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Abstract

In the ΛCDM model, dark energy is viewed as a constant vacuum energy density, the

cosmological constant in the Einstein–Hilbert action. This assumption can be relaxed

in various models that introduce a dynamical dark energy. In this letter, we argue that

the mixing between infrared and ultraviolet degrees of freedom in quantum gravity

lead to infinite statistics, the unique statistics consistent with Lorentz invariance in

the presence of non-locality, and yield a fine structure for dark energy. Introducing IR

and UV cutoffs into the quantum gravity action, we deduce the form of Λ as a function

of redshift and translate this to the behavior of the Hubble parameter.
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1 Introduction

Since the seminal discovery that the expansion of our Universe is currently accelerating [1,2],

many models have been proposed to explain and understand this observation [3, 4]. These

include various dark energy models in which the acceleration is due to a currently small

but non-zero vacuum energy density, quintessence models which incorporate inflaton-like

scalar fields, and f(R) modified gravity models in which late-time acceleration is due to

subdominant terms in the action that become important at small curvature [5]. See also [6].

In the widely accepted ΛCDM cosmology, dark energy is provided by the time indepen-

dent cosmological constant Λ [7]. However, recent disagreements between the values of the

Hubble constant H0 determined from early (z ∼ 1000 [8]) and late (z < 10 [9–13]) Universe

observations have rekindled interest in dynamical dark energy models in which the vacuum

energy density is time dependent [14–22].

Furthermore, it has also been argued that the quantization of gravity may naturally

lead to time dependent dark energy [23–25]. In particular, Ref. [24] points out that the

matrix model formulation of non-perturbative quantum gravity proposed in Refs. [26–30]

naturally leads to a time dependent Λ(z) due to the doubling of spacetime that is required

in this approach. There, the cosmological constant in the observable spacetime is given

by the integration over the unobservable dual spacetime curvature, and consequently, the

dynamical evolution of the latter leads to the time dependence of the former.

In this letter, we follow the line of thought of Ref. [24] and propose a concrete functional

form for Λ(z) by focusing on another feature of quantum gravity, namely infinite statistics

[31–35]. While we work within one particular framework for definiteness, we emphasize that

much of what we say is a generic feature of theories in which UV and IR degrees of freedom

mix. This is natural in low energy effective field theories obtained from string theory, for

example as a consequence of non-commutativity.

Infinite statistics is motivated by non-locality and Lorentz covariance, and is realized in

large-N matrix models [36]. It is the statistics of the partonic degrees of freedom of the

matrix theory from which spacetime is constructed, and suggests a form for the density of

states for the partons from which Λ(z) can be calculated. In other words, the functional

form of Λ(z) we propose is a manifestation of the infinite statistics that the partons must

follow. This is similar to other macroscopic statistical manifestations of quantum mechanics

such as blackbody radiation.
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This letter is organized as follows. In Section 2, we briefly review the new approach

to quantum gravity based on “quantum relativity” [26–30] and there we outline the general

argument for the variation of Λ(z) with time. In Section 3, we review the relevance of infinite

statistics to quantum gravity. Infinite statistics is realized in large-N matrix models [36]

and thus it is particularly appropriate for the new matrix model like approach reviewed in

section 2. In Section 4, we derive an explicit formula for Λ(z), and the resulting modification

to the evolution of the Hubble parameter H(z) is discussed in Section 5, This, in principle,

can be compared with actual observation of H(z). Section 6 concludes with a few remarks.

2 Quantum Spacetime and Quantum Gravity

In this section, we outline the non-perturbative formulation of quantum gravity in terms of

a doubled matrix model quantum theory proposed in Refs. [26–30], i.e. the metastring. In

this description, everything is built out of partonic degrees of freedom represented by the

entries of the quantum gravitational matrix model, and, in the leading term in the expansion

involving the fundamental length, dark energy is realized as a dynamical geometry of dual

spacetime.

