5 and 

β2 = 0.9.

Attribution Methods

The attribution methods listed below were included in all the benchmark comparisons. 

However, DeepLIFT- and Guided Backprop were excluded from the PPI task (Fig. 5) since 

they were incompatible with the heterodimer RNN predictor model. See the Supplemental 

Information for a list of additional attribution methods that were tested only for the PPI task.

Scrambler (Inclusion): Scrambler network trained to minimize Eq. 2 using the 

temperature-based perturbator of Eq. 1, with background b  set to the mean input pattern 

across the training set. The network was trained between 20-50 epochs depending on task 

(when the validation error started to saturate).

Scrambler (Occlusion): Scrambler network trained to minimize Eq. 5 using the 

temperature-based perturbator of Eq. 3, with background b  set to the mean input pattern 

across the training set.

Perturbation: Baseline attribution method where each nucleotide or residue in the input 

pattern x is systematically exchanged for every other possible letter, measuring the 

change in prediction as a proxy for the importance score. Let x(ij) be the sequence 
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pattern corresponding to exchanging the current nucleotide/residue at position i for 

letter j. We then calculate the importance score si at position i as the absolute 

mean change in prediction across all letters j: si = ∣ 1 ∕ M ⋅ ∑j = 1
M

P(x(ij)) − P(x) ∣. 

For classification tasks, we compare the log-scores of the predicted probabilities: 

si = ∣ 1 ∕ M ⋅ ∑j = 1
M log P(x(ij)) − log P(x) ∣.

Gradient Saliency [25]: The Gradient Saliency method was executed using the 

implementation from Ancona et al. [45]. We used either the absolute value of the saliency 

scores (‘Gradient Saliency’) or the signed scores (‘Gradient Saliency (Signed)’).

Code: https://github.com/marcoancona/DeepExplain.

Guided Backprop [27]: The Guided Backprop method was executed using the 

implementation from Shrikumar et al. [29]. We used either the absolute value of the saliency 

scores (‘Guided Backprop’) or the signed scores (‘Guided Backprop (Signed)’).

Code: https://github.com/kundajelab/deeplift.

DeepLIFT [29]: For the MNIST task, the RevealCancel method was used. For all other 

tasks (due to predictor compatibility issues), the Rescale implementation from Ancona et al. 

[45] was used instead. The reference was set to the mean sequence pattern (PSSM) of the 

data set. We used either the absolute value of the saliency scores (‘DeepLIFT’) or the signed 

scores (‘DeepLIFT (Signed)’).

Code: (RevealCancel) [29] https://github.com/kundajelab/deeplift.

(Rescale) [45] https://github.com/marcoancona/DeepExplain.

DeepSHAP [30]: SHAP DeepExplainer (‘DeepSHAP’) was executed for each input pattern 

with 100 reference patterns sampled uniformly from the data set. We used either the absolute 

value of the saliency scores (‘DeepSHAP’) or the signed scores (‘DeepSHAP (Signed)’).

Code: https://github.com/slundberg/shap.

Integrated Gradients [28]: Integrated Gradients was executed using the implementation 

from Ancona et al. [45]. 10 integration steps were used per pattern. The reference was set 

to the mean sequence pattern (PSSM) of the data set. We used either the absolute value 

of the saliency scores (‘Integrated Gradient’) or the signed scores (‘Integrated Gradients 

(Signed)’).

Code: https://github.com/marcoancona/DeepExplain.

TorchRay [33]: The extremal preservation/perturbation method from the TorchRay package 

was executed using either the perturbation operator where masked pixels/letters are zeroed 

(‘TorchRay Fade’) or blurred by a gaussian (‘TorchRay Blur’). For the sequence-predictive 

tasks, we changed the code base to support 1-dimensional patterns. In all tasks, we set the 

blur operator σ to 3, the mask operator σ was set to 5 or 3 and the ‘step’ argument was set to 

2. The ‘area’ was set to either 0.1 or 0.2.
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Code: https://github.com/facebookresearch/TorchRay.

