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Except in the trivial case of spatially uniform flow, the advection-di↵usion operator
of a passive scalar tracer is linear and non-self-adjoint. In this study, we exploit the
linearity of the governing equation and present an analytical eigenfunction approach for
computing solutions to the advection-di↵usion equation in two dimensions given arbitrary
initial conditions, and when the advecting flow field at any given time is a plane parallel
shear flow. Our analysis illuminates the specific role that the non-self-adjointness of the
linear operator plays in the solution behavior, and highlights the multiscale nature of
the scalar mixing problem given the explicit dependence of the eigenvalue-eigenfunction
pairs on a multiscale parameter q = 2ikPe, where k is the non-dimensional wavenumber
of the tracer in the streamwise direction and Pe is the Péclet number. We complement
our theoretical discussion on the spectra of the operator by computing solutions and
analyzing the e↵ect of shear flow width on the scale-dependent scalar decay of tracer
variance, and characterize the distinct self-similar di↵usive processes that arise from the
shear flow dispersion of an arbitrarily compact tracer concentration. Lastly, we discuss
limitations of the present approach and future directions.

1. Introduction

Stirring and mixing results from the combined action of di↵erential advection and
molecular di↵usion on a material quantity (Thi↵eault 2008), and is a ubiquitous process
in geophysical, environmental, and industrial fluids (see for example Biferale et al. 1995;
Faller & Auer 1988; Seo & Cheong 1998; Haynes & Shuckburgh 2000; Neuman &
Tartakovsky 2009; Boano et al. 2014; Van Sebille et al. 2018). Despite its importance, a
complete analytical description of stirring and mixing remains an open problem owing to
the complex interplay between di↵erential advection, di↵usion and the multiscale nature
of the problem, highlighted by the multifractal behavior that the scalar field exhibits
even when advection is a spatially smooth function of space usually a single Fourier
mode (Aref 1984; Pierrehumbert 1994; Antonsen Jr et al. 1996; De Moura 2014).
The evolution of a scalar tracer under the combined e↵ect of molecular mixing and

stirring is given by the advection-di↵usion equation, written in the absence of sources
and sinks as

@✓

@t
+ u ·r✓ = r2

✓, (1.1)

where  is the molecular di↵usivity and u is a time-varying, non-divergent velocity field.
The tracer concentration ✓ is considered dynamically-passive when its evolution has
no e↵ect on the inertia of the flow so that the velocity u is prescribed (although u
need not solve the Navier-Stokes equations; Majda & Kramer 1999). From a theoretical
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Figure 1. The two initial conditions considered in this study: a) A single along-stream mode,
with arbitrary cross-stream initial structure, and b) a localized concentration patch centered at
x = 0. Both types of initial condition are related due to the linearity of the governing equations.
Note that the Gaussian function �(y) is centered at y = ⇡ in both cases, although it is not a
requirement for our analysis. The domain is identical in both cases.

point of view, equation (1.1) provides the simplest example of a linear non-self-adjoint
operator, which is ubiquitous in many physical sciences (Miri & Alu 2019), and whose
qualitative properties are not fully understood (Childress & Gilbert 1995; Sukhatme &
Pierrehumbert 2002; Giona et al. 2004). Furthermore, the study of stirring and mixing
via (1.1) o↵ers many of the same mathematical challenges as the study of fluid turbulence
while remaining a linear and therefore less complicated physical model (Pierrehumbert
2000).
In this study we compute the spectra of the operator (1.1) and use it to study the

property and behavior of analytical solutions in a doubly-periodic domain with arbitrary
initial conditions. We focus on steady shear flows, as these represent a building block for
more complex planar flow fields relevant to a wide range of applications involving flow
fields that can be defined by

u(x, t) = U0

(
U(y + ⇠) î, if nT < t < nT + T/2

V (x+ ⇠) ĵ, if nT + T/2 < t < (n+ 1)T,
(1.2)

where T is the period, n = 0, 1, · · · , ⇠ is a random variable and U0 is the maximum
flow amplitude †, and U , V are the integrable functions of their spatial coordinate. The
flow (1.2) defines a wide class of flows that are of geophysical and theoretical relevance,
and have been used extensively in the literature. Among those are the time-oscillating
shear flows when U0 time-periodic, ⇠ constant and T ! 1 (see Zel’dovich 1982; Young
et al. 1982); and the two-dimensional alternating flows characterized by chaotic advection
with U0 constant, U = V a smooth spatial function and ⇠ 2 [0, 2⇡] a random variable
(see Ottino 1990; Shaw et al. 2007; Fereday & Haynes 2004; Antonsen Jr et al. 1996;
Pierrehumbert 2000; Vanneste 2006; Keating et al. 2010).

The ability to compute analytical solutions to (1.1) given a general initial condition
has practical implications to the study of scalar mixing, since an arbitrary stage of the
tracer evolution can be achieved via single time evaluation without the need to evolve

† In this paper, we fix U0 to a constant value but it can be generally be considered a piece-wise
constant.
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intermediate steps, thus bypassing great computational and numerical constraints. The
method described in this study allows the computation of tracer solutions that can be
evolved from arbitrarily small scales until reaching the final late stage described by
Taylor’s dispersion (a clear distinction with the Ranz transform approach in Young et al.

1982; Meunier & Villermaux 2010). Applying the method described in this paper, allows
us to improve upon the description of the multiscale scalar decay of tracer variance
for a wide range of shear flows. We also expand upon the analysis with a detailed
description of the distinct time-varying stages of shear flow dispersion in the context of
strong and weakly self-similar processes for an arbitrarily compact tracer concentration
(Castiglione et al. 1999; Ferrari et al. 2001; Latini & Berno↵ 2001), and identify a shear
flow that can be completely characterized by a Levy process (Levy walk) (Dubkov et al.

2008; Zaburdaev et al. 2015). For this reasons, this paper advances both theoretical
and practical knowledge to the problem of tracer evolution described by the advection-
di↵usion equation.

The organization of the paper is as follows: In §2.1 we pose the mathematical problem,
and in §2.2 we describe the method of solution to compute both eigenvalues and eigen-
functions of the associated non-self-adjoint operator. This allows us to compute solutions
given general initial conditions that are valid for any t > 0. In §3 we analyze the behavior
of solutions, focusing first on scale-dependent scalar decay, and then on the time-varying,
shear dispersion properties of a localized tracer patch. In §4 we discuss advantages over
other methods, as well as the ability to expand our analysis to more complex flows and
boundary conditions, and in §5 we summarize results and future directions.

2. Analytical Solutions

2.1. Problem statement

Consider the governing equation (1.1) over a time interval t in which the velocity field
(1.2) is a parallel shear flow of arbitrary amplitude U0, say u(x, t) = U0(U(y), 0), in a
doubly-periodic domain defined as (�L/2 6 x 6 L/2)⇥ (0 6 y 6 M), with L > M .

We introduce the following non-dimensionalization

(x, y) =


M

2⇡

�
(x⇤

, y
⇤), u = [U0]u

⇤
, t = [td] t

⇤
, (2.1)

where we choose M as the single lengthscale, and time is non-dimensionalized by the
di↵usive timescale td = M

2
/(4⇡2

). As a result, the non-dimensional governing equation
(1.1) becomes (dropping the stars so that from now on we assume all variables are
normalized)

@✓

@t
+ Pe U(y)

@✓

@x
= r2

✓. (2.2)

This equation has been studied extensively for a wide range of shear flows (see Eckart
1948; Young et al. 1982; Majda & Kramer 1999; Vanneste 2006; Camassa et al. 2010).
The Péclet number Pe is

Pe =
U0M

2⇡
, (2.3)

and can be interpreted as the ratio of advective to di↵usive timescales (2⇡U0td/M)
(Rhines & Young 1983). It represents the relative importance of the advective to di↵usive
tracer fluxes so that a large Péclet number implies weakly di↵usive flows. We consider
Pe an arbitrary parameter that can take any value and this implicitly allows U0 to be
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time-dependent† when acting on a Fourier tracer mode. Note that both td and Pe are
domain-scale quantities, independent of the scale of the shear flow, as both are defined
with M as opposed to the intrinsic length-scale of the flow.

Our choice of a single lengthscale M in (2.1) implies the (non-dimensional) doubly-
periodic boundary conditions

✓(kmx� ⇡, y, t) = ✓(kmx+ ⇡, y, t), ✓(x, y + 2⇡, t) = ✓(x, y, t). (2.4)

where km = M/L determines the aspect ratio of the gravest mode that fills the domain
(i.e, when km = 1 the domain is a square). The value of km is arbitrary and can be
made su�ciently small so that the domain approximates a semi-infinite rectangular
domain. Our domain choice further implies any Fourier decomposition in the cross-
stream direction is quantized (i.e., individual modes are l = 0,±1,±2, · · · ) while in
the streamwise direction k = jkm, with j = 0,±1,±2, · · · .

In general, we are interested in initial conditions that can be expressed via Fourier
decomposition as follows

✓(x, y, 0) =
X

i

fi(x)�i(y), (2.5)

where each of fi(x) and �i(y) are integrable functions in the space of 2⇡�periodic
functions.

