

1 The Effect of Intracrystalline Water on the Mechanical 2 Properties of Olivine at Room Temperature

3 Kathryn M. Kumamoto^{1,2,*}, Lars N. Hansen², Thomas Breithaupt³, David Wallis³, Bo-
4 Shiuan Li⁴, David E.J. Armstrong⁴, David L. Goldsby⁵, Yang (Will) Li², Jessica M.
5 Warren⁶, and Angus J. Wilkinson⁴

6 ¹ Lawrence Livermore National Laboratory, Livermore, CA, USA

7 ² Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN,
8 USA

9 ³ Department of Earth Sciences, University of Cambridge, Cambridge, UK

10 ⁴ Department of Materials, University of Oxford, Oxford, UK

11 ⁵ Department of Earth and Environmental Science, University of Pennsylvania, PA, USA

12 ⁶ Department of Earth Sciences, University of Delaware, Newark, DE, USA

13 *corresponding author, kumamoto3@llnl.gov

14

15 KEY POINTS

- 16 • Room-temperature nanoindentation tests on wet and dry olivine yield very similar
17 mechanical results.
- 18 • Any effect of water incorporation on yield stress is outweighed by the effect of
19 orientation anisotropy.
- 20 • Water may only weaken olivine at high temperatures and therefore not influence strength
21 in the coldest portions of the lithosphere.

22

23

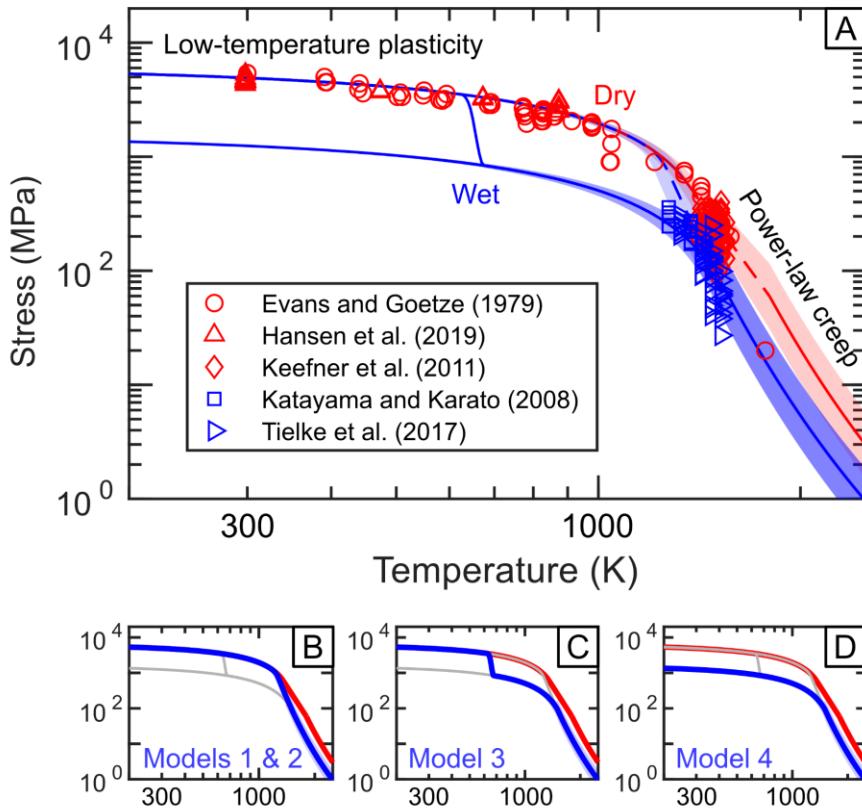
24 **ABSTRACT**

25 The effect of small concentrations of intracrystalline water on the strength of olivine is
26 significant at asthenospheric temperatures but is poorly constrained at lower temperatures
27 applicable to the shallow lithosphere. We examined the effect of water on the yield stress of
28 olivine during low-temperature plasticity using room-temperature Berkovich nanoindentation.
29 The presence of water in olivine (1600 ppm H/Si) does not affect hardness or yield stress relative
30 to dry olivine (≤ 40 ppm H/Si) outside of uncertainty but may slightly reduce Young's modulus.
31 Differences between water-bearing and dry crystals in similar orientations were minor compared
32 to differences between dry crystals in different orientations. These observations suggest water
33 content does not affect the strength of olivine at low homologous temperatures. Thus,
34 intracrystalline water does not play a role in olivine deformation at these temperatures, implying
35 that water does not lead to weakening in the coldest portions of the mantle.

36 **PLAIN LANGUAGE SUMMARY**

37 At high temperatures ($>1000^{\circ}\text{C}$), incorporating small amounts of water in a crystalline structure
38 can dramatically affect the strength of that crystal. There are many theories as to why this is the
39 case, and each theory makes a prediction for how water might affect the strength of crystals at
40 low temperatures. Thus, by conducting experiments at room temperature, we can distinguish
41 between some of these theories. Our data indicate that water does not have a significant effect on
42 the strength of olivine at room temperature, and any minor effect that water may have is far
43 outweighed by the effect of crystal orientation. These observations rule out theories in which
44 water causes a decrease in the strength of olivine at all temperatures, implying that water does
45 not lead to weakening in the coldest portions of the mantle.

46 **1. Introduction**


47 The rheological behavior of the upper mantle is predominantly controlled by the mechanical
48 response of olivine, its most common constituent mineral. The rate of deformation of olivine by
49 the motion of dislocations can be limited by either dislocation glide or dislocation climb. Climb
50 is the rate-controlling process at high temperatures and low stresses, commonly associated with
51 the asthenosphere and lower lithosphere, while dislocation glide is rate-limiting at the low
52 temperatures and high stresses typical of the shallow lithospheric mantle (c.f., Warren & Hansen,
53 2023). We refer to glide-controlled deformation as low-temperature plasticity (LTP). Glide
54 velocity is predominantly controlled by the Peierls stress, which is the resistance of the crystal
55 lattice to dislocation glide in the absence of thermal activation (e.g., Karato, 2008, Chapter 9).
56 Therefore, lattice resistance and the microphysical processes by which dislocations overcome it
57 are important to determine over the full range of environmental and compositional variables at
58 play in the upper mantle.

