

¹ Seaduck: A python package for Eulerian and ² Lagrangian interpolation on ocean datasets

³ **Wenrui Jiang** ¹, **Thomas W. N. Haine** ¹, and **Mattia Almansi** ²

⁴ 1 Department of Earth and Planetary Sciences, The Johns Hopkins University
⁵ Italy 2 B-Open Solutions s.r.l.,

DOI: [10.xxxxxx/draft](https://doi.org/10.xxxxxx/draft)

Software

- [Review](#)
- [Repository](#)
- [Archive](#)

Editor:

Submitted: 02 August 2023

Published: unpublished

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License ([CC BY 4.0](https://creativecommons.org/licenses/by/4.0/)).
14
15
16
17
18

⁶ Summary

⁷ Numerical simulations of the Earth's oceans are becoming more realistic and sophisticated.
⁸ Their complex layout and shear volume make it difficult for researchers to access and understand
⁹ these data, however. Additionally, most ocean models, mostly finite-volume models, compute
¹⁰ and calculate spatially-integrated properties, such as grid-cell averaged temperature or wall-
¹¹ integrated mass flux. On the other hand, in-situ oceanographic observations are effectively
¹² collected at points in space and time. This fundamental difference makes the comparison
¹³ between observations and results from numerical simulation difficult.

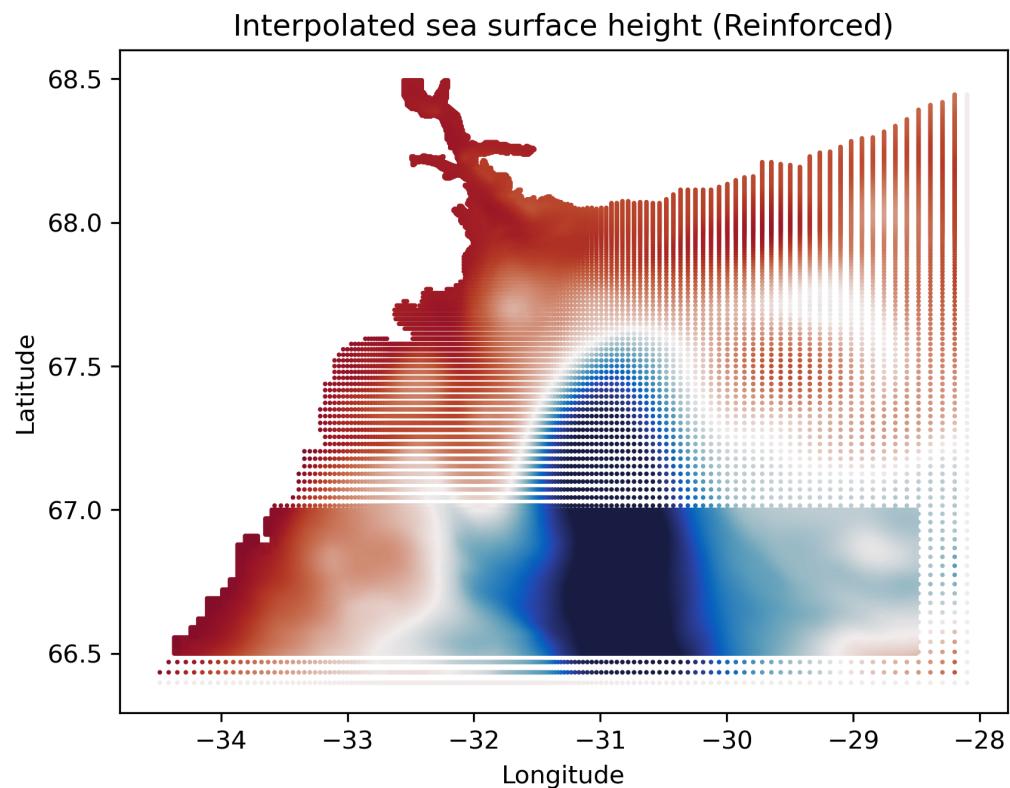
¹⁴ In this work, we present `seaduck`, a Python package that can perform both Eulerian and
¹⁵ Lagrangian interpolation on generic ocean datasets with good performance and scalability. This
¹⁶ package accesses numerical datasets from the perspective of space-time points. It automatically
¹⁷ navigates complex dataset layouts (grid topologies) and transforms discrete information to
¹⁸ continuous fields. The values and derivatives of those fields can be accessed at any point in
¹⁹ the domain defined by the user. Similar to fixed and drifting observational oceanographic
²⁰ instrument platforms, the points can be either stationary (Eulerian) or advected by the flow
²¹ (Lagrangian).