We consider shear flows defined by an even Fourier series of the form

U(y) =
↵0

2
+

1X

m=1

↵m cos (my). (2.6)

We introduce an inverse width parameter Ld that controls the width of a shear flow
while keeping intact the shear topology for example, piecewise constant and piecewise
linear shear flows (see Fig. 2a–b, also Appendix A). Some of the shear flows considered
here are idealized in their velocity gradient, e.g., piecewise constant or concentrated shear.
These features represent some aspects of environmental flows whose spatial structure is
sensitive to sampling, domain size and background noise. That is, in practice, real flows
are patchy, localized and irregular in both time and space. Hence, our approach can
compute solutions for flows with a discrete, wide spectrum (i.e., ↵m 6= 0 for arbitrary
m > 0), a feature with theoretical and practical advantages.
An important global property of some shear flows is a symmetry after a translation in

y and reflection in flow amplitude, i.e., a shift-reflect symmetry, defined mathematically
as

U
⇤(y � ⇡/P ) = �U

⇤(y), (2.7)

where U⇤ = U�↵0/2 is the streamline velocity minus its spatial average, and P = 1, 2, · · ·
is the periodicity of the shear flow maxima within the finite domain (see Fig. 2). A shear
flow that is shift-reflect symmetric has a Fourier series such that

U
⇤(y) =

1X

m=1

↵P (2m�1) cos [P (2m� 1)y]. (2.8)

For example, the simplest case of a shift-reflect symmetric flow is U
⇤ = �(1/2) cos(y).

We emphasize that this is a global (domain-scale) property of the flow, independent of
Pe, scale and topology of the velocity gradient, and therefore can describe properties of
tracer evolution beyond oft-isolated streamlines where shear vanishes.

† Since U0 can be considered piece-wise constant.
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Figure 2. Shear flows U(y), specifically, the a) triangular, b) square, c) Gaussian, and d)
polynomial shear flows. The flow widths decrease as Ld increases and as Ld ! 1 the shear flows
all converge to the same flow, namely, U = 1 at y = ⇡, U = 0 everywhere else. Panels e)–h)
are triangular and square shear flows, as in a) and b), except they have higher y�periodicity P
(repeated extrema). See Appendix A for the analytic definitions of the shear flow profiles.

2.2. Method of solution

Following Camassa et al. (2010), we take advantage of the linearity of the governing
equation (2.2), the fact that the advection term is x�independent and consider a
separable initial condition for each mode k in the streamwise direction of the form

✓(x, ỹ, t) = <
( 1X

n=0

�2n �2n(ỹ) exp [ikx� !2nt]

)
, (2.9)

where 2ỹ = y is a scaled coordinate, �2n(ỹ) are eigenfunctions, and !2n are the associated
eigenfrequencies. The coe�cients to be determined, �2n, ensure that the solution satisfies
the initial condition (2.5) . Substituting (2.9) into (2.2) shows that each eigenfunction
satisfies the eigenvalue equation

d
2
�2n

dỹ2
+ [a2n � 2qU⇤(2ỹ)]�2n = 0. (2.10)

Notice that (2.10) is written with the scaled independent variable ỹ = y/2 to adhere
to convention, as it is a type of Hill’s equation (see Magnus & Winkler 2013 Ch. 5,
also Strutt 1948). When the velocity is the zero-mean, non-normalized cosine shear flow,
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i.e., U(2ỹ) = cos (2ỹ), (2.10) becomes the canonical Mathieu equation (McLachlan 1947;
Olver et al. 2010).
Equation (2.10) is an eigenvalue problem that depends on the compound, multiscale

parameter

q = 2ikPe. (2.11)

This parameter contains the relevant physics of the system, and controls the multiscale,
spatial, and temporal behavior of the solutions. From the eigenvalue a2n(q), the dispersion
relation associated with each eigenfunction is given by

!2n =
a2n(q) + ↵0q

4
+ k

2
. (2.12)

The term k
2 represents pure di↵usion of a normal mode in the x� direction, and the

eigenvalue a2n(q), which encodes the e↵ect of varying shear in the y-direction at that
scale, determines the relative contribution of the eigenfunction �2n to the tracer evolution
in the y� direction. The eigen-pair {a2n,�2n} encode the e↵ect of shear in the tracer
evolution in the cross-stream direction at the scale k

�1.
To calculate the eigenfunctions we first follow a standard approach when solving Hill’s

equation (see, for example, McLachlan 1947 Ch.VI or Olver et al. 2010). Consider an
eigensolution of (2.10) of the form

�2n = exp (µỹ)
1X

r=�1
C

(2n)
2r exp (2riỹ), (2.13)

where µ is the Floquet exponent and exp (µỹ) is the Floquet multiplier. In general, all

of µ, a2n, and C
(2n)
2r need to be determined (McLachlan 1947; Magnus & Winkler 2013).

However, as restrict to ⇡�periodic solutions which simplifies to µ ⌘ 0 (a di↵erent value
of µ results in quasi-periodic solutions). Writing the cosine Fourier series in (2.6) as a
sum of complex exponentials (with the property ↵�m = ↵m), and substituting (2.13)
into (2.10) yields the following equation

1X

r=�1
C

(2n)
2r

⇣ h
(2ri)2 + a2n

i
exp (2riỹ)�

q

h
↵1

�
exp [2(r + 1)iỹ] + exp [2(r � 1)iỹ]

 
+

↵2

�
exp [2(r + 2)iỹ] + exp [2(r � 2)iỹ]

 
+

↵3

�
exp [2(r + 3)iỹ] + exp [2(r � 3)iỹ]

 
+ · · ·

i⌘
= 0. (2.14)

Iterating over all possible values of r and equating to zero the coe�cients multiplying
each exponential of arbitrary order R 2 r, we get the R�coe�cient recursive equation

h
(2Ri)2 + a2n

i
C

(2n)
2R = q

1X

m=�1
↵mC

(2n)
2(R+m), (2.15)

where the m = 0 term is not included in the sum on the right hand side as ↵0 is already
incorporated in the eigenvalue via (2.12). Equation (2.15) is almost identical to that
studied by Hill in the lunar perigee problem (Hill 1886; McLachlan 1947).

Now split into even and odd ⇡�periodic eigenfunctions. We define even eigenfunctions
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as

�
e
2n(q, ỹ) =

1X

r=0

A
(2n)
2r (q) cos (2rỹ), (2.16)

with A
(2n)
0 = C

(2n)
0 and A

(2n)
2r = 2C(2n)

2r , r = ±1,±2, · · · . These eigenfunctions belong to
a class of cosine elliptic functions given their dependence on an eccentricity parameter
q, and when q = 0 the eigenfunctions reduce to multiples of cos (ny) (McLachlan 1947;
Arscott 2014).
Similar to the approach by Chaos-Cador & Ley-Koo (2002), we cast the bi-infinite

recursive equations (2.15) in matrix form as

TeXe
2n = a2nX

e
2n, (2.17)

where the eigenvectors are

Xe
2n =

hp
2A(2n)

0 , A
(2n)
2 , · · · , A(2n)

2R , · · ·
iT

, (2.18)

and the superscript T implies transpose. Note that the elements of the eigenvector Xe
2n

are the Fourier coe�cients A(2n)
2r in (2.16). The vector satisfies an indefinite norm (as in

the case of Mathieu’s equation, see Brimacombe et al. 2021) given by

2
h
A

(2n)
0

i2
+

1X

r=1

h
A

(2n)
2r

i2
= 1, (2.19)

and a further orthonormality relationship between the Fourier coe�cients (Seeger 1997;
Ziener et al. 2012)

1X

n=0

A
(2n)
2r A

(2n)
2r0 = �rr0 �

�0r�0r0

2
for r, r

0 = 0, 1, 2 · · · (2.20)

with Kronecker delta �rr0 . The bi-infinite matrix Te associated with (2.16) is

Te =

2

66666666666664

0
p
2q↵1

p
2q↵2 · · ·

p
2q↵R ·p

2q↵1 4 + q↵2 q(↵1 + ↵3) · · · q(↵R�1 + ↵R+1) ·p
2q↵2 q(↵1 + ↵3) 16 + q↵4 · · ·

p
2q↵3 q(↵2 + ↵4) q(↵1 + ↵5)

. . . · ·
.
.
.

.

.

.
. . .

. . .
.
.
. ·

.

.

.
.
.
.

. . .
. . . q(↵1 + ↵2R�1) ·p

2q↵R q(↵R�1 + ↵R+1) · · · q(↵1 + ↵2R�1) 4R2 + q↵2R ·
· · · · · ·

3

77777777777775

.

(2.21)
Odd eigenfunctions satisfy the same equation as in (2.10), but the nomenclature

changes with b2n+2(q) now indicating the odd eigenvalue (see Arscott 2014). The odd
(sine elliptic) eigenfunctions are defined as

�
o
2n+2(q, ỹ) =

1X

r=0

B
(2n+2)
2r+2 sin [(2r + 2)ỹ]. (2.22)

When q = 0, these eigenfunctions reduce to multiples of sin [(n+ 1)y]. The coe�cients
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satisfy the normalization under an indefinite norm

1X

r=0

h
B

(2n+2)
2r+2

i2
= 1, (2.23)

and the orthonormalization
1X

n=0

B
(2n+2)
2r+2 B

(2n+2)
2r0+2 = �rr0 , for r, r

0 = 0, 1, 2 · · · (2.24)

Similar to (2.17), the matrix equation for the odd eigenfunction-eigenvalue pair is

ToXo
2n+2 = b2n+2X

o
2n+2, (2.25)

where

Xo
2n+2 =

h
B

(2n+2)
2 , B

(2n+2)
4 , · · · , B(2n)

2R+2, · · ·
iT

. (2.26)

The odd, bi-infinite matrix is

To =

2

66666664

4� q↵2 q(↵1 � ↵3) q(↵2 � ↵4) · · · · ·
q(↵1 � ↵3) 16� q↵4 q(↵1 � ↵5) · · · · ·
q(↵2 � ↵4) q(↵1 � ↵5) 36� q↵6 · · · · ·

.

.

.
.
.
.

.

.

.
. . . q(↵1 � ↵2R�1) ·

q(↵R�1 � ↵R+1) · · · · · · q(↵1 � ↵2R�1) 4R2 � q↵2R ·
· · · · · ·

3

77777775

.