Saliency Model [34]: The Saliency Model-method was trained using a ResNet-50 network 

architecture. For the sequence-predictive tasks, we changed the code base to support 1-

dimensional input patterns. The ‘encoder’-part of the network was not pre-trained and the 

‘selector’-component was not used. In all tasks, the blur kernel size was set to either 9 or 

5 and σ was set to 3. For every training iteration, blur was used 50% of the time as the 

perturbation operator and fade (zeroing features) otherwise.

Code: https://github.com/PiotrDabkowski/pytorch-saliency.

Sufficient Input Subsets [39]: Sufficient Input Subsets (SIS) was executed with the 

threshold set to the 50th percentile of the predicted scores (P(x)) across the data set. 

For input patterns with non-masked predictions below this threshold, we used a dynamic 

threshold of 0.8 times the non-masked predicted score.

We tested multiple masking schemes: (1) Replacing masked residue positions with the mean 

letter value (‘SIS (Mean)’) and (2) Replacing masked residue positions with letters sampled 

from the marginal letter distribution, repeating the sampling process X times, and calculating 

the mean prediction across all X samples (‘SIS (X Sample)’).

Code: https://github.com/google-research/google-research/tree/master/

sufficient_input_subsets.

Zero Scrambler: Optimizes the same high-level objective as the Scrambler, but 

this model uses a perturbation operator similar to that of L2X [35] and INVASE 

[36] where de-selected features are zeroed. Specifically, ‘Zero Scrambler’ optimizes 

minℳ KL[P(x × ℳ(G)(x))‖P(x)] + λ ⋅ tarea − 1 ∕ N ⋅ ∑i = 1
N ℳ(S)(x)i

2
, where ℳ is a binary 

0/1 masking model. The continuous-valued mask ℳ(S)(x) and binarized mask ℳ(G)(x) are 

obtained by applying sigmoid activations and Gumbel sampling on the output vector of ℳ

respectively. Internally, the network ℳ is identical to the Scrambler.

L2X [35]: The ‘approximator’-model used in the L2X procedure always had the same 

architecture as the original predictor of each task. The ‘explainer’-model was the default 

network found in the example code, consisting of multiple layers of convolutions with global 

pooling to capture high-level features. The size parameter k was set to 0.1 · N or 0.2 · N 

depending on the task, where N is the length of the sequence. The L2X models were trained 

until convergence (early stopping on validation data).

Code: https://github.com/Jianbo-Lab/L2X/.

INVASE [36]: The ‘critic’- and ‘baseline’-models used in the INVASE procedure were 

standard convolutional neural networks with 3-5 convolutional layers, interlaced with 

instance-normalization layers, and one fully-connected hidden layer. The ‘actor’-model was 

a convolutional neural network with 3-5 instance-normalized convolutional layers. The λ 
parameter varied between 0.05 and 50 depending on the task. The INVASE models were 

trained until convergence.
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Code: https://github.com/jsyoon0823/INVASE.

Scrambler (Inclusion, Siamese): The ‘siamese’ Inclusion-Scrambler architecture used 

in the PPI task (Fig. 5). Given pairs of input patterns x1 and x2, we optimize 

minS 1 ∕ K ⋅ ∑k = 1
K KL[P(xS, 1

(k) , xS, 2
(k) )‖P(x1, x2)] + λ ⋅ tbits − 1 ∕ N ⋅ KL[b 1‖xS, 1]

2
+ λ

⋅ tbits − 1 ∕ N ⋅ KL[b 2‖xS, 2]
2

, 

where xS, 1
(k)

, xS, 2
(k) ∼ xS, 1, xS, 2 (letter-by-letter Gumbel-sampling) and 

xS, # = σ( log b # + x# × S
.
(x#)) (# = 1 or 2). S is a (siamese) Scrambler network.