²² Statement of need

²³ The `seaduck` package is different from other ocean analytical tools (e.g., `oceanspy` [Almansi et
²⁴ al. (2019)]) because it accesses the circulation model data from the perspective of an arbitrary
²⁵ space-time point. Users define the points of interest using longitude, latitude, depth, and time.
²⁶ The package then reads necessary information from nearby model grid points and constructs
²⁷ the continuous (scalar or vector) field around the points. The index lookup and space-time
²⁸ interpolation involved in this process is done efficiently with `scipy.spatial.cKDtree` [Virtanen
²⁹ et al. (2020)] and `numba` [Lam et al. (2015)] compiled code, respectively. As the points can
³⁰ be defined arbitrarily in the model domain, accessing discrete numerical output feels to the
³¹ user like retrieving values from a continuous field, despite the complex model grid.

³² The points can be stationary (fixed in space, or Eulerian) or be advected by a vector velocity
³³ field (Lagrangian). Most Lagrangian particle packages (e.g., `Forget` (2021)) compute particle
³⁴ trajectories by solving the initial value problem numerically. Instead, `seaduck` uses efficient,
³⁵ accurate, mass-conserving analytic formulae, which assumes a step-wise steady velocity field
³⁶ similar to that used by `TRACMASS` [Campino et al. (2020)]. The Lagrangian advection
³⁷ code is largely `numba` compiled, and the total amount of computation is less than solving the
³⁸ problem numerically. The Lagrangian particle functionality is based on the above-mentioned
³⁹ interpolation utilities, thus, it automatically navigates the complex topology of numerical ocean
⁴⁰ models.

41 Seaduck provides highly-customizable interpolation methods for both Eulerian and Lagrangian
42 points. Users can control all the properties of a hierarchy of kernels, including: (1) The shape
43 of the interpolation kernel(s) in both spatial and temporal dimensions, which defines which
44 neighboring points are used, and therefore how the continuous field is estimated. (2) The
45 interpolation weight function, which allows users to calculate generic linear operations on the
46 data, such as differentiation and smoothing, in all four dimensions. The hierarchy of kernels
47 controls behaviour near land-masked points. Specifically, the hierarchy consists of successively
48 more compact kernels that are used depending on the proximity of land points.


49 With the above functionality, seaduck can accomplish many common tasks in ocean model
50 data analysis, including interpolation, regridding, and Lagrangian particle simulation. Less
51 common tasks are also possible, such as interpolation in Lagrangian label space, and analysis
52 of tracer budgets along Lagrangian trajectories. We also strive to make seaduck an accessible
53 education tool by creating a very simple high-level default interface, which is intended for
54 people with little programming background, and for people who want to quickly try the tool.

55 Usage Examples

56 While some usage examples are presented here, many more can be found in the docu-
57 mentation for seaduck (<https://macekualv.github.io/seaduck/>). The notebooks of the
58 following examples run on SciServer ([Taghizadeh-Popp et al., 2020](#)), an openly available
59 cloud compute resource for scientific data analysis. A supplementary GitHub repository
60 (https://github.com/MaceKualv/seaduck_sciserver_notebook) holds all SciServer notebooks,
61 and is being continuously maintained.