(2.27)
From matrices (2.21) and (2.27) the eigenvalue-eigenfunction pairs {a2n(q),Xe

2n(q)}
and {b2n+2(q),Xo

2n+2(q)} are determined, and with them the associated eigenfunctions
�
e
2n(q, ỹ) and �

o
2n+2(q, ỹ) are found via (2.16)–(2.22). Moreover, the orthonormality

relations (2.19)–(2.20) and (2.23)–(2.24) imply that the eigenfunctions �
e
2n and �

o
2n+2

are orthonormal. Namely, for any value of q = 2ikPe, each eigenfunction satisfies
Z ⇡

0
�
e
2n0(q, ỹ)�e

2n(q, ỹ)dỹ =
⇡�nn0

2
, for n, n

0 = 0, 1, 2 · · · . (2.28)

Similarly, the odd eigenfunctions satisfy
Z ⇡

0
�
o
2n0+2(q, ỹ)�

o
2n+2(q, ỹ)dỹ =

⇡�nn0

2
, for n, n

0 = 0, 1, 2 · · · . (2.29)

Lastly, using (2.16) and (2.22) and the orthogonality of normal modes, we get the
following transformation (i.e., a change in basis)

1X

n=0

(1 + �r0)A
(2n)
2r (q)�e

2n(ỹ, q) = cos (2rỹ), r = 0, 1, 2, · · · , (2.30)

and
1X

n=0

B
(2n+2)
2r+2 (q)�o

2n+2(ỹ, q) = sin [(2r + 2)ỹ], r = 0, 1, 2, · · · . (2.31)

The derivations above imply that the non-self-adjoint nature of the advection-di↵usion
operator (2.2) is captured by the properties of the matrices (2.21) and (2.27), determined
by their dependence on q = 2ikPe, and by the shear (through ↵m 6= 0,m = 1, 2, · · · ). As
q is imaginary, the matrices are Hermitian only in the absence of shear (↵m ⌘ 0 for all
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Figure 3. Real (top row) and imaginary (bottom row) shifted eigenvalues a2n +↵0q associated
with the Square (a–b) and Gaussian (c–f) shear flows of di↵erent widths (see Fig. 2c). Light
gray lines correspond to eigenvalues with negative imaginary parts (={a2n} < 0), so the shifted
imaginary values lie below the dashed gray line ↵0q. Black lines correspond to eigenvalues with
positive imaginary parts (={a2n} > 0). In the limit kPe ! 0, all eigenvalues converge to
a2n ! 4n2, n = 0, 1, 2 · · · . Only the gravest 40 eigenvalues are plotted.

m = 1, 2, 3 · · · ), or when q ⌘ 0 (k = 0 or Pe = 0). In those cases, the advection-di↵usion
operator is self-adjoint.

In the presence of shear the bi-infinite matrices Te and To belong to a wide class
of non-self-adjoint operators associated with PT �symmetric Hamiltonians (Bender &
Boettcher 1998; Bender 1999; Heiss 2004, 2012). A characteristic of these systems,
beyond their dependence on a single parameter (here q), is the analytical coalescing

of eigenvalues in their real parts at isolated, discrete values of the parameter q = qEP

called Exceptional Points (EPs). At EPs the imaginary parts of the eigenvalues branch,
to create complex-conjugate eigenvalue pairs for q > qEP (Hunter & Guerrieri 1981;
Hernández & Mondragón 1994; Heiss 1999, 2004; Miri & Alu 2019). EPs are anticipated
for all the eigenvalues for shear flows that are shift-reflect symmetric. The reason is in
such flows the diagonal elements of Te and To are real, and so their eigenvalues are either
real or occur in complex-conjugate pairs (see Fig. 3a–b).

At EPs, the eigenfunctions coalesce too, resulting in a gap in the completeness of
the set of eigenfunctions. This implies the need to supplement the set of eigenfunctions
(Brimacombe et al. 2021). Because EPs are isolated discrete points †, however, it is
extremely rare to match an EP exactly with a generic combination of k and Pe. In the
rare case of an exact match, perturbing k or Pe avoids evaluating at the EP location
in q-space. In practice, the ability to compute the eigenvalue spectra a priori allows for
the inspection for EPs. If they occur, then appropriate changes to k or Pe can be made.
Hence, there is no practical need to supplement the set of eigenfunctions and, for the
rest of paper, we avoid explicit evaluation at EPs when computing analytical solutions.

Changing the periodicity of the shear flow by increasing the value of P (e.g., from P = 1

† e.g., the 1st EP in Mathieu’s equation is qEP = 1.468768613785142i, per Brimacombe et al.
2021
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to P = 2 as seen in Fig. 2a, e) introduces multiple extrema in the shear flow profile that
are shifted by 2⇡/P in y. If the shear flow was previously shift-reflect symmetric, the
EPs of the resulting P -periodic shear flows can involve multiple eigenvalues and mergers
that are more complex than the coalescence of a complex-conjugate pair.

The non-self-adjoint character of the linear operator (2.2) imprints on the spatial (via
eigenfunctions) and temporal (via eigenvalues) behavior of solutions. To illustrate this
point, we focus on the pair {a2n,�e

2n} associated with shear flows that are shift-reflect
symmetric; such flows represent a special case in which eigenvalues are dense with EPs.
When evaluated at q�values beyond an EP, the eigenfunctions {�e

2n} associated with
complex conjugated eigenvalues that have coalesced satisfy their own shift-reflect symme-
try (see Appendix B, also Ziener et al. 2012). That is, the two symmetric eigenfunctions
describe identical spatial behavior in the solution that is shifted from one another in
space by ỹ = ⇡/2 (y = ⇡). Given that the complex-conjugate eigenvalue pair describe
equal eigenfunction decay rates (determined by <{a2n}) and opposite directions of
eigenfunction propagation (determined by ={a2n}), the tracer evolution in the subdomain
characterized by U

⇤
< 0 is an exact mirror image of the tracer evolution in the subdomain

characterized by U
⇤
> 0. This means, a priori knowledge of the Fourier series of a shear

flow that is shift-reflect symmetric provides a deep fundamental understanding of a global
property of the tracer distribution at all times.

The present method of solution relies on the convergence of the spectra of the truncated
eigenvalue systems (2.17) and (2.25) with respect to the original non-truncated bi-infinite
system (see Ikebe et al. 1996; Deconinck & Kutz 2006; Curtis & Deconinck 2010). The
convergent truncation implies there is a large enough matrix size (R + 1) ⇥ (R + 1)
for which the eigenvalue-eigenfunction pairs calculated are su�ciently accurate. It also
implies that higher cross-stream modes (in y) can be approximated by

a2n0 ⇡ (2n0)2, �
e
2n0 ⇡ cos (2n0

ỹ), n
0
> R+ 1, (2.32)

and

b2n0+2 = (2n0 + 2)2, �
o
2n0+2 = sin [(2n0 + 2)ỹ], n

0
> R. (2.33)

Following Ziener et al. (2012), an accurate truncation is one that ensures the orthogo-
nality relations (2.20)–(2.24) are satisfied. A first order guess for a truncated size R comes
from ensuring that the truncated matrix is always diagonally dominant. Given that the
diagonal term is 4R2 ± q↵2R, and |↵2R| ! 0 for increasing R, a truncation size can be
estimated from the ratio between the diagonal terms and the super-diagonal terms. This
is†

4R2 � |qmax{↵m}|. (2.34)

Since the truncated matrix size R depends explicitly on Pe via |q| = 2kPe, the truncated
matrices Te(q) and To(q) grow in size like Pe1/2. For this reason, the present eigenvalue
approach to solve the governing equation (2.2) is most e�cient at intermediate and low
Pe values (i.e. Pe < 104), although there is no restriction on how large Pe can be.

The value of R further quantifies the cross-stream cuto↵ wavenumber lc, past which
small scales become only weakly influenced by the presence of shear, and higher modes
in an arbitrary initial condition decay as pure di↵usion. From (2.34) we define this scale
as

lc = G

p
|↵max|kPe/2, (2.35)

† This condition implies absolute and uniform convergence of the trigonometric series 2.16
(Arscott 2014).
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where G � 1 is an arbitrary constant.‡
The approximations (2.32)–(2.33) expose the multiscale nature of scalar mixing in the

cross-stream direction, i.e., they reflect a pure di↵usive behavior at high enough cross-
stream wavenumbers for every streamwise (Fourier mode) k. In this sense, the cross-
stream scale lc complements the estimate of streamwise scale at which variance decays
di↵usively in the cosine shear flow (Camassa et al. 2010).

2.3. General solution

Considering only a single term in the initial condition in (2.5), and where each of f(x)
and �(2ỹ) is integrable such that they have Fourier series

f(x) =
1X

j=0

cj cos (jkmx), (2.36)

and

�(2ỹ) =
1X

l=0

�
e
l cos (2lỹ) + �

o
l sin (2lỹ), (2.37)

where cj , �e
l and �

o
l are coe�cients determined by inversion formulas from known f(x)

and �(2ỹ), with j, l = 0, 1, 2, · · · . Using (2.30)–(2.31), we write the cross-stream initial
condition (2.37) in terms of the new eigenbasis as

�(2ỹ) =
1X

n,l=0

�
⇤
lA

(2n)
2l (q)�e

2n(ỹ, q) + �
o
lB

(2n+2)
2l+2 �

o
2n+2, (2.38)

where �
⇤
l = (1 + �l0)�e

l . Then, the general solution to (2.2) associated with an initial
condition (2.5) and doubly-periodic boundary conditions is given by the triple sum

✓(x, ỹ, t) = <

8
<

:

1X

j,n,l=0

cj


�
⇤
lA

(2n)
2l �

e
2n exp

⇣
�a2n

4
t

⌘
+ �

o
lB

(2n+2)
2l+2 �

o
2n+2 exp

✓
�b2n+2

4
t

◆�

⇥ exp


ijkm

✓
x� ↵0Pe

2
t

◆
�
�
(jkm)2

�
t

��
. (2.39)

The analytical solution (2.39) results from a constant U0 and thus single Pe value. In
the case of a time-varying amplitude, additional N� di↵erent U0 values that approximate
U0(t) then generate N� sets of eigenfunction-eigenvalue pairs, each with a solution
expression that looks like that in (2.39). The ability to solve for arbitrary initial conditions
via their Fourier coe�cients (2.36–2.37) allows (2.39) to represent the solution to a time
amplitude varying shear flow during a time-interval at which a U0 is e↵ectively constant.