Scrambler (Occlusion, Joint): The ‘joint’ Occlusion-Scrambler architecture used in 

the PPI task (Fig. 5). Given pairs of input patterns x1 and x2, we optimize 

minS − (1 ∕ K ⋅ ∑k = 1
K KL[P(xS, 1

(k) , xS, 2
(k) )‖P(x1, x2)]) + λ ⋅ tbits − 1 ∕ N ⋅ KL[b 1‖xS, 1]

2
+ λ

⋅ tbits − 1 ∕ N ⋅ KL[b 2‖xS, 2]
2

, 

where xS, 1
(k) , xS, 2

(k) ∼ xS, 1, xS, 2 (letter-by-letter Gumbel-sampling) and 

xS, # = σ log b # + x# ∕ S
.
(x1, x2) (# = 1 or 2). S is a two-input Scrambler network.

Scrambler (Occlusion, Siamese): The ‘siamese’ Occlusion-Scrambler architecture used 

in the PPI task (Fig. 5). Given pairs of input patterns x1 and x2, we optimize 

minS − (1 ∕ K ⋅ ∑k = 1
K KL[P(xS, 1

(k) , xS, 2
(k) )‖P(x1, x2)]) + λ ⋅ tbits − 1 ∕ N ⋅ KL[b 1‖xS, 1]

2
+ λ

⋅ tbits − 1 ∕ N ⋅ KL[b 2‖xS, 2]
2

, 

where xS, 1
(k)

, xS, 2
(k) ∼ xS, 1, xS, 2 (letter-by-letter Gumbel-sampling) and 

xS, # = σ log b # + x# ∕ S
.
(x#) (# = 1 or 2). S is a (siamese) Scrambler network.

Benchmarking Details

Synthetic IF uORF 5’ UTR Datasets—Synthetic IF uORF 5’ UTR sequences were 

generated for feature attribution with varying numbers of IF uORFS by selecting sequences 

from the Optimus 5-Prime egfp_unmod_1 dataset [10], which contained no upstream starts 

or stops and had MRL values that fell between the 5th and 10th percentile of the dataset. 

This set of sequences (n = 537) had the original sequence nucleotides replaced by “ATG” 

and “TAG” uniformly at random at possible IF positions as needed to create the number of 

IF uORFs for the dataset, keeping the rest of the UTR fixed. Four synthetic 5’ UTR datasets 

of n = 512 sequences were generated: one IF uORF by inserting an “ATG” and followed 

by a “TAG”, two IF uORFs by inserting an “ATG” followed by two “TAG”, two IF uORFs 

by inserting two “ATG” followed by “TAG,” and four IF uORFs by inserting two “ATG” 

followed by two “TAG”.

Hydrogen Bond Network Detection—The Chen et al. [60] dimers were designed 

to have a minimum of 4 residues involved, contacting all four helices, with all 

heavy-atom donors and acceptors in the network satisfied. However, in later design 

steps for the hetero-dimers, these networks were slightly disrupted making complete 

recovery difficult using the original parameters. As such, slightly relaxed criteria from 

the original design specifications were used to recover as many HBNet residues as 
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possible from the test set designed structures. HBNet residues were recovered from test 

coiled-coil dimers using PyRosetta [67] and the HBNetStapleInterface protocol, with the 

settings min_network_size=3, min_helices_contacted_by_network=3, hb_threshold=−0.3, 

and find_only_native_networks=True. The ref2015 score function was used during HBNet 

mover setup [63].

Mean AAG Difference Calculation and Alanine Scanning—Computational Alanine 

scanning was carried out for all residues in a hetero-dimer pair using PyRosetta [67]. Each 

position was mutated to Alanine and repacked with the neighboring residues prevented from 

design and repacking. The InterfaceAnalyzerMover was used with set_pack_input as False 

and set_pack_separated as True to calculate the mean mutation ΔΔG in Rosetta Energy Units 

(REU) at each position. For each attribution method, the eight most important residues per 

dimer were selected, and the difference of the mean ΔΔG of the top residues and the mean 

ΔΔG of all other residues was computed.