59 Olivine is a nominally anhydrous mineral in that it contains no stoichiometric water (e.g. Bell
60 and Rossman, 1992). However, small concentrations of water (<0.01 wt% H₂O) can be hosted in
61 the crystal structure of olivine in the form of H⁺ ions, and these small concentrations can have
62 dramatic effects on the physical properties of olivine, including viscosity (e.g., Kohlstedt, 2006)
63 and electrical conductivity (Wang et al., 2006). As LTP typically occurs at relatively shallow
64 depths where interaction between peridotites and hydrous fluids may be most common,
65 constraining the impact of hydrous point defects on the rheological properties of olivine is
66 important for understanding the deformation processes that occur in such settings. Examples
67 include the plastic deformation of asperities on frictional faults (e.g., Boettcher et al., 2007) and
68 the bending of plates entering subduction zones (e.g., Buffett & Becker, 2012).

69 To refine analyses of these deformation processes, we must distinguish among models that
70 predict the impact of intracrystalline H⁺ on LTP of olivine. There are several potential
71 mechanisms by which small concentrations of H⁺ may decrease the strength of nominally
72 anhydrous minerals (e.g., Griggs, 1967; Hobbs, 1984; Katayama & Karato, 2008), and the role of
73 water in glide-controlled deformation is still unclear. The presence of H⁺ ions may modify the
74 dynamics of dislocation glide through several aspects of the dislocation motion. Dislocation
75 glide is generally considered to occur by the process of nucleation and migration of kinks, which

76 are local displacements of the dislocation line in its glide plane. As detailed in the supplemental
77 material, flow laws based on the glide of dislocations can be derived to explicitly include the
78 behavior of dislocation kinks. Several of the parameters in these flow laws may be affected by
79 the concentration of H^+ (e.g., Hobbs, 1984). For instance, increasing the concentration of H^+ may
80 lead to weakening by increasing the concentration of kinks. Weakening may also occur by
81 decreasing the Peierls stress, the intrinsic resistance of the lattice to dislocation motion, or by
82 decreasing the backstress, the resistance to dislocation motion by elastic interaction with other
83 dislocations.

84 We group models for the role of water in LTP based on which of the flow-law parameters is
85 primarily influenced by H^+ (Figure 1). We define models 1 and 2 as cases in which H^+ does not
86 affect LTP, as suggested by Tielke et al. (2017). In model 1, the influence of water on
87 deformation occurs only at high temperatures through its influence on the bulk diffusivities of
88 the major species and therefore on dislocation climb and recovery (c.f., Kohlstedt, 2006), which
89 reduces the backstress, and therefore, the steady-state flow stress (e.g., Breithaupt et al., 2023). In
90 model 2, H^+ results in charged point defects that couple to the kink concentration through point-
91 defect equilibria because kinks in ionic solids can be charged (Hobbs, 1984). As highlighted in
92 the supplemental material, increasing the kink concentration has little effect during LTP and
93 primarily reduces the flow stress during high-temperature creep. Other models consider H^+ to
94 hydrolyze Si-O bonds (e.g., Griggs, 1967, 1974), which reduces the Peierls stress, as
95 demonstrated for quartz by Heggie and Jones (1986). In model 3, as suggested by Griggs (1967,
96 1974), H^+ must continually diffuse along dislocation cores to reduce the Peierls stress in the
97 vicinity of dislocations, which will only be effective above an apparent threshold temperature. In
98 model 4 (Karato, 2008, equation 9.10; Katayama and Karato, 2008), this process is never limited
99 by diffusion, and the weakening associated with a reduction in the Peierls stress occurs at all
100 temperatures.

101

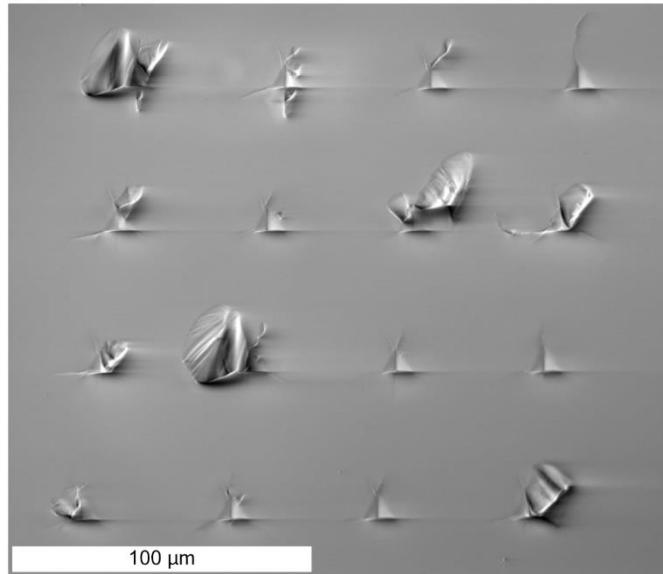
Figure 1: Stress as a function of temperature measured in experiments and predicted by models of hydrolytic weakening. (A) Models and data are shown in red for dry olivine (Evans & Goetze, 1979; Keefner et al., 2011; Hansen et al., 2019) and blue for wet olivine (Katayama & Karato, 2008; Tielke et al., 2017). Experimental data cover strain rates from 4.2×10^{-7} to $4.4 \times 10^{-4} \text{ s}^{-1}$ and are plotted without normalization. Flow laws and models of hydrolytic weakening are shown as solid lines for a strain rate of 10^{-5} s^{-1} with the minima and maxima of the shaded regions respectively indicating strain rates of 10^{-6} s^{-1} and 10^{-4} s^{-1} . Dashed lines are schematic transitions between LTP and dislocation creep. Flow laws for power-law creep of wet and dry olivine are from Hirth and Kohlstedt (2003). The LTP flow law for dry olivine is from Hansen et al. (2021). Models 1, 2, and 3 of hydrolytic weakening in the low-temperature regime are schematic and are described in the text. Model 4 is based on the flow law of Katayama and Karato (2008). (B, C, D) Individual models of hydrolytic weakening are highlighted in blue, with dry LTP and dislocation creep in red. The axes of each panel are the same as in (A). See supplemental information for further details of plotted flow laws and models.

