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KEY POINTS

e Room-temperature nanoindentation tests on wet and dry olivine yield very similar
mechanical results.

e Any effect of water incorporation on yield stress is outweighed by the effect of
orientation anisotropy.

e Water may only weaken olivine at high temperatures and therefore not influence strength

in the coldest portions of the lithosphere.
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ABSTRACT

The effect of small concentrations of intracrystalline water on the strength of olivine is
significant at asthenospheric temperatures but is poorly constrained at lower temperatures
applicable to the shallow lithosphere. We examined the effect of water on the yield stress of
olivine during low-temperature plasticity using room-temperature Berkovich nanoindentation.
The presence of water in olivine (1600 ppm H/Si) does not affect hardness or yield stress relative
to dry olivine (<40 ppm H/Si) outside of uncertainty but may slightly reduce Young’s modulus.
Differences between water-bearing and dry crystals in similar orientations were minor compared
to differences between dry crystals in different orientations. These observations suggest water
content does not affect the strength of olivine at low homologous temperatures. Thus,
intracrystalline water does not play a role in olivine deformation at these temperatures, implying

that water does not lead to weakening in the coldest portions of the mantle.

PLAIN LANGUAGE SUMMARY

At high temperatures (>1000°C), incorporating small amounts of water in a crystalline structure
can dramatically affect the strength of that crystal. There are many theories as to why this is the
case, and each theory makes a prediction for how water might affect the strength of crystals at
low temperatures. Thus, by conducting experiments at room temperature, we can distinguish
between some of these theories. Our data indicate that water does not have a significant effect on
the strength of olivine at room temperature, and any minor effect that water may have is far
outweighed by the effect of crystal orientation. These observations rule out theories in which
water causes a decrease in the strength of olivine at all temperatures, implying that water does

not lead to weakening in the coldest portions of the mantle.



46

47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68

69
70
71
72
73
74
75

R1 submitted to Geophysical Research Letters

1. Introduction

The rheological behavior of the upper mantle is predominantly controlled by the mechanical
response of olivine, its most common constituent mineral. The rate of deformation of olivine by
the motion of dislocations can be limited by either dislocation glide or dislocation climb. Climb
is the rate-controlling process at high temperatures and low stresses, commonly associated with
the asthenosphere and lower lithosphere, while dislocation glide is rate-limiting at the low
temperatures and high stresses typical of the shallow lithospheric mantle (c.f., Warren & Hansen,
2023). We refer to glide-controlled deformation as low-temperature plasticity (LTP). Glide
velocity is predominantly controlled by the Peierls stress, which is the resistance of the crystal
lattice to dislocation glide in the absence of thermal activation (e.g., Karato, 2008, Chapter 9).
Therefore, lattice resistance and the microphysical processes by which dislocations overcome it
are important to determine over the full range of environmental and compositional variables at

play in the upper mantle.

Olivine is a nominally anhydrous mineral in that it contains no stoichiometric water (e.g. Bell
and Rossman, 1992). However, small concentrations of water (<0.01 wt% H,0) can be hosted in
the crystal structure of olivine in the form of H' ions, and these small concentrations can have
dramatic effects on the physical properties of olivine, including viscosity (e.g., Kohlstedt, 2006)
and electrical conductivity (Wang et al., 2006). As LTP typically occurs at relatively shallow
depths where interaction between peridotites and hydrous fluids may be most common,
constraining the impact of hydrous point defects on the rheological properties of olivine is
important for understanding the deformation processes that occur in such settings. Examples
include the plastic deformation of asperities on frictional faults (e.g., Boettcher et al., 2007) and

the bending of plates entering subduction zones (e.g., Buffett & Becker, 2012).

To refine analyses of these deformation processes, we must distinguish among models that
predict the impact of intracrystalline H" on LTP of olivine. There are several potential
mechanisms by which small concentrations of H™ may decrease the strength of nominally
anhydrous minerals (e.g., Griggs, 1967; Hobbs, 1984; Katayama & Karato, 2008), and the role of
water in glide-controlled deformation is still unclear. The presence of H' ions may modify the
dynamics of dislocation glide through several aspects of the dislocation motion. Dislocation

glide is generally considered to occur by the process of nucleation and migration of kinks, which
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are local displacements of the dislocation line in its glide plane. As detailed in the supplemental
material, flow laws based on the glide of dislocations can be derived to explicitly include the
behavior of dislocation kinks. Several of the parameters in these flow laws may be affected by
the concentration of H™ (e.g., Hobbs, 1984). For instance, increasing the concentration of H™ may
lead to weakening by increasing the concentration of kinks. Weakening may also occur by
decreasing the Peierls stress, the intrinsic resistance of the lattice to dislocation motion, or by
decreasing the backstress, the resistance to dislocation motion by elastic interaction with other

dislocations.

