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Escherichia coli cells are primed for survival before lethal 

antibiotic stress
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ABSTRACT Non-genetic factors can cause significant fluctuations in gene expression 

levels. Regardless of growing in a stable environment, this fluctuation leads to cell-to-

cell variability in an isogenic population. This phenotypic heterogeneity allows a tiny 

subset of bacterial cells in a population called persister cells to tolerate long-term 

lethal antibiotic effects by entering into a non-dividing, metabolically repressed state. 

We occasionally noticed a high variation in persister levels, and to explore this, we 

tested clonal populations starting from a single cell using a modified Luria-Delbrück 

fluctuation test. Although we kept the conditions same, the diversity in persistence 

level among clones was relatively consistent: varying from ~60- to 100- and ~40- to 

70-fold for ampicillin and apramycin, respectively. Then, we divided and diluted each 

clone to observe whether the same clone had comparable persister levels for more than 

one generation. Replicates had similar persister levels even when clones were divided, 

diluted by 1:20, and allowed to grow for approximately five generations. This result 

explicitly shows a cellular memory passed on for generations and eventually lost when 

cells are diluted to 1:100 and regrown (>seven generations). Our result demonstrates (1) 

the existence of a small population prepared for stress (“primed cells”) resulting in higher 

persister numbers; (2) the primed memory state is reproducible and transient, passed 

down for generations but eventually lost; and (3) a heterogeneous persister population is 

a result of a transiently primed reversible cell state and not due to a pre-existing genetic 

mutation.

IMPORTANCE Antibiotics have been highly effective in treating lethal infectious 

diseases for almost a century. However, the increasing threat of antibiotic resistance 

is again causing these diseases to become life-threatening. The longer a bacteria can 

survive antibiotics, the more likely it is to develop resistance. Complicating matters 

is that non-genetic factors can allow bacterial cells with identical DNA to gain tran­

sient resistance (also known as persistence). Here, we show that a small fraction of 

the bacterial population called primed cells can pass down non-genetic information 

(“memory”) to their offspring, enabling them to survive lethal antibiotics for a long 

time. However, this memory is eventually lost. These results demonstrate how bacteria 

can leverage differences among genetically identical cells formed through non-genetic 

factors to form primed cells with a selective advantage to survive antibiotics.

KEYWORDS antibiotic tolerance, antibiotic persistence, antibiotic resistance, Luria-Del­

brück fluctuation test, epigenetic, heterogeneity

C lonal populations often exhibit phenotypic heterogeneity, leading to specific 

physiological effects that distinguish some cells from others (1–3). Variability can 

slightly reduce fitness in a common environment but, in return, maximize it during 

environmental perturbations (2, 4). For example, bacterial persister cells, a phenotypic 

variant, can endure prolonged lethal antibiotic treatment by entering a metabolically 
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repressed state (5). This small subpopulation can reestablish infection after treatment 

and necessitate repeated long-term antibiotic therapy. When persisters emerge, 

they also have a high mutation rate that increases the likelihood of evolving antibiotic 

resistance (6), a pressing public health concern. A recent study provides evidence that 

among infectious diseases, antibiotic resistance may be the leading cause of death 

worldwide (more than HIV or malaria) (7). Global death projections are now estimated 

at 10 million per year by 2050 (8, 9) unless new technologies are developed to combat 

them, and we have a better understanding of persister survival. Here, we specifically 

focus on how heterogeneity in a population drives persister numbers.

Noise or fluctuation in gene expression levels drives phenotypic variation that could 

be an inherent survival strategy of a clonal bacterial population (2, 10). Studies reported 

that stress-response genes are generally more variable than housekeeping genes (11, 

12). However, it is uncertain whether this variability is controlled or an effect of inevitable 

stochastic fluctuations in gene expression (13). We formalize this notion and hypothesize 

that specific cells are prepared for stress through a transiently inherited cell state.