115

In this study, we aim to distinguish among these models by examining the yield strength of hydrated olivine compared to dry olivine using room-temperature nanoindentation. This technique, in which a small, hard stylus is pressed into a sample to leave a plastically-deformed impression, is commonly used to probe elasticity and plasticity in metals and industrial ceramics (e.g., Oliver & Pharr, 1992, 2004; Kalidindi & Vachhani, 2014). Recently, indentation methods have seen a rise in popularity in the geosciences due to their comparative ease of use, rapid data

122 acquisition, and reproducibility (e.g., Kranjc et al., 2016; Kumamoto et al., 2017; Thom &
123 Goldsby, 2019; Thom et al., 2022). Furthermore, the self-confining nature of the technique
124 allows LTP in olivine to be investigated at room temperature, generating clear microstructural
125 evidence of dislocation activity (Kumamoto et al., 2017; Wallis et al., 2020; Avadanii et al.,
126 2023). These low-temperature experiments are well suited to distinguishing among different
127 models for the influence of water in LTP.

128 **2. Methods**


129 Sample M666, a gem-quality single crystal of San Carlos olivine, was hydrated at a pressure of 3
130 GPa and temperature of 1473 K using a multi-anvil solid-medium apparatus by Li (2015).
131 Fourier transform infrared spectroscopy (FTIR) indicated water concentrations of 1600 ppm H/Si
132 (Li, 2015). To prepare for nanoindentation, one surface of M666 with a surface normal close to
133 [010] was polished using diamond suspensions down to 0.25 μm and finished with 0.05 μm
134 colloidal silica. An initial set of nanoindentation experiments was performed on this water-
135 bearing M666, the results of which are hereafter referred to as M666-W. After performing
136 nanoindentation experiments on M666-W, it was placed in a gas-mixing furnace and held at a
137 temperature of 900°C for 8 hours. A mixture of CO and CO₂ was used to maintain the oxygen
138 fugacity at approximately the Ni/NiO buffer and within the stability field of olivine. (At the time
139 dehydration was performed, the furnace temperature was not stable above ~1000°C, so we chose
140 to dehydrate at 900°C for greater control over the oxygen fugacity.) A second set of
141 nanoindentation experiments was performed on this dehydrated M666, the results of which are
142 hereafter referred to as M666-D.

143 FTIR was performed on M666-D to determine the residual water content, measured to be 700
144 ppm H/Si in the ~0.4-mm-thick sample (see supplement for methodology). As the value from
145 FTIR is a volume-averaged measurement of water concentration, we used a simple diffusion
146 model to estimate the amount of water that remains in the outer 5 μm of the crystal (see
147 supplement for additional detail). A depth of 5 μm covers the typical region over which olivine
148 deforms during our nanoindentation experiments (~3 times the maximum indent depth), with
149 most strain occurring at even shallower depths (e.g., Avadanii et al., 2023; Wallis et al., 2020).
150 We assume that diffusion along the [010] axis is the relevant dehydration mechanism given the
151 orientation of M666. After 8 hours at 900°C with a diffusion coefficient of $2.05 \times 10^{-13} \text{ m}^2\text{s}^{-1}$ for

152 the [010] direction in olivine (Ferriss et al., 2018), our model indicates that the outer 5 μm of the
153 crystal has an average water concentration of 30 ppm H/Si. This value is below the 50 ppm H/Si
154 suggested as the minimum water concentration required for wet creep to be active in olivine
155 (Hirth & Kohlstedt, 2003) and is similar to the water concentration assumed for our dry San
156 Carlos olivine samples (Table 1) based on previous analyses of hydrogen in San Carlos olivine
157 (Denis et al., 2018; Ferriss et al., 2018; Mackwell et al., 1985).

158 All other samples used in this study (Table S1) were prepared by cutting slices of untreated San
159 Carlos olivine with two parallel sides, then polishing one side using diamond suspensions and
160 colloidal silica, as with M666. Samples were mounted on aluminum stubs with their polished
161 surfaces facing up in preparation for nanoindentation experiments. Crystal orientations were
162 measured using electron backscatter diffraction to ensure that a range of orientations were
163 analyzed (see supplement for more information).

164 Room-temperature nanoindentation experiments were performed using a MTS Nanoindenter XP
165 and a KLA Nano G200, both equipped with a Berkovich (triangular pyramid) diamond tip. With
166 Berkovich indents, the sharpness of the tip forces the sample to accommodate plastic strain
167 nearly as soon as the indenter tip contacts the sample. In addition, the self-similar shape of the
168 Berkovich tip means that the average magnitude of strain induced by the tip is constant, but the
169 size of the plastic zone increases as the tip is pushed further into the sample over the course of
170 the experiment (e.g., Fischer-Cripps, 2011 p. 7). An example array of 16 indents is shown in
171 Figure 2.

172

173 **Figure 2:** A secondary electron image of an array of 16 indents in sample MN1.

