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Abstract

Sequence-based neural networks can learn to make accurate predictions from large biological
datasets, but model interpretation remains challenging. Many existing feature attribution methods
are optimized for continuous rather than discrete input patterns and assess individual feature
importance in isolation, making them ill-suited for interpreting non-linear interactions in
molecular sequences. Building on work in computer vision and natural language processing, we
developed an approach based on deep learning - Scrambler networks - wherein the most salient
sequence positions are identified with learned input masks. Scramblers learn to predict Position-
Specific Scoring Matrices (PSSMs) where unimportant nucleotides or residues are scrambled by
raising their entropy. We apply Scramblers to interpret the effects of genetic variants, uncover non-
linear interactions between cis-regulatory elements, explain binding specificity for protein-protein
interactions, and identify structural determinants of de novo designed proteins. We show that
Scramblers enable efficient attribution across large datasets and result in high-quality explanations,
often outperforming state-of-the-art methods.

Deep Neural Networks have successfully been applied to a diverse set of biological
sequence prediction problems, including predicting transcription factor binding [1, 2, 3,

4], chromatin modification and accessibility [5], RNA processing [6, 7, 8, 9], translation
regulation [10] and protein structure [11, 12]. Neural networks excel at learning complex
relationships from large datasets without requiring much tuning, but interpreting their
predictions is challenging because the learned regulatory logic is embedded deep within

the network layers. Nevertheless, interpretability is necessary to connect network predictions
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to established biology, learn new regulatory rules or validate sequence designs [13, 14, 15,
16, 17, 18, 19, 20, 21].

Nonlinear interactions are abundant between biological sequence features. Such
dependencies make it necessary to consider groups of features and their surrounding
context when interpreting a model prediction instead of independently evaluating each
feature in isolation. However, many current neural network attribution methods rely on local
perturbations, limiting their ability to identify such relationships. For example, 5> UTRs

can contain multiple upstream start codons (WUAUGS) [22, 23, 24] preceding the primary
start. Which AUG is chosen as the start of translation depends on the extent to which the
surrounding context — e.g., competing AUGs — represses its usage. Two nearby uAUGs

may even “hide” each other, as each AUG is capable of repressing translation initiation

at the primary start independently. In-silico saturation mutagenesis — which systematically
exchanges one nucleotide and approximates its importance by predicted functional change —
would incorrectly conclude both uAUGs are irrelevant: Neither uAUG would be identified
as repressive, as knocking down only one would not change the prediction. Other local
approximation methods face similar problems, such as those basing their estimation on
gradients [25, 26, 27, 28, 29, 30] or local linear models [31].

In this paper, we introduce a feature attribution approach tailored for biological sequence
predictors and based on previous work in learning interpretable input masks [32, 33, 34, 35,
36, 37, 38, 39, 40, 41]. We train a deep neural network, referred to as the Scrambler, to

learn masks that include only the smallest set of features in an input sequence necessary to
reconstruct the original prediction. A mask that fulfills the inclusion objective overcomes the
issues with local approximation mentioned above. For example, such a mask would learn to
include one of the uAUGS from the 5’ UTR example to preserve the repressive prediction. In
a complementary formulation, we optimize masks to occlude the smallest set of features that
destroy the prediction. These features may overlap with those identified by inclusion masks
but are not necessarily identical; for the 5° UTR example, the occlusion mask would need

to occlude both of the uAUGS to destroy the repressive prediction. In general, for features
involved in an OR-relationship, inclusion would identify one feature while occlusion would
identify all. Conversely, for AND-like features, inclusion would identify all features and
occlusion just one.

The earliest mask-based attribution methods masked inputs by either fading or blurring
[32, 34], which is ill-suited for one-hot encoded sequence patterns. More recent methods
replace masked input features with random samples or counterfactual values to keep
masked inputs in the distribution of valid predictor patterns [37, 39]. However, these
recent methods are based on individually optimizing each mask rather than learning a
parametric model. Here, we combine ideas from deep learning with probabilistic masking
to interpret biological sequences. Specifically, Scramblers learn to output Position-Specific
Scoring Matrices (PSSMs) with minimal (inclusion) or maximal (occlusion) conservation
such that discrete samples either reconstruct or destroy the prediction. A sequence position
is ‘masked’ by raising the entropy, or temperature, of the underlying feature distribution
such that samples sent to the predictor become less informative, and the Scrambler is trained
by backpropagation using a gradient estimator.
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We show that Scramblers avoid overfitting to spurious per-example signals, which can be
problematic for model-free methods. Furthermore, using a parametric masking model allows
us to interpret new patterns more efficiently than per-example masking methods. Scramblers
are also conceptually different from methods such as L2X [35] and INVASE [36], which
mask input patterns by replacing features with zeros while simultaneously training a new
ad-hoc predictor model that attempts to reconstruct the original predictions. Re-training the
predictor is required since the zero-based masks push the patterns out-of-distribution. In
contrast, Scramblers directly reconstruct the original predictor model without re-training,
and keep patterns in distribution with a sample-based mask. This allows us to efficiently
train the Scrambler on a smaller, or more narrowly defined, dataset than the original
predictor and still obtain high-quality interpretations. We show in our benchmarks that

L2X and INVASE produce lower-quality interpretations than Scramblers when trained on
reduced datasets ranging in size from 10, 000-40, 000 sequences, and they converge poorly
when trained on the full data. See Supp. Table 1 for a summary comparison of all masking
methods.

In addition to introducing probabilistic masks to biological sequences, we develop several
improvements for mask-based interpretation. For example, Scramblers can discover multiple
salient feature sets within a single input pattern using mask dropout- and bias layers,
enabling users to specify features to include or exclude in the solution at inference time. In
addition to finding reconstructive features, we alternatively optimize the Scrambler to find
enhancing or repressive features that either maximize or minimize the prediction. We also
explore different architectures for interpreting pairwise predictors in the context of protein-
protein interaction. Finally, to reduce interpretation artifacts for predictors where input
patterns contain a highly variable number of features, we apply per-example optimization
as a fine-tuning step to the initial Scrambler outputs. Throughout the paper, we show that
Scramblers learn meaningful feature attributions for several visual- and sequence-predictive
tasks, including RNA regulation, protein-protein interaction, and protein tertiary structure,
often outperforming other interpretation methods.

Scrambling Networks

The Scrambler architecture is illustrated in Fig. 1a (left). Given a differentiable pre-trained
predictor 2 and a one-hot encoded input pattern x € {0, 1}¥*M (representing an N-length
sequence), we let a trainable network & called the Scrambler predict a set of real-valued
importance scores S(x) € (0, oo]N . These scores are used in Eq. 1 below to produce a
probability distribution which interpolates between the input pattern x and a non-informative

background distribution b € RN XM (Fig. 1b-c).

£§=6(10g5+xxo§(x)) (1
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Here, o denotes the softmax o(l);; = represent the

importance scores &(x) which have been broadcasted at position 7 to all channels j. In all
experiments, the Scrambler & is a residual network of dilated convolutions (Extended Data
Fig. 1a-c) [42]. The output X ¢ becomes a parameterization of a probability distribution of

the input. Specifically, X is a set of N categorical softmax-nodes, or a PSSM. The role of b

is to keep samples from this PSSM in distribution and along the manifold of valid patterns,
and is here taken as the mean input pattern across the training set (Eq. 10). When §(x); is

close to 0, x ¢ ; becomes b; (the background distribution) and when §(x); is close to 00, X, i
becomes x; (the original input). £(x); thus defines the inverse feature sampling temperature

at position 7in the PSSM.

K discrete samples ng) drawn from X ¢ are passed to the predictor & and gradients

are backpropagated to & using either Softmax Straight-Through estimation [43] or the
Gumbel distribution [44]. By comparing the predictions (@(ng)) of the scrambled input
samples to the original prediction &(x), we train the Scrambler & to minimize a predictive
reconstruction error subject to a conservation penalty which enforces high entropy. We

refer to this formulation as the Inclusion-Scrambler, as it must learn to include features
to reconstruct the original prediction while maintaining high entropy of x . Alternatively,

we can train & to find the smallest set of features in x to randomize (i.e., maximizing the
conservation of X ¢) to maximally perturb @(xg‘)) from %(x) (Fig. 1a, right). We refer to

this inverse formulation as the Occlusion-Scrambler. For both formulations, we define the
reconstruction error as the KL-divergence KL[@(xg‘))HQJ(x)] between scrambled and original
predictions. To minimize the conservation of x g while still keeping samples in distribution,
we optimize the KL-divergence KL[b ||X 5] between X ¢ and the background distribution b.
We control the expected entropy by fitting KL[b||%¢] to a target conservation value f

rather than minimizing or maximizing it unbounded. The full training objective for the
Inclusion-Scrambler is given in Eq. 2.

K
{1 1 ~ o 2
minlge 35 KUPENZ1)+ 4+ s = 37 KLIB 1) @

We compare several different attribution methods in our experiments. The baseline method
used for comparison, Perturb, exchanges the categorical value of one letter or pixel at

a time and estimates the absolute value in predicted change as the importance score.
Comparisons are made against Perturb (baseline), Gradient Saliency [25], Guided Backprop
[27], Integrated Gradients [28], DeepLIFT [29] (using RevealCancel for MNIST and
Rescale from DeepExplain [45] for the remaining tasks), SHAP DeepExplainer [30],

the preservation/perturbation methods of Fong et al. (TorchRay) [33], Dabkowski et al.
(Saliency Model) [34] and Carter et al. (‘SIS*) [39] and, finally, the feature selection
methods L2X [35] and INVASE [36]. For comparison, we also test a version of the
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Scrambler with a zero-based masking operator (referred to as Zero Scrambler). See Methods
for a detailed description of how each method was used and which task(s) were tested. Note
that for methods that learn ad-hoc interpreter models (e.g., Scramblers, L2X, INVASE), we
train the ad-hoc models on a reduced data set of ~ 10, 000-40, 000 examples (depending on
the task), in contrast to the 100, 000s to millions of examples the original predictor models
were trained on. However, in supplemental analyses we also attempted to train L2X and
INVASE on the full data.