3. Results

We now apply these new method of solution to explore the tracer evolution of two types
of initial conditions: 1) A single streamwise Fourier mode (as in Fig. 1a), for which we
characterize the modal decay rate, and relate it to the gravest eigenvalues, confirming and
extending the asymptotic analysis of Camassa et al. (2010). 2) A localized concentration
(tracer patch; as in Fig. 1b), for which we characterize the tracer dispersion via its central
moments, extending the particle study of the Poiseuille flow by Latini & Berno↵ (2001).
Appendix C contains a useful reference to variable names in tabular form and in appendix

‡ A value in the range G2 > 50 already yields good results.
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D), we provide a comparison of the analytic solutions to numerical solutions from the
open source package Oceananigans (Ramadhan et al. 2020), with excellent results.

3.1. Modal solutions

3.1.1. Localized cross-shear initial condition

Consider a centered initial condition describing a single streamwise Fourier mode that
is localized in the cross-stream direction:

✓(t = 0) = cos (kx) exp
h
�4 (y � ⇡)2

i
. (3.1)

The analytical solution with this initial condition is (2.39) for a single mode k and cross-
stream coe�cients

�
⇤
l =

1

2
p
⇡
exp (�il⇡) exp

"
�
✓
l

4

◆2
#
, l = 0, 1, 2 · · · . (3.2)

The l = 0 term implies the presence of a non-zero cross-stream average, although the
global (area average) remains zero. We refer to the initial condition (3.1) as modal and
centered, given the absence of odd cross-stream Fourier coe�cients (�o

l ⌘ 0 in (2.38)).
Snapshots of solutions ✓ to (2.2) for a Gaussian shear flow (Ld = 4/3) are shown in

Fig. 4. At low q = 4i (Fig. 4a–d), the long term evolution of ✓ settles into a domain-
scale structure. The solution does not clearly exhibit the two distinct spatially-separated
behaviors associated with subdomains defined by our choice of U⇤

< 0 and U
⇤
> 0.

At larger q = 640i, the solution does exhibit two distinct behaviors (Fig. 4e–h). Given
our choice of flow normalization, tracer variance is homogenized much more rapidly
near the peak of the shear flow (U⇤

> 0) than away from it (U⇤
< 0)†. The initial

condition centered at y0 = ⇡ facilitates the distinction between the subdomains U⇤
> 0

and U
⇤
< 0 for large enough q although an arbitrary initial condition may not. Such

behavior is associated with the localization of the eigenfunctions within shear free-regions
as q becomes large.

To quantify the transient and long-term decay of tracer variance, we compute

� = �1

2

d log (k✓k22)
dt

, (3.3)

where k✓k22 is the L2-norm defined by

k✓k22(t) =
Z ⇡/k

�⇡/k

Z 2⇡

0
✓
2
dy dx. (3.4)

With initial condition (3.1), we identify two non-overlapping plateaus in the � time
series for su�ciently small streamwise scales, or equivalently su�ciently large Pe. Each
plateau implies that a single eigenvalue-eigenfunction dominates the (spatio-temporal)
decay rate of tracer variance, with tracer localized to regions where U

⇤ has an extrema
(see Fig. 5a–d). We refer to the plateaus as pure modal decay rates denoted as �. Varying
k at constant Pe reveals the q�dependence of the gravest two eigenvalues, as seen in
Fig. 5e. These are the (averaged) modal decay rates estimated in Camassa et al. 2010 in
that case for the cosine shear flow. An o↵-centered initial condition (�o

l 6= 0) can yield a
� time series in which the two plateaus overlap, and distinguishing between the two even
eigenvalue-eigenfunction pairs can be unclear.

† The actual sign of U⇤, which arises from our particular choice of mean velocity, has no
direct e↵ect on the decay rate of tracer variance.
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Figure 4. Snapshots of modal solutions for two wavenumbers km and two values of canonical
parameter q = 2ikmPe at fixed Pe = 1000. The shear flow is Gaussian with inverse width
parameter Ld = 4/3 (black curve in panel (a) and Fig. 2c). The streamwise axis is scaled by
(domain-scale) wavenumber km, and the colorscales di↵er between panels.

Figure 5. a)–d) Time series of decay rate �(t) (black) and variance k✓k22 (blue, normalized
by its initial value) for fixed Pe = 1000 and various choices of wavenumber k (hence canonical
parameter q = 2ikPe) in the modal initial condition (3.1). The shear flow is Gaussian (Ld = 4/3).
The red dots in b) and c) represent the times of the snapshots shown in Figs. 4a–d and e–h,
respectively. e) Pure modal decay rate � (see text) showing the distinct regimes of scalar decay
as a function of streamwise wavenumber k. The black and red dots are from analytical solutions
and blue dots are from numerical simulations. Shown in e) are the asymptotic curves for the
gravest eigenvalues a2 (black, at large q) and a0 (red, at both small and large q). Grey arrows
connect the distinct � time series in panels a)–d) with their averaged values in panel e). Note
that the log-log plot accentuates large and small k behavior.



14 M. A. Jiménez-Urias and T. W. N. Haine

Shear flow P |qcr|
Cosine

↵1 = 0.25 1 3.0455
Triangular
Ld = 1/2 1 3.6805
Ld = 1/2 2 14.9002
Ld = 1/2 3 32.1463
Ld = 1 1 0.5506
Ld = 2 1 0.821
Square
Ld = 1 1 2.3643
Ld = 1 2 9.2947
Ld = 1 3 20.298
Ld = 2 1 0.4204
Ld = 5.2 1 0.7612
Gaussian
Ld = 4/5 1 0.6503
Ld = 4/3 1 0.5506
Ld = 2.9 1 0.821

Polynomial
Ld = 1 1 0.7043
Ld = 2 1 0.65035
Ld = 3 1 0.7612
Ld = 5 1 0.9496

Table 1. Critical canonical parameters |qcr| for shear flows considered. The parameter P
represents the periodicity of the shear flow within the domain. P = 1 in a single peaked (single
maxima), P = 2 and P = 3 imply two and three shear flow maxima (peaks), respectively, as
shown in Figs. 2e–h.

Figure 6 shows that the three regimes of scalar decay, described by Camassa et al.

(2010) for the cosine shear flow, are present in all shear flows, and are therefore generic.
For arbitrary Pe, we define these three regimes using a critical canonical parameter
qcr as follows: For small q values, |q| < |qcr|, the gravest eigenvalue is real (see Table
1). Thus, at long-enough (streamwise) scales k < O(1), |q| < qcr, and � / k

2, with a
coe�cient proportional to Pe2. This is the regime of Taylor dispersion because it describes
a di↵usion process with e↵ective di↵usivity 

⇤, given dimensionally by


⇤ =

U
2
0M

2

2⇡2

1X

m=1

↵
2
m

2m2
. (3.5)

The exact result �2 =
P1

m=1(↵
2
m/(2m2)) is derived in Appendix E, for all shear flows

considered here. This expression for the e↵ective di↵usivity matches that first derived in
Zel’dovich (1982) for time-oscillatory, periodic shear flows (when considering vanishing
frequency; see also Majda & Kramer 1999; Smith 2005; Haynes & Vanneste 2014).

At intermediate scales, k > |qcr|/(2Pe), the gravest eigenvalue a0 becomes complex
and the pure modal decay rate is anomalous, meaning � / k

s with s < 2. In fact, pure
modal decay rates in the U

⇤
> 0 and U

⇤
< 0 regions generally separate (see Fig. 6).

Only when the flow is shift-reflect symmetric, like in the cosine, triangular and square
shear flows, where eigenvalues appear as complex conjugated pairs, do we find a single
pure modal decay rate to determine the anomalous modal decay for all values of q.
The algebraic dependence of the gravest eigenvalues at large q can be derived via a

WKB analysis localized to regions with vanishing shear where U
⇤ has an extrema. In

other words, the values of � in this asymptotic limit explicitly depend on the gradient of
shear at the flow extrema, where shear changes sign (e.g., see Hunter & Guerrieri 1981;
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Figure 6. Pure modal decay rate � for all flows considered with single maxima (P = 1).
The di↵erent lines are from analytical predictions of the asymptotic behavior of the gravest
eigenvalues a0 and a2 at large and small q, along with the pure di↵usion case k2. In all cases,
Pe = 1000. For values of the �2, c and s coe�cients, see Table 2.

shear flow a0/4 ⇠ �2Pe
2k2 <{a�

2n/4} ⇠ c�(kPe)
s� <{a+

2n/4} ⇠ c+(kPe)
s+

�2 s� c� s+ c+

Cosine
↵1 = 0.5 0.125 0.5 0.27 0.5 0.27
Triangular
Ld = 1/2 0.0822 0.67 0.258 0.67 0.258
Ld = 1 0.0874 0.05 0.6 0.67 0.377
Ld = 2.6 0.0228 0.025 0.3 0.67 0.71
Square
Ld = 1 0.2056 0.025 0.83 0.025 0.83
Ld = 2 0.1156 0.025 0.35 0.025 2.71
Ld = 5.2 0.02484 0.025 0.266 0.025 16.82
Gaussian
Ld = 4/5 0.1166 0.48 0.26 0.5 0.48
Ld = 4/3 0.0757 0.18 0.27 0.5 0.97
Ld = 2.9 0.02351 0.065 0.26 0.5 2.12

Polynomial
Ld = 1 0.08355 0.5 0.23 0.67 0.38
Ld = 2 0.05528 0.33 0.2 0.7 0.45
Ld = 3 0.0364 0.25 0.2 0.7 0.58
Ld = 5 0.01868 0.167 0.19 0.7 0.79

Table 2. Parameters that determine the pure modal decay rates � in Taylor’s and the
anomalous di↵usion regimes of shear dispersion. To visualize these values, see Fig. 6.