We group models for the role of water in LTP based on which of the flow-law parameters is
primarily influenced by H" (Figure 1). We define models 1 and 2 as cases in which H" does not
affect LTP, as suggested by Tielke et al. (2017). In model 1, the influence of water on
deformation occurs only at high temperatures through its influence on the bulk diffusivities of
the major species and therefore on dislocation climb and recovery (c.f., Kohlstedt, 2006), which
reduces the backstress, and therefore, the steady-state flow stress (e.g., Breithaupt et al., 2023). In
model 2, H' results in charged point defects that couple to the kink concentration through point-
defect equilibria because kinks in ionic solids can be charged (Hobbs, 1984). As highlighted in
the supplemental material, increasing the kink concentration has little effect during LTP and
primarily reduces the flow stress during high-temperature creep. Other models consider H' to
hydrolyze Si-O bonds (e.g., Griggs, 1967, 1974), which reduces the Peierls stress, as
demonstrated for quartz by Heggie and Jones (1986). In model 3, as suggested by Griggs (1967,
1974), H" must continually diffuse along dislocation cores to reduce the Peierls stress in the
vicinity of dislocations, which will only be effective above an apparent threshold temperature. In
model 4 (Karato, 2008, equation 9.10; Katayama and Karato, 2008), this process is never limited
by diffusion, and the weakening associated with a reduction in the Peierls stress occurs at all

temperatures.
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Figure 1: Stress as a function of temperature measured in experiments and predicted by models of
hydrolytic weakening. (A) Models and data are shown in red for dry olivine (Evans & Goetze, 1979;
Keefner et al., 2011; Hansen et al., 2019) and blue for wet olivine (Katayama & Karato, 2008; Tielke et
al., 2017). Experimental data cover strain rates from 4.2 x 107 to 4.4 x 10* s and are plotted without
normalization. Flow laws and models of hydrolytic weakening are shown as solid lines for a strain rate of
10° s with the minima and maxima of the shaded regions respectively indicating strain rates of 10° s™
and 10" s™'. Dashed lines are schematic transitions between LTP and dislocation creep. Flow laws for
power-law creep of wet and dry olivine are from Hirth and Kohlstedt (2003). The LTP flow law for dry
olivine is from Hansen et al. (2021). Models 1, 2, and 3 of hydrolytic weakening in the low-temperature
regime are schematic and are described in the text. Model 4 is based on the flow law of Katayama and
Karato (2008). (B, C, D) Individual models of hydrolytic weakening are highlighted in blue, with dry
LTP and dislocation creep in red. The axes of each panel are the same as in (A). See supplemental
information for further details of plotted flow laws and models.

In this study, we aim to distinguish among these models by examining the yield strength of
hydrated olivine compared to dry olivine using room-temperature nanoindentation. This
technique, in which a small, hard stylus is pressed into a sample to leave a plastically-deformed
impression, is commonly used to probe elasticity and plasticity in metals and industrial ceramics
(e.g., Oliver & Pharr, 1992, 2004; Kalidindi & Vachhani, 2014). Recently, indentation methods

have seen a rise in popularity in the geosciences due to their comparative ease of use, rapid data

5



122
123
124
125
126
127

128

129
130
131
132
133
134
135
136
137
138
139
140
141
142

143
144
145
146
147
148
149
150
151

R1 submitted to Geophysical Research Letters

acquisition, and reproducibility (e.g., Kranjc et al., 2016; Kumamoto et al., 2017; Thom &
Goldsby, 2019; Thom et al., 2022). Furthermore, the self-confining nature of the technique
allows LTP in olivine to be investigated at room temperature, generating clear microstructural
evidence of dislocation activity (Kumamoto et al., 2017; Wallis et al., 2020; Avadanii et al.,
2023). These low-temperature experiments are well suited to distinguishing among different

models for the influence of water in LTP.