The starting point of the metastring formalism is the following worldsheet action [37,38],

which is chiral, doubles the degrees of freedom (i.e. works in phase space), and is manifestly

invariant under Born reciprocity/T-duality:

S2d =
1

4π

∫
Σ

[
∂τXA(ηAB + ωAB)− ∂σXAHAB

]
∂σXB . (1)

Here Σ is the worldsheet, the doubled target space variables XA = (xa/λ, x̃a/λ) combine

the sum (x = xL + xR) and the difference (x̃ = xL − xR) of the left- and right-movers on

the string (a,A = 0, 1, · · · , d − 1 = 25, for the critical bosonic string), and λ = 1/ε =
√
α′

is the string length scale [39]. The mutually compatible dynamical fields ωAB(X), ηAB(X),

and HAB(X) are respectively: the antisymmetric symplectic structure ωAB, the symmetric

polarization (doubly orthogonal) metric ηAB, and the doubled symmetric metric HAB, which

together define a Born geometry [26, 40,41]. See also [42, 43].

Quantization renders the doubled “phase-space” operators X̂A = (x̂a/λ, ˆ̃xb/λ) inherently

non-commutative [30]: [
X̂A, X̂B

]
= iωAB . (2)
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In this formulation, all effective fields must be regarded a priori as bi-local φ(x, x̃) [28],

subject to Eq. (2), and therefore inherently non-local (yet covariant) in the conventional xa-

spacetime. Such non-commutative field theories [44,45] generically display a mixing between

the ultraviolet (UV) and infrared (IR) physics, with continuum limits defined via a double-

scale renormalization group (RG) and self-dual fixed points [29, 45]. In the current case,

the UV and IR mixing occurs between the observable xa-spacetime and the unobservable

x̃a-spacetime.

The metastring offers a new view on quantum gravity by noting that the world-sheet

can be made modular in our formulation, with the doubling of τ and σ, so that X̂(τ, σ) can

be in general viewed as an infinite dimensional matrix (the matrix indices coming from the

Fourier components of the doubles of τ and σ) [36, 46]. Then the corresponding metastring

matrix model action should look like

S ∼
∫
dτ dσ Tr

[
∂τ X̂A∂σX̂B(ωAB + ηAB)− ∂σX̂AHAB ∂σX̂B

]
, (3)

where the trace is over the infinite matrix indices. The matrix entries become the natural

partonic degrees of freedom of quantum spacetime. The non-perturbative formulation of

quantum gravity is obtained by replacing ∂σ in the above worldsheet action with a commu-

tator involving one extra X̂26 :

∂σX̂A →
[
X̂26, X̂A

]
, A = 0, 1, · · · , 25 . (4)

Therefore, as with the relationship between M-theory and type IIA string theory, a fully

interactive and non-perturbative formulation of metastring theory is given in terms of a

matrix model form of the above metastring action (with a, b, c = 0, 1, 2, · · · , 25, 26)

S ∼
∫
dτ Tr

(
∂τ X̂a

[
X̂b, X̂c

]
ηabc −Hac

[
X̂a, X̂b

] [
X̂c, X̂d

]
Hbd

)
, (5)

where the first term is of the Chern–Simons form, the second term is of the Yang–Mills form,

and ηabc contains both ωAB and ηAB. In general, we do not need an overall trace if we think

of quantum gravity as a pure quantum theory. Thus, the following matrix model becomes a

pure quantum formulation of quantum gravity

SncM =
1

4π

∫
τ

(
∂τ X̂i

[
X̂j, X̂k

]
gijk −

[
X̂i, X̂j

] [
X̂k, X̂`

]
hijk`

)
, (6)

with 27 bosonic X̂ matrices.5 Within this formulation, both matter and gravitational sectors

emerge from the dynamics of the partonic quanta of quantum spacetime.

5In this formulation, supersymmetry and its avatars are not fundamental but emergent [29].
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In particular, in Ref. [24] it has been argued that the generalized geometric formulation

of string theory discussed above, Eq. (6), provides an effective description of dark energy,

and a de Sitter spacetime. This is due to the theory’s chirality and non-commutatively, as

in Eq. (2), doubled realization of the target space, and the stringy effective action on the

doubled non-commutative spacetime (xa, x̃a), which leads to the effective action

Snc
eff =

∫
x

∫
x̃

Tr
√
g(x, x̃)

[
R(x, x̃) + Lm(x, x̃) + · · ·

]
, (7)

where the ellipses denote higher-order curvature terms induced by string theory, and Lm is

the matter Lagrangian put in by hand. This result can be understood as a generalization of

the famous calculation by Friedan [47]. Owing to Eq. (2), we have[
x̂a, ˆ̃xb

]
= 2πi λ2 δab ,

[
x̂a, x̂b

]
=
[

ˆ̃xa, ˆ̃xb
]