Finding Salient Pixels in MNIST Images

We first used the Scrambler to visualize important regions in binarized images of the two
MNIST digits ‘3’ and ‘5’ (Fig. 2a). The predictor was a convolutional neural network (CNN)
[46] trained to discriminate between all ten digits. We trained one Inclusion-Scrambler (#;s
=0.005, A = 500) and one Occlusion Scrambler (% = 0.3, A = 500). We performed

two benchmark comparisons to other attribution methods (Fig. 2b, Extended Data Fig.

2a): first, based on the importance scores of each method, we replaced all but the top

X% most important pixels with random samples from the background and measured the
KL-divergence between the predictions of the original and randomized test set images.
Next, we inversely tested how well these top-ranked features perturbed the prediction by
replacing only the top X% pixels with random samples. The Scramblers were superior in
each benchmark, as the median KL-divergence was the lowest and highest, respectively.

In addition to the upper portions of the digits themselves, the Scramblers identified open
regions adjacent to the digits as important, indicating that the classifier relies on both
foreground and background pixels when making its prediction. For example, the open
background region in the top left quadrant of digit ‘3’ is a unique distinguishing feature
shared among all examples of ‘3’. These salient ‘background’ features are identified by
methods such as DeepLIFT and DeepSHAP, but not by other methods that only identify
foreground pixels.

Identifying Alternate Feature Sets with Dropout and Bias Layers—There are
often multiple feature sets a classifier can use within a single input pattern to make

its prediction. Scramblers can be trained to select these alternate salient feature sets
dynamically using a dropout pattern D which is used to mask some positions in the predicted
scores &(x). Similarly, bias patterns T are used to encode specific positions to be included

in the solution. Importantly, the Scrambler & also receives D and T as additional input,
allowing the network to learn to output alternate (or additional) scores conditioned on which
positions were dropped or enforced (Fig. 2¢c, Extended Data Fig. 2b-d; see Methods for
details). During training, we sample random dropout- and bias patterns. At attribution time,
we supply specifically crafted patterns to exclude or enforce in the predicted solution to
enable targeted feature attributions.

For the MNIST classifier, bias patterns allow us to explore features beyond the initial
salient pixels found by default (Fig. 2d). Conversely, we can use dropout patterns to focus
attribution to pixels in a subsection of an image to discover new salient features (Fig. 2e).
In Extended Data Fig. 2e-f, we trained a Scrambler with tunable divergence against the
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background b, demonstrating how the entropy of the solution can be set dynamically at

attribution time, thus providing solutions at multiple scales of 4 with a single network.

The cis-Regulatory Code of Alternative Polyadenylation

Next, we used Scramblers to interpret regulatory sequence elements in the 3’ untranslated
region (UTR) of pre-mRNA (Fig. 3a). Specifically, using APARENT [7] — a CNN capable of
predicting cleavage and polyadenylation from primary sequence — we trained an Inclusion-
Scrambler to reconstruct isoform predictions for a subset of the original APARENT training
data (#; = 0.25, A = 1). Since we anticipated important polyadenylation features like RNA
binding protein (RBP) motifs to consist of short subsequences, we regularized the Scrambler
by fixing the final layer of the network to a Gaussian filter to encourage the selection of
contiguous nucleotides for masking (reminiscent of a technique proposed by Fong et al.
[33]). We found that the Inclusion-Scrambler learned to recognize known regulatory binding
factors associated with alternative polyadenylation (Extended Data Fig. 3a), such as CFIm,
CstF, HNRNPL, ENOX1, PABPN1, HuR, and RBM4 [47, 48, 49, 50]. When re-training

the Scrambler under the Occlusion objective, the network learned patterns that resulted in
more extreme perturbations without the fixed Gaussian filter than with it (Extended Data
Fig. 3b-c). However, when inspecting these patterns, they clearly exploited the importance of
scattered T’s in favor of knocking out biologically relevant motifs (Extended Data Fig. 3d).

The Scrambler outperformed other attribution methods when reconstructing the isoform
predictions of the APARENT model using only the top-ranked nucleotides and replacing the
remaining positions with random letters (Fig. 3b, Extended Data Fig. 3e-f; Median KL =
0.32 when keeping the 5% most important features). We next tested how well the discovered
features generalized to other APA-predictive models. To this end, we again perturbed

the sequences by keeping only the 5% most important nucleotides when interpreting
APARENT, but we now tested how well these features reconstructed predictions made by
DeeReCT-APA, a model trained on Mouse 3’-end sequencing data [51] (Extended Data

Fig. 3f). The Scrambler reconstructed the DeeReCT-APA predictions the most (Spearman

r = 0.67 when keeping the 5% most important features, n= 1, 737), but was closely
followed by DeepLIFT (r = 0.65) and Integrated Gradients (r = 0.66). Finally, we trained

a deeper version of the Scrambler with 20 residual blocks instead of 4 blocks. While the
deeper Scrambler reconstructed APARENT predictions even better (Median KL = 0.28), the
performance marginally decreased on DeeReCT-APA (r = 0.65) (Extended Data Fig. 3f).

Interpreting Genetic Variants of APA—We can interpret the functional impact of
mutations by running the Scrambler on wild-type and variant human polyadenylation
signals. For example, the Scrambler correctly detects the creation of a cryptic CstF binding
site caused by a deleterious variant (/08C>T) in the F2 (Prothrombin) gene, which is known
to cause or contribute to Thrombophilia due to increased polyadenylation efficiency (Fig.

3c) [52, 53, 54]. The detected CstF motif is qualitatively better separated from the Scrambler
sequence logo’s background compared to Perturbation. Furthermore, the Scrambler appears
highly sensitive in detecting loss of RBP binding motifs due to single nucleotide variants for
several disease-associated human polyadenylation signals [55, 56, 57, 58] (Extended Data

Fig. 3g).

Nat Mach Intell. Author manuscript; available in PMC 2022 August 12.
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Reconstructive, Enhancing and Repressive Motifs—Interestingly, with as little as
0.25 out of 2.0 target bits of mean conservation in the scrambled sequences, there was a very
high correlation between scrambled and original sequence predictions from the APARENT
test set (RZ = 0.85; Fig. 3d). In other words, a small set of regulatory features in each
polyadenylation signal explained most of the variation. Next, we altered the Scrambler
training objective to find the smallest set of features that maximize or minimize a prediction
rather than reconstructing it (see Methods for details). We found that the Scrambler could
partition cis-regulatory elements within polyadenylation signals into enhancing (e.g., CFIm,
HuR, Cstf) and repressive motifs (e.g., ENOX1, RBM4, PABPN1), in agreement with the
known function for these motifs and associated RBPs (Fig. 3e, Extended Data Fig. 3h).

The Rules of Translation Efficiency in the 5° UTR

The translation efficiency of mRNA is controlled by complex regulatory logic in its 5° UTR.
For example, an in-frame (IF) start and stop codon create an IF upstream open reading frame
(uORF), which typically represses translation, while neither an IF upstream start or upstream
stop codon individually represses translation (NAND logic). Sequences with multiple IF
starts and stops can further complicate translational logic by creating NAND-OR hybrid
functions with overlapping IF uORFs.

We trained an Inclusion-Scrambler to reconstruct the mean ribosome load (MRL — a proxy
for translation efficiency) of 10, 000 5 UTRs as predicted by the CNN Optimus 5-Prime
(Fig. 4a) [10]. To test how well attribution methods detect multiple regulatory elements, we
generated synthetic 5° UTR test sets with one (1 IF start, 1 IF stop), two (1 IF start/2 IF
stops or 2 IF starts/1 IF stop), or four (2 IF starts/2 IF stops) overlapping IF uORFs. We
then measured to what extent the most important nucleotides of each method corresponded
to the IF start and stop positions (Fig. 4b, Extended Data Fig. 4a-b). In the simplest case of
a single start and stop, nearly all methods had high accuracy for recovering these elements.
However, as the number of IF uORFs increased, the Scrambler often outperformed other
methods considerably. An example 5> UTR with multiple IF uORFs is shown in Fig. 4c;
here, the multiple stops effectively hide one another from many local attribution methods.
Furthermore, L2X, which trains a new predictor model simultaneously as the interpreter is
learned, overfits by only selecting one of the nucleotides in each of the ‘ATG’ and ‘TAG’
motifs (hence the low accuracy). The results did not improve for L2X even when trained on
the full 5° UTR dataset (Extended Data Fig. 4c).

Interpreting Genetic Variants in the 5° UTR—The combinatorial nature of out-of-
frame start codons (OOF uAUGs) and IF uORFs makes variant interpretation in human 5’
UTRs complicated [22, 23, 24]. In Fig. 4d, we interpret a variant, rs/ /60558441, which
creates an OOF uAUG that Optimus 5-Prime predicts to be functionally silent. The OOF
uAUG is created within an IF uORF, which hides its effect, as either element alone is
sufficient to repress translation. Therefore, the variant sequence is not interpretable by
Perturbation as the uAUGs are not found. A Scrambler trained with a low entropy penalty
(#its = 0.125, A = 1) detects both possible interpretations. With a higher penalty (A = 10),
the Scrambler must find a smaller set of salient features and marks only the OOF uAUG as
important, which is sufficient to explain the repression. However, rather than just identifying
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‘ATG’, the Scrambler identifies the subsequence ‘ATGA’, even though the trailing adenine
is not important for the explanation. This occurs because the number of salient features is
highly variable in any given 5’ UTR, and so a Scrambler trained for a target entropy &
may ‘over-interpret’ some examples.