Per-Residue Score Function Breakdown and Substitution Scoring Matrix

Lysozyme and Sensor Histidine Kinase structures were predicted with trRosetta [12]. Each 

de novo structure was provided by [62]. All structures were relaxed using fast relax with 

PyRosetta [67], scored using the beta_nov16 score function [63], and broken down into 

individual residue contributions. This was done ten times per structure, and the average 

residue contributions were calculated.
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Extended Data

Extended Data Fig. 1. 

(a) Scrambler network architecture. The network is based on groups of residual blocks. This 

particular network configuration has 5 groups of residual blocks, with 32 channels, filter 

width 3 and varying dilation factor (1x, 2x, 4x, 2x, 1x). There is a skip connection (single 

convolutional layer with 32 channels and filter width 1) before each residual group. All 

skip connections are added together with the output of the final residual group. A softplus 

activation is applied to the final tensor in order to get importance scores that are strictly 

larger than 0. (b) Each residual group consists of 4 identical residual blocks connected in 

series. (c) Each residual block consists of 2 dilated convolutions, each preceded by batch 

normalization and ReLU activations. A skip connection adds the input tensor to the output of 

the final convolution.
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Extended Data Fig. 2. 

(a) Comparison of attribution methods on the 'Inclusion'-benchmark of Figure 2B 

(Perturbing the input patterns by keeping the top X% most important features according 

to each method and replacing all other features with random samples from a background 

distribution, n=1,888). Left table: Median KL-divergence between original predictions and 

predictions made on perturbed input patterns (lower is better). Right table: Classification 

accuracy of the predictor using the perturbed input patterns (higher is better). The '100%'-

case refers to the original (non-perturbed) input pattern. The best method(s) are highlighted 

in green. (b) Uniformly random mask dropout training procedure, which teaches the 

Scrambler to find alternate salient feature sets. For each input pattern, we sample a 

random dropout pattern containing squares of varying width. The pattern is multiplied 

with the predicted importance scores, effectively zeroing out certain regions (forcing the 

background distribution to be used). The dropout pattern is also passed as additional input 

to the Scrambler (it is concatenated along the channel dimension), allowing the network to 

learn which other feature set to choose. (c) Biased dropout training procedure. Instead of 

randomly sampling dropout patterns, we first let the Scrambler predict importance scores 

with an all-ones dropout pattern (no dropout), which we use to form an importance sampling 

distribution. We then sample a dropout pattern and use it for training the same way we 

trained on uniformly random patterns. (d) Another biased dropout training approach. We 
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first use the Scrambler to predict the importance scores given the all-ones dropout pattern 

as input (no dropout). The top 5% most important features are subtracted from the all-ones 

pattern. Then, with a certain probability, we either re-run the Scrambler on this updated 

pattern (repeating the previous steps), or we end the loop and choose this as our final 

dropout pattern to train on. (e) Procedure for training the Scrambler to dynamically change 

the entropy of its solutions. Instead of fitting the network to a constant KL-divergence of its 

scrambled input distribution, we here randomly sample KL-divergence values and use them 

both as input to the network and as the target for the conservation penalty. The bit value is 

broadcasted and concatenated along the input channel dimension. (f) Example attributions of 

MNIST digit '2' and '4' with dynamically resized feature sets, by passing increasingly large 

target 'lum' values as input to the Scrambler ('lum' values are normalized KL-divergence bits, 

see Methods).

Extended Data Fig. 3. 

(a) Top: Example attribution of a polyadenylation signal sequence from the APARENT 

test set, using Inclusion-Scramblers trained with increasingly large tbits of conservation. 