174 Indents were performed using the continuous stiffness method while keeping the ratio of loading
175 rate to load constant at 0.05 s^{-1} . The maximum depth of each indent was in the range of 1250–
176 1500 nm for indents on dry olivine and 80–1500 nm for indents on M666-W. A subset of indents
177 on M666-W were performed at different ratios of loading rate to load, from 0.005 s^{-1} to 0.1 s^{-1} .
178 Raw data of load on the sample, displacement of the tip into the sample, contact stiffness, and
179 time were recorded for each experiment at a rate of 5 Hz. Data were processed to extract
180 Young's modulus (E), hardness (H), and yield stress (σ_y), following the methods by Oliver and
181 Pharr (2004) and Evans and Goetze (1979) and using an area function based on indents
182 performed in fused silica. As the area function is less precise at small indent depths, we only
183 analyze hardness and yield stress for indents deeper than 200 nm. Further details regarding data
184 processing are described in the supplemental information.

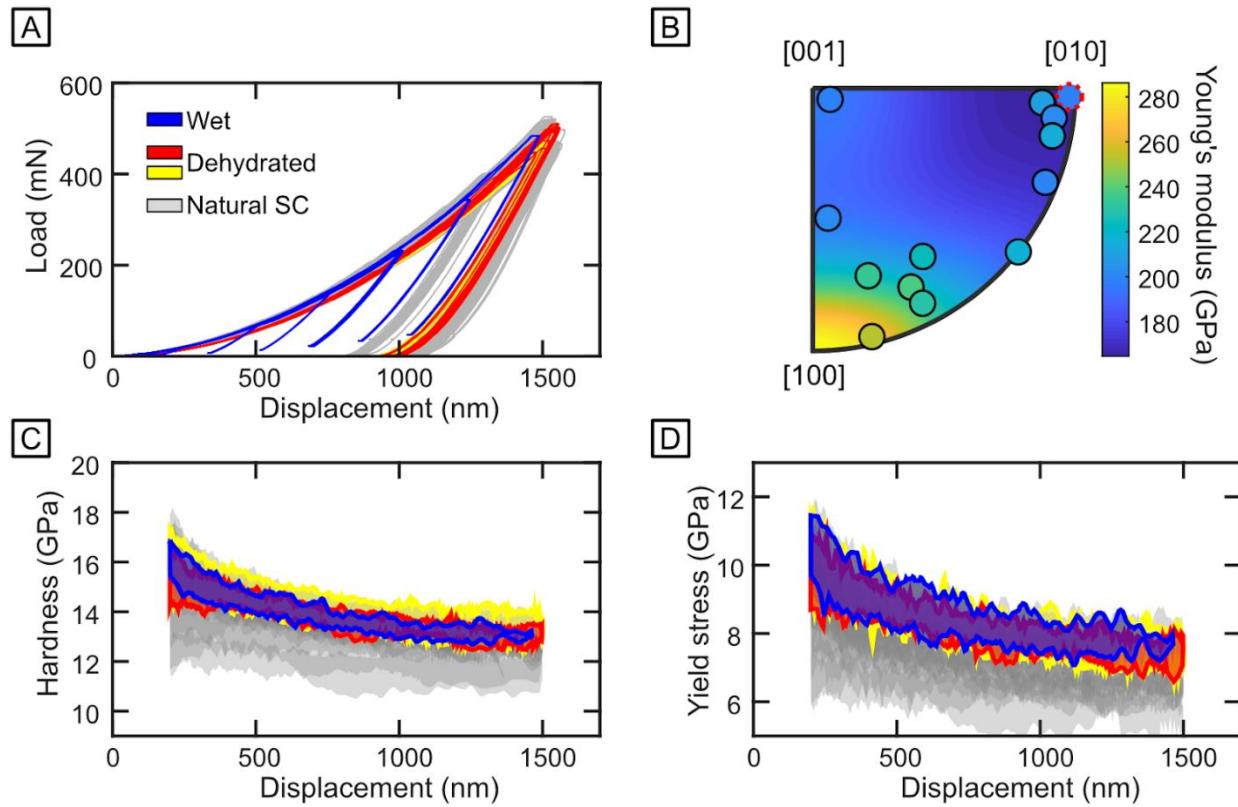
185 **3. Results**

186 Results are summarized in Table 1 and Figure 3. The elastic behavior of both wet and dry olivine
187 compares very well to previous work (Figure 3B). The moduli for M666-W and M666-D are
188 among the lowest of the tested samples, consistent with their orientation and previous
189 measurements of the elastic properties of olivine (e.g., Zha et al., 1996; Abramson et al., 1997).
190 M666-W exhibits a slightly lower Young's modulus than M666-D, which is expected based on a

191 previous experimental investigation of the effect of water on the elasticity of olivine (Jacobsen et
 192 al., 2008). As observed in previous experiments (Kumamoto et al., 2017), measurements of
 193 Young's modulus using nanoindentation exhibit a reduced degree of anisotropy relative to other
 194 measurement techniques due to the multiaxial forces applied during nanoindentation
 195 experiments.

196

197


Table 1. Summary of Results

Dataset		E (GPa)	H (GPa)	σ_y (GPa)	N	Water (ppm H/Si)
M666-W		188 ± 7	13.3 ± 0.4	8.0 ± 0.6	44	1600 ^a
M666-D	All	202 ± 14	13.6 ± 0.7	7.9 ± 0.6	52	30 ^b
	Similar indent ori ^d	197 ± 5	13.4 ± 0.5	7.8 ± 0.5	16	
San Carlos	All	---	12.9 ± 1.0	6.9 ± 1.2	215	40 ^c
	Similar crystal ori ^e	208 ± 6	13.3 ± 0.5	7.4 ± 0.5	58	

198 *Note:* Young's modulus (E), hardness (H), and yield stress (σ_y) are averaged over a narrow depth range (arbitrarily
 199 chosen to be 995–1005 nm) to remove any variation among different samples due to the indentation size effect. N is
 200 the number of indentation tests in each group. Data for the average mechanical behavior of San Carlos olivine are a
 201 compilation from this study (Table S1) and Kumamoto et al. (2017) and exclude experiments on M666. 95%
 202 confidence intervals are reported for all measurements.