62 Interpolation / regridding

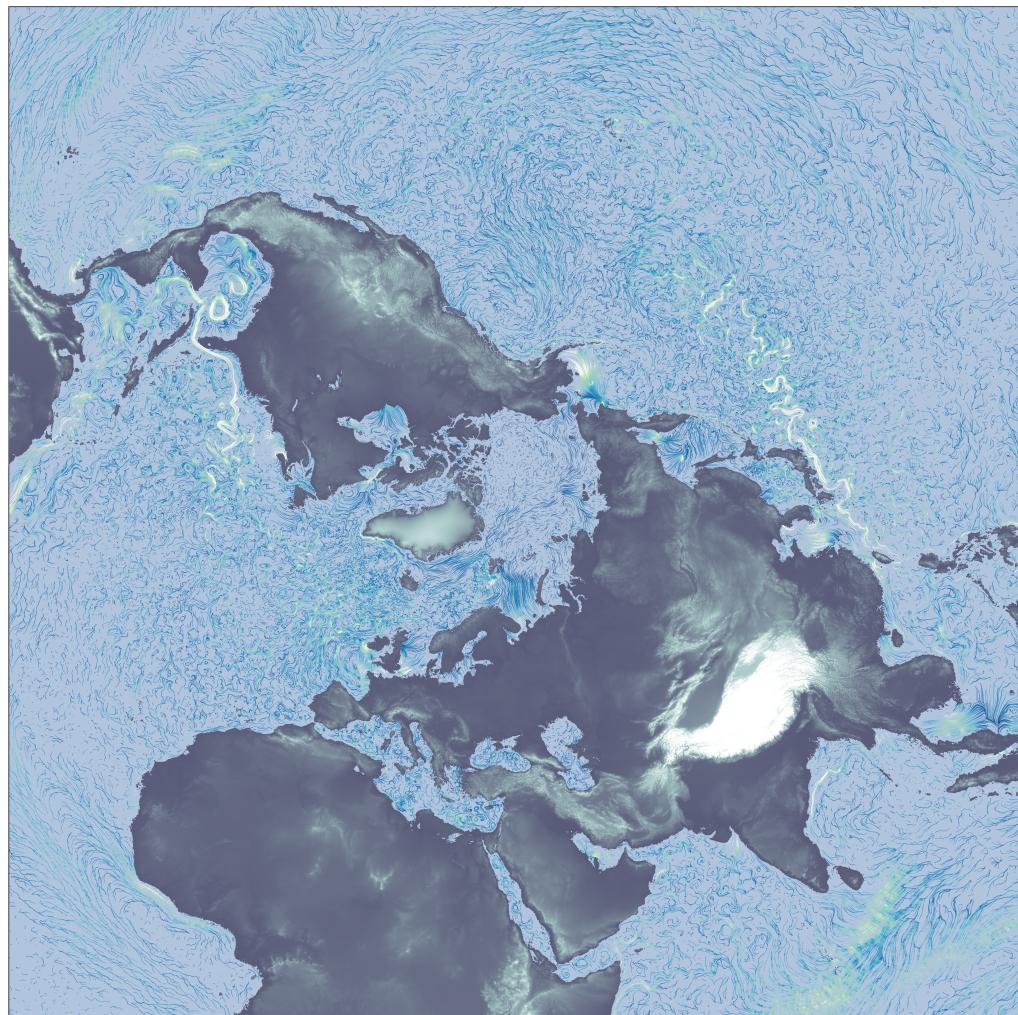

63 As an example of seaduck's interpolation/regridding functionality, consider a realistic simulation
64 of the Kangerdlugssuaq Fjord, which is in east Greenland ([Fraser et al., 2018](#)). This is an
65 MITgcm ([Marshall et al., 1997](#)) simulation with uneven grid spacing such that grid cells within
66 the fjord are much more densely packed than elsewhere. The goal is to interpolate, and hence
67 regrid, the sea surface height field, η , to a uniform grid spacing in the southern part of the
68 domain. In Fig. 1, the coherent patch between 66.5 N and 67 N is a very dense scatter plot
69 of the interpolated value where neighboring points are connected together. The rest of this
70 plot is scatter plot of model output at center grid points. The close agreement between the
71 interpolated and output value can be clearly seen in Fig. 1. The interpolation also remains
72 smooth near strong gradient and land boundaries.

Figure 1: Fig.1 Scatterplot with colors showing the sea surface height value near Kangerdlugssuaq Fjord defined in the model and interpolated by seaduck.