Known regulatory motifs annotated. Bottom: Two additional example attributions, showing 

only the results for the tbits = 1.0 case. (b) Non-trainable convolutional filter with a 1D 

gaussian kernel (filter width 6) is prepended to the final softplus activation function of the 
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Scrambler. (c) APARENT isoform predictions of original sequences and of corresponding 

sampled sequences from the PSSMs predicted by an Occlusion-Scrambler trained with tbits 

= 1.8, with and without the Gaussian filter. (d) Example attributions of tbits = 1.8 - and 

1.5 Occlusion-Scramblers, with and without the Gaussian filter. (e) Example attributions 

of a polyadenylation signal sequence, comparing different methods. (f) Comparison of 

attribution methods on the 'Inclusion'-benchmark of Figure 3B (Perturbing the input 

patterns by keeping the top X% most important features according to each method and 

replacing all other features with random samples from a background distribution, n=1,737). 

Median KL-divergences are computed between original predictions and predictions made 

on perturbed input patterns (lower is better). These predictions were made using the 

APARENT model. Shown are also the Spearman r correlation coefficients between original 

and perturbed predictions using the DeeReCT-APA model (higher is better). The default 

Scrambler network for the APA task uses 4 residual blocks, while the 'Deep' architecture 

uses a total of 20 residual blocks. The best method(s) are highlighted in green. (g) 

Attributions of four human polyadenylation signals which are associated with known 

deleterious variants, comparing the Perturbation method to the reconstructive Inclusion-

Scrambler (tbits = 0.25 target bits) on hypothetical variants which have not been found 

in the population. Gene names and clinical condition associated with the PAS annotated 

above each sequence. In each of the four examples, the Scrambler correctly detects the 

loss of the presumed RBP binding site or otherwise important motif due to each respective 

variant (loss of the CstF binding motif in FOXC1, TP53; loss of the SRSF10 binding 

motif in INS; loss of the T-rich DSE motif in HBB). (h) Left: Example attributions 

of a medium-strength polyadenylation signal sequence, using three Scramblers which 

have been optimized for different objectives: (Reconstructive features) reconstructing the 

original prediction, (Negative features) minimizing the prediction, and (Positive features) 

maximizing the prediction. Right: APARENT isoform predictions of original sequences and 

of corresponding sampled sequences from the PSSMs predicted by the Negative-feature and 

Positive-feature Scrambler respectively.
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Extended Data Fig. 4. 

(a) Benchmark comparison on the synthetic Start / Stop test sets, where input patterns are 

perturbed by keeping the most important features according to each method (6, 9 or 12 

nt) and replacing all other features with random samples from a background distribution, 

n=512). Mean squared errors are computed between original predictions and predictions 

made on perturbed input patterns using the Optimus 5-Prime model (lower is better). We 

trained two Scramblers, one with a low entropy penalty (tbits = 0.125, λ= 1) and one with 

a higher penalty (λ = 10). The best method(s) are highlighted in green. (b) Average recall 

for finding one of the start codons and one of the stop codons in the 6 most important 

nucleotides, as identified by each method, measured across the synthetic test sets. (c) 

Additional benchmark comparison for L2X and INVASE, when using the full 260,000 5' 

UTR dataset for training the interpreter model. Shown are the mean squared errors between 

predictions of original and perturbed input patterns, average recall for finding start and stop 

codons, and example visualizations on the synthetic start / stop test sets. (d) Left: Attribution 

of a ClinVar variant, rs779013762, in the ANKRD26 5' UTR, which is predicted by Optimus 

5-Prime to be a functionally silent mutation. The variant creates an IF uORF overlapping 

an existing IF uORF. The per-example fine-tuning step (which starts from the Low entropy 

penalty-Scrambler scores) finds a minimal salient feature set in the variant sequence (one IF 

uORF), while the per-example optimization (which starts from randomly initialized scores) 
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gets stuck in a local minimum. Middle: Attribution of a ClinVar variant, rs201336268, in 

the TARS2 5' UTR, which destroys two overlapping IF uORFs and is predicted to lead to 

upregulation. Both the fine-tuning step and the independent per-example optimization finds 

that no features are important in the variant sequence (both IF uORFs were removed by 

the variant and a fully random sequence has on average the same predicted MRL as the 

variant sequence). The Perturbation method has trouble explaining either of these variants 

due to saturation effects of the multiple IF stop codons. Right: Attribution of a rare variant, 

rs886054324, in the C19orf12 5' UTR, which creates two IF uORFs overlapping a strong 