Per-example Fine-tuning Removes Interpreter Artifacts—To overcome issues with
over-interpretation for datasets with a highly variable number of important features, we
apply a per-example fine-tuning step: starting with $(x), we optimize new scores §

by gradient descent which are specific to x and remove excessive features of $(x) by
maximizing the entropy of the PSSM unbounded. Specifically, s is optimized to subtract
scores from &(x) in order to maximize the PSSM entropy KL[b ||xs] unbounded, while

still minimizing the predictive reconstruction error KL[@(x§k))||g’(x)]. As seen with the

variant example (Fig. 4d), fine-tuning of the Low entropy-penalty Scrambler removes the
trailing ‘A’. We also compared the Scrambler with and without fine-tuning to interpret
silent uORF-altering and gain-of-function mutations (Extended Data Fig. 4d). Importantly,
when compared on one of the benchmarks of Fig. 4b, we find that applying per-example
fine-tuning to the pre-trained Scrambler scores produces more robust attribution results than
individual per-example optimization of importance scores (Extended Data Fig. 4¢). This

is likely because the latter approach can become stuck in local minima or produce poorly
generalizable interpretations, essentially ‘overfitting’ to spurious predictor signals.

Dropout for Alternate Open Reading Frame Discovery—Sequences with multiple
IF uORFs are examples of patterns with redundant salient feature sets. By adding an
importance score dropout layer to the Inclusion-Scrambler and training it on random dropout
patterns, we obtain a model capable of dynamically proposing different IF uORFs as
attributions (Extended Data Fig. 4f-g). Without dropout and a low entropy penalty (%
=0.125, A = 1), the Scrambler marks all IF starts and stops (i.e. all IF uORFs) as important
in the example shown in Extended Data Fig. 4f. However, with a higher penalty (A = 10),
the Scrambler finds a smaller interpretation with only one IF uORF. When using dropout
patterns to exclude either of the IF starts and stops, the Scrambler dynamically finds the
alternate operands.

The Determinants of Protein-Protein Interactions

Here we apply Scramblers to interpret predicted interactions for pairs of proteins. This

can be challenging, as proteins are defined along a narrow manifold of stably folded
sequences. Any interpretation method must ensure that masked or perturbed sequences
stay in distribution for predictions to remain accurate. We focused on a set of rationally
designed coiled-coil heterodimers, where binding specificity is induced by hydrogen bond
networks (HBNets) at the dimer interface [59, 60]. Using approximately 180, 000 designed
heterodimers as positive training data and randomly paired monomers as a negative set, we
trained a recurrent neural network (RNN) to predict dimer binding (Fig. 5a, Extended Data
Fig. 5a; AUC = 0.96 on held-out test data, n= 26, 459). These coiled-coil proteins follow

a conserved heptad repeat structure, but binder sequences of different lengths have their
heptad motifs shifted by different offsets. Consequently, when training Scrambler networks

Nat Mach Intell. Author manuscript; available in PMC 2022 August 12.
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on this data, we used a separate background distribution for each sequence length. A test set
of 478 designed heterodimers was used to investigate how well different attribution methods
could capture HBNet positions and residues important for complex stability.

Unlike the DNA attribution tasks above, each dimerization prediction involves two input
sequences. Consequently, there are multiple ways in which to define the Scrambler
architecture. We first tested a joint Occlusion-Scrambler (Fig. 5b; left), which receives

both sequences as input and can learn to recognize partner-specific binding features. After
training, this architecture identified a subset of HBNet positions and hydrophobic residues
at the interface necessary for binding specifically to the cognate partner (Fig. 5d). We also
tested a szamese architecture, which saw only one input sequence at a time and was therefore
constrained to learn global, partner-independent features (Fig. 5b; right). This architecture
learned to identify nearly all HBNets, as these are the best determinants of binding
specificity to any possible partner (Fig. 5c-d). We compared these Scrambler architectures
to other attribution methods based on how much the positions with largest absolute-valued
score either preserved or perturbed the RNN predictions (Fig. 5e; 4 = 0.25, Inclusion;
= 2.4, Occlusion). The siamese Inclusion-Scrambler and joint Occlusion-Scrambler had the
best (lowest and highest) median KL-divergence for these tasks.

Importance Scores Reflect Dimer Stability and Hydrogen Bonds—Next, using
in-silico Alanine scanning, we estimated the mean difference in AAG between the original
and mutated dimers for the eight most important residues per binder and attribution method
[61]. We also compared the methods by their ability to discover HBNet positions based

on their importance scores. We found that the joint Occlusion-Scrambler identified residues
that destabilized the complex the most (mean difference AAG = 2.20, Fig. 5f), while the
siamese model discovered significantly more HBNet positions (AUPRC = 0.61). These
results support the idea that the siamese architecture learned discriminative features for
both interacting and non-interacting pairs — HBNet residues — while the joint model learned
features important for positive interaction, such as hydrophobic residues at the interface.
While Integrated Gradients and DeepSHAP perturbed the RNN predictions more when
considering only their positive-valued scores, the Scramblers had better AAG scores and
HBNet discovery rates (Extended Data Fig. 5b). This suggests that using a parametric
masking model results in more generalizable features by overcoming spurious RNN signals.
We performed additional comparisons to other attribution methods in Extended Data Fig.
5c-d and 6. We found that the temperature-based masking operator of Eq. 1 consistently
outperforms other masks, that model-based interpretations were better than per-example
masking approaches, and that methods such as L2X and INVASE failed to converge when
trained on the full set of binders.

Finally, we tested the Scrambler against different versions of the ‘hot-deck’ SIS method
(Extended Data Fig. 5e) [39, 40]: For each iteration of SIS, we sampled a number of
background sequences and used these to mask de-selected features. The mean sample
prediction was used as the function value. Similarly, we varied the number of Gumbel
patterns sampled from the Scrambler PSSM during training (K in Eq. 2). The Scrambler
operated well with few (= 4) samples and consistently outperformed SIS with 32 samples,
both in predictive reconstruction and ground-truth comparisons. Additionally, the total
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number of predictor queries required to interpret the entire dataset with comparable quality
was ~ 70 times lower than SIS. Interestingly, using a simple masking scheme such as mean
features resulted in poor interpretations for the dimer RNN predictor.

Interpreting Protein Structure Predictions

Recent advances in deep learning have made homology-free protein structure prediction
possible. Such neural networks use the primary sequence and corresponding multiple
sequence alignment (MSA) as input to predict three-dimensional atom-atom distances and
backbone torsion angles [11]. Here, we apply Scramblers to the predictor trRosetta [12]

to detect important sequence features for predicted structures. Since it is computationally
heavy to query the predictor — and would likely require many iterations to train a Scrambler
network — we demonstrate the approach for a single protein at a time (Fig. 6a). A trainable
vector of scrambler scores (PSSM temperatures) is used to perturb the input sequence

and MSA to minimize or maximize the total KL.-divergence between predicted contact
distributions (see Methods for details). We tested our approach on one of the alpha-helical
hairpin binders from the previous dimer data set (Fig. 6b). PSSMs for the hairpin binder
were optimized for the Inclusion (Fig. 6¢) and Occlusion objectives (Fig. 6d). Both
PSSMs used hydrophobic leucines and a symmetry-breaking glycine in the hairpin region
to reconstruct or distort the original hairpin structure prediction, which aligns well with
previous results [60]. We further tested the method on naturally occurring proteins with
more complex 3D structures (Extended Data Fig. 7a-b).

Next, we altered the Scrambling architecture to enable MSA-free interpretation of de

novo engineered proteins lacking natural sequence homology (Extended Data Fig. 7¢c). We
optimized Inclusion-PSSMs to reconstruct the structure prediction of four proteins designed
by deep network hallucination [62] (Fig. 6e). Important features found by the Scrambler
included hydrophobic residues in the core for all four proteins. For validation, each protein’s
structure prediction was relaxed, and the per-residue breakdown of the Rosetta score
function was computed [63]. We found that the per-residue energy values agreed reasonably
well with the Scrambler importance scores (mean top 10 residue agreement = 0.425).
However, note that some features marked by the Scrambler as important for the structure
prediction are missed by the Rosetta energy breakdown. For example, as can be seen in Fig.
6e, the Scrambler marked loop glycines between alpha-helices as important for the structure
prediction, even though they do not have a large energetic contribution to overall stability.
Glycines frequently occur in loops and turns and are thought to be important for maintaining
protein loop structure due to their size and flexibility compared to other residues [64, 65].
The MSA-free approach was also tested on a hairpin-like protein engineered by Activation
Maximization (Extended Data Fig. 7d-e) [66].

Discussion

Here we introduced a new attribution method — Scrambler Networks — that builds on and
extends earlier work in input masking approaches. The goal is to explain an input pattern
for a machine learning model by finding the smallest set of features which either reconstruct
or destroy its prediction [32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. Scrambler networks are
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based on learning a parametric model that predicts a set of real-valued importance scores
given an input pattern. These predicted scores are used as sampling temperatures within

a PSSM that interpolates between the current input and a non-informative background
distribution. We demonstrated the performance of Scramblers on several attribution tasks,
ranging from identifying cis-regulatory elements in RNA sequences to protein-protein
interactions and protein tertiary structure. Furthermore, Scramblers can be trained to find
not only reconstructive, but also enhancing and repressive features, and can be used to
dynamically find multiple salient feature sets within a single input pattern. For prediction
problems where the salient feature sets vary widely in size, per-example fine-tuning can be
employed to correct positions that were misidentified as important.

At the core of mask-based interpretation is the masking operator, which must be carefully
chosen according to the problem domain. Earlier work in computer vision masked input
patterns by fading or blurring [32, 33, 34], and other methods for discrete variable selection
masked features with zeros [35, 36]. Neither of these operators are suitable for predictors
trained on biological sequences, which expect discrete one-hot encoded patterns as input
and predict poorly on patterns outside of the training data manifold. The Scrambler masking
operator is conceptually similar to ‘hot-deck’ masking proposed in the SIS method by Carter
et al. [39] and in the interpretation method of Zintgraf et al. [38], where deactivated features
are replaced with random samples from the marginal distribution of that input. Scramblers
generalize this concept by maintaining a categorical feature sampling distribution at each
position in the sequence, where the predicted temperature (inverse importance score)
defines how random a sample from that position will be on a continuous scale. An
immediate benefit is that, in contrast to SIS, Scramblers output real-valued importance
scores that reflect an internal ranking of feature importance. This masking operator also
shares similarities with the counterfactual masking introduced by Chang et al. [37], but

the temperature-based operator is simpler as it does not require training a generative fill-in
model.