203 ^a From Li (2015).204 ^b This water concentration is for the outer 5 μm of M666-D based on diffusion modeling. The water concentration
 205 for the whole crystal measured by FTIR is 700 ppm H/Si.206 ^c Average based on measurements of water concentration in San Carlos olivine (9 measurements with a range of
 207 0–64 ppm H/Si) by Mackwell et al. (1985), Denis et al. (2018), and Ferriss et al. (2018). Values from Mackwell et
 208 al. (1985) have been multiplied by a factor of 3.5 to match the FTIR calibration of Bell et al. (2003) and secondary
 209 ion mass spectrometry values.210 ^d Averages where the orientation of the Berkovich tip relative to the surface of M666-D was most similar to the
 211 orientation of the Berkovich tip relative to the surface of M666-W.212 ^e Averages for crystals with surface planes within 10° of the surface plane of M666. These crystals are CT-SCO1,
 213 OP1-2-S, and OP3-3 (Table S1).

214

215

216 **Figure 3:** Results of 311 Berkovich nanoindentation experiments. (A) Load on the sample versus vertical
 217 displacement of the indenter tip into the sample surface. Experiments are shown as individual lines, with
 218 experiments on M666-W in blue, M666-D in red, and other dry San Carlos olivine in gray. For the tests
 219 on M666-W (blue lines), an artifact associated with how data were exported results in the truncation of
 220 the unloading curves but does not affect our results. (B) Average Young's modulus at 1000 nm depth for
 221 all samples, plotted at the orientation of the surface normal. M666-D is plotted with a red dashed marker
 222 edge. M666-W, which sits at an identical position on the plot, has a slightly lower Young's modulus
 223 (Table 1). The background is colored by the uniaxial Young's modulus for dry San Carlos olivine from
 224 Abramson et al. (1997). (C) Hardness versus displacement. Results are plotted as envelopes enclosing
 225 results at depths greater than 200 nm. Each gray envelope encompasses 7–16 nanoindentation
 226 experiments on a single crystal orientation. The blue envelope contains 44 experiments performed on
 227 M666-W, and the yellow envelope contains 52 experiments performed on M666-D across 6 different
 228 orientations of the indenter tip relative to the sample surface. The red envelope contains a subset of 16
 229 experiments performed on M666-D in the two orientations most similar to the experiments performed on
 230 M666-W. (D) Yield stress versus displacement. Envelopes are colored as in (C).

231 The hardnesses and yield stresses of both wet and dry olivine samples are also consistent with
 232 previous measurements. Both quantities vary systematically with orientation (Figure 3C and D).
 233 The variability in hardness and yield stress for different crystal orientations at any given
 234 indentation depth (~2–3 GPa at depths greater than 500 nm) is approximately the same as that
 235 measured previously using spherical nanoindentation (Kumamoto et al., 2017). Due to the
 236 complexity of the stress state beneath the indenter tip, many slip systems can be activated

237 beneath an indent in a crystal of any orientation (e.g., Avadanii et al., 2023; Wallis et al., 2020).
238 The (100)[001] and (110)[001] slip systems are generally the most active at room temperature
239 (e.g., Avadanii et al., 2023; Gaboriaud et al., 1981; Wallis et al., 2020) due to their low critical
240 resolved shear stresses (e.g., Hansen et al., 2019). Thus the observed anisotropy in hardness and
241 yield stress in our results is primarily due to different resolved shear stresses on these slip
242 systems depending on the geometry of deformation under the indenter tip.

243 The nanoindentation tests exhibit the indentation size effect in that hardness decreases with
244 increasing indent depth (e.g., Nix & Gao, 1998; Pharr et al., 2010; Kumamoto et al., 2017;
245 Koizumi et al., 2020). The size effect for each orientation can be characterized by a power law,
246 with the exponent ranging from -0.03 to -0.17. Yield stress, calculated from modulus and
247 hardness following the method of Evans and Goetze (1979), has a similar relationship with
248 indent size, with a power-law exponent ranging from -0.02 to -0.22. Previous indentation studies
249 on olivine identified size effects of similar magnitudes (Kumamoto et al., 2017; Koizumi et al.,
250 2020).

251 When directly compared, measurements of hardness and yield stress for M666-W and M666-D
252 overlap for nearly the entire experimental range of depths (Figure 3C and D). Small differences
253 between the datasets on M666-W and M666-D can be attributed to the azimuthal anisotropy of
254 the Berkovich tip. We tested 6 different tip orientations on M666-D by rotating the triangular
255 pyramidal Berkovich tip about its axis of symmetry and then indenting the same crystal surface.
256 We found that at a depth of 1000 nm, the modulus varied by 7%, the hardness varied by 4%, and
257 the yield stress varied by 3% (Table S1). In contrast, the difference between M666-W and M666-
258 D for similar indent orientations (the red fields in Figure 3C and D; “similar indent ori” in Table
259 1) is 0.6% for hardness and 2% for yield stress. Thus, even the minor anisotropy induced by the
260 orientation of the indenter tip relative to a single crystal surface has a greater effect on hardness
261 and yield stress than that of the water content.

262 **4. Discussion**

263 In a previous study on the role of water in glide-controlled deformation of olivine, Katayama and
264 Karato (2008) interpreted the weakening effect of water in their experiments as being due to a
265 reduction in the Peierls stress by a factor of ~3. They suggested this single mechanism could

266 describe the effect of water on both low- and high-temperature rheological behavior due to the
267 influence of the Peierls stress on the formation energy of both kinks and jogs (local
268 displacements of the dislocation perpendicular to the glide plane). This type of weakening
269 corresponds to model 4 (Figure 1).