In this work, we take advantage of the Luria-Delbrück fluctuation test (FT), which 

was recently used to identify genes related to cancer persistence against cancer drugs 

(14). Cancer persisters are similar in phenotype to bacterial persistence but biochemi­

cally unrelated. We used a similar approach to probe bacterial persistence. The FT was 

first pioneered ~80 years ago when Luria and Delbrück demonstrated that genetic 

mutations arise randomly in the absence of selection but not in response to the 

selection (15). They were studying phage (bacterial virus) infections. During that time, 

it was debated whether mutations leading to resistance were directly induced by the 

virus (Lamarckian theory) or if they developed randomly in the population before viral 

infection (Darwinian theory). They designed an elegant experiment where single cells 

were isolated and grown into clones and then infected by a phage (Fig. 1a). The number 

of resistant bacteria was counted across clones. Suppose mutations are virus induced 

(i.e., no heritable genetic component to resistance), where each cell has a small and 

independent probability of acquiring resistance. In this case, clone-to-clone fluctuations 

in the number of resistant cells should follow Poisson statistics (a memoryless process). In 

contrast, if mutations occur randomly before viral exposure (spontaneous mutation), the 

quantity of surviving bacteria will vary considerably across clones depending on when 

the mutation arose in the clone expansion. The data clearly showed a non-Poissonian 

skewed distribution for the number of resistant bacteria, validating the Darwinian theory 

of evolution (15) (Fig. 1a). This work led to a Nobel Prize, and the FT remains the most 

commonly used method to measure mutation rates in microbes (16).

While Luria-Delbrück focused on irreversible genetic alterations driving phage 

resistance, here, we use the FT to elucidate transient cell states that originate via 

reversible non-genetic mechanisms (14, 17–19). Notably, this generalized FT can be 

applied when single cells reversibly switch between drug-sensitive and drug-tolerant 

states even before treatment. Clone-to-clone fluctuations can be exploited to quantify 

these switching rates rigorously (20). This approach has been key in deciphering drug-

tolerant cancer cells that arise stochastically even before drug exposure. Thus, cancer 

cells have a bet-hedging mechanism to survive sudden hostile extracellular environmen­

tal changes (14, 17, 18). Here, we are exploring “primed cells” (cells prepared for stress 

and arise by a rare, transiently inherited cell state) present before the treatment and 

prolonging survival once treatment begins (Fig. 1b through e).

In this study, we applied the FT to indicate some cells are prepared for stress and have 

an inherent transient memory. We applied this approach in conjunction with mathemati­

cal modeling to elucidate stochastic phenotype switching in response to antibiotic 

stress, an inherent survival strategy that gives flexibility to a clonal population. Our work 

demonstrates how heritable transient cell state changes can lead to variation in persister 

numbers. Exploring this phenomenon can shed light on how bacteria endure stress, a 

key question in persister research (21).
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FIG 1 (a) The Luria-Delbrück FT. Each clone starts from a single cell and is then infected by a phage (virus). If resistance 

mutations are virus induced, the number of resistant cells would follow a Poisson distribution across clones. In contrast, if 

mutant cells arise spontaneously prior to viral exposure, there will be considerable clone-to-clone fluctuations in the number 

of surviving cells, including mutations that happen early in the lineage expansion causing many cells to be resistant. (b) 

FT to determine if some cells are primed for stress. This design follows the same experimental setup as (a), but it uses 

antibiotic stress and measures variation in persister cells (cells in a repressed cellular activity state by having transient gene 

expression change) across the clones. If persisters are antibiotic induced, then the number of persister cells would follow 

(Continued on next page)
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RESULTS

Primed cells are prepared for stress before antibiotic treatment

Bacterial populations are heterogeneous, even in log growth phase in a well-controlled 

lab environment and especially in natural systems (22, 23). The quantification of persister 

numbers often have huge variations with large error bars (SD or SEM), sometimes 

with hundreds of fold differences (24–26). We used defined media [MMB+ (27, 28)], 

which contains only chemically known components, to minimize variations between 

experiments. We optimized and standardized our experimental design and reduced the 

internal error rate to below twofold. Much of this error comes from the compounding 

imprecisions from multiple pipetting (all pipets have an error rate, and these experi­

ments require serial dilutions). Despite reducing the error rate, we noticed that there 

would occasionally be huge outliers (up to 100-fold higher or lower than the average).