We showed in extensive benchmarks that temperature-based masking outperforms the hot-
deck masking done with SIS and any of the fade-, blur- or mean-masking schemes used

in [32, 33, 34]. By training a parametric model, we end up with a more sample-efficient
method at interpreting patterns than per-example methods [32, 39]. We also showed that
Scramblers produced better interpretations than L.2X [35] and INVASE [36], which either
overfit their interpretations when trained on the reduced datasets or did not converge well
when trained on the full data. This highlights the difficulty in jointly training a sparse feature
selector and a predictor on very heterogeneous data and showcases the potential in applying
post-hoc interpretation to rich, pre-trained predictors. By optimizing over a sufficiently
large training set, Scramblers avoid overfitting to spurious per-example signals and learn to
generalize feature importance. Generalizable attributions are highly desirable in genomics
and proteomics as they allow us to infer higher-quality biological discoveries from trained
predictors, thereby offering richer insights into molecular processes that were previously
considered black boxes. We envision that Scramblers will be particularly useful for rational
sequence design, where they can be employed to either validate known design rules (as
demonstrated on the protein-protein interaction task) or — as demonstrated on the protein
structure task — to discover determinants which data-driven design methods have produced.
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Methods

Scrambling Neural Network Definition

Masking Operator—Let x € {0, 1} be a one-hot-encoded sequence and let

Sx) € (0,00]" be the corresponding real-valued importance scores predicted by Scrambler

NXM are defined as

network &. The channel-broadcasted importance scores Sx) € (0, 0]
S(x);; = S(x);, Vi, j. S(x) are used as (differentiable) interpolation coefficients in log-space
between background distribution b and the current input pattern x according to Eq. 1 for

the Inclusion objective. Conversely, the scrambling operation for the Occlusion-model is
defined in Eq. 3 below. Here, the expression x x &(x) has been replaced with x / S(x). Either
of these formulas return a softmax-relaxed distribution (a Position-Specific Scoring Matrix;
PSSM) x5 € [0, 11V XM which can be interpreted as a representation of the input sequence
where the information content at position 7 has been perturbed according to the sampling
temperature §'(x); predicted by the Scrambler.

X5 =o(logh +x / S(x)) @)

Given the scrambled PSSM x ¢, we sample approximate discrete one-hot-coded patterns ng)
using the Concrete distribution (or Gumbel-distribution) [44], enabling differentiation:

xg) = (C}iT1. €~ Concrete(Xgi, -, £sim) @

Alternatively, we sample exact discrete patterns ng) from X ¢ and use the Softmax Straight-

Through Estimator (ST-sampling) [43] to approximate the gradient V- gxg‘) of the input

pattern with respect to the Scrambler network weights. To reduce variance during training,

we draw K samples {xg‘)};{( — 1 at each iteration of gradient descent and walk down the

average gradient (by default, K= 32).

Objective Functions—Given the scrambled PSSM X ¢, a collection of differentiable
sequence samples {ng)}kK= | and the background distribution b, the Scrambler is trained

by backpropagation to either minimize Eq. 2 (Inclusion) or Eq. 5 below (Occlusion).
For predictor models & with a sigmoid or softmax output (classification), the prediction

reconstruction error between %(x) and Q(ng)) is the standard cross-entropy error. For

regression tasks, the cost is defined as the mean squared error. The cost parameter #
defines the target per-position PSSM conservation and A defines the conservation penalty
weight. With a smaller value of A, the Scrambler is allowed to output PSSMs with a larger
spread of conservation around the target 4, (example: for one input pattern, the scrambled
PSSM may have a mean conservation of 0.05, for another pattern, it may be 0.25). With a
larger A, the conservation values are forced closer to ;.
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K
min — Z KL 2]

1 ~ )2
+ 4+t = 37 - KLIB 1] ®

Rather than optimizing the Scrambler to reconstruct predictions using a small feature set,
we can train the model to find feature sets that either positively or negatively influence
the prediction. For classification tasks, we either maximize or minimize the log-probability

log @(x(k)) (Eq. 6-7). For regression tasks, we either maximize or minimize the regressor

2(x¥) (Eq. 8-9).

l ~ 2
+ 2+t = 3y - KLIB 121 ®
S k=1

min —( Z log gj(x(é»))

1 ~ )2
I‘E“‘(Kkzllog(l“@(" N[+ 4- (tbits_N‘KL[b“ch’]) (7
(k) 1 ~ 2
min - Z PES)|+ A~ toies = 57 - KLIB 1 %] ®)
k—1
~(k) 1 ~ . \?
min| Z PES)|+ 4+ (ties = 57 - KLIb X 5] ©

Note that we could have defined the conservation penalty of Eq. 2-5 and 6-9 in many
other ways. The KL-divergence KL[b || X 5] corresponds to the generalized entropy of % and

is particularly suitable for the Inclusion-Scrambler: the expression reaches O when X is
maximally entropic (with respect to b). For the Occlusion-Scrambler where entropy should
be minimized, it may seem more appropriate to minimize the KL-divergence KL[X g||x]

to the original input pattern rather than maximizing KL[b |Ixs], as this cost corresponds

to the cross-entropy of x ¢ with respect to x and is 0 at minimum entropy. Alternatively,

for both Scramblers, we could simply minimize the area scrambled by the importance
scores, o(S(x)) x 2 — 1 (we refer to these as /um values). Overall, KL[b ||x¢] resulted in better

performance, which we hypothesize has to do with the information content of b otherwise

being lost.

Background Distribution—The background distribution b is intended to keep the
scrambled sequence samples in distribution and along the manifold of valid patterns, no
matter where on the interpolation line between b and x the scrambled distribution % g is.

There are several possible choices of b, with varying degrees of complexity:
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N
pIRERCIY
N

(0-BG)b;j = P(x; = j) = (10)

N
2i=1LP = jnx® —

i —

N k
2i=1L® —

(H-BG)bj(x) = P(x; = j | Xi— s -os Xi 4 1) = (11

(DATA) b= x{V. K~ {1,...N} (12)

(GEN) b, (%) = (2, %, SX));; 2z~ H(©0,1)? (13)

The simplest background distribution, 0-BG, corresponds to the mean input pattern across
the training set (i.e. marginal feature probabilities). A more complex background, H-BG, is
the distribution of a particular feature conditioned on its neighboring features [38]. Finally,
the DATA- and GEN distributions consist of input patterns randomly chosen from the dataset
(DATA), or patterns generated by a distribution-capturing model such as a conditional GAN
or Variational Autoencoder (GEN) [37]. In all of our experiments, we relied on the simplest
background distribution, 0-BG, since all tested sequence-predictive models behaved well on
such samples. Still, for more narrowly defined manifolds, H-BG or DATA/GEN may be
more appropriate to stay in distribution.

Network Architecture—The Scrambler is based on a Residual Neural Network
architecture with dilated convolutions (Extended Data Fig. 1) [42]. For the MNIST, 5° UTR,
and protein binder attribution tasks, the network consisted of 5 groups of 4 dilated residual
blocks (20 blocks in total), with filter width 3. For the alternative polyadenylation task, the
network had just one group of 4 residual blocks, with filter width 8.

Mask Dropout and Biasing—Scramblers can find multiple salient feature set solutions
for an input pattern using input-masking layers such as dropout- or biasing layers, which
either disallow or enforce specific sequence positions in the retained feature set. Specifically,
we let D, T € {0, 1} be the dropout- and biasing masks and apply them to the importance
scores by element-wise multiplication and addition respectively:

%5 =o0(ogh +xx(Sx,D,T)xD+T-c) (14)

Here cis the temperature of the biasing mask 7 (smaller ¢ allows more randomness in
selecting the letter at a biased position, a larger ¢ makes it more likely to select the current
input letter at the biased position). The Scrambler network & also receives D and T as
additional input, allowing the network to learn to output alternate scores conditioned on
which positions were dropped or enforced. During training, we use random samples of D
and T (various training schemes are illustrated in Extended Data Fig. 2; for the MNIST task,
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we used all three schemes; for the 5° UTR task we used only the first scheme, i.e. uniform
random training patterns consisting of squares). After training on randomized dropout and
biasing patterns, we can provide hand-crafted patterns at inference time to detect alternate

feature sets of new input examples.

Fine-tuning and Per-example Optimization—For heterogeneous datasets where the
number of important features per example is highly variable, we apply a per-example
fine-tuning step to the importance scores predicted by the (pre-trained) Scrambler network
S to remove any excessive (or redundant) features. Specifically, for each input pattern x, we
predict Scrambler scores §(x) and optimize the subtraction scores s according to Eq. 15-16
(for Inclusion) or Eq. 17-18 (for Occlusion) below. The scrambling Eq. is reformulated
with the expression max[$(x) — s, 0]; this forces the resulting fine-tuned importance scores
to select a subset of the features identified by the original scores §(x), i.e., the new

scores cannot find a new alternate explanation for example x. This restriction prevents
‘overfitting’ to the predictor, which is otherwise a problem with per-example optimization.
Architecturally, we do not optimize s directly; we optimize parameters w, which are
instance-normalized and softplus-transformed (s = Softplus(IN(w))). In our experiments,
we optimize w for 300 iterations of gradient descent (Adam, learning rate = 0:01).

K
ol L (k) L xuibie
msm( Kk; KL[P(xg NP0 | + 4 - 57 - KLIB [|xs] (15)
Xy = o-(log b + x X max[S(x) — s, 0]) (16)
1 < 1

L (k) A KLIBIE
min - | ¢ 2, KL >||9)<x)1) A+ - KLIb|I%] a7
Xy = a(logE + x / max[S(x) — s, e]), eEn}_O (18)

For comparison, we also perform per-example optimization from scratch (i.e., we start
with randomly initialized values rather than pre-trained Scrambler scores). To this end, we
optimize Eq. 15 (for Inclusion) or Eq. 17 (for Occlusion). The perturbation operators are
identical to Eq. 1 and 3, but with individual scores s per pattern x: X = o(logh + x X $)

(Inclusion), X = o(logh + x / §) (Occlusion).