Camassa et al. 2010). The eigenvalues take the form

a2n ⇠ d1q
s � d2q, (3.6)

where d1 and d2 are coe�cients independent of q, and the exponent s < 2 is real. But
the asymptotic behavior (3.6) only strictly applies in the limit of |q| ! 1 where the
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Figure 7. Fits (dashed lines) to the gravest eigenvalues with positive (thick black curves) and
negative (thin gray curves) imaginary parts for a)–c) square and d)–f) Gaussian shear flows for
various inverse width parameters Ld (see Fig. 2).

eigenfunctions are localized to shear-vanishing regions and remains greatly inaccurate at
intermediate q values near qcr (the actual range of validity varies for each shear flow). This
severely constrains the applicability of asymptotic (pure) modal decay rates to realistic
flows with finite Pe values, and arbitrary initial conditions† Fig. 7a–c shows this error
for the square shear flow in the estimate of pure modal decay rates (red dash lines) as
these get extrapolated towards intermediate q�values near qcr. The implication is that
for arbitrary Pe values, the asymptotic approach incorrectly predicts faster (pure modal)
decay rates of tracer variance, meaning an over-mixing at intermediate scales.
Given that the asymptotic expression (3.6) provides an accurate approximation of �

at large k, and we use it following Camassa et al. (2010) to estimate the streamwise scale
of transition into the pure di↵usion regime, for the long-lived tracer patches localized
within shear vanishing regions. This represents the (streamwise) scale at which decay
of tracer variance of the longest-lived tracer patches becomes insensitive to cross-stream
shear. Excluding shift-reflect symmetric flows, two distinct �(k) curves exist, and so this
transition varies across the domain.
At large q values, the pure modal decay rate takes the form

�
± ⇠ c± (kPe)s± , (3.7)

where the ± signs reflect the positive (+) and negative (�) signs of the imaginary parts
of the eigenvalues (and hence the sign of U⇤). From (3.6), the coe�cients connect as

c± =
2s± d1±

4
. (3.8)

From the fitted coe�cients s± and d1± and (3.8) we calculate c± and list them in Table

† It is successfully applied in (Camassa et al. 2010) to describe the evolution of a multiscale
initial condition which concentrates tracer variance at very large scales and very small scales,
well separated in spectral space.
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2. Using (3.7), the transition scale kd into the pure di↵usion regime is

k
±
d = (c±Pe

s±)
1

2�s± . (3.9)

For values of s+ = 0.5 typical for the Gaussian shear flows, kd / Pe
1/3, equating that of

the cosine shear flow previously derived (see Camassa et al. 2010). From (3.9) we find a
strong dependence of the Pe scaling the type of shear (e.g., piecewise linear, continuous,
constant) from the computed values of s± parameter, and therefore a spatial dependence
of the Pe scaling when flows are not shift-reflect symmetric. This means that the decay
rate of tracer variance decays as pure streamwise di↵usion over two distinct range of
modes, if the shear curvature is di↵erent in the di↵erent shear-vanishing regions. This
can be seen clearly in the narrow flows in Fig. 6k–m, for which there are two distinct
range of (streamwise) scales which decay di↵usively.

Moreover, since (3.9) relies on the accuracy of (3.6), such transition scale is only
accurate under the large q limit. In our eigenfunction-approach, the transition scale for
arbitrary Pe values can be computed directly form the eigenvalues a0 and a2 calculated
from matrices Xe and Xo, but the functional dependence on Pe as expressed in (3.6) is
not easily available given the unknown analytical expression a2n = aan(q) at intermediate
q�values.

The intermediate q values are also significant in the case of time-varying amplitude,
given that varying Pe which is equivalent to varying the amplitude of the shear flow. In
that case, the curves �2Pe

2
k
2 in Fig. 6 associated with the small q limit (Taylor’s regime

of scalar decay) and those of the anomalous decay shift vertically, although former regime
is much more sensitive to time-amplitude changes due to the Pe

2 dependence. The pure
di↵usion (k2) remains insensitive to Pe values, but what sensitive is, as mentioned in the
previous paragraph, the scale of transition k

±
d into the pure di↵usion regime.

From all the values of s± in Table 2, observe that:

(i) When shear is discontinuous (like in the polynomial and triangular shear flows)
s+ ⇡ 2/3, independent of the width of the flow Ld.
(ii) When shear is continuous, the exponent lies in the range 0.025 6 s 6 0.5, and
the largest exponent is associated with flows whose local curvature is quadratic. The
smallest exponent corresponds to the square shear flow. These results are independent
of the width of the flow Ld.

The observations (i)–(ii) were first shown for the cosine and linear shear flow (Camassa
et al. 2010), and we show that these are universal across any shear flows that has an
integrable dependence on y, independent of shear flow width. However, as the shear flows
narrow (Ld increases), increasingly large values of |q| are necessary for the eigenvalues
to asymptote, according to (3.6). This behaviour leaves an increasingly large range of
intermediate q values (hence scales k for arbitrary Pe) for which (3.6) is inaccurate, most
obviously for the square shear flow (solid black and dashed red lines in Fig. 7a–c). This
implies an over-mixing estimate within regions of vanishing shear, and under mixing away
from these regions, at intermediate scales. For time- amplitude varying shear flows that
continuously reassign Fourier modes onto new q values†, such spurious mixing behavior
would only be accentuated.

† Any change to the amplitude of a shear flow is equivalent to modifying the Pe value in our
analysis.
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Figure 8. a) Time evolution of the streamwise tracer width µ1/2
2 in two domains and for two

initial widths: µ1/2
2 (0) = 5/4 shown in gray and computed using a wider domain (see text),

and µ1/2
2 (0) = 1/20, shown in black and computed using a smaller domain. b–d) Snapshots of

the averaged, normalized plume, corresponding to a di↵erent stage of the dispersion process.
In c), we superimpose the two concentrations with equal width associated with di↵erent initial
conditions and domain lengths. In both cases, y0 = 0, U(y) = 1/2(1� cos (y)) and cross-stream
width is 1/100.

3.2. Time varying dispersion of a localized concentration

We now consider the time-varying dispersion of a tracer patch defined by the initial
condition

✓(x, y, 0) = exp

2

4�
 

xp
2µ2(0)

!2

�
✓
y � y0p
0.02

◆2
3

5. (3.10)

The initial widths of the patch in the cross- and stream- wise directions are 1/100 and

µ
1/2
2 (0), respectively.† A large literature exists on the time evolution of a localized plume

in laminar flows, and the enhanced transport that derives from the combined action
of di↵erential advection and mixing (i.e. shear dispersion; see Aris 1956; Elrick 1962;
Lighthill 1966; Young et al. 1982; Rhines & Young 1983; Latini & Berno↵ 2001; Ferrari
et al. 2001; Haynes & Vanneste 2014). The goal here is to characterize the distinct stages
of shear dispersion, highlighting the self-similar processes.

We investigate the streamwise dispersion by tracking the time-evolution of the second
moment of the cross-stream-averaged concentration ✓. As the flow is unidirectional, we
only consider the central moments of the streamwise direction. The pth-moment is defined
as

µp =

Z 1

�1
|x� µ|p

�
✓/✓0

�
dx, (3.11)

where ✓0 = ✓(t = 0) and

µ =

Z 1

1
x(✓/✓0)dx. (3.12)

Our definition 3.11 ensured then that µ0 = 1 and µ1 = 0. When characterizing the
dispersion process, we are interested in the limit in which the pth-moment achieves the

† We define the initial streamwise width using the nomenclature associated with the 2nd
central moment in (3.11) at time t = 0.
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Figure 9. Stages of the dispersion process as a function of time. Each curve represents the
evolution of the width of an initially-localized tracer patch, with the width defined as the square
root of the second moment µ2 via (3.11). Each colored line is associated with a di↵erent choice
of y0 (see the labels on the right). Also shown are two di↵usive curves proportional to t1/2, and
several super-di↵usive power-laws (gray lines). The magenta line is for an initial condition that
is uniform in the across-stream direction. In all cases, Pe = 1000.

(self-similar) power law

µp ⇠ |t|�p . (3.13)

Dispersion processes are characterized by �2 in the following manner: The process is
di↵usive when �2 = 1, is sub-di↵usive when �2 < 1, and is super-di↵usive when �2 > 1.
A dispersion process that is not di↵usive (�2 6= 1) is called an anomalous-di↵usion process
(Weeks et al. 1996; Castiglione et al. 1999; Ferrari et al. 2001).