We determined the typical persister variation in an E. coli population (noise control 

[NC]) is higher than our internal error. We grew a culture to mid-log phase and then 

divided it into 48 wells. We then treated it with ampicillin (Amp) or apramycin (Apr) 

for 3 h, followed by a persister assay (Fig. 1c). This resulted in a variation of approxi­

mately 6-fold for either antibiotic. These results do not explain the 100-fold changes 

that we occasionally observed. Unable to explain the variation at the population level, 

we wondered if a “memory” was passed down over several generations and skewed 

our data. We set out to test for variations from a single cell using an FT (14, 17, 18). 

Cultures were diluted to about 0.5 cell/well [Limiting Dilution assay (29, 30) in a 96-well 

microplate; on average, 48 wells had growth, and 48 wells did not (Fig. 1d)]. Cells were 

then grown to an optical density (OD) of 0.4–0.6 (log phase) and treated with Amp for 

3 h. Most (but not all wells) reach the desired OD range simultaneously. We use two 

96-well plates and pick 48 clones within the OD range to deal with this. After treatment, 

the cells were plated on Petri dishes and grown, and colonies were counted to get the 

colony forming unit per millimeter. We first tested lethal Amp dosages for 3 h, and 

the persister range was vast: ~60- to 100-fold. We tested this several times (Fig. 2a; 

eight separate experiments with ~48 clones/experiment), and there is consistently an 

extensive range of persister variation among the clones. We wondered if this was specific 

to Amp, so we tested another class of antibiotic, Apr. Amp targets the cell wall (31), while 

Apr targets the 30S ribosomal subunit (32). Again, the persister range was vast: ~40- to 

70-fold range with Apr (Fig. 2a). It is not surprising that the range of survival for the two 

antibiotics is different, as Amp and Apr target distinct cellular processes, effect the cell 

differently, and kill at different rates. It is important to note that these results are not due 

to a carryover from stationary phase. The cultures were in exponential phase and diluted 

to a single cell, which was grown to exponential phase (~1E + 8 CFU/mL; ~OD 0.5). At this 

point, any remnants from stationary phase were lost.

This left two competing hypotheses to explain the extensive range in persistence: 

either (1) mutation* or (2) some cells are prepared for stress (“primed cells”), and these 

primed cells exhibit specific characteristics that allow them to prepare prior to the stress. 

FIG 1 (Continued)

a Poisson distribution across clones. In contrast, if there are primed cells with a unique transient gene expression profile 

(caused by non-genetic factors) that allows them to prepare for stress before antibiotic exposure, there will be considerable 

clone-to-clone fluctuations in the number of surviving cells. Transient gene expression changes can be heritable and happen 

early in the lineage expansion, causing many cells to become primed for stress with a transient memory. (c) Persister variation 

check in a single population, referred to as noise control (NC). Cultures were grown to mid-log phase, ~1E + 8 CFU/mL, 

separated into 48 wells, treated with an antibiotic, 0.1 mg/mL Amp or Apr, and plated before and after antibiotic treatment 

to get percent survival. (d) Persister variation check in clonal populations started from a single cell, referred to as FT. Cultures 

were diluted to 0.5 cell/well and treated similarly to (a). (e) A model for competing hypotheses; Induced persistence: persisters 

are induced due to stress, and no difference will be observed in persister variation between clonal populations and noise 

control. Primed persistence: some cells are primed prior to stress; thus, some clonal populations will have more prime cells than 

others, and the persister variation will be higher in the clonal populations than in the NC.
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*Although persisters are not caused by mutations, we needed to assess if a mutation 

causes this extensive persister range. We tested for antibiotic resistance by streaking 

clones on antibiotic plates, and no resistant colonies grew (Fig. S1a). To further test for 

mutations, we diluted the high persister clone (Hp clone) into 0.5 cell/well and repeated 

the FT. If an Hp clone was mutated, the average persister percentage would increase, and 

the range would decrease. However, they had the same average persister percentage 

and similar range (~60- to 100-fold) in both fluctuation experiments (Fig. 2b i). It is well 

established that a higher minimum inhibitory concentration (MIC, the minimal antibiotic 

required to hinder growth) corresponds with a higher resistance level, and persisters can 

survive in the presence of an antibiotic without an increase in the MIC after treatment 

(33). Indeed, models of resistance often define it as an increase in the MIC (33).