Attribution Tasks and Predictors

MNIST: The predictor was a CNN with 2 convolutional layers, 1 max-pool layer and a
single fully connected hidden layer. The network was trained for this study. Predicts a
10-way classification score P(x) € R0 (softmax) given a binarized MNIST image x € {0,

1}28%28 35 input.
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APA (3’ UTR): [7] The predictor was a pre-trained CNN (APARENT) which predicts
relative alternative polyadenylation isoform abundance %(x) € [0, 1] given a 206 nt one-hot
DNA sequence x € {0, 1}206%4 a5 input. The trained model was downloaded from: https:/
github.com/johli/aparent/tree/master/saved_models.

Translation (5’ UTR): [10] The predictor was a CNN (Optimus 5-Prime) which predicts
mean ribosome load %(x) € R given a 50 nt one-hot DNA sequence x € {0, 1}°% as input.
The model was re-trained for this study but the training procedure was based on the code
from: https://github.com/pjsample/human_5utr_modeling.

Protein heterodimer binders: The predictor was a RNN with siamese recurrent GRU
layers, a dropout layer and a single fully connected hidden layer. The network was trained
for this study. Predicts protein dimer binding probability %(x) € [0, 1] (sigmoid activation)
given two right-padded, 81 residues long protein binder sequences x, x, € {0, 1}81%20
as input. Note: When training Scrambler networks on these data, we used a separate

background distribution b for each unique protein sequence length.

Protein structure: [12] Predicts distance and angle distributions of backbone atoms in
3D given an input primary sequence. The trained model was downloaded from: https://
files.ipd.uw.edu/pub/trRosetta/model2019_07 .tar.bz2.

Given a one-hot-encoded sequence pattern x € {0, 1}"*20 and Multiple Sequence Alignment
MSA € {0, 1 }KXMZI, trRosetta predicts the atom-atom distance distribution D(x, MSA)

€ [0, 11¥%M37 and backbone torsion angle distributions &x, MSA), w(x, MSA) € [0,
11VN24 g, MSA) € [0, 1112 1p the paper, we performed per-example scrambling to
interpret example protein structures, i.e. we did not train a discriminative Scrambler model
to predict importance scores. Instead, this method optimizes a set of importance scores s for
each pattern x that we wish to interpret. In the context of inclusion-scrambling, we find the
smallest set of residues that minimizes the total KL-divergence of the target structure:

K
3 KLIDGEK), MSAY) [ Dx, MSA)]

K=

+KLOG), MSA(R) 0(x, MSA)]

+ KLIo), MSA) lo¢x, MSA)]

FKLIpGED. MSAL) . MSA )

minL
s K

1 ~ )2
+ 2+ {tbits = 7 - KLIB 1]

For occlusion-scrambling, we optimize the inverse objective:
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min L
K

K
- Y KLDG, MSA) | D(x. MSA)]
s K=1

— KL[OG), MSA (D) 0(x, MSA)]
- KL[o({R), MSAY)) [l o(x, MSA)]
KL, MSAL) [ix MSA)))

1 ~ 2
+ 2+ {1bits = 7 - KLIB %]

In the above formulations, we define xgk), MSAgk) ~ Xg, MSA s (etter-by-letter Gumbel-

sampling). For inclusion-scrambling, we define:

% =o(logh + x X §)
MSAg = o(log b + MSA x §)

For occlusion-scrambling, we define:

£g=o(logh +x/$)
MSAg = o(logb + MSA / §)

Here s € R™ %M ig a channel-broadcasted copy of the importance scores s € RN and

§ € RKXNXM j5 3 MSA-broadcasted copy. We obtain s from a vector of real-valued

(trainable) numbers that we instance-normalize and apply the softplus activation on. We
train s until convergence using the Adam optimizer with learning rate = 0.01, B; = 0.5 and

B> =009.

Attribution Methods

The attribution methods listed below were included in all the benchmark comparisons.
However, DeepLIFT- and Guided Backprop were excluded from the PPI task (Fig. 5) since
they were incompatible with the heterodimer RNN predictor model. See the Supplemental
Information for a list of additional attribution methods that were tested only for the PPI task.

Scrambler (Inclusion): Scrambler network trained to minimize Eq. 2 using the
temperature-based perturbator of Eq. 1, with background b set to the mean input pattern
across the training set. The network was trained between 20-50 epochs depending on task
(when the validation error started to saturate).

Scrambler (Occlusion): Scrambler network trained to minimize Eq. 5 using the
temperature-based perturbator of Eq. 3, with background b set to the mean input pattern

across the training set.

Perturbation: Baseline attribution method where each nucleotide or residue in the input
pattern x is systematically exchanged for every other possible letter, measuring the

change in prediction as a proxy for the importance score. Let 59 be the sequence
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pattern corresponding to exchanging the current nucleotide/residue at position 7 for
letter . We then calculate the importance score s; at position i as the absolute

mean change in prediction across all letters j: s;= |1/ M - Zj"": 19’(55(U )) - P(x) |.
For classification tasks, we compare the log-scores of the predicted probabilities:
si= 11/ M- 3 log PE) — log P(x) |.

Gradient Saliency [25]: The Gradient Saliency method was executed using the
implementation from Ancona et al. [45]. We used either the absolute value of the saliency
scores (‘Gradient Saliency’) or the signed scores (‘Gradient Saliency (Signed)’).

Code: https://github.com/marcoancona/DeepExplain.

Guided Backprop [27]: The Guided Backprop method was executed using the
implementation from Shrikumar et al. [29]. We used either the absolute value of the saliency
scores (‘Guided Backprop’) or the signed scores (‘Guided Backprop (Signed)’).

Code: https://github.com/kundajelab/deeplift.

DeepLIFT [29]: For the MNIST task, the RevealCancel method was used. For all other
tasks (due to predictor compatibility issues), the Rescale implementation from Ancona et al.
[45] was used instead. The reference was set to the mean sequence pattern (PSSM) of the
data set. We used either the absolute value of the saliency scores (‘DeepLIFT’) or the signed
scores (‘DeepLIFT (Signed)’).

Code: (RevealCancel) [29] https://github.com/kundajelab/deeplift.
(Rescale) [45] https://github.com/marcoancona/DeepExplain.

DeepSHAP [30]: SHAP DeepExplainer (‘DeepSHAP’) was executed for each input pattern
with 100 reference patterns sampled uniformly from the data set. We used either the absolute
value of the saliency scores (‘DeepSHAP’) or the signed scores (‘DeepSHAP (Signed)’).

Code: https://github.com/slundberg/shap.

Integrated Gradients [28]: Integrated Gradients was executed using the implementation
from Ancona et al. [45]. 10 integration steps were used per pattern. The reference was set
to the mean sequence pattern (PSSM) of the data set. We used either the absolute value
of the saliency scores (‘Integrated Gradient’) or the signed scores (‘Integrated Gradients
(Signed)’).

Code: https://github.com/marcoancona/DeepExplain.

TorchRay [33]: The extremal preservation/perturbation method from the TorchRay package
was executed using either the perturbation operator where masked pixels/letters are zeroed
(‘TorchRay Fade’) or blurred by a gaussian (“TorchRay Blur’). For the sequence-predictive
tasks, we changed the code base to support 1-dimensional patterns. In all tasks, we set the
blur operator o to 3, the mask operator o was set to 5 or 3 and the ‘step’ argument was set to
2. The ‘area’ was set to either 0.1 or 0.2.
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Code: https://github.com/facebookresearch/TorchRay.

Saliency Model [34]: The Saliency Model-method was trained using a ResNet-50 network
architecture. For the sequence-predictive tasks, we changed the code base to support 1-
dimensional input patterns. The ‘encoder’-part of the network was not pre-trained and the
‘selector’-component was not used. In all tasks, the blur kernel size was set to either 9 or

5 and o was set to 3. For every training iteration, blur was used 50% of the time as the
perturbation operator and fade (zeroing features) otherwise.

Code: https://github.com/PiotrDabkowski/pytorch-saliency.

Sufficient Input Subsets [39]: Sufficient Input Subsets (SIS) was executed with the
threshold set to the 50th percentile of the predicted scores (2(x)) across the data set.

For input patterns with non-masked predictions below this threshold, we used a dynamic
threshold of 0.8 times the non-masked predicted score.

We tested multiple masking schemes: (1) Replacing masked residue positions with the mean
letter value (‘SIS (Mean)’) and (2) Replacing masked residue positions with letters sampled
from the marginal letter distribution, repeating the sampling process X times, and calculating
the mean prediction across all X samples (‘SIS (X Sample)’).

Code: https://github.com/google-research/google-research/tree/master/

sufficient_input_subsets.

Zero Scrambler: Optimizes the same high-level objective as the Scrambler, but
this model uses a perturbation operator similar to that of L2X [35] and INVASE
[36] where de-selected features are zeroed. Specifically, “Zero Scrambler’ optimizes

2
min g KL (e x M DNPE + 2+ (tagea = 1/ N - B 1.5 0))", where 4 is a binary

0/1 masking model. The continuous-valued mask /%(s)(x) and binarized mask /l(G)(x) are
obtained by applying sigmoid activations and Gumbel sampling on the output vector of .#

respectively. Internally, the network . is identical to the Scrambler.

L2X [35]: The ‘approximator’-model used in the L2X procedure always had the same
architecture as the original predictor of each task. The ‘explainer’-model was the default
network found in the example code, consisting of multiple layers of convolutions with global
pooling to capture high-level features. The size parameter k was set to 0.1 - Nor 0.2 - N
depending on the task, where NVis the length of the sequence. The L2X models were trained
until convergence (early stopping on validation data).

Code: https://github.com/Jianbo-Lab/L2X/.