2. Methods

Sample M666, a gem-quality single crystal of San Carlos olivine, was hydrated at a pressure of 3
GPa and temperature of 1473 K using a multi-anvil solid-medium apparatus by Li (2015).
Fourier transform infrared spectroscopy (FTIR) indicated water concentrations of 1600 ppm H/Si
(L1, 2015). To prepare for nanoindentation, one surface of M666 with a surface normal close to
[010] was polished using diamond suspensions down to 0.25 pm and finished with 0.05 pm
colloidal silica. An initial set of nanoindentation experiments was performed on this water-
bearing M666, the results of which are hereafter referred to as M666-W. After performing
nanoindentation experiments on M666-W, it was placed in a gas-mixing furnace and held at a
temperature of 900°C for 8 hours. A mixture of CO and CO, was used to maintain the oxygen
fugacity at approximately the Ni/NiO buffer and within the stability field of olivine. (At the time
dehydration was performed, the furnace temperature was not stable above ~1000°C, so we chose
to dehydrate at 900°C for greater control over the oxygen fugacity.) A second set of
nanoindentation experiments was performed on this dehydrated M666, the results of which are

hereafter referred to as M666-D.

FTIR was performed on M666-D to determine the residual water content, measured to be 700
ppm H/Si in the ~0.4-mm-thick sample (see supplement for methodology). As the value from
FTIR is a volume-averaged measurement of water concentration, we used a simple diffusion
model to estimate the amount of water that remains in the outer 5 pum of the crystal (see
supplement for additional detail). A depth of 5 um covers the typical region over which olivine
deforms during our nanoindentation experiments (~3 times the maximum indent depth), with
most strain occurring at even shallower depths (e.g., Avadanii et al., 2023; Wallis et al., 2020).
We assume that diffusion along the [010] axis is the relevant dehydration mechanism given the

orientation of M666. After 8 hours at 900°C with a diffusion coefficient of 2.05x107"* m%s™! for

6
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the [010] direction in olivine (Ferriss et al., 2018), our model indicates that the outer 5 um of the
crystal has an average water concentration of 30 ppm H/Si. This value is below the 50 ppm H/Si
suggested as the minimum water concentration required for wet creep to be active in olivine
(Hirth & Kohlstedt, 2003) and is similar to the water concentration assumed for our dry San
Carlos olivine samples (Table 1) based on previous analyses of hydrogen in San Carlos olivine

(Denis et al., 2018; Ferriss et al., 2018; Mackwell et al., 1985).

All other samples used in this study (Table S1) were prepared by cutting slices of untreated San
Carlos olivine with two parallel sides, then polishing one side using diamond suspensions and
colloidal silica, as with M666. Samples were mounted on aluminum stubs with their polished
surfaces facing up in preparation for nanoindentation experiments. Crystal orientations were
measured using electron backscatter diffraction to ensure that a range of orientations were

analyzed (see supplement for more information).

Room-temperature nanoindentation experiments were performed using a MTS Nanoindenter XP
and a KLA Nano G200, both equipped with a Berkovich (triangular pyramid) diamond tip. With
Berkovich indents, the sharpness of the tip forces the sample to accommodate plastic strain
nearly as soon as the indenter tip contacts the sample. In addition, the self-similar shape of the
Berkovich tip means that the average magnitude of strain induced by the tip is constant, but the
size of the plastic zone increases as the tip is pushed further into the sample over the course of
the experiment (e.g., Fischer-Cripps, 2011 p. 7). An example array of 16 indents is shown in

Figure 2.
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Figure 2: A secondary electron image of an array of 16 indents in sample MN1.

Indents were performed using the continuous stiffness method while keeping the ratio of loading
rate to load constant at 0.05 s”'. The maximum depth of each indent was in the range of 1250—
1500 nm for indents on dry olivine and 80—1500 nm for indents on M666-W. A subset of indents
on M666-W were performed at different ratios of loading rate to load, from 0.005 s™ to 0.1 s™".
Raw data of load on the sample, displacement of the tip into the sample, contact stiffness, and
time were recorded for each experiment at a rate of 5 Hz. Data were processed to extract
Young’s modulus (E), hardness (H), and yield stress (oy), following the methods by Oliver and
Pharr (2004) and Evans and Goetze (1979) and using an area function based on indents
performed in fused silica. As the area function is less precise at small indent depths, we only
analyze hardness and yield stress for indents deeper than 200 nm. Further details regarding data

processing are described in the supplemental information.