In addition, according to the guideline of studying persisters (33), the MIC level of 

persisters should be checked after the first round of antibiotic treatment. If the primed 

FIG 2 Some cells are prepared and primed for stress. (a) Results support primed persistence hypothesis: Population-level variation for Amp and Apr: 

approximately 6-fold (experimental setup described in Fig. 1c). FT from single cell level (experimental setup described in Fig. 1d): treatment with Amp or Apr 

shows 60- to 100-fold and 40- to 70-fold variation, respectively. (b) Mutations do not cause persister level variation among the clones. (i) FT with wild-type 

clonal populations and FT with clonal populations started from a high persister clone have a similar average persister level and persister range among 48 clones. 

(ii) Minimum inhibitory concentration (MIC) test showing no change in MIC level in high persister clones. ***P < 0.001.
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cells developed resistance, their MIC would change. However, the MIC remained the 

same as shown using a common clinical and laboratory (34) MIC test strip (Fig. 2b ii). 

These results undoubtedly ruled out mutations as the cause and led us to test Hypothe­

sis 2, that is, some cells are primed prior to stress.

Slight changes in cell density are not the primary factor for variation in 

persister number in exponential phase

Bacterial persistence levels could be controlled by density-dependent response. In 

addition, several studies showed that persister fraction increases sharply with increase of 

cell densities or when the population moved from mid-exponential to stationary phase 

(35, 36). We specifically tested persister levels in our FTs in exponential phase and not 

stationary phase to minimize the stationary phase effect. Before testing Hypothesis 2, we 

wanted to know how much cell density in exponential phase could skew our results by 

testing the overall persister range with slightly different cell densities using FTs. For FTs 

in Fig. 2a, cells were harvested at OD 0.4–0.6, since the persister levels are remarkably 

similar at these ODs. We detected no correlation between cell density and percent 

survival in 15 FTs (7 Amp and 8 Apr) and a weak correlation in FT3 with Amp treatment 

(Fig. S1b i). Thus, to further determine how much cell density affects the persister levels, 

we tested persister levels from OD 0.3–0.7 in ~0.1 OD intervals in a general population 

treated with 3 h Amp or Apr. At these ODs, cells are in exponential phase, and cell density 

ranges from ~2E07 to 2E08 CFU/mL. No appreciable correlation was observed with either 

antibiotic (Fig. S1b ii).

Cells are primed for persistence, not short-term tolerance

Short-term tolerance can mask persistence, and experimental evidence has shown that 

the phenotypes are distinct from each other (37). Short-term tolerant cells are dividing 

and likely have different survival mechanisms than persisters. In the initial stage of 

antibiotic treatment, there are far more short-term tolerant cells than persister cells (Fig. 

3i). We did a similar FT with clones grown from a single cell and treated them with a 

lethal Amp concentration (0.1 mg/mL). Percent survival was determined for 1 h and 3 h 

of treatment using persister assays (27, 28, 38). Short-term tolerance at 1 h does not 

indicate the level of persistence at 3 h with lethal Amp; no correlation at 1 h vs 3 h 

population (r2 = 0.02). If the primed cells are advantageous for long-term survival, we 

expect the high persister populations observed at 3 h treatment to stay high with more 

prolonged antibiotic exposure. As expected, percent survival at 3 h highly correlates with 

percent survival at 4 h (r2 = 0.85) and 5 h (r2 = 0.78) in Amp-treated populations (Fig. 

3). Therefore, our results demonstrate that cells are primed for persistence and not for 

short-term tolerance.

Primed cells have transient memory

Next, we determined whether high persister clones arise randomly due to noise in gene 

expression levels or in rare events where the gene expression level (memory) is passed 

down for several generations. We hypothesize that there is a transient memory at the 

transcriptomic level. The null hypothesis is that there is no memory and the variation 

range in persistence is random and solely due to noise. To test this, we divided and 

diluted the culture between 1:1 and 1:100 into separate microplates and allowed them to 

grow (Fig. 4a). If the null hypothesis is correct, there should be no correlation between 

divided cultures. However, persister levels were strongly correlated until the 1:20 dilution, 

and the memory is completely lost after a 1:100 dilution, supporting our transient 

memory hypothesis (Fig. 4b). We hypothesize that the memory and loss of memory that 

we observe with Amp could also be observed with another class of antibiotics. If so, this 

would show that transient memory is important to cell survival for different types of 

stress. We further confirmed the transient memory hypothesis with Apr as we see 

memory when cells are diluted 1:5, but memory is lost when diluted 1:100 (Fig. 4c). These 
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results also add additional support that primed cells are not mutants because 1:100 

dilution led to no long-term (genetic) survival phenotype (in several different clones), as 

a resistance mutation would allow.