OOF uAUG (hence a silent mutation). All attribution methods identify the OOF uAUG 

as the major determinant, however the Low entropy penalty-Scrambler incorrectly marks 

an (unmatched) stop codon in the wildtype sequence as important. Both the High entropy 

penalty-Scrambler and the fine-tuning step based off the Low penalty-Scrambler correctly 

filters the stop codon. (e) Benchmarking results on the 1 Start / 2 Stop dataset, comparing 

the Low entropy penalty-Scrambler network to running per-example fine-tuning of those 

scores and to the baseline method of optimizing each example from randomly initialized 

scores. Reported are the mean squared error between predictions on original and scrambled 

sequences ('MSE'), the error rate (1 - Accuracy) of not finding one Start codon and one Stop 

codon in the top 6 nt ('Error Rate'), and the mean per-nucleotide KL-divergence between 

the scrambled PSSM and the background PSSM ('Conservation'). (f) Example attributions 

using a Scrambler network trained with the mask dropout procedure (see Methods for 

details). By dropping different parts of the importance score mask, the Scrambler learns to 

discover alternate salient feature sets. In the example on the right: Finding alternate IF uORF 

regions by separately dropping each of the Start and Stop codons. (g) Example Scrambler 

attributions with the mask dropout mechanism on two native human 5' UTRs.
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Extended Data Fig. 5. 

(a) Protein heterodimer binder RNN predictor, which was trained on computationally 

designed (dimerizing) pairs for positive data and randomly paired binders as negative data 

(see Methods for details). The RNN consists of a shared GRU layer, a dropout layer, 

and two fully-connected layers applied to the concatenated GRU output vectors. The final 

output (sigmoid activation) is treated as the Bind / No Bind classification probability. (b) 

Supplemental benchmark of Gradient Saliency, Integrated Gradients and DeepSHAP, using 

only the positive-valued importance scores. Left: Prediction KL-divergence of scrambled 

sequences compared to original test set sequences when either replacing all but the top X% 

most important amino acid residues with random samples (inclusion) or, conversely, when 

replacing the top X% nucleotides with random samples and keeping the remaining sequence 

fixed (occlusion). Right: Mean ddG Difference for the top 8 most important residues 

according to each method, measured across the test set, and HBNet Average Precision based 

on each method's importance scores. (c) Supplemental comparison of different versions of 

the Scrambling Neural Network (see Methods for a full description of each version). Left: 

KL-divergence benchmark based on the predictor RNN. Right: Mean ddG Differences and 

HBNet Discovery Precisions. (d) Supplemental comparison of other methods that optimize 

similar objectives as the Scrambler (see Methods for a full description of each method). 

Left: KL-divergence benchmark based on the predictor RNN. Right: Mean ddG Differences 
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and HBNet Discovery Precisions. (e) Supplemental comparison between Scrambling Neural 

Networks and Sufficient Input Subsets (SIS) with 'hot-deck' sampled masking (the number 

of samples used at each iteration is varied from 1 to 32; see Methods for details). Left: 

KL-divergence benchmark based on the predictor RNN, Mean ddG Differences and HBNet 

Discovery Precisions annotated on top of the bar chart. Right: Average number of predictor 

queries used to interpret a single input pattern (for the Scrambler, this is the amortized cost 

of training divided by the number of test patterns interpreted).

Extended Data Fig. 6. 

Example attributions of a designed heterodimer binder pair, for a selection of benchmarked 

methods.
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Extended Data Fig. 7. 