INVASE [36]: The ‘critic’- and ‘baseline’-models used in the INVASE procedure were
standard convolutional neural networks with 3-5 convolutional layers, interlaced with
instance-normalization layers, and one fully-connected hidden layer. The ‘actor’-model was
a convolutional neural network with 3-5 instance-normalized convolutional layers. The A
parameter varied between 0.05 and 50 depending on the task. The INVASE models were

trained until convergence.
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Code: https://github.com/jsyoon0823/INVASE.

Scrambler (Inclusion, Siamese): The ‘siamese’ Inclusion-Scrambler architecture used
in the PPI task (Fig. 5). Given pairs of input patterns x; and x,, we optimize

. ~ A 2
ming(1/ K - 3k = 1 KLIPGS 6O 190er, 1) + 2+ (1wits = 1/ N - KLIB 1, 11) + 4,

~ A 2
(tits = 1/ N - KL[b,|| %5, 1)

where xggk)l, ng)z ~Xg 1, X s, 2 (letter-by-letter Gumbel-sampling) and

Xgs 4 =o0(log i;# + x4 X S(xp) (# = Lor2). S is a (siamese) Scrambler network.

Scrambler (Occlusion, Joint): The ‘joint” Occlusion-Scrambler architecture used in
the PPI task (Fig. 5). Given pairs of input patterns x| and x,, we optimize

. ~ A 2
ming — (1/ K - T = | KLIPGE L xE) 1201 x)]) + 4+ (thigs = 1/ N - KLIb 1 %5, 1) + 4,
~ A 2
(tits— 1/ N - KL[b5|%g,2])
where ngk)l, ng)z ~Xg 1, Xs, 2 (letter-by-letter Gumbel-sampling) and

X 4= 0'( logby + xy | S(x1, xz)) (#=1lor2). § is a two-input Scrambler network.

Scrambler (Occlusion, Siamese): The ‘siamese’ Occlusion-Scrambler architecture used
in the PPI task (Fig. 5). Given pairs of input patterns x| and x,, we optimize

. ~ A 2
ming — (1/ K - T = | KLIPGE L xE)1P0e1 x0) + 4+ (1hies = 1/ N - KLIB %5, 1) + 4,

~ A 2
(tits = 1/ N - KL[bo|%s,21)

where ng)l, ng)z ~ X, 1, X g 2 (letter-by-letter Gumbel-sampling) and

X4 =ofloghy+xy / S(xy)) (# = lor2). S is a (siamese) Scrambler network.

Benchmarking Details

Synthetic IF uORF 5’ UTR Datasets—Synthetic IF uORF 5° UTR sequences were
generated for feature attribution with varying numbers of IF uORFS by selecting sequences
from the Optimus 5-Prime egfp_unmod_ 1 dataset [10], which contained no upstream starts
or stops and had MRL values that fell between the 5th and 10th percentile of the dataset.
This set of sequences (1= 537) had the original sequence nucleotides replaced by “ATG”
and “TAG” uniformly at random at possible IF positions as needed to create the number of
IF uOREFs for the dataset, keeping the rest of the UTR fixed. Four synthetic 5> UTR datasets
of n=512 sequences were generated: one IF uORF by inserting an “ATG” and followed
by a “TAG”, two IF uORFs by inserting an “ATG” followed by two “TAG”, two IF uORFs
by inserting two “ATG” followed by “TAG,” and four IF uORFs by inserting two “ATG”
followed by two “TAG”.

Hydrogen Bond Network Detection—The Chen et al. [60] dimers were designed
to have a minimum of 4 residues involved, contacting all four helices, with all
heavy-atom donors and acceptors in the network satisfied. However, in later design
steps for the hetero-dimers, these networks were slightly disrupted making complete
recovery difficult using the original parameters. As such, slightly relaxed criteria from
the original design specifications were used to recover as many HBNet residues as
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possible from the test set designed structures. HBNet residues were recovered from test
coiled-coil dimers using PyRosetta [67] and the HBNetStaplelnterface protocol, with the
settings min_network_size=3, min_helices_contacted_by_network=3, hb_threshold=-0.3,
and find_only_native_networks=True. The ref2015 score function was used during HBNet
mover setup [63].

Mean AAG Difference Calculation and Alanine Scanning—Computational Alanine
scanning was carried out for all residues in a hetero-dimer pair using PyRosetta [67]. Each
position was mutated to Alanine and repacked with the neighboring residues prevented from
design and repacking. The Interface AnalyzerMover was used with set_pack_input as False
and set_pack_separated as True to calculate the mean mutation AAG in Rosetta Energy Units
(REU) at each position. For each attribution method, the eight most important residues per
dimer were selected, and the difference of the mean AAG of the top residues and the mean
AAG of all other residues was computed.

Per-Residue Score Function Breakdown and Substitution Scoring Matrix

Lysozyme and Sensor Histidine Kinase structures were predicted with trRosetta [12]. Each
de novo structure was provided by [62]. All structures were relaxed using fast relax with
PyRosetta [67], scored using the beta_nov16 score function [63], and broken down into
individual residue contributions. This was done ten times per structure, and the average

residue contributions were calculated.
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Extended Data
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Extended Data Fig. 1.
(a) Scrambler network architecture. The network is based on groups of residual blocks. This

particular network configuration has 5 groups of residual blocks, with 32 channels, filter
width 3 and varying dilation factor (1x, 2x, 4x, 2x, 1x). There is a skip connection (single
convolutional layer with 32 channels and filter width 1) before each residual group. All

skip connections are added together with the output of the final residual group. A softplus
activation is applied to the final tensor in order to get importance scores that are strictly
larger than 0. (b) Each residual group consists of 4 identical residual blocks connected in
series. (c) Each residual block consists of 2 dilated convolutions, each preceded by batch
normalization and ReL.U activations. A skip connection adds the input tensor to the output of

the final convolution.
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a Top % Features Included Top % Features Included

Median KL-Divs 20% 10% 5% 2% Mean Accuracies 100% 20% 10% 5% 2%
SCRAMBLER 0.00 2.10 9.74 SCRAMBLER 0.99 9.99 9.99 9.87 6.01
PERTURBATION 0.02 ©0.36 1.06 1.92 PERTURBATION 0.99 0.79 .43 ©0.09 0.00
GRADIENT 0.00 ©.17 0.88 2.04 GRADIENT 0.99 0.90 ©0.62 0.09 0.00
GUIDED BACKPROP 0.00 0.6 0.72 1.91 GUIDED BACKPROP 0.99 0.97 .83 ©0.20 0.00
DEEPLIFT 0.00 0.5 0.40 1.37 DEEPLIFT 0.99 0.93 ©.82 0.35 0.00
DEEPSHAP 0.00 0.2 0.30 1.25 DEEPSHAP 0.99 0.95 0.87 .48 0.02
INTEGRATED GRADIENTS ©.60 ©.16 ©0.82 1.87 INTEGRATED GRADIENTS ©.99 ©.94 0.66 0.14 0.00
TORCHRAY BLUR 0.00 0.31 1.39 2.44 TORCHRAY BLUR 0.99 0.92 0.48 0.04 0.00
TORCHRAY FADE 0.00 0.29 1.56 2.41 TORCHRAY FADE 0.99 0.93 0.49 0.03 0.00
SALIENCY MODEL 0.0 ©.14 0.93 2.04 SALIENCY MODEL 0.99 0.90 0.66 0.12 0.00
SIS MEAN 1.59 1.61 1.64 1.90 SIS MEAN 0.99 0.00 ©0.00 0.00 0.00
ZERO SCRAMBLER 0.41 1.30 2.10 2.68 ZERO SCRAMBLER ©.99 ©0.40 0.05 0.00 0.00
L2x ©.27 1.5 2.4 2.71 L2x 0.99 0.50 ©0.06 ©0.00 0.00
INVASE 0.29 1.2 1.67 2.30 INVASE ©.99 0.49 0.07 0.00 0.00
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Extended Data Fig. 2.
(a) Comparison of attribution methods on the 'Inclusion'-benchmark of Figure 2B

(Perturbing the input patterns by keeping the top X% most important features according

to each method and replacing all other features with random samples from a background
distribution, n=1,888). Left table: Median KL-divergence between original predictions and
predictions made on perturbed input patterns (lower is better). Right table: Classification
accuracy of the predictor using the perturbed input patterns (higher is better). The '100%'-
case refers to the original (non-perturbed) input pattern. The best method(s) are highlighted
in green. (b) Uniformly random mask dropout training procedure, which teaches the
Scrambler to find alternate salient feature sets. For each input pattern, we sample a

random dropout pattern containing squares of varying width. The pattern is multiplied

with the predicted importance scores, effectively zeroing out certain regions (forcing the
background distribution to be used). The dropout pattern is also passed as additional input
to the Scrambler (it is concatenated along the channel dimension), allowing the network to
learn which other feature set to choose. (c) Biased dropout training procedure. Instead of
randomly sampling dropout patterns, we first let the Scrambler predict importance scores
with an all-ones dropout pattern (no dropout), which we use to form an importance sampling
distribution. We then sample a dropout pattern and use it for training the same way we
trained on uniformly random patterns. (d) Another biased dropout training approach. We
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first use the Scrambler to predict the importance scores given the all-ones dropout pattern

as input (no dropout). The top 5% most important features are subtracted from the all-ones
pattern. Then, with a certain probability, we either re-run the Scrambler on this updated
pattern (repeating the previous steps), or we end the loop and choose this as our final
dropout pattern to train on. (e) Procedure for training the Scrambler to dynamically change
the entropy of its solutions. Instead of fitting the network to a constant KL-divergence of its
scrambled input distribution, we here randomly sample KL-divergence values and use them
both as input to the network and as the target for the conservation penalty. The bit value is
broadcasted and concatenated along the input channel dimension. (f) Example attributions of
MNIST digit 2' and '4' with dynamically resized feature sets, by passing increasingly large
target 'lum’ values as input to the Scrambler ('lum' values are normalized KL-divergence bits,
see Methods).
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Extended Data Fig. 3.
(a) Top: Example attribution of a polyadenylation signal sequence from the APARENT

test set, using Inclusion-Scramblers trained with increasingly large ty;;s of conservation.
Known regulatory motifs annotated. Bottom: Two additional example attributions, showing
only the results for the ty;s = 1.0 case. (b) Non-trainable convolutional filter with a 1D
gaussian kernel (filter width 6) is prepended to the final softplus activation function of the
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Scrambler. (c) APARENT isoform predictions of original sequences and of corresponding
sampled sequences from the PSSMs predicted by an Occlusion-Scrambler trained with ty;
= 1.8, with and without the Gaussian filter. (d) Example attributions of ty;;s = 1.8 - and