Consider the case of Pe = 1000 value and a streamwise domain length �5000⇡ 6
x 6 5000⇡, hence km = 2/5000. This choice of domain size ensures that the gravest
modes capture the Taylor di↵usion regime of scalar decay (� = �2Pe

2
k
2), for our choice

of Pe value. We also are interest in a narrow initial width, µ1/2
2 (0) ⇠ O(10�1), so that

the initial condition incorporates su�ciently large wavenumbers within the regime of
pure di↵usive decay (� = k

2). For each streamwise wavenumber k that arises from
the discretization of the domain we need to solve a non-Hermitian eigenvalue system
(described in §2.2). The task of solving for a localized plume in a extremely long domain
can become computationally expensive.
To facilitate the computation of solutions, we exploit the self-similar time-evolution of

✓(x, t) (see Fig. 8) and consider two di↵erent domain lengths to evaluate di↵erent initial

widths: For a narrow initial width, µ
1/2
2 (0) = 1/20, we consider the smaller domain

100⇡ 6 x 6 100⇡, discretized spatially by Nx = 60001. For a larger initial width,

µ
1/2
2 (0) = 5/4, we consider the larger domain �5000⇡ 6 x 6 5000⇡, discretized by

Nx = 30001 points. We then compute the full time evolution of µ1/2
2 (t) from a composite

of the two initial conditions considered, as shown for the cosine shear flow in Fig. 8.
In all steady, laminar parallel shear flows explored, we find that the solution evolves

through three distinct stages of dispersion (see Fig. 9), in agreement with the study
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shear flow uniform y0 = 0 y0 = ⇡/4 y0 = ⇡/2 y0 = 3⇡/4 y0 = ⇡

cosine (350, 1) (200, 1.875) (250, 1.45) (335, 1.45) (250, 1.45) (200, 1.875)
triangular
Ld = 1/2 (300, 1) (135, 1.5) (245, 1.475) (245, 1.475) (245, 1.475) (135, 1.5)
Ld = 1 (325, 1) (175, 3.2) (375, 2.6) (300, 1.5) (480, 1.475) (280, 1.5)
Ld = 2 (235, 1) (60, 3.6) (160, 3.2) (750, 2.85) (1900, 2) (660, 1.475)
square
Ld = 1 (350, 1) (1600, 3.6) (7000, 3) (325, 1) (7000, 3) (1600, 3.6)
Ld = 2 (350, 1) (220, 3.95) (735, 3.4) (6000, 3) (375, 0.975) (10000, 3)
Ld = 5.2 (250, 0.975) (75, 4) (300, 3.8) (1800, 3.325) (7800, 2.5) (25000, 2.35)
Gaussian
Ld = 4/5 (350, 1) (145, 2.4) (190, 1.75) (350, 1.5) (450, 1.45) (370, 1.8)
Ld = 4/3 (325, 1) (150, 3.6) (280, 2.8) (500, 2) (625, 1.45) (700, 1.75)
Ld = 2.9 (210, 0.975) (60, 3.6) (160, 3.2) (1000, 3) (1700, 2) (1500, 1.65)

polynomial
Ld = 1 (295, 1) (115, 1.97) (150, 1.55) (262, 1.5) (325, 1.45) (200, 1.425)
Ld = 2 (270, 1) (85, 2.8) (135, 2.1) (240, 1.675) (460, 1.5) (285, 1.37)
Ld = 5 (180, 0.975) (50, 3.4) (105, 2.85) (435, 2.55) (700, 1.75) (405, 1.3)

Table 3. Parameter pair (A, �2/2) that approximates the power law dependence of widthp
µ2 ⇡ At�2/2 (calculated empirically) in the anomalous di↵usion stage. Some of these cases

are shown in Fig. 9.

by Latini & Berno↵ (2001) for the Poiseuille shear flow (that flow corresponds to the
polynomial with Ld = 1 considered in this study, only shifted by ⇡ in y). These stages
parallel the three regimes of scalar decay explored in the previous section, and are: an
initial pure di↵usion stage in which µ2 = 2t, an intermediate, anomalous (super) di↵usion
stage, and a final stage of enhanced di↵usion µ2 = 2�2Pe

2
t that corresponds to Taylor’s

dispersion (Taylor 1953; Aris 1956).
Of the three stages of shear dispersion, only the (transient) anomalous di↵usion is

sensitive to the choice of y0 in the initial condition, (see Fig. 9), the exception being the
ballistic dispersion (

p
µ / t) associated with a uniform tracer distribution in the cross

shear direction, first studied by Lighthill (see Lighthill 1966; Latini & Berno↵ 2001).
Table 3 summarizes the power law approximation to the width

p
µ2 = At

�2/2 in the
anomalous di↵usion stage for all shear flows considered. In general, our calculated values
for �2 ⇡ 4 for the polynomial shear flow (Ld = 1) at y0 = 0, and �2 ⇡ 3 for the
(Ld = 1/2) triangular shear flow (everywhere) coincide with previously calculated values
in the literature (Elrick 1962; Rhines & Young 1983; Latini & Berno↵ 2001; Meunier &
Villermaux 2010, 2022)
The initial and final stages of the dispersion of an isolated tracer patch are determined

by the pure di↵usion and Taylor’s enhanced di↵usion, respectively. The characteristics of
these stages are known already from �2Pe

2 (section §3.1) because both processes are self-
similar, insensitive to y0, and it is known that transition into Taylor’s di↵usion happens
at t & O(1). The timescale for transition from pure di↵usion into anomalous di↵usion,
call it ⌧ , is calculated from the intersection of the two curves

p
2t and At

�2/2. Hence,
⌧ = (2/A2)1/(�2�1), with �2 and A given empirically (Table 3).

The envelope of curves At
�2/2 associated with the anomalous di↵usion stage of shear

dispersion in Fig. 9 shows that ⌧ is smallest for ballistic dispersion (magenta curves in
Fig. 9). Ballistic dispersion is typically associated with a uniform initial condition in the
cross-shear direction, i.e. a streamwise Gaussian stripe. In this case, the initial tracer
patch spans both subdomains U

⇤
> 0 and U

⇤
< 0, its width grows linearly with time

as
p
µ2 / Pet. We find that the constant of proportionality ⇠ 0.3 ± 0.1 for all shear
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flows. Using A = 0.3Pe, we compute ⌧ ⇡ 20Pe�2, or 2⇥ 10�5 with Pe = 1000. Ballistic
dispersion also occurs when the initial plume with small cross-shear width is placed at
a streamline with infinite shear (in the square shear flows we see it at y0 = ⇡/2 when
Ld = 1, and y0 = 3⇡/4 when Ld = 2). In both cases, ✓ is composed to two asymmetric,
long tailed profiles that separate from one another, as opposed to the single-tailed case
in Fig. 8c.
The timescale ⌧ of transition into the anomalous di↵usion is delayed the most when the

initial condition is placed in regions with zero shear over a wide range of streamlines. The
square shear flow is a good example (at y0 = n⇡, n an integer), in particular at y0 = 0
and Ld = 5.2 (red curve in Fig. 9i). Taking the values of (A, �2) = (75, 4) associated
with the square shear flow Ld = 5.2 from Table 3, we find ⌧ ⇡ 0.3. At this timescale, the
plume width transitions from growing di↵usively (as

p
2t) to growing with a very steep

anomalous di↵usion (see red curves in Fig. 9c, f, i, l).
Contrary to our naive expectations, we found no direct connection between the

timescale ⌧ that indicates the transition from pure di↵usion to anomalous di↵usion in
the evolution of the dispersion process, and the inverse scale k

±
d of transition from (pure

modal) anomalous tracer variance decay rate into pure di↵usion decay rate (k±d ). This
simply implies that the eigenfunctions �e

2n,�
o
2n also play an important role in determining

the transition from Gaussian symmetric to asymmetric cross-flow concentrations, i.e. via
a Fourier inversion (see Fig. 8c–d). Similarly, we found no connection between the values
of s with the power law behavior of the �2, not even in the cases where the tracer was
initialized at the exact streamlines where shear vanishes. That is, we found no explicit
connection between the values �2 = 2/3 and s = 0.75 derived for the triangular shear
flow (e.g. Ld = 1/2).
The anomalous di↵usion stage of shear dispersion is sensitive to the choice of y0, with

implications for the self-similarity of the process. Following Castiglione et al. (1999);
Ferrari et al. (2001), a process is called strongly self-similar whenever the moment’s
exponent �p is linear with p, i.e., when �p = p/⌫, with ⌫ an empiric constant. Otherwise,
when �p is piecewise linear, or nonlinear with p, the process is called weakly self-similar.
An important characteristic of a strongly self-similar process (like di↵usion) is that it
satisfies the scaling law

✓(x, t) ⇡ t
�1/⌫C

⇣
x

t1/⌫

⌘
, (3.14)

where C is a scaling function (e.g., Gaussian in the case of normal di↵usion) and ⌫ is a
scaling exponent (⌫ = 2 for normal di↵usion). The scaling law suggests a scaling variable
⇠ = x/t

1/⌫ , and thus implies that the width of the tracer patch (or equivalently cloud of
particles) grows as t1/⌫(Zaburdaev et al. 2015). Hence, a strongly self-similar process is
entirely determined by ⌫ (the values of ⌫ for flows discussed in the following paragraph
are reported in Fig. 10a–d).
The quadratic shear flow (polynomial shear with Ld = 1) has a strongly self-similar,

anomalous di↵usion stage for various choices of y0, but is weakly self-similar when y0 =
⇡/4 . The value ⌫ ⇡ 1/2 at y0 = 0 coincides with the asymptotic value derived in
Latini & Berno↵ (2001). A di↵erent choice of y0, however, changes the value of ⌫. The
triangular shear flow (Ld = 1/2), on the other hand, has a strongly self-similar anomalous
di↵usion stage that is insensitive to y0. Specifically, ⌫ ⇡ 2/3 in all cases (Fig. 10e–h).
The triangular shear flow with Ld = 1 has an anomalous di↵usion stage that is strongly
self-similar when the plume is initialized in regions with linear shear (Fig. 10k–l). But
when the plume is initialized in regions with no shear, the anomalous di↵usion exhibits
weak self-similarly (Fig. 10i–j).

The scaling exponents ⌫ < 2 are typically associated with super di↵usive processes
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Figure 10. Moment �p dependence on moment index p for three shear flows: a)–d) Polynomial
flow with Ld = 1 (Poiseuille-like flow, see Fig. 2d), e)–h) triangular shear flow withLd = 1/2 (see
Fig. 2a), and i)–l) triangular shear flow with Ld = 1 (also in Fig. 2a). y0 values, fixed for each
column (color coded to coincide with those in Fig. 9), are shown on top row. When �p = p/⌫,
the value of ⌫ is shown. Gray line shows the pure di↵usive behavior p/2.

such as Levy walks, a stochastic that generalizes Brownian di↵usion in the sense that
the concentration can obey a fractional Fokker Planck equation (FFPE) (Dubkov et al.