270 Our experiments at low temperature demonstrate that the Peierls stress is not lowered by high
271 water concentrations, ruling out model 4. M666-W and M666-D are extremely similar in
272 hardness and yield stress despite the significant difference in water content (Table 1, Figure 3).
273 Dry olivine samples in similar orientations (e.g., CT-SCO1) are also quite close to M666-W in
274 their mechanical properties (Table 1, Table S1). The difference in yield stress of 0.1–0.2 GPa
275 between M666-W and M666-D is within the 95% confidence interval of ± 0.6 GPa on the yield
276 stresses and is an order of magnitude less than the effect of anisotropy due to crystal orientation
277 observed in this study. The similarities in mechanical behavior between M666-D and M666-W
278 suggest that any effect of water on dislocation glide is inconsequential at room temperature. By
279 comparison, in the dislocation-creep regime at a temperature of 1250°C and a constant strain rate
280 of 10^{-5} s⁻¹, we would expect the strength of M666-W to be ~30% of that of dry olivine (see
281 supplemental material for specific flow-law parameters).

282 Other models presented for hydrolytic weakening in olivine (Figure 1) are still possible. For
283 instance, the Peierls stress could still be reduced at elevated temperatures (model 3). H⁺ may also
284 lead to weakening at high temperatures and not at low temperatures by increasing the kink
285 concentration (model 2) or increasing diffusivities and reducing the backstress (model 1).

286 Our results demonstrate that intracrystalline H⁺ has little to no impact on olivine deformation at
287 low temperatures. For instance, intracrystalline water likely does not affect the frictional strength
288 of faults if frictional strength is controlled by dislocation motion near contacts between
289 plastically deforming asperities (e.g., Aharonov & Scholz, 2019; Boettcher et al., 2007; Tabor,
290 1981; Thom et al., 2022). Intracrystalline water also likely does not influence the maximum
291 strength of the lithosphere near the brittle-ductile transition, at which LTP acts in tandem with
292 brittle deformation mechanisms (e.g., Warren & Hansen, 2023).

293 **Acknowledgements**

294 The authors would like to thank Jed Mosenfelder for performing FTIR analyses, David Kohlstedt
295 for analyzing the FTIR data, Kay Song for performing EBSD analyses, Christopher Thom for
296 useful discussions regarding nanoindentation, and reviewer Jacob Tielke and editor Quentin
297 Williams for their thoughtful comments. Funding for this project was provided by National
298 Science Foundation grants EAR-1255620 and EAR-1625032 to JMW, EAR-1806791 to KMK,
299 and EAR-2022433 to LNH, Natural Environment Research Council grant NE/M000966/1 to
300 LNH, the Netherlands Organisation for Scientific Research, User Support Programme Space
301 Research, grant ALWGO.2018.038 to DW and LNH and grant ENW.GO.001.005 to DW, TB
302 and LNH, UKRI Future Leaders Fellowship grant MR/V021788/1 to DW, and a fellowship from
303 the Royal Commission for the Exhibition of 1851 to TB. This work was partially performed
304 under the auspices of the U.S. Department of Energy by Lawrence Livermore National
305 Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-853683

306 **Open Research: Data Availability Statement**

307 Berkovich nanoindentation and FTIR data gathered for this study are available at Kumamoto et
308 al. (2023).

309 **References**

310 Abramson, E. H., Brown, J. M., Slutsky, L. J., & Zaug, J. (1997). The elastic constants of San Carlos
311 olivine to 17 GPa. *Journal of Geophysical Research*, 102(B6), 12253–12263.

312 Aharonov, E., & Scholz, C. H. (2019). The Brittle-Ductile Transition Predicted by a Physics-based
313 Friction Law. *Journal of Geophysical Research: Solid Earth*, 123(3), 2721-2737.
314 <https://doi.org/10.1029/2018JB016878>

315 Avadanii, D., Hansen, L., Marquardt, K., Wallis, D., Ohl, M., & Wilkinson, A. (2023). The role of grain
316 boundaries in low-temperature plasticity of olivine revealed by nanoindentation. *Journal of*
317 *Geophysical Research: Solid Earth*, 128(8), e2023JB026763. <https://doi.org/10.1029/2023jb026763>

318 Bai, Q., & Kohlstedt, D. L. (1992). High-temperature creep of olivine single crystals, 2. dislocation
319 structures. *Tectonophysics*, 206(1), 1–29. [https://doi.org/10.1016/0040-1951\(92\)90365-D](https://doi.org/10.1016/0040-1951(92)90365-D)

320 Bell, D. R., & Rossman, G. R. (1992). Water in Earth's Mantle: The Role of Nominally Anhydrous
321 Minerals. *Science*, 255(5050), 1391–1397. <https://doi.org/10.1126/science.255.5050.1391>

322 Bell, D. R., Rossman, G. R., Maldener, J., Endisch, D., & Rauch, F. (2003). Hydroxide in olivine: A
323 quantitative determination of the absolute amount and calibration of the IR spectrum. *Journal of*
324 *Geophysical Research*, 108(B2), 672. <https://doi.org/10.1029/2001JB000679>

325 Boettcher, M. S., Hirth, G., & Evans, B. (2007). Olivine friction at the base of oceanic seismogenic zones.
326 *Journal of Geophysical Research: Solid Earth*, 112, B01205. <https://doi.org/10.1029/2006jb004301>

327 Breithaupt, T., Katz, R. F., Hansen, L. N., & Kumamoto, K. M. (2023). Dislocation theory of steady and
328 transient creep of crystalline solids: Predictions for olivine. *Proceedings of the National Academy of*
329 *Sciences*, 120(8), e2203448120. <https://doi.org/10.1073/pnas.2203448120>

330 Buffett, B. A., & Becker, T. W. (2012). Bending stress and dissipation in subducted lithosphere. *Journal*
331 *of Geophysical Research: Solid Earth*, 117, B05413. <https://doi.org/10.1029/2012jb009205>