We hypothesize that the same primed cells will allow higher persister levels when 

using antibiotics from classes that target distinct cellular processes, e.g., Amp and Apr. If 

both Amp and Apr primed cells use an akin mechanism, we expect a reasonable 

correlation between their persister numbers per well. If they do not correlate, diverse 

types of prime cells likely exist. To understand this, we did experiments similar to Fig. 4a, 

but we tested Replica 1 with Amp and Replica 2 with Apr. In this case, both replicas had a 

transient memory, and the memory was lost by 1:20 dilutions (Fig. 4d).

Primed cells are not spontaneous persisters

Previous researchers proposed spontaneous persisters formation. This elegant hypothe­

sis proposes that persisters can be generated stochastically at a constant rate during 

exponential phase growth and switch to a dormant or a protected state (distinct slower 

growth rate than other cells, and this slowed growth rate is maintained for several 

generations and turn into persisters in the presence of stress) (5, 21, 33). In addition, they 

proposed that during exponential growth, these phenotypic variants (e.g., persister 

formation) could also be induced by stress (5). However, several research groups 

criticized the concept of spontaneous persister formation (35, 39), questioning if it exists 

or is a proper terminology because spontaneous persisters were defined as dividing cells 

(5). In the original paper where persistence was proposed in 1944, persisters were 

defined as non-dividing cells (40). We currently use the original definition of persisters; 

they do not divide. In addition, if persister formation is only induced by stress, all cells in 

the population should turn into persisters instead of a small percentage of the popula­

tion, or it should be random (no memory as we have shown here). In addition, induced 

persister formation (or sense-and-respond strategies) could be costly for the cells 

because it might necessitate constitutive expression of essential sensory machinery (41).

FIG 3 Cells are primed for persistence, not for short-term tolerance. (a) A simplified model of population 

decay indicates a biphasic death curve where susceptible cells or short-term tolerant cells die quicker 

than persisters. (b) Compare each clone’s short-term tolerance levels (1 h Amp) to their persister level (3 h 

Amp). (c) Compare each clone’s persister level at 3 h Amp to 4 h Amp (left) or 5 h Amp (right) (long-term 

persister level). About 48 clones were grown from a single cell and treated with Amp (0.1 mg/mL), and 

the percent survival was determined at different time points. Linear regression lines are shown in b-c. r, 

Pearson’s correlation coefficient; ns, not significant.
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On the contrary, primed cells (already prepared for stress in a population through 

heterogeneity) could provide a simple mechanism for adaptation to stresses they might 

or might not encounter. A key phenotype of spontaneous persisters is that they grow 

slowly. However, we did not observe any significant growth rate changes among the 

clones, and recent results demonstrate that persisters are not slow growing before 

antibiotic treatment (42). To further explore whether prime cells are reliant on slow 

growth, we constructed a simple mathematical model (explained in the Methods), where 

we plotted the fraction of persister cells 
y t

x t
 as a function of time for persister prolifera­

tion being 100%, 90%, 80%, 50%, and 0% of the proliferation rate of the drug-sensitive 

cells. We observed when persister cells do not proliferate (kp = 0 , their fraction rapidly 

dilutes back to the steady-state level in a few generations; Fig. 4e). These results show 

that a high correlation in persister maintenance, as seen in Fig. 4b for several generations, 

requires persister proliferation. For example, one requires kp = 0.9kd for it to take roughly 

four generations for the fraction of persisters to fall to 50% of its initial levels, similar to 

the drop in the correlation between replicates to 0.5 in Fig. 4b. Our evidence clearly 

shows that primed cells are not persisters (non-dividing cells) before antibiotic 