= 0 , (8)

where λ denotes the fundamental length scale, such as the Planck scale, and ε = 1/λ is the

corresponding fundamental energy scale, while the string tension is α′ = λ/ε = λ2. Thus

Snceff expands into numerous terms with different powers of λ, which upon x̃-integration, and

from the x-space vantage point, produce various effective terms. To lowest (zeroth) order of

the expansion in the non-commutative parameter λ of Snc
eff takes the form:

Sd=4 = −
∫
x

∫
x̃

√
−g(x)

√
−g̃(x̃)

[
R(x) + R̃(x̃)

]
= −

∫
x

√
−g(x)

[
R(x)

∫
x̃

√
−g̃(x̃) +

∫
x̃

√
−g̃(x̃) R̃(x̃)

]
, (9)

a result which first was obtained almost three decades ago, effectively neglecting ωAB by

assuming that [ x̂a, ˆ̃xb ] = 0 [48]. In this leading limit, the x̃-integration in the first term

of (9) defines the gravitational constant GN ,

1/GN ∼
∫
x̃

√
−g̃(x̃) , (10)

and in the second term produces a positive cosmological constant Λ > 0 (dark energy)

Λ/GN ∼
∫
x̃

√
−g̃(x̃) R̃(x̃) . (11)

Thus the weakness of gravity is determined by the size of the canonically conjugate dual x̃-

space, while the smallness of the cosmological constant is given by its curvature R̃. Ref. [24]

also discusses a see-saw formula for the cosmological constant, as well as its radiative stability

in the underlying general framework of a non-commutative generalized geometric phase-space

formulation of string theory [26–30], which is non-local but covariant.
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To summarize, a non-perturbative formulation of quantum gravity can be given in terms

of a doubled matrix model, Eq. (6), in which everything is built out of partonic degrees

of freedom represented by the entries of doubled matrices X̂. In the leading term of the

effective spacetime description, dark energy is realized as a dynamical geometry of the dual

spacetime, and consequently, is inherently time dependent.

3 Quantum Gravity and Infinite Statistics

Matrix models, in the limit of large matrix size, can be directly related to infinite statistics

[36]. Given that the metastring action, Eq. (6), formulates non-perturbative quantum gravity

as a matrix model, in which dark energy is realized as the dynamical geometry of dual

spacetime in the commutative limit, we argue in this section that infinite statistics can be

used to model the fine structure of dark energy [34]. In particular, the partonic degrees of

freedom of the matrix model, out of which both spacetime and matter degrees of freedom

emerge, obey infinite statistics, and thus, infinite statistics controls the fine structure of dark

energy. The idea here is that by using the general statistical arguments, we can illustrate

the time dependence of Λ based on a dynamical dual spacetime geometry without appealing

to any particular models of that dynamics.

The proposal that quantum statistical effects are essential in the macroscopic realizations

of quantum gravity has been made in the past. First, it was argued in Ref. [31] that black

hole statistics is infinite statistics [32,49]. (See also, Ref. [50]). Also, in Ref. [51] a statistical

argument was used to argue for probable values of the cosmological constant. More recently,

such statistical arguments were used in Ref. [52] to analyze black hole spin in gravitational

wave observations.

Given our proposal regarding the realization of dark energy in a fundamentally non-

local but Lorentz covariant formulation of quantum gravity, on a purely quantum level

one should consider the statistics of quanta from which dual spacetime emerges at large

distances. If one remembers that only one statistics is consistent with non-locality and

Lorentz symmetry, both of which underpin this approach to quantum gravity, one is led

to infinite statistics [31, 32] and a fine structure for dark energy. Therefore the natural

implementation of the physical effects associated with infinite statistics in the context of

dark energy should be sought in this generic non-commutative formulation of string theory.

If dark energy originates from the curvature of the dual space, then in the context of

quantum gravity it possesses fine structure. That fine structure can be deduced from the
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infinite statistics of the quanta of dual spacetime. The virtue of the metastring action is

that supplies a mechanism for UV/IR mixing. If we simply assume this mixing ab initio,

our conclusions are generic.