2008). Previous studies have shown that weak self-similar processes fail to be represented
by the scaling law (3.14) and obey neither a Fick equation nor other linear equations
involving temporal and/or spatial fractional derivatives (Castiglione et al. 1999; Ferrari
et al. 2001). We expand on this by showing that even flows with a strongly self-similar
dispersion in its (transient) anomalous di↵usion possess a non-unique exponent ⌫. The
exception being the (wide) triangular shear flow (Ld = 1), which has a unique scaling
exponent, insensitive to the location of the initial condition when the cross-stream width
is vanishingly small.

4. Discussion

In this study, we present a new method to compute analytical solutions to the
advection-di↵usion equation when the advecting velocity is a steady, parallel shear
flow, a building block for time-varying flows of the form (1.2). The method relies on
the ability to calculate the eigenvalue-eigenvectors associated with the non-self-adjoint
advection-di↵usion operator (2.2), through a convergent truncation of a bi-infinite matrix
constructed following a procedure similar to the Floquet-Fourier-Hill method (Deconinck
& Kutz 2006). The truncated matrix, for example, implies that for every streamwise
Fourier mode k in a given initial condition with an even Fourier series in the cross-stream
direction (�o = 0 in (2.39)), the solution to (2.2) is approximated via

✓ ⇡ <

8
<

:

RX

n,l=0

�
⇤
lA

(2n)
2l �2n exp


ik

✓
x� ↵0Pe

2
t

◆
�
⇣
a2n

4
+ k

2
⌘
t

�9=

;+ ✓R> , (4.1)



passive scalar mixing 23

where

✓R> =
1X

l=R+1

�
⇤
l cos (ly) cos


k

✓
x� ↵0Pe

2
t

◆�
exp

⇥
�
�
k
2 + l

2
�
t
⇤
. (4.2)

The ✓R> contributions coincide with solutions to the di↵usion equation, which means
that the variance of tracer with cross-flow scales lc > R decays in the pure di↵usion
regime.
The analytical method described in §2.2 is easily expanded to handle shear flows that

have a general Fourier series, as well as Neumann (tracer) boundary conditions in the
cross-stream direction. Applying Neumann (no-flux) boundary conditions requires three
steps, with little modification to the method: 1) Increase the periodicity of the shear
flow, say from P = 1 to P = 2. 2) Restrict the analysis to only half of the domain
(so that it gives the appearance of a single peaked shear flow). 3) Given an arbitrary
initial condition, consider a second image initial condition, symmetric about the closest
boundary y = ⇡ or y = 0.
Expanding the method to handle a shear flow with arbitrary Fourier series is also

straightforward, in a similar way to incorporating Neumann boundary conditions de-
scribed in the previous paragraph. Again, there are three steps: Given an arbitrary shear
flow: 1) Construct the flow that is the even-periodic extension of the arbitrary shear flow.
This requires extending the original domain by a factor of two. 2) For an arbitrary initial
condition, include an image field initial condition that is equidistant from one of the two
(closest) boundaries (y = 0 or y = ⇡). 3) Restrict the analysis to only half of the (new)
domain. This approach implies that the tracer satisfies Neumann boundary conditions.

The procedure above implies tracer solution with the triangular shear flow (Ld = 1/2)
and the linear shear flow with Neumann (tracer) boundary conditions arise from the
same eigenvalue problem (the EPs in the linear shear case are described in Doering
& Horsthemke 1993). The location of the first EP in the linear shear flow described in
Doering & Horsthemke (1993) does not match the location of the first EP of the triangular
shear flow, but that can be explained by a rescaling of the domain M , which in turn shifts
the value of k and Pe. The shifting of the EP locations also happens when the shear-flow
periodicity P increases (from P = 1 to P = 2 or 3, as can be seen in the values of qcr
in Table 1).The equivalency between solutions to (2.2) for the triangular shear flow and
the linear shear flow implies that tracer dispersion with the linear shear flow is strongly
self-similar process in all its (shear dispersion) stages and, in the transient anomalous
di↵usion stage, can likely be model via a FFPE when the initial width is vanishingly
small.

It is straightforward to apply the solution method in the presence of time-varying shear
flows of the form (1.2), by discretely approximating piecewise constantly any arbitrary,
bounded time-dependence in U0(t). This di↵ers from the approach of Childress & Gilbert
(1995) who restrict attention to time-periodic operators, i.e., to time-periodic velocity
fields. In addition, the solution method in 2.2 can be applied also to the case of spatial and
temporal variability in di↵usivity  = (y, t), as long as the spatial functional dependence
is integrable. In this scenario, the role of d/dy is identical to the role of the advecting
velocity.

The ability to compute analytical solutions for passive scalar tracers governed by (1.1)
for spatially- and time- varying flows, and di↵usivities (y, t), has important consequences
to the study and modelling of biogeochemical tracers. While the inclusion of reaction
terms into (1.1) makes the resulting governing equation non-linear, our solution method
can be exploited when the operator splitting approach is used to solve, via alternating �t

steps of advection-di↵usion followed by pure reaction, the resulting advection-di↵usion-
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reaction equation (see Wheeler & Dawson 1987; Rubio et al. 2008; Kulkarni & Lermusiaux
2019). Although outside of the scope of this study, employing our analytical approach
when considering shear flows like those in (1.2) could result in the reduction of spurious
mixing associated with numerical advecting schemes (see LeVeque 2002; Durran 2010).

5. Conclusions

The problem of passive scalar dispersion has been extensively studied, but only in a few
ideal shear flows and in asymptotic parameter regimes (Taylor 1953; Aris 1956; Young
et al. 1982; Rhines & Young 1983; Doering & Horsthemke 1993; Latini & Berno↵ 2001;
Camassa et al. 2010; Haynes & Vanneste 2014). Here, we present an Eulerian matrix
method to compute analytical solutions to the tracer advection-di↵usion equation for a
broad class of velocity fields and initial conditions. We focus on steady, spatially-periodic
laminar shear flows, and doubly periodic boundary conditions. But the method allows
to compute solutions to time-varying flows that can be expressed as (1.2), with no-flux
(tracer) boundary conditions in the cross-stream direction, and it applies to any shear
flow that can be defined via a Fourier series (integrable).

The Eulerian matrix method calculates the eigenvalue spectra of the linear, non-
self-adjoint operator of (1.1). We thoroughly describe the properties of the eigenvalue
spectrum. In particular, the spectrum properties are shaped by Exceptional Points with
implications for scalar mixing rates, and for the time evolution of localized tracer patches.
The analysis also leads to along- and across- stream lengthscales that determine the e↵ect
of the shear.

The Eulerian matrix method is most e�cient at low and intermediate Péclet numbers
(Pe < 104), due to the iterative computation of eigenvalue-eigenfunctions. No formal
restriction on the value of Pe applies, however. Also, the present method captures all the
stages of shear dispersion. This method therefore complements other approaches that
apply to very large Pe and/or to specific regimes of shear dispersion.

Appendix A. Analytical expressions of shear flow velocity profiles

Table 4 shows the analytical expressions and Fourier coe�cients used in the definition
on the main four shear flows in Fig. 2, and their explicit dependence on the inverse width
parameter Ld. All the shear flows share the feature that their maxima are at y = ⇡, their
minima are at y = {0, 2⇡}, and they converge to a point shear flow as Ld ! 1, defined
as

U(y) =

(
1, if y = ⇡

0, otherwise.

In the case of the polynomial shear flow, we extend it periodically from �⇡ < y < ⇡,
so that within the interval y 2 [0, 2⇡] the velocity is maximum at y = ⇡ and decays
algebraically to zero at y = {0, 2⇡}. The Fourier coe�cients for the polynomial shear
flow are

↵m =
2

⇡

Z ⇡

0

y
2Ld

⇡2Ld
cos (my) dy. (A 1)

The simplest case Ld = 1 yields the quadratic (parabolic) shear flow, which has Fourier
coe�cients

↵m =
4(�1)m

m2
. (A 2)
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Shear flow Analytical Expression Fourier Coe�cients

Cosine 1/2 [1� cos (y)] ↵0 = �2↵1 = 1

Triangular U(y) =

8
>>><

>>>:

0, if y1 < y < 2⇡

2Ld (y1 � y) /⇡, if ⇡ < y < y1
2Ld (y � y0) /⇡, if y0 < y < ⇡

0, if 0 6 y 6 y0

↵m =

(
4Ld(�1)m

⇡2m2

h
1� cos

⇣
m⇡
2Ld

⌘i
,m > 0

1/(2Ld), m = 0

Square U(y) =

(
1, if y0 6 y 6 y1
0, otherwise

↵m =

(
2(�1)m

m⇡ sin
⇣

m⇡
2Ld

⌘
, m > 0

1/Ld, m = 0

Gaussian U(y) = exp
⇥
�L2

d(y � ⇡)2
⇤

↵m = (�1)m

Ld
p

⇡
exp


�
⇣

m
2Ld

⌘2
�
, m > 0

Polynomial U(y) = y2Ld/⇡2Ld ↵0 = 2
2Ld+1 , see text for m > 0

Table 4. Analytical expressions for the flows considered in this study, their dependence on the
inverse width parameter Ld, and their Fourier coe�cients. For the triangular and square shear
flows, the constants are y0 = ⇡(2Ld � 1)/2Ld and y1 = ⇡(2Ld + 1)/2Ld.