3. Results

Results are summarized in Table 1 and Figure 3. The elastic behavior of both wet and dry olivine
compares very well to previous work (Figure 3B). The moduli for M666-W and M666-D are
among the lowest of the tested samples, consistent with their orientation and previous
measurements of the elastic properties of olivine (e.g., Zha et al., 1996; Abramson et al., 1997).

M666-W exhibits a slightly lower Young’s modulus than M666-D, which is expected based on a
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previous experimental investigation of the effect of water on the elasticity of olivine (Jacobsen et
al., 2008). As observed in previous experiments (Kumamoto et al., 2017), measurements of
Young’s modulus using nanoindentation exhibit a reduced degree of anisotropy relative to other

measurement techniques due to the multiaxial forces applied during nanoindentation

experiments.
Table 1. Summary of Results
Dataset E H oy N Water
(GPa) (GPa) (GPa) (ppm H/Si)
M666-W 188+ 7 13.3+0.4 8.0£0.6 44 1600°
M666-D  All 202 + 14 13.6 £0.7 7.9+0.6 52 30
Similar indent ori' 197 %5 13.4£0.5 7.8+0.5 16

San Carlos All --- 129+1.0 69+12 215 40°
Similar crystal ori® 208 + 6 13.3+0.5 7.4+0.5 58

Note: Young’s modulus (E), hardness (H), and yield stress (oy) are averaged over a narrow depth range (arbitrarily
chosen to be 995-1005 nm) to remove any variation among different samples due to the indentation size effect. N is
the number of indentation tests in each group. Data for the average mechanical behavior of San Carlos olivine are a
compilation from this study (Table S1) and Kumamoto et al. (2017) and exclude experiments on M666. 95%
confidence intervals are reported for all measurements.

*From Li (2015).

® This water concentration is for the outer 5 pm of M666-D based on diffusion modeling. The water concentration
for the whole crystal measured by FTIR is 700 ppm H/Si.

¢ Average based on measurements of water concentration in San Carlos olivine (9 measurements with a range of
0-64 ppm H/Si) by Mackwell et al. (1985), Denis et al. (2018), and Ferriss et al. (2018). Values from Mackwell et
al. (1985) have been multiplied by a factor of 3.5 to match the FTIR calibration of Bell et al. (2003) and secondary
ion mass spectrometry values.

4 Averages where the orientation of the Berkovich tip relative to the surface of M666-D was most similar to the
orientation of the Berkovich tip relative to the surface of M666-W.

¢ Averages for crystals with surface planes within 10° of the surface plane of M666. These crystals are CT-SCO1,
OP1-2-S, and OP3-3 (Table S1).
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Figure 3: Results of 311 Berkovich nanoindentation experiments. (A) Load on the sample versus vertical
displacement of the indenter tip into the sample surface. Experiments are shown as individual lines, with
experiments on M666-W in blue, M666-D in red, and other dry San Carlos olivine in gray. For the tests
on M666-W (blue lines), an artifact associated with how data were exported results in the truncation of
the unloading curves but does not affect our results. (B) Average Young’s modulus at 1000 nm depth for
all samples, plotted at the orientation of the surface normal. M666-D is plotted with a red dashed marker
edge. M666-W, which sits at an identical position on the plot, has a slightly lower Young’s modulus
(Table 1). The background is colored by the uniaxial Young’s modulus for dry San Carlos olivine from
Abramson et al. (1997). (C) Hardness versus displacement. Results are plotted as envelopes enclosing
results at depths greater than 200 nm. Each gray envelope encompasses 7—16 nanoindentation
experiments on a single crystal orientation. The blue envelope contains 44 experiments performed on
M666-W, and the yellow envelope contains 52 experiments performed on M666-D across 6 different
orientations of the indenter tip relative to the sample surface. The red envelope contains a subset of 16
experiments performed on M666-D in the two orientations most similar to the experiments performed on
M666-W. (D) Yield stress versus displacement. Envelopes are colored as in (C).

The hardnesses and yield stresses of both wet and dry olivine samples are also consistent with
previous measurements. Both quantities vary systematically with orientation (Figure 3C and D).
The variability in hardness and yield stress for different crystal orientations at any given
indentation depth (~2-3 GPa at depths greater than 500 nm) is approximately the same as that
measured previously using spherical nanoindentation (Kumamoto et al., 2017). Due to the

complexity of the stress state beneath the indenter tip, many slip systems can be activated

10
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beneath an indent in a crystal of any orientation (e.g., Avadanii et al., 2023; Wallis et al., 2020).
The (100)[001] and (110)[001] slip systems are generally the most active at room temperature
(e.g., Avadanii et al., 2023; Gaboriaud et al., 1981; Wallis et al., 2020) due to their low critical
resolved shear stresses (e.g., Hansen et al., 2019). Thus the observed anisotropy in hardness and
yield stress in our results is primarily due to different resolved shear stresses on these slip

systems depending on the geometry of deformation under the indenter tip.