(a) Four different Inclusion-PSSMs optimized to reconstruct the structural trRosetta 

prediction of a Sensor Histidine Kinase. Each PSSM is optimized for increasingly larger 

tbits. The bottom sequence logo represents the Rosetta score function breakdown per 

residue (−REU). Spearman r ranged between 0.25 and 0.32 when comparing the absolute 

numbers of Rosetta energy values to the optimized importance scores. Shown is also the 

average structure prediction for 512 samples. (b) Inclusion-Scrambled PSSMs of the Hen 

Egg-white Lysozyme. The PSSM was re-optimized for three different target conservation 

bits. Spearman r ranged between 0.25 and 0.33 compared to the Rosetta score function. 

(c) Architecture for per-example scrambling of a single protein sequence according to the 

contact distributions predicted by trRosetta. Here, we do not use a Multiple Sequence 

Alignment (MSA), but instead pass the Gumbel-sampled sequence to the PSSM input and 

an all-zeros matrix to the DCA input. Total KL-divergence between trRosetta-predicted 

distributions (distance and angle-grams) of the original sequence and samples drawn from 

the scrambled PSSM is either minimized or maximized (inclusion or occlusion respectively). 

(d) Reference sequence and predicted contact distribution for a hairpin protein engineered 

by Activation Maximization. (e) Top: Inclusion-PSSM of the engineered hairpin protein, 

obtained after optimization with a highly conserved background distribution based on the 
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MSA. Bottom: Inclusion-PSSM of the engineered hairpin protein with a less conserved 

background distribution (smoothed with pseudo counts).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data Availability

The data analyzed in this study originated from several previous publications and data 

repositories:

For the MNIST prediction task (Fig. 2), the data is available at (https://keras.io/api/datasets/

mnist/). For the polyadenylation prediction task (Fig. 3), the data from Bogard et al. 

(2019) [7] is available on Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE113849). For the 5’ UTR prediction task (Fig. 4), the 

data from Sample et al. (2019) [10] is available on Gene Expression Omnibus 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114002). For the protein-protein 

interaction prediction task (Fig. 5), the full data from Chen et al. (2019) [60] is available 

from the authors, upon request. The subset of sequences used in the benchmark comparisons 

are included in the Github repository (http://www.github.com/johli/scrambler). For the 

protein structure prediction task (Fig. 6), the de novo designed sequences from Anishchenko 

et al. (2020) [62] are available from the authors upon request.
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Figure 1: 

Scrambler Architecture and Masking Operator (a) High-level architecture. Inclusion: 

Maximize the entropy of the PSSM predicted by the Scrambler and minimize the prediction 

error of samples drawn from it. Occlusion: Minimize PSSM entropy and maximize sample 

prediction error. (b) The temperature-based masking operation. The Scrambler predicts 

sampling temperatures (‘importance scores’) for the PSSM. (c) The Inclusion and Occlusion 

scrambling operations. Individual nucleotides (or amino acid residues) are perturbed by 

raising the sampling temperature of its corresponding categorical feature distribution.
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Figure 2: 

MNIST Feature Attribution (a) Workflow for finding salient pixel regions within MNIST 

digits. The Scrambler learns to predict the salient feature set of the input image, which 

is superimposed on an uninformative background distribution. (b) Attributing feature 

importance for binarized MNIST digits ‘3’ and ‘5’. (Upper bar chart) Keeping the top 

X% pixels according to importance scores and replacing all other pixels with random 

values. (Lower bar chart) Replacing the top X% pixels with random values. n = 1, 888. (c) 

Importance score dropout and bias layers for finding alternate interpretations. (d) Example 

of dynamically sized feature sets using progressive bias patterns for differentiating digits ‘2’ 

vs. ‘4’. The pixels found at each level are added to the next level of bias pattern to discover 

the next set of features. (e) Example of finding alternate salient features when dropping the 

upper half of the image importance scores.
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Figure 3: 