332 Bunge, H. (1982). *Texture Analysis in Materials Science: Mathematical Methods*. London: Butterworth
333 and Co.

334 Denis, C. M. M., Demouchy, S., & Alard, O. (2018). Heterogeneous hydrogen distribution in
335 orthopyroxene from veined mantle peridotite (San Carlos, Arizona): Impact of melt-rock
336 interactions. *Lithos*, 302-303, 298–311. <https://doi.org/10.1016/j.lithos.2018.01.007>

337 Dixon, N. A., & Durham, W. B. (2018). Measurement of Activation Volume for Creep of Dry Olivine at
338 Upper-Mantle Conditions. *Journal of Geophysical Research: Solid Earth*, 123(10), 8459–8473.
339 <https://doi.org/10.1029/2018JB015853>

340 Evans, B., & Goetze, C. (1979). The temperature variation of hardness of olivine and its implication for
341 polycrystalline yield stress. *Journal of Geophysical Research*, 84(B10), 5505.
342 <https://doi.org/10.1029/JB084iB10p05505>

343 Ferriss, E., Plank, T., Newcombe, M., Walker, D., & Hauri, E. (2018). Rates of dehydration of olivines
344 from San Carlos and Kilauea Iki. *Geochimica et Cosmochimica Acta*, 242, 165–190.
345 <https://doi.org/10.1016/j.gca.2018.08.050>

346 Fischer-Cripps, A. C. (2011). *Nanoindentation*. New York, NY: Springer Science+Business Media, LLC.

347 Gaboriaud, R. J., Darot, M., Gueguen, Y., & Woirgard, J. (1981). Dislocations in olivine indented at low
348 temperatures. *Physics and Chemistry of Minerals*, 7(2), 100–104.
349 <https://doi.org/10.1007/BF00309460>

350 Griggs, D. (1967). Hydrolytic Weakening of Quartz and Other Silicates. *Geophysical Journal
351 International*, 14(1-4), 19–31. <https://doi.org/10.1111/j.1365-246X.1967.tb06218.x>

352 Griggs, D. (1974). A model of hydrolytic weakening in quartz. *Journal of Geophysical Research*, 79(11),
353 1653–1661. <https://doi.org/10.1029/JB079i011p01653>

354 Hansen, L. N., Kumamoto, K. M., Thom, C. A., Wallis, D., Durham, W. B., Goldsby, D. L., et al. (2019).
355 Low-temperature plasticity in olivine: Grain size, strain hardening, and the strength of the
356 lithosphere. *Journal of Geophysical Research: Solid Earth*, 124, 5427–5449.
357 <https://doi.org/10.1029/2018JB016736>

358 Hansen, L. N., Wallis, D., Breithaupt, T., Thom, C. A., & Kempton, I. (2021). Dislocation creep of
359 olivine: Backstress evolution controls transient creep at high temperatures. *Journal of Geophysical
360 Research, [Solid Earth]*, 126(5). <https://doi.org/10.1029/2020jb021325>

361 Heggie, M., & Jones, R. (1986). Models of hydrolytic weakening in quartz. *Philosophical Magazine A*,
362 53(5), L65–L70. <https://doi.org/10.1080/01418618608242857>

363 Hirth, G., & Kohlstedt, D. L. (2003). Rheology of the upper mantle and the mantle wedge: A view from
364 the experimentalists. In J. Eiler (Ed.), *Inside the Subduction Factory, Geophysical Monograph
365 Series* (Vol. 138, pp. 83–105). Washington, DC: American Geophysical Union.

366 Hobbs, B. E. (1984). Point defect chemistry of minerals under a hydrothermal environment. *Journal of
367 Geophysical Research*, 89(B6), 4026–4038. <https://doi.org/10.1029/JB089iB06p04026>

368 Ingrin, J., & Blanchard, M. (2006). Diffusion of Hydrogen in Minerals. *Reviews in Mineralogy and
369 Geochemistry*, 62(1), 291–320. <https://doi.org/10.2138/rmg.2006.62.13>

370 Jacobsen, S. D., Jiang, F., Mao, Z., Duffy, T. S., Smyth, J. R., Holl, C. M., & Frost, D. J. (2008). Effects
371 of hydration on the elastic properties of olivine. *Geophysical Research Letters*, 35(14), 2105.
372 <https://doi.org/10.1029/2008GL034398>

373 Kalidindi, S. R., & Vachhani, S. J. (2014). Mechanical characterization of grain boundaries using
374 nanoindentation. *Current Opinion in Solid State and Materials Science*, 18(4), 196–204.
375 <https://doi.org/10.1016/j.cossms.2014.05.002>

376 Karato, S.-I. (2008). *Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth*.
377 Cambridge University Press.

378 Katayama, I., & Karato, S.-I. (2008). Low-temperature, high-stress deformation of olivine under water-
379 saturated conditions. *Physics of the Earth and Planetary Interiors*, 168(3), 125–133.
380 <https://doi.org/10.1016/j.pepi.2008.05.019>

381 Keefner, J. W., Mackwell, S. J., Kohlstedt, D. L., & Heidelbach, F. (2011). Dependence of dislocation
382 creep of dunite on oxygen fugacity: Implications for viscosity variations in Earth's mantle. *Journal*
383 *of Geophysical Research*, 116, B05201. <https://doi.org/10.1029/2010JB007748>

384 Kohlstedt, D. L. (2006). The Role of Water in High-Temperature Rock Deformation. *Reviews in*
385 *Mineralogy and Geochemistry*, 62(1), 377–396. <https://doi.org/10.2138/rmg.2006.62.16>