In Ref. [34] (see also [35]) we have presented a general argument for the relevance of

infinite statistics for the fine structure of dark energy. We remind the reader that infinite

statistics is defined in terms of the Cuntz algebra

âiâ
†
j = δij , (12)

which can be viewed as the q = 0 deformation of the q-deformed commutation relations

âiâ
†
j − qâ

†
i âj = δij . (13)

The case q = 1 corresponds to Bose–Einstein statistics, and q = −1 to Fermi–Dirac statistics.

Unlike the bosonic and fermionic statistics, infinite statistics realizes any permutation (not

just even or odd) of the associated SU(N) Young tableaux for N particles. In particular,

infinite statistics governs the master fields of large-N matrix models [36], and thus it is

appropriate for our approach to quantum gravity based on a non-perturbative matrix model

formulation. For example, the master field of the quadratic single matrix model is given as

â+ â†, with â and â† satisfying the Cuntz algebra ââ† = 1 [36].

More concretely, infinite statistics is quantum Boltzmann statistics, and thus in the

quantum context, it is of the Wien type [34]. This turns out to be crucial in our application

of infinite statistics to the fine structure of dark energy.

4 Infinite Statistics and Dark Energy

In this section, we use the insight that infinite statistics controls the fine structure of dark

energy in quantum gravity. Infinite statistics is the quantum statistics of distinguishable

partons of the quantum gravitational matrix model, and as such it is essentially just the

Boltzmann statistics, or equivalently, the Wien statistics of quantum spacetime partons.

Given the dual relationship between the observed xa-spacetime and dual x̃a-spacetime, quan-

tum gravity is endowed with both UV and IR cut-offs, and thus, the Wien distribution of

spacetime quanta/partons responsible for the fine structure of dark energy comes with an

explicit cut-off.

Therefore, motivated by the above general reasoning about the role of infinite statistics in

quantum gravity, let us examine the dark energy spectral function of the quantum Boltzmann
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(or Wien) type in the dual energy Ẽ-space [34]:

ρdark energy(Ẽ, E0) = A Ẽ3 e−BẼ/E0 , (14)

where A and B are dimensionless constants. From Eq. (11), we have

ρvac(ẼUV ) =
Λ(ẼUV )

8πGN

=

∫ ẼUV

0

dẼ ρdark energy(Ẽ, E0) , (15)

where ρvac(ẼUV ) is the effective vacuum energy density in the observable spacetime, while

ẼUV is the UV cutoff in the unobservable dual spacetime. Due to the UV/IR correspondence

between the two spacetimes, we have

ẼUVEIR = µ , (16)

where EIR is the IR cutoff in the observable spacetime, and µ is an invariant associated with

the doubly orthogonal group of transformations in the metastring approach [26–30]. We

expect EIR to be governed by the size of the observable Universe, thus

EIR =
E0

a
= E0(1 + z) , (17)

where a is the scale factor of the Friedmann–Lemâıtre–Robertson–Walker metric, z is the

redshift, and we identify E0 as the current (z = 0) IR cutoff. Thus,

ẼUV =
µ

EIR
=

µa

E0

=
µ

E0(1 + z)
, (18)

and we find

ρvac(z) =
Λ(z)

8πGN

=

∫ ẼUV

0

dẼ ρdark energy(Ẽ, E0) = ρ∗

[
1− b(ξ)

]
, (19)

where

ρ∗ =
6A

B4
E4

0 , b(ξ) =

(
1 + ξ +

ξ2

2
+
ξ3

6

)
e−ξ , (20)

and

ξ =
BẼUV
E0

=
Bµ

E2
0(1 + z)

=
ξ0

1 + z
, ξ0 =

Bµ

E2
0

. (21)

The proportionality of ρ∗ to E4
0 is analogous to the derivation of the Stefan–Boltzmann T 4

law from the Wien distribution [34]. The functional form of b(ξ) is shown in Figure 1(a).

Therefore, in our proposal, Λ(z) evolves as

Λ(z)

Λ(0)
=

1− b(ξ)
1− b(ξ0)

. (22)
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(a) (b)

Figure 1: (a) Behavior of the function b(ξ). (b) The behavior of Λ(z)/Λ(0) in our proposal for

ξ0 = 1, ξ0 = 5, and ξ0 = 10 compared against constant Λ (dashed) and that from Ref. [25]

(dotted).