APA Feature Attribution (a) Scrambler architecture for APA isoform attribution using the 

pre-trained model APARENT as the predictor. (b) Perturbing sequences by keeping the 

top X% nucleotides according to importance scores and replacing all other positions with 

random letters. The bar chart measures KL-divergence of APARENT-predictions between 

original- and perturbed test sequences (n = 1, 737). (c) Example attributions of a deleterious 

variant (108C>T) in the 3’ UTR of the Prothrombin (F2) gene, comparing the Perturbation 

method to an Inclusion-Scrambler trained on the APARENT data. (d) APARENT predictions 

of original test set sequences compared to predictions made on sequence samples produced 

by the Scrambler PSSMs. (e) Example of Inclusion-Scramblers trained to reconstruct, 

maximise or minimize predictions, thus finding overall important, enhancing, or repressing 

motifs, respectively.
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Figure 4: 

5’ UTR Feature Attribution (a) Scrambler architecture for 5’ UTR ribosome load attributions 

using the pre-trained model Optimus 5’ as the predictor. (b) Average recall of in-frame 

(IF) start and stop positions in a test set of synthetic IF uORF 5’ UTRs. In this test, 

all start and stop codons must be among the highest scored nucleotides of a sequence to 

count as successfully recalled for a given method. n = 512. (c) Example attribution in a 

5’ UTR with multiple IF stop codons. (Top sequence) Red letters = IF start codon, Blue 

letters = IF stop codon. (d) Interpreting a rare, functionally silent mutation (rs1160558441) 

in the 5’ UTR of the ETHE1 gene, where an out-of-frame (OOF) upstream start codon 

(uAUG) is created within an in-frame (IF) upstream open reading frame (uORF). The 

‘Fine-tuning’ optimization was performed on the importance scores predicted by the ‘Low 

Penalty’-Scrambler.
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Figure 5: 

Protein Heterodimer Feature Attribution (a) The protein binding predictor is a RNN based 

on a siamese GRU layer (orange dashed lines). (b) The joint and siamese Scrambler 

architectures for protein binder attribution. (c) 3D-visualization of an example binder pair 

structure. Discovered HBNet residues (by a siamese Occlusion-Scrambler) are shown in red 

licorice, important residues not part of the HB-net are shown as gray sticks. A cross-section 

of each of the three buried hydrogen bond networks is shown on the right. (d) Example 

attribution. Hydrogen bonds at the designed binding interface are marked with dashed red 

boxes. (e) Keeping the top X% residues according to the importance scores of each method 

and replacing the rest with random amino acids (top), or replacing the top X% with random 

Linder et al. Page 39

Nat Mach Intell. Author manuscript; available in PMC 2022 August 12.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



amino acids (bottom), measuring prediction KL-divergence. Zero refers to a Scrambler with 

a zero-based masking operator. (f) Left: In silico Alanine scanning benchmark. The 8 most 

important residues of each method were replaced with Alanines, measuring ΔΔG in Rosetta 

Energy Units (REU). Shown are the mean ΔΔG differences in a permutation test of 10,000 

re-labelings. Right: Precision-recall curves and Average Precision (AP) for discovering the 

HBNet positions, based on the importance scores of each benchmarked method.

Linder et al. Page 40

Nat Mach Intell. Author manuscript; available in PMC 2022 August 12.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 6: 

Protein Structure Feature Attribution (a) The single-sequence Scrambling architecture for 

tr-Rosetta. Both the primary sequence (‘X’) and the multiple sequence alignment (‘MSA’) 

are scrambled with the same trainable mask (‘S’). (b) Alpha-helical hairpin protein sequence 

and original structure prediction. (c) Inclusion-Scrambled PSSM of the hairpin protein, 

with the average predicted distance- and angle distributions for 512 samples drawn from 

the PSSM. (d) Occlusion-Scrambled PSSM of the hairpin protein and average structure 

prediction for 512 samples. (e) Inclusion-Scrambled PSSMs of four de novo proteins which 

have been designed by deep network hallucination. Each PSSM was optimized for tbits 

= 1.0 target bits of conservation, using the amino acid frequency of naturally occurring 

sequences from the Protein Data Bank as background distribution. The bottom sequence 

logos represent the Rosetta score function breakdown per residue (−REU). The 10 most 

important residues according to the Scrambler scores are colored red.
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