FIG 4 Prime cells have transient memory. (a) FT setup to check prime cell’s memory: cultures were diluted to 0.5 cell/well, grown to mid-log phase (~1E + 

8 CFU/mL), each clone is divided and diluted into two replicates, grown to mid-log, and then tested for persistence. (b and c) Prime cells have transient memory 

for several generations before 3-h Amp and 3-h Apr treatment. The persister levels correlate even with 1:20 dilutions between Replicates 1 and 2, suggesting 

a strong memory within the primed subpopulation. The memory is eventually lost with a 1:100 dilution. (d) Prime cells show a weak memory when split and 

tested with Amp vs Apr. *Antibiotic: Amp vs Amp (replicates 1 and 2 both treated with Amp) or Apr vs Apr (replicates 1 and 2 both treated with Apr) or Amp 

vs Apr (replicates 1 and 2 treated with Amp and Apr, respectively). Axes are percent survival. r, Pearson’s correlation coefficient; ns, not significant. (e) Plot 

representing the fraction of persisters 
y t
x t

 as predicted by the differential equation model (see Methods), assuming that initially 10% of cells where persisters and 

the steady-state persister level was fs = 1%. The five lines are plotted assuming the persister proliferation rate, kp = kd, 0.9kd, 0.8kd, 0.5kd , 0 where kd = 1 and 

k2 = kp/10. The black dashed lines show the numbers of generations it takes for t =
f 0 + fs

2  , when kp = 0.9kd .
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treatment, since they grow and maintain a transient memory. Although primed cells are 

not spontaneous persisters, it does not mean they are unrelated.

DISCUSSION

Phenotypic heterogeneity is a fact of life and exists in both unicellular and multicellular 

organisms (1, 2, 4). This latent variation in phenotypic plasticity can be revealed in 

an unfavorable environmental condition (4). Noise in gene expression can drive this 

heterogeneity, and heterogeneity is hypothesized to be a key player that regulates 

bet-hedging strategies to endure harsh environmental fluctuation, such as bacterial 

persistence (2, 43). Persisters have reduced efficacy to antibiotic treatment and are a 

key contributor to the rise in antibiotic resistance. Unraveling the underlying molecular 

mechanisms of heterogeneity is, therefore, crucial to comprehend bacterial persistence.

In this study, we used a powerful FT framework to infer transient cell states that 

arise via reversible and non-genetic mechanisms, recently employed in probing cancer 

persistence (14, 17, 18), to find hidden features of bacterial persistence. Using the FTs, 

we tested the variation between clonal populations that originated from an identical 

clone and showed that a subset of the population, primed cells, have a “memory” 

that leads to high numbers of persisters. Our results demonstrate that under the same 

conditions, phenotypic heterogeneity often occurs in a range of ~60- to 100-fold and 

~40- to 70-fold for Amp and Apr, respectively, despite (likely) being driven by a stochastic 

noise in gene expression. The relative consistency in primed cell numbers suggests that 

changes in specific genes result in primed cells, although we did not experimentally 

explore the mechanisms of primed cells in this work. Having high numbers of primed 

cells is a selective advantage that offers phenotypic plasticity to a bacterial population 

experiencing frequent harsh environmental stress. This heritable transient state might 

be favored in the course of evolution as a survival tactic compared to DNA mutation 

because it requires no long-term commitment. A recent paper demonstrated a transient 

cellular memory in E. coli and that inheritance of non-genetic elements can help maintain 

cellular memory (44), thus reducing variation among new cells for a few generations (44). 

They found that some inherited elements, cell size, and the time required for cell division 

were maintained for nearly 10 generations (44).

We provided a mathematical model that supports and provides clues to the 

regulation of transient memory, but we have not yet identified the regulatory mecha­

nism(s) behind primed cells. We certainly do not want to propose any specific hypothe­

ses for the regulatory mechanisms of prime cells because after over 80 y of research, 

the persister literature is scattered with assertions of “essential” genes for persisters. 

However, none thoroughly explains the persistence mechanism, and stating a mecha­

nism for primed cells is premature. Moreover, it would only add more confusion to a 

field already jumbled with multiple proposed persistence mechanisms. The list is long, 

but here, we will showcase some examples of proposed mechanisms underpinning 

persistence and how primed cells may be related. The Balaban group has provided 

strong evidence that growth arrest is connected to persistence (33, 45), although, as 

we previously mentioned, primed cells are not spontaneous persisters. However, primed 

cells may be closer to growth arrest than susceptible cells. If this closeness to growth 

arrest were passed on for generations, it would match our observed results.