When Ld = 2, the quartic polynomial has Fourier coe�cients

↵m = �
8(�1)m

�
⇡2

m
2 � 6

�

m4
. (A 3)

Appendix B. Shift-reflect symmetry and Exceptional Points

The shift-reflect symmetry of the shear flow is a necessary condition for the presence
of Exceptional Points (EPs). Consider the shifted Hill’s equation (compare to (2.10))

d
2
�2n(ỹ � ⇡/2)

dỹ2
+ [a2n � 2qU⇤(2ỹ � ⇡)]�2n(ỹ � ⇡/2) = 0, (B 1)

and the complex-conjugate of Hill’s equation for the neighboring mode

d
2
�2n+2(ỹ)

dy2
+ [a2n+2 � 2qU⇤(2ỹ)]�2n+2(ỹ) = 0, (B 2)

where the overline is the complex conjugate here. As q = 2ikPe is purely imaginary,
�qU

⇤(2y) = qU
⇤(2ỹ) = �qU

⇤(2ỹ � ⇡), where the second equality follows for shear flow
profiles that possess shift-reflect symmetry. This property makes equations (B 1) and
(B 2) symmetric with respect to one another in the sense that their real parts are identical
while their imaginary parts have opposite signs. Further, a shift-conjugate symmetry
of the eigenfunctions is implied, which has the form �2n(ỹ � ⇡/2) = �2n+2 (Ziener
et al. 2012). Even for shear flows that are not shift-reflect symmetric, EPs can occur for
su�ciently high modes. The reason is at su�ciently large modes (n value) the diagonal
element of the nth row in (2.21) becomes purely real as the Fourier coe�cient that
appears in the diagonal decays monotonically.

Appendix C. Reference for variable names

The following Table 5 contains definitions of some of the most relevant variables of the
main text.
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Variable definitions Symbols used

Non-dimensional domain aspect ratio. Sets the
gravest streamwise mode that fits the domain.
Arbitrary value. See eqn. (2.4)

km = M/L.

Non-dimensional shear flow width (Fig. 2) Ld.

Normalized, arithmetic mean of fluid velocity (eqn
2.6)

↵0/2.

Fourier coe�cients that define an arbitrary
(normalized) shear flow. See eqn (2.6)

↵m,m = 1, 2, · · · .

Normalized (pointwise) shear flow velocity minus
the arithmetic mean

U⇤ = U0 � ↵0/2

Periodicity of shear flow in y. See eqn. (2.7)–(2.8). P (P = 1 default).

Dimensional amplitude of shear flow (arbitrary)
used to normalized shear flow, and controls q eqn.
(2.11)

U0.

Even and odd eigenvalue-eigenfunction pairs,
respectively. Each pair solves eqn. (2.10)

{�e
2n, a2n}, {�o

2n+2, b2n+2},
n = 0, 1, 2 · · ·

Pure (modal) decay rate. See also (3.3) �.

Smallest q�value at which a0(q) becomes
complex. See Table 1.

qcr.

Unique pre-factor to shear flow in e↵ective
di↵usivity. See eqn. (3.5) and Table 2.

�2 =
P1

m=1(↵
2
m/(2m2)).

pth central moment. See eqn. (3.11) µp(y, y).

Width of concentration. µ1/2
2 (y, t).

Power law at which p�moment evolves via self-
similar law. See eqn (3.13)

�p.

Scaling exponent of strongly self-similar processes.
See eq. (3.14)

⌫ = p/�p.

Table 5. Definition of relevant variables used throughout text.

Appendix D. Numerical validation

A side-by-side comparison between the analytical solution and a numerical simulation
is given in Figure 11 for the case of a Gaussian initial condition in x that is uniform in y

(section 3.2 with �y ! 1). Two velocity fields are shown: a wide triangular shear flow
and a wide square shear flow. The model solves the advection-di↵usion equation with the
prescribed (steady) velocity field using a quasi-2nd order Adams-Bashforth explicit time-
stepping scheme and a finite-volume method to calculate the spatial fluxes. The model
uses a domain of size �200⇡ < x < 200⇡, 0 < y < 2⇡ with Nx = 1280 and Ny = 128 grid
points. The dimensional parameters are  = 10�4 m2s�1, M = 2⇡ m, and the maximum
velocity is U0 = 0.2 ms�1. These choices give Pe = 2000 with di↵usive timescale td = 1 =
M

2
/(4⇡2

) = 104 s. The model is the open-source package Oceananigans (Ramadhan
et al. 2020). As a simple speed comparison, the analytical solution evaluated at the
same time-intervals as the stored model output was computed in under 3 minutes with

https://clima.github.io/OceananigansDocumentation/stable/


passive scalar mixing 27

Figure 11. Comparison between numerical simulations (top row) and analytical solutions
(bottom row). The velocity field is the wide triangular shear flow (Ld = 1/2, P = 1, left
two columns) and the wide square shear flow (Ld = 1, P = 1, right two columns). The initial
condition is uniform across the flow (�(2ỹ) = 1 in (2.37)) for better visualization and localized
(Gaussian) around x = �250. The white dashed line represents the moving coordinate x(t) that
starts at x(0) = �250 and moves with the y-averaged flow. Both shear flows are shift-reflect
symmetric so the tracer distribution ✓(t) is symmetric (with a ⇡�shift in y) with respect to the
moving coordinate x(t). Solid white lines at x = �250 and near y = 0 indicate the x location
of the initial condition. The matrix truncation parameter G =

p
75. The numerical simulation

results are from the Oceananigans package (Ramadhan et al. 2020).

a personal computer (even much less if only a single time-evaluation, say the final, is
needed), whereas the simulation took several hours to perform.
The numerical model solves the tracer equations at center points, and our eigenvalue

approach to solving (2.2) e↵ectively calculates solutions at vorticity points on a C-
staggered grid due to our domain (Fourier) mode decomposition (see Durran 2010 for
more on grid types). Nonetheless, we interpolate the analytical solution to an equivalent
centered grid (or interpolate the numerical solution to corner points), to further quantify
the error evolution �E over time. This is shown in Fig. 12 for the two flows in Fig 11,
the error defined as follows

�E(t) =

s
km

4⇡2

Z 2⇡

0

Z ⇡/km

�⇡/km

[✓a � ✓b]
2
dxdy, (D 1)

where 4⇡2
/km is the area of the domain as a function of gravest mode km (see eqn.

2.4), and ✓a and ✓b represent the analytical and numerical solutions, interpolated onto
a common spatial grid. We observe a small and bounded (mean-square) error over the
entire tracer evolution (up to when the solution begins reentry due to periodic boundary
conditions). A more complete analysis of the errors (e.g. as a function of grid refinement)
remains outside the scope of this paper, but can be done to assess the convergence of
discretized operators in two spatial dimensions.
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Figure 12. Error over time computed via (D 1) for the two flow solutions shown in Fig. 11.
Time is non-dimensionalized by the di↵usive timescale. The time span shown covers the case
before the (tracer) solution begins reentry due to the periodic boundaries in the streamwise
direction.

Lastly, we note that the error �E is initially very small but non zero. This is because
in the analytical solution there are spurious high frequency non-zero values (errors)
typical of ⌧ 1% of the solution amplitude largely uniformly distributed across the
domain. These spurious values come from the non-zero cancellation in the triple sum
(2.39), and arise from sensitivity to machine precision in the eigenspectra calculation
of non-hermitian linear operators (non-normal matrices). Nonetheless, we found these
spurious high-frequency tracer values associated to very high wavenumber behavior to
decay similar to pure di↵usion. For more on the subject of the e↵ect of machine precision
on spectra of linear non-Hermitian operators, we refer the reader to Trefethen 2005.

Appendix E. Gravest eigenvalue asymptotics at small q

The dependence of the gravest eigenvalue a0 on q at small q can be easily approxi-
mated via regular asymptotic expansion. Following McLachlan (1947), consider small |q|
asymptotic approximations to a0(q) and �0(q, ỹ) of the form

a0 ⇡ �1q + �2q
2 + · · · , (E 1)

�0 ⇡ 1 + qC1(2ỹ) + q
2
C2(2ỹ) + · · · , (E 2)

where C1(2ỹ), C2(2ỹ), · · · are ⇡�periodic functions and �1,�2, · · · are constant coe�-
cients, all to be determined. Because q = 2ikPe is purely imaginary, �1 and �2 determine
the leading order terms of the imaginary and real components of the eigenvalue in the
small q limit. From (E 1), (E 2), and the shear flow profile definition (2.6),

�
00

0 =qC
00

1 + q
2
C

00

2 + · · · , (E 3)

a0�0 =
⇥
�1q + �2q

2 + · · ·
⇤ ⇥
1 + qC1(2ỹ) + q

2
C2(2ỹ) + · · ·

⇤
, (E 4)

�2qU⇤(2ỹ)�0 =� 2q

" 1X

m=1

↵m cos (2mỹ)

#
⇥
1 + qC1(2ỹ) + q

2
C2(2ỹ) + · · ·

⇤
. (E 5)

Substituting into (2.10) and collecting powers of q gives the O(q) equation

C
00

1 + �1 = 2
1X

m=1

↵m cos (2mỹ). (E 6)
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As we are only interested in periodic solutions, �1 ⌘ 0. Integrating (E 6) yields C1 =
�
P1

m=1(↵m/(2m2)) cos (2mỹ). The O(q2) equation is

C
00

2 + �2 = �2

 1X

m=1

↵m cos (2mỹ)

! 1X

m0=1

↵m0

2m02 cos (2m0
ỹ)

!
. (E 7)

The right hand side yields constant terms for m = m
0 in the product of the two infinite

series (like 2 cos2(2ỹ) = cos(4ỹ) + 1). As C2 is periodic, �2 must exactly balance these
constant terms on the right hand side. Therefore, the coe�cient �2 in (E 1) is given
exactly by

�2 =
1X

m=1

↵
2
m

2m2
, (E 8)

where ↵m are the Fourier coe�cients in the definition of the shear flow (2.6). This
expression is used in the formula for e↵ective di↵usivity (3.5).
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