The nanoindentation tests exhibit the indentation size effect in that hardness decreases with
increasing indent depth (e.g., Nix & Gao, 1998; Pharr et al., 2010; Kumamoto et al., 2017;
Koizumi et al., 2020). The size effect for each orientation can be characterized by a power law,
with the exponent ranging from -0.03 to -0.17. Yield stress, calculated from modulus and
hardness following the method of Evans and Goetze (1979), has a similar relationship with
indent size, with a power-law exponent ranging from -0.02 to -0.22. Previous indentation studies
on olivine identified size effects of similar magnitudes (Kumamoto et al., 2017; Koizumi et al.,

2020).

When directly compared, measurements of hardness and yield stress for M666-W and M666-D
overlap for nearly the entire experimental range of depths (Figure 3C and D). Small differences
between the datasets on M666-W and M666-D can be attributed to the azimuthal anisotropy of
the Berkovich tip. We tested 6 different tip orientations on M666-D by rotating the triangular
pyramidal Berkovich tip about its axis of symmetry and then indenting the same crystal surface.
We found that at a depth of 1000 nm, the modulus varied by 7%, the hardness varied by 4%, and
the yield stress varied by 3% (Table S1). In contrast, the difference between M666-W and M666-
D for similar indent orientations (the red fields in Figure 3C and D; “similar indent ori” in Table
1) is 0.6% for hardness and 2% for yield stress. Thus, even the minor anisotropy induced by the
orientation of the indenter tip relative to a single crystal surface has a greater effect on hardness

and yield stress than that of the water content.

4. Discussion

In a previous study on the role of water in glide-controlled deformation of olivine, Katayama and
Karato (2008) interpreted the weakening effect of water in their experiments as being due to a

reduction in the Peierls stress by a factor of ~3. They suggested this single mechanism could

11
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describe the effect of water on both low- and high-temperature rheological behavior due to the
influence of the Peierls stress on the formation energy of both kinks and jogs (local
displacements of the dislocation perpendicular to the glide plane). This type of weakening

corresponds to model 4 (Figure 1).

Our experiments at low temperature demonstrate that the Peierls stress is not lowered by high
water concentrations, ruling out model 4. M666-W and M666-D are extremely similar in
hardness and yield stress despite the significant difference in water content (Table 1, Figure 3).
Dry olivine samples in similar orientations (e.g., CT-SCO1) are also quite close to M666-W in
their mechanical properties (Table 1, Table S1). The difference in yield stress of 0.1-0.2 GPa
between M666-W and M666-D is within the 95% confidence interval of +0.6 GPa on the yield
stresses and is an order of magnitude less than the effect of anisotropy due to crystal orientation
observed in this study. The similarities in mechanical behavior between M666-D and M666-W
suggest that any effect of water on dislocation glide is inconsequential at room temperature. By
comparison, in the dislocation-creep regime at a temperature of 1250°C and a constant strain rate
of 107 s, we would expect the strength of M666-W to be ~30% of that of dry olivine (see

supplemental material for specific flow-law parameters).

Other models presented for hydrolytic weakening in olivine (Figure 1) are still possible. For
instance, the Peierls stress could still be reduced at elevated temperatures (model 3). H" may also
lead to weakening at high temperatures and not at low temperatures by increasing the kink

concentration (model 2) or increasing diffusivities and reducing the backstress (model 1).

Our results demonstrate that intracrystalline H' has little to no impact on olivine deformation at
low temperatures. For instance, intracrystalline water likely does not affect the frictional strength
of faults if frictional strength is controlled by dislocation motion near contacts between
plastically deforming asperities (e.g., Aharonov & Scholz, 2019; Boettcher et al., 2007; Tabor,
1981; Thom et al., 2022). Intracrystalline water also likely does not influence the maximum
strength of the lithosphere near the brittle-ductile transition, at which LTP acts in tandem with

brittle deformation mechanisms (e.g., Warren & Hansen, 2023).

12
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