It was once thought and is still often cited that toxin-antitoxin (TA) systems are 

essential to all persister phenotypes. However, this is incorrect because a bacterial cell 

containing no known or hypothetical TA systems produces strong persister levels (38). 

Instead of being essential to persistence, TA systems can help regulate persisters. Primed 

cells may have a different ratio of toxin to antitoxin inside the cell, allowing them to enter 

persistence more readily than susceptible cells. If the TA ratio was passed down several 

generations, it could explain the epigenetic memory in primed cells. Previous work by 

the Balaban group hinted that TA systems could be important to persister variations (46). 

They probed the mode of action of HipBA, a TA system where HipA is the toxin and HipB 

is the antitoxin, by artificially overexpressing the HipA toxin. The more they increased the 
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HipA toxin levels, the longer it took colonies on a plate to form (growth arrest increased). 

Interestingly, they observed that growth arrest occurred at two different time scales 

with 11-min and 220-min delays. They proposed that the antitoxin completely rescued 

some cells, and their growth was similar to that of cells where HipA was never artificially 

expressed. While in other cells, it took longer for HipB antitoxin to restore growth. Their 

results do not fit our findings because of the evidence we showed that primed cells 

are not spontaneous persisters and do not have an apparent growth arrest. In addition, 

because the majority of the cells (~99.9%) are not persisters (~0.1%), a significant time 

delay for them to grow (from 11 min to 220 min) would result in persister levels rapidly 

decreasing with each division. They would fall too quickly to see the transient memory 

we observe (Fig. 4e) (we assume, because it seems highly unlikely, that primed cells 

are not produced at an equivalent rate to those not dividing). However, as previously 

mentioned, this does not exclude primed cells from being close to growth arrest and 

passing this information on for generations. In order to determine if TA systems affect 

primed cells, a future experiment may be to look for primed cell formation in a cell 

lacking all TA systems, similar to what Hossain et al. (38) did.

The Wood group’s persuasive work has shown that ribosomal dimerization is 

important for persistence. The disruption of ribosomal dimerization in E. coli, e.g., an rmf 

knockout, results in reduced long-term survival rates during starvation and dramatically 

reduced persister levels but still results in persister cells (47). Because persister cells are 

still formed even if the cell lacks the capacity to dimerize ribosomes, this cannot be the 

essential mechanism of persisters. It is possible the expression of ribosomal dimerization 

genes are upregulated in primed cells (by some unknown means) and passed down 

several generations. This could explain the outcomes we observe. Primed cells could be 

related to TA systems, ribosomal dimerization, growth arrest, or something else. In each 

case, these options only provide an intermediate method (e.g., higher toxin level, higher 

dimerization, or closeness to growth arrest) to get to primed cells but not the mechanism 

that sparked their disruption.

We considered if primed cells were heteroresist cells, but this is not the case. 

Heteroresistance is an intriguing and poorly understood type of resistance where a 

phenotypically unstable and minority-resistant subpopulation (typically undetectable 

and caused by genetic mutation) co-exists with the susceptible population (48). For 

example, Choby et al. (48) showed that a small subpopulation contains beta-lactamases 

that, at low levels, are ineffective at resisting beta-lactams. However, through gene 

amplification (mutation) of these genes, cells can resist higher levels of beta-lactams. 

Interestingly, the heteroresistance pre-existed as a small population before antibiotics 

and can grow in the presence of antibiotics; however, they can return to the pre-selec­

tion frequency if grown over generations in the absence of the antibiotic (48). This 

phenotype is similar to what we observe with primed cells, but primed cells are not 

heteroresist cells caused by a change in DNA. Heteroresist cells are antibiotic resistant 

and will not be killed by the antibiotics over time, but primed cells continue to die 

with lethal antibiotic exposure. Primed cells do not grow in the presence of antibiotics, 

as we tested at different time points and persisters eventually decrease over time. In 

addition, high persisters formed from primed cells will be killed by the antibiotics over 