1.5 Occlusion-Scramblers, with and without the Gaussian filter. (e) Example attributions

of a polyadenylation signal sequence, comparing different methods. (f) Comparison of
attribution methods on the 'Inclusion’-benchmark of Figure 3B (Perturbing the input
patterns by keeping the top X% most important features according to each method and
replacing all other features with random samples from a background distribution, n=1,737).
Median KL-divergences are computed between original predictions and predictions made
on perturbed input patterns (lower is better). These predictions were made using the
APARENT model. Shown are also the Spearman r correlation coefficients between original
and perturbed predictions using the DeeReCT-APA model (higher is better). The default
Scrambler network for the APA task uses 4 residual blocks, while the 'Deep' architecture
uses a total of 20 residual blocks. The best method(s) are highlighted in green. (g)
Attributions of four human polyadenylation signals which are associated with known
deleterious variants, comparing the Perturbation method to the reconstructive Inclusion-
Scrambler (ty;s = 0.25 target bits) on hypothetical variants which have not been found

in the population. Gene names and clinical condition associated with the PAS annotated
above each sequence. In each of the four examples, the Scrambler correctly detects the

loss of the presumed RBP binding site or otherwise important motif due to each respective
variant (loss of the CstF binding motif in FOXC1, TP53; loss of the SRSF10 binding

motif in INS; loss of the T-rich DSE motif in HBB). (h) Left: Example attributions

of a medium-strength polyadenylation signal sequence, using three Scramblers which

have been optimized for different objectives: (Reconstructive features) reconstructing the
original prediction, (Negative features) minimizing the prediction, and (Positive features)
maximizing the prediction. Right: APARENT isoform predictions of original sequences and
of corresponding sampled sequences from the PSSMs predicted by the Negative-feature and
Positive-feature Scrambler respectively.
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a Top nt Included 1 Start 1 Start 2 Start 2 Start b
1Stop 2Stop 1Stop 2Stop minsol. _ n=512
Squared Error 120t 9nt  6nt 1t ont  ent 1t omt  ent 1mt ant  ent
SCRAMBLER (Lo. P.) 0.30 .35 ©.55 0.3 0.51 0.9  0.29 0.46 1.52  0.43 1.00 2.14
SCRAMBLER (Hi. P.) ©.34 ©0.37 0.58 0.39 @.50 0.75 0.48 0.53 0.99 0.54 0.70 1.41

PERTURBATION 0.3 6.39 0.54  ©0.66 0.8 1.23 0.3 0.5 1.12  0.87 1.3 2.18
GRADTENT 0.47 0.57 ©0.91  ©0.53 .67 1.09  0.62 0.9 1.75 .72 1.0 2.15
GUIDED BACKPROP ~ 1.37 1.41 1.49  1.59 1.65 1.8  2.60 2.68 2.71  2.85 2.93 3.1
DEEPLIFT 0.39 0.44 0.69  ©0.49 0.62 1.64  0.28 0.42 1.26  0.41 0.85 2.13
DEEPSHAP 0.58 0.64 ©0.88  ©0.77 .87 1.18  0.37 0.5 1.30  0.62 1.13 2.06
INT. GRAD. 0.39 6.45 ©.71  ©0.46 .58 ©.98  0.35 ©0.52 1.26 .39 0.78 2.60
TORCHRAY (BLUR) ~ ©0.62 .73 ©.77  0.70 0.88 ©0.94  ©.77 1.9 1.32  1.10 1.48 1.89
TORCHRAY (FADE) ~ ©.72 ©.84 ©.9  ©.89 1.67 1.13  1.e1 1.21 1.46  1.29 1.58 1.86
SALIENCY MODEL 0.60 ©.83 1.6  ©0.66 1.02 1.51 0.8 1.52 2.35  0.92 1.69 2.62
SIS (MEAN) 0.41 ©.50 1.23  ©0.42 .64 1.8  0.36 1.06 2.47  0.55 1.60 2.98
ZERO SCRAMBLER 1.69 1.76 1.81 1.9 2.01 2.8  2.82 2.84 2.86  3.23 3.27 3.29
L2x 1.54 1.58 1.65  1.75 1.81 1.90  2.48 2.51 2.60  2.83 2.87 2.96
INVASE 135 1.41 1.51 153 170 1.84  2.69 2.26 2.45  1.83 2.21 2.65
1S Mean {0
Cc 1Stat 1Start 2Start 2Start Start/ Stop Recall L2X (Ful Data) {0.0 0.

1Stop 2Stop 1Stop 2Stop Zerofo.17 047 009 031

(minsol) n=512  INVASE (Full Data) {0.0 0.0 0.0 0.0

Squared Error 6ent  ont  ont  1znt R L2x{0.00 0.00 000 0.09)
L2x 1.65 1.81 251 2.83 — —
s e s c L1 R
L2X (FULL DATA) 1.65 1.78 2.40 2.66 INVASE - N N AN
INVASE (FULL DATA) 1.81 2.05 2.80 3.1  (Fulbaa) C
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Extended Data Fig. 4.
(a) Benchmark comparison on the synthetic Start / Stop test sets, where input patterns are

perturbed by keeping the most important features according to each method (6, 9 or 12

nt) and replacing all other features with random samples from a background distribution,
n=512). Mean squared errors are computed between original predictions and predictions
made on perturbed input patterns using the Optimus 5-Prime model (lower is better). We
trained two Scramblers, one with a low entropy penalty (i = 0.125, A= 1) and one with

a higher penalty (A = 10). The best method(s) are highlighted in green. (b) Average recall
for finding one of the start codons and one of the stop codons in the 6 most important
nucleotides, as identified by each method, measured across the synthetic test sets. (c)
Additional benchmark comparison for L2X and INVASE, when using the full 260,000 5'
UTR dataset for training the interpreter model. Shown are the mean squared errors between
predictions of original and perturbed input patterns, average recall for finding start and stop
codons, and example visualizations on the synthetic start / stop test sets. (d) Left: Attribution
of a ClinVar variant, rs779013762, in the ANKRD26 5' UTR, which is predicted by Optimus
5-Prime to be a functionally silent mutation. The variant creates an IF uORF overlapping

an existing IF uORF. The per-example fine-tuning step (which starts from the Low entropy
penalty-Scrambler scores) finds a minimal salient feature set in the variant sequence (one IF
uORF), while the per-example optimization (which starts from randomly initialized scores)
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gets stuck in a local minimum. Middle: Attribution of a ClinVar variant, rs201336268, in
the TARS2 5' UTR, which destroys two overlapping IF uORFs and is predicted to lead to
upregulation. Both the fine-tuning step and the independent per-example optimization finds
that no features are important in the variant sequence (both IF uORFs were removed by

the variant and a fully random sequence has on average the same predicted MRL as the
variant sequence). The Perturbation method has trouble explaining either of these variants
due to saturation effects of the multiple IF stop codons. Right: Attribution of a rare variant,
rs886054324, in the C190rf12 5' UTR, which creates two IF uORFs overlapping a strong
OOF uAUG (hence a silent mutation). All attribution methods identify the OOF uAUG

as the major determinant, however the Low entropy penalty-Scrambler incorrectly marks
an (unmatched) stop codon in the wildtype sequence as important. Both the High entropy
penalty-Scrambler and the fine-tuning step based off the Low penalty-Scrambler correctly
filters the stop codon. (e) Benchmarking results on the 1 Start / 2 Stop dataset, comparing
the Low entropy penalty-Scrambler network to running per-example fine-tuning of those
scores and to the baseline method of optimizing each example from randomly initialized
scores. Reported are the mean squared error between predictions on original and scrambled
sequences ('MSE"), the error rate (1 - Accuracy) of not finding one Start codon and one Stop
codon in the top 6 nt ('Error Rate'), and the mean per-nucleotide KL-divergence between
the scrambled PSSM and the background PSSM (‘Conservation'). (f) Example attributions
using a Scrambler network trained with the mask dropout procedure (see Methods for
details). By dropping different parts of the importance score mask, the Scrambler learns to
discover alternate salient feature sets. In the example on the right: Finding alternate IF uORF
regions by separately dropping each of the Start and Stop codons. (g) Example Scrambler
attributions with the mask dropout mechanism on two native human 5' UTRs.
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Extended Data Fig. 5.
(a) Protein heterodimer binder RNN predictor, which was trained on computationally

designed (dimerizing) pairs for positive data and randomly paired binders as negative data
(see Methods for details). The RNN consists of a shared GRU layer, a dropout layer,

and two fully-connected layers applied to the concatenated GRU output vectors. The final
output (sigmoid activation) is treated as the Bind / No Bind classification probability. (b)
Supplemental benchmark of Gradient Saliency, Integrated Gradients and DeepSHAP, using
only the positive-valued importance scores. Left: Prediction KL-divergence of scrambled
sequences compared to original test set sequences when either replacing all but the top X%
most important amino acid residues with random samples (inclusion) or, conversely, when
replacing the top X% nucleotides with random samples and keeping the remaining sequence
fixed (occlusion). Right: Mean ddG Difference for the top 8 most important residues
according to each method, measured across the test set, and HBNet Average Precision based
on each method's importance scores. (c) Supplemental comparison of different versions of
the Scrambling Neural Network (see Methods for a full description of each version). Left:
KL-divergence benchmark based on the predictor RNN. Right: Mean ddG Differences and
HBNet Discovery Precisions. (d) Supplemental comparison of other methods that optimize
similar objectives as the Scrambler (see Methods for a full description of each method).
Left: KL-divergence benchmark based on the predictor RNN. Right: Mean ddG Differences
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and HBNet Discovery Precisions. (e) Supplemental comparison between Scrambling Neural
Networks and Sufficient Input Subsets (SIS) with 'hot-deck' sampled masking (the number
of samples used at each iteration is varied from 1 to 32; see Methods for details). Left:
KL-divergence benchmark based on the predictor RNN, Mean ddG Differences and HBNet
Discovery Precisions annotated on top of the bar chart. Right: Average number of predictor
queries used to interpret a single input pattern (for the Scrambler, this is the amortized cost
of training divided by the number of test patterns interpreted).
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Extended Data Fig. 6.
Example attributions of a designed heterodimer binder pair, for a selection of benchmarked