73 **Global particle simulation on LLC4320**

74 In this example, a stationary, surface slice of the LLC4320 (Rocha et al., 2016) simulation
 75 is used. LLC4320 is a kilometer-scale model of the global ocean circulation with complex
 76 topology. 150,000 Lagrangian particles are released randomly and evenly on the globe, and
 77 seaduck computes their trajectories for 30 days. Fig. 2 shows the particle trajectories for
 78 the northern hemisphere, which contains around 10^8 velocity points. The colors denote the
 79 current speed. This simulation takes about an hour to run on SciServer (Taghizadeh-Popp et
 80 al., 2020).

Figure 2: Fig 2. Streaklines of particle advected by stationary 2D slice of the LLC4320 simulation. Colors denote the current speed.

81 Acknowledgements

82 The authors thank Erik van Sebille and Alex Szlay for enlightening discussions during the
83 development of the package.

84 References

85 Almansi, M., Gelderloos, R., Haine, T. W. N., Saberi, A., & Siddiqui, A. H. (2019). OceanSpy:
86 A python package to facilitate ocean model data analysis and visualization. *Journal of
87 Open Source Software*, 4, 1506. <https://doi.org/10.21105/JOSS.01506>

88 Campino, A. A., Döös, K., Berglund, S., Dey, D., Kjellsson, J., Jonsson, B., Campino, A.
89 A., Döös, K., Berglund, S., Dey, D., Kjellsson, J., & Jonsson, B. (2020). TRACMASS -
90 a mass conserving trajectory code for ocean and atmosphere general circulation models.
91 *EGUGA*, 6984. <https://doi.org/10.5194/EGUSPHERE-EGU2020-6984>

92 Delandmeter, P., & Sebille, E. V. (2019). The parcels v2.0 lagrangian framework: New
93 field interpolation schemes. *Geoscientific Model Development*, 12, 3571–3584. <https://doi.org/10.5194/gmd-12-3571-2019>

94 <https://doi.org/10.5194/GMD-12-3571-2019>

95 Forget, G. (2021). IndividualDisplacements.jl: A julia package to simulate and study particle
96 displacements within the climate system. *Journal of Open Source Software*, 6, 2813.
97 <https://doi.org/10.21105/JOSS.02813>

98 Fraser, N. J., Inall, M. E., Magaldi, M. G., Haine, T. W. N., & Jones, S. C. (2018). Wintertime
99 fjord-shelf interaction and ice sheet melting in southeast greenland. *Journal of Geophysical*
100 *Research: Oceans*, 123, 9156–9177. <https://doi.org/10.1029/2018JC014435>

101 Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A LLVM-based python JIT compiler.
102 *Proceedings of LLVM-HPC 2015: 2nd Workshop on the LLVM Compiler Infrastructure*
103 *in HPC - Held in Conjunction with SC 2015: The International Conference for High*
104 *Performance Computing, Networking, Storage and Analysis, 2015-January*. <https://doi.org/10.1145/2833157.2833162>

105 Marshall, J., Adcroft, A., Hill, C., Perelman, L., & Heisey, C. (1997). A finite-volume,
106 incompressible navier stokes model for studies of the ocean on parallel computers. *Journal*
107 *of Geophysical Research: Oceans*, 102, 5753–5766. <https://doi.org/10.1029/96JC02775>

108 Rocha, C. B., Chereskin, T. K., Gille, S. T., & Menemenlis, D. (2016). Mesoscale to
109 submesoscale wavenumber spectra in drake passage. *Journal of Physical Oceanography*,
110 46, 601–620. <https://doi.org/10.1175/JPO-D-15-0087.1>

111 Taghizadeh-Popp, M., Kim, J. W., Lemson, G., Medvedev, D., Raddick, M. J., Szalay, A.
112 S., Thakar, A. R., Booker, J., Chhetri, C., Dobos, L., & Rippin, M. (2020). SciServer:
113 A science platform for astronomy and beyond. *Astronomy and Computing*, 33. <https://doi.org/10.1016/j.ascom.2020.100412>

114

115 Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
116 Burovski, E., Peterson, P., Weckesser, W., Bright, J., Walt, S. J. van der, Brett, M., Wilson,
117 J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., ... Vázquez-
118 Baeza, Y. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in python.
119 *Nature Methods* 2020 17:3, 17, 261–272. <https://doi.org/10.1038/s41592-019-0686-2>

120