386 Koizumi, S., Hiraga, T., & Suzuki, T. S. (2020). Vickers indentation tests on olivine: size effects. *Physics*
387 *and Chemistry of Minerals*, 47(2), 8. <https://doi.org/10.1007/s00269-019-01075-5>

388 Kranjc, K., Rouse, Z., Flores, K. M., & Skemer, P. (2016). Low-temperature plastic rheology of olivine
389 determined by nanoindentation. *Geophysical Research Letters*, 43(1), 176–184.
390 <https://doi.org/10.1002/2015GL065837>

391 Kumamoto, K. M., Thom, C. A., Wallis, D., Hansen, L. N., Armstrong, D. E. J., Warren, J. M., et al.
392 (2017). Size effects resolve discrepancies in 40 years of work on low-temperature plasticity in
393 olivine. *Science Advances*, 3(9), e1701338. <https://doi.org/10.1126/sciadv.1701338>

394 Kumamoto, K.M., Breithaupt, T.P., Hansen, L.N., Wallis, D., Li, B.-S., Armstrong, D.E.J., Goldsby,
395 D.L., Li, Y., Warren, J.M., & Wilkinson, A.J. (2023) Berkovich nanoindentation and FTIR data
396 describing the effect of water on olivine. Retrieved from the Data Repository for the University of
397 Minnesota, <https://hdl.handle.net/11299/256166>

398 Li, Y. (2015). *Hydrogen incorporation mechanisms and diffusion of hydrous defects and silicon ions in*
399 *olivine: the major rock-forming mineral of the Earth's upper mantle* (Ph.D.). Retrieved from
400 University of Minnesota Libraries (<http://hdl.handle.net/11299/177141>). Location: University of
401 Minnesota

402 Lynn, K. J., & Warren, J. M. (2021). The potential for aqueous fluid-rock and silicate melt-rock
403 interactions to re-equilibrate hydrogen in peridotite nominally anhydrous minerals. *The American*
404 *Mineralogist*, 106(5), 701–714. <https://doi.org/10.2138/am-2021-7435>

405 Mackwell, S. J., Kohlstedt, D. L., & Paterson, M. S. (1985). The role of water in the deformation of
406 olivine single crystals. *Journal of Geophysical Research*, 90(B13), 11319-11333.
407 <https://doi.org/10.1029/JB090iB13p11319>

408 Nix, W. D., & Gao, H. (1998). Indentation size effects in crystalline materials: A law for strain gradient
409 plasticity. *Journal of the Mechanics and Physics of Solids*, 46(3), 411–425.
410 [https://doi.org/10.1016/S0022-5096\(97\)00086-0](https://doi.org/10.1016/S0022-5096(97)00086-0)

411 Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic
412 modulus using load and displacement sensing indentation experiments. *Journal of Materials*
413 *Research*, 7(6), 1564–1583. <https://doi.org/10.1557/JMR.1992.1564>

414 Oliver, W. C., & Pharr, G. M. (2004). Measurement of hardness and elastic modulus by instrumented
415 indentation: Advances in understanding and refinements to methodology. *Journal of Materials*
416 *Research*, 19(1), 3–20. <https://doi.org/10.1557/jmr.2004.19.1.3>

417 Paterson, M. S. (1982). The determination of hydroxyl by infrared adsorption in quartz, silicate glasses
418 and similar materials. *Bulletin de Mineralogie*, 105, 20–29.

419 Pharr, G. M., Herbert, E. G., & Gao, Y. (2010). The Indentation Size Effect: A Critical Examination of
420 Experimental Observations and Mechanistic Interpretations. *Annual Review of Materials Research*,
421 40(1), 271–292. <https://doi.org/10.1146/annurev-matsci-070909-104456>

422 Tabor, D. (1981). Friction—The Present State of Our Understanding. *Journal of Lubrication Technology*,
423 103(2), 169–179. <https://doi.org/10.1115/1.3251622>

424 Thom, C. A., & Goldsby, D. L. (2019). Nanoindentation Studies of Plasticity and Dislocation Creep in
425 Halite. *Geosciences Journal*, 9(2), 79. <https://doi.org/10.3390/geosciences9020079>

426 Thom, C. A., Hansen, L. N., Breithaupt, T., Goldsby, D. L., & Kumamoto, K. M. (2022). Backstresses in
427 geologic materials quantified by nanoindentation load-drop experiments. *Philosophical Magazine*,
428 102(19), 1974–1988. <https://doi.org/10.1080/14786435.2022.2100937>

429 Tielke, J. A., Zimmerman, M. E., & Kohlstedt, D. L. (2017). Hydrolytic weakening in olivine single
430 crystals. *Journal of Geophysical Research: Solid Earth*, 122(5), 3465–3479.
431 <https://doi.org/10.1002/2017JB014004>

432 Wallis, D., Hansen, L. N., Kumamoto, K. M., Thom, C. A., Plümper, O., Ohl, M., et al. (2020).
433 Dislocation interactions during low-temperature plasticity of olivine and their impact on the
434 evolution of lithospheric strength. *Earth and Planetary Science Letters*, 543, 116349.
435 <https://doi.org/10.1016/j.epsl.2020.116349>

436 Wang, D., Mookherjee, M., Xu, Y., & Karato, S.-I. (2006). The effect of water on the electrical
437 conductivity of olivine. *Nature*, 443(7114), 977–980. <https://doi.org/10.1038/nature05256>

438 Warren, J. M., & Hansen, L. N. (2023). Ductile Deformation of the Lithospheric Mantle. *Annual Review
439 of Earth and Planetary*. <https://doi.org/10.1146/annurev-earth-031621-063756>

440 Zha, C.-S., Duffy, T. S., Downs, R. T., Mao, H.-K., & Hemley, R. J. (1996). Sound velocity and elasticity
441 of single-crystal forsterite to 16 GPa. *Journal of Geophysical Research*, 101(B8), 17535–17545.
442 <https://doi.org/10.1029/96JB01266>