methods.
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Extended Data Fig. 7.
(a) Four different Inclusion-PSSMs optimized to reconstruct the structural trRosetta

prediction of a Sensor Histidine Kinase. Each PSSM is optimized for increasingly larger
thits- The bottom sequence logo represents the Rosetta score function breakdown per
residue (-REU). Spearman r ranged between 0.25 and 0.32 when comparing the absolute
numbers of Rosetta energy values to the optimized importance scores. Shown is also the
average structure prediction for 512 samples. (b) Inclusion-Scrambled PSSMs of the Hen
Egg-white Lysozyme. The PSSM was re-optimized for three different target conservation
bits. Spearman r ranged between 0.25 and 0.33 compared to the Rosetta score function.
(c) Architecture for per-example scrambling of a single protein sequence according to the
contact distributions predicted by trRosetta. Here, we do not use a Multiple Sequence
Alignment (MSA), but instead pass the Gumbel-sampled sequence to the PSSM input and
an all-zeros matrix to the DCA input. Total KL-divergence between trRosetta-predicted
distributions (distance and angle-grams) of the original sequence and samples drawn from
the scrambled PSSM is either minimized or maximized (inclusion or occlusion respectively).
(d) Reference sequence and predicted contact distribution for a hairpin protein engineered
by Activation Maximization. (e) Top: Inclusion-PSSM of the engineered hairpin protein,
obtained after optimization with a highly conserved background distribution based on the
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MSA. Bottom: Inclusion-PSSM of the engineered hairpin protein with a less conserved
background distribution (smoothed with pseudo counts).
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(2019) [7] is available on Gene Expression Omnibus (https:/www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE113849). For the 5° UTR prediction task (Fig. 4), the

data from Sample et al. (2019) [10] is available on Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114002). For the protein-protein
interaction prediction task (Fig. 5), the full data from Chen et al. (2019) [60] is available
from the authors, upon request. The subset of sequences used in the benchmark comparisons
are included in the Github repository (http://www.github.com/johli/scrambler). For the
protein structure prediction task (Fig. 6), the de novo designed sequences from Anishchenko
et al. (2020) [62] are available from the authors upon request.
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Figure 1:
Scrambler Architecture and Masking Operator (a) High-level architecture. Inclusion:

Maximize the entropy of the PSSM predicted by the Scrambler and minimize the prediction
error of samples drawn from it. Occlusion: Minimize PSSM entropy and maximize sample
prediction error. (b) The temperature-based masking operation. The Scrambler predicts
sampling temperatures (‘importance scores’) for the PSSM. (c) The Inclusion and Occlusion
scrambling operations. Individual nucleotides (or amino acid residues) are perturbed by
raising the sampling temperature of its corresponding categorical feature distribution.

Nat Mach Intell. Author manuscript; available in PMC 2022 August 12.



1duosnuepy Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

1duosnuepy Joyiny

Linder et al.

Page 36

Input Pattern Scores Input Pattern Background Sample 0123456789
Treining Data
Scramt_:ler Scramh_ler Perturb Grgdient Guided DeepLIFT DeepSHAP Inte_gr. Torchi_iay TorchR_ay Saliency sis Zero L2X INVASE
(Inclusion) (Occlusion) Saliency Backprop Gradients (Inclusion)(Occlusion) Model (Mean) Scrambler
E =3 95th Perc
'g =3 90th Perc
2 =3 80th Perc
£ =3 50th Perc
Z
Q
o
3
=
2
@
=
3 Original -
H
!
X1
N Drop Pattern
? Applgsaftmax S — . S —— -
", Add Bkground 5 . i i
*, Multiply Input i i i i
Impo:":ance Scores 1 Input 1 f Input f
L) 1 1 1
Dropped Ep - ?- . 1 1 1 1
i H 1 1 1 1
Region H .
' T ] Biased ] No Bias 1 1 1
LN Region 1 1 1 No Drop 1
1 1 1 1
f 1 1 1 1
+ 1 1 1 1
1 1 Level 1 1 1 1
x 1 1 1 1
1 1 1 Drop Pattern 1
1 1 1 1
1 Level 2 1 1 1
1 1 1 1
1 1 1 1
1 : : @ 20 Epochs !
1 1
! revel3 ' ! !
1 1 1 1
1 1 1 1
1 1 1 1
I Level Set ! 1 @50Epochs 1
1 1 1 1
1 1 1 1
Drop Pattern Input Bias Pattern D - . D a
Figure 2:

MNIST Feature Attribution (a) Workflow for finding salient pixel regions within MNIST
digits. The Scrambler learns to predict the salient feature set of the input image, which

is superimposed on an uninformative background distribution. (b) Attributing feature
importance for binarized MNIST digits ‘3” and ‘5’. (Upper bar chart) Keeping the top

X% pixels according to importance scores and replacing all other pixels with random
values. (Lower bar chart) Replacing the top X% pixels with random values. n= 1, 888. (c)
Importance score dropout and bias layers for finding alternate interpretations. (d) Example
of dynamically sized feature sets using progressive bias patterns for differentiating digits 2’
vs. ‘4’. The pixels found at each level are added to the next level of bias pattern to discover
the next set of features. (e) Example of finding alternate salient features when dropping the
upper half of the image importance scores.
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APA Feature Attribution (a) Scrambler architecture for APA isoform attribution using the
pre-trained model APARENT as the predictor. (b) Perturbing sequences by keeping the

top X% nucleotides according to importance scores and replacing all other positions with
random letters. The bar chart measures KL-divergence of APARENT-predictions between
original- and perturbed test sequences (1= 1, 737). (c) Example attributions of a deleterious
variant (/08C>T) in the 3’ UTR of the Prothrombin (F2) gene, comparing the Perturbation
method to an Inclusion-Scrambler trained on the APARENT data. (d) APARENT predictions
of original test set sequences compared to predictions made on sequence samples produced

by the Scrambler PSSMs. (e) Example of Inclusion-Scramblers trained to reconstruct,

maximise or minimize predictions, thus finding overall important, enhancing, or repressing

motifs, respectively.
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Figure 4:

5’ UTR Feature Attribution (a) Scrambler architecture for 5> UTR ribosome load attributions
using the pre-trained model Optimus 5’ as the predictor. (b) Average recall of in-frame
(IF) start and stop positions in a test set of synthetic IF uORF 5° UTRs. In this test,

all start and stop codons must be among the highest scored nucleotides of a sequence to
count as successfully recalled for a given method. n=512. (c) Example attribution in a

5" UTR with multiple IF stop codons. (Top sequence) Red letters = IF start codon, Blue
letters = IF stop codon. (d) Interpreting a rare, functionally silent mutation (5716055844 1)
in the 5° UTR of the ETHE! gene, where an out-of-frame (OOF) upstream start codon
(uAUGQG) is created within an in-frame (IF) upstream open reading frame (WORF). The
‘Fine-tuning’ optimization was performed on the importance scores predicted by the ‘Low
Penalty’-Scrambler.
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Figure 5:

Protein Heterodimer Feature Attribution (a) The protein binding predictor is a RNN based
on a siamese GRU layer (orange dashed lines). (b) The joint and siamese Scrambler
architectures for protein binder attribution. (c) 3D-visualization of an example binder pair
structure. Discovered HBNet residues (by a siamese Occlusion-Scrambler) are shown in red
licorice, important residues not part of the HB-net are shown as gray sticks. A cross-section
of each of the three buried hydrogen bond networks is shown on the right. (d) Example
attribution. Hydrogen bonds at the designed binding interface are marked with dashed red
boxes. (e) Keeping the top X% residues according to the importance scores of each method
and replacing the rest with random amino acids (top), or replacing the top X% with random

Nat Mach Intell. Author manuscript; available in PMC 2022 August 12.



1duosnuepy Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

1duosnuepy Joyiny

Linder et al.

Page 40

amino acids (bottom), measuring prediction KL-divergence. Zero refers to a Scrambler with
a zero-based masking operator. (f) Left: In silico Alanine scanning benchmark. The 8 most
important residues of each method were replaced with Alanines, measuring AAG in Rosetta
Energy Units (REU). Shown are the mean AAG differences in a permutation test of 10,000
re-labelings. Right: Precision-recall curves and Average Precision (AP) for discovering the
HBNet positions, based on the importance scores of each benchmarked method.
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Figure 6:

Pr%)tein Structure Feature Attribution (a) The single-sequence Scrambling architecture for
tr-Rosetta. Both the primary sequence (‘X’) and the multiple sequence alignment (‘MSA’)
are scrambled with the same trainable mask (‘S’). (b) Alpha-helical hairpin protein sequence
and original structure prediction. (c) Inclusion-Scrambled PSSM of the hairpin protein,
with the average predicted distance- and angle distributions for 512 samples drawn from
the PSSM. (d) Occlusion-Scrambled PSSM of the hairpin protein and average structure
prediction for 512 samples. (e) Inclusion-Scrambled PSSMs of four de novo proteins which
have been designed by deep network hallucination. Each PSSM was optimized for #;

= 1.0 target bits of conservation, using the amino acid frequency of naturally occurring
sequences from the Protein Data Bank as background distribution. The bottom sequence
logos represent the Rosetta score function breakdown per residue (~REU). The 10 most
important residues according to the Scrambler scores are colored red.
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