In the limit z →∞ (early Universe), we have ξ = ξ0/(1+z)→ 0, b(ξ)→ 1, and Λ(z)/Λ(0)→
0. The z dependence of this ratio in the range z ≤ 1 is shown for several values of ξ0 in

Figure. 1(b).

What can the value of the invariant µ be? We can identify EIR = E0 with the current

vacuum energy scale. If we set the curent ẼUV to the Planck mass EP = G
−1/2
N , c.f. Eq. (10),

we have

µ = EIRẼUV = E0EP

=
(
2.24× 10−12 GeV

) (
1.22× 1019 GeV

)
= 2.73× 107 GeV2 . (23)

This means
√
µ ' 5.23 TeV, more or less the scale at which the LHC operates. However,

this is only a very special choice, and in general, µ is a parameter we should fit.

5 Evolution of the Hubble Parameter

Let us see how the z dependence of Λ(z) will affect the evolution of the Hubble parameter

H(z). H(z) evolves in a spatially flat (k = 0) matter dominated (z . 3000) universe as [53]

H2(z) ≡
(
ȧ

a

)2

= H2
0

[
Ωm(1 + z)3 + ΩΛ(z)

]
, (24)
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Figure 2: The behavior of H2(z)/H2
0 in our proposal for ξ0 = 1, ξ0 = 5, and ξ0 = 10 compared

against the constant Λ case (dashed) and that from Ref. [25] (dotted).

where ΩΛ(z) and Ωm are respectively the density fractions of vacuum energy and matter

normalized to the present critical density ρc,0 = 3H2
0/8πGN :

ΩΛ(z) =
ρΛ(z)

ρc,0
=

Λ(z)

3H2
0

, Ωm =
ρm
ρc,0

. (25)

The Hubble constant H0 is the value of the Hubble parameter H(z) at redshift z = 0.

Consistency of Eq. (24) requires

Ωm + ΩΛ(0) = 1 . (26)

Observations yield ΩM = 0.3 and ΩΛ(0) = 0.7 [8]. Therefore,

H(z)2

H2
0

= ΩM(1 + z)3 + ΩΛ(0)

[
Λ(z)

Λ(0)

]
. (27)

Substituting Eq. (22) into this expression will give us the z dependence of H(z). The

behavior of H2(z)/H2
0 is shown for several values of ξ0 in Figure 2, compared against the

constant Λ case. Note that in our proposal, the Λ(z) contribution to H(z) vanishes when

z � 1. Also shown in Figure 2 is the result of Kitamoto, Kitazawa, and Matsubara (KKM)

in Ref. [25] in which the authors compute a β-function for g = GNH
2 in Einstein gravity in

four dimensional de Sitter space to obtain (their formula (5.39))[
H(z)2

H2
0

]
KKM

= Ωm (1 + z)3 + ΩΛ(0) log
[
e+ log (1 + z)

]
. (28)
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While the KKM model makes certain assumptions about a conformally coupled scalar field to

ensure the running of the coupling g and identifies the behavior of the Hubble constant with

quantum IR effects, we motivate the time evolution of Λ(z) from infinite statistics and the

dynamical mixing of UV and IR degrees of freedom. The evolution of the Hubble parameter

in the context of the model proposed here differs significantly from either the constant Λ

case or the KKM model for most values of ξ0. Thus there exists the potential for a definitive

prediction to be made of the evolution Hubble parameter by fitting the model proposed here

to current cosmological data. We will discuss the phenomenology of the above formulæ for

H2(z)/H2
0 , and whether they have any relevance to the H0 tension elsewhere [54].

6 Concluding Remarks

In this paper we have discussed the relation between infinite statistics and dynamical dark

energy based on the recent proposal for the origin of dark energy from the curvature of

dual spacetime [24] in the context of the new approach to quantum gravity of Refs. [26–30].

Specifically, following the general arguments for the relevance of infinite statistics in quantum

gravity [34], we have derived a formula for Λ(z) in a particular example based on the quantum

statistical effects (due to infinite statistics) within this general approach.

Note that we have not included the matter sector explicitly in the above discussion.

However, the dual part of the matter sector can be naturally related to the dark matter

sector that is sensitive to dark energy [55] which illustrates the unity of the description of

the entire dark sector based on the properties of the dual spacetime, as predicted by the

above generic non-commutative formulation of string theory/quantum gravity [26–30].
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