days of treatment, even in a highly nutrient-rich, buffered environment (data not shown), 

unlike heteroresist cells. Choby’s group diluted heteroresist cells (into 1:1,000 times/day, 

in total 1:1018 times) for 6 days to return to the pre-selection frequency, whereas primed 

cell memory is effectively lost with a 1:100 dilution. In addition, we show primed cells 

exist when treated with a combination of beta-lactam (Amp) and a ribosomal targeting 

antibiotic (Apr). An increase in the number of beta-lactamases that a cell produces will 

not allow cells to survive better against Apr. Our experiments show that primed cell 

levels correlate when splitting a culture and testing Replicate 1 with Amp and Replicate 

2 with Apr (Fig. 4d). This experiment further supports that primed cells are not the 

heteroresist cells identified by the Choby’s group. It is defined as an unstable mutation, 

and the resistant subpopulations can revert to susceptibility in the absence of antibiotic 
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stress within a limited number of generations. Although 50 generations is most often 

used as a limit (49) and the loss rates for heteroresistance are typically from 25 to 27 

generations (49), we see a loss in about seven generations (1:100 dilution). This much 

quicker loss in survival levels means that we are looking at something different than 

the Choby’s group. We have proposed a change in the transcription level leads to 

primed cells. With the current evidence, we state that primed cells lead to persisters, 

not heteroresist cells, because no researchers have classified and provided experimental 

evidence that heteroresist cells can be caused by a non-genetic mechanism (caused by a 

non-mutation) (49), persister cells do not form through mutations, and primed cells that 

result in persisters are not resistant.

A few pathways for epigenetic memory related to stress survival are already known in 

bacteria. DNA methylation is a common method of epigenetic regulation in organisms, 

and many forms of methylation have been identified in bacteria (50–52). Some are 

related to antibiotic resistance or persistence (53, 54). For example, the deletion of dam, 

which is responsible for adenine methylation, can lead to lower persister numbers in 

pathogenic E. coli strains (55). Another recent study showed multisite phosphorylation 

may regulate the phenotypic variability in a bacterial population. A gene encoding 

ppGpp Synthetase, sasA, is regulated by multisite phosphorylation of WalR and exhibits 

elevated levels of extrinsic noise in gene expression. Due to this noise, cells having 

elevated levels of sasA expression have increased short-term antibiotic tolerance (13). 

Another possible mechanism could be ploidy. The Brynildsen group showed that ploidy 

or chromosome abundance produces phenotypic heterogeneity that affects persister 

numbers. Stationary-phase E. coli cells with two chromosomes had ~40-fold more 

persisters than cells with one chromosome against fluoroquinolone antibiotic (56).

We previously provided strong evidence that no single gene causes persistence, but 

disruption of networks leads to persistence (27). This assertion means that multiple 

genes could lead to persistence as long as the network disruption was substantial. 

Disruptions of essential cellular networks can lead to growth arrest, which aligns well 

with the Balaban group’s work on the connection between growth arrest and persistence 

(33, 45). This means there are likely several gene disruptions or causes of growth arrest 

that could lead to persistence. We hypothesize (like persisters) that multiple mechanisms 

could cause primed cells. Currently, we are working on the regulatory mechanism(s) of 

primed cells, and we do not propose any specific mechanism because this finding is 

entirely new, and multiple mechanisms could lead to primed cells.

In this study, we have not dealt with viable but nonculturable (VBNC) cells. Several 

studies showed VBNCs and persisters share similar phenotypes, and the major difference 

between them is that after stress (e.g., antibiotics), persisters can grow on Petri plates, 

while VBNCs can only grow in liquid. Currently, there is a furious debate if VBNCs are 

actually persisters, simply dying cells, or if VBNCs even exist (57–61). A recent study called 

into question many of the indicators that are currently used to classify bacterial cells as 

alive or dead (62).

We tested if VBNCs could be resurrected using the 0.5 cell/well technique. The 0.5 cell/

well is based on cell counts on Petri dishes (CFU/mL). Often, VBNCs are cited as being at 

equal concentrations (using a hemocytometer and microscope) as CFUs (63, 64), but we 

did not observe this. We observed a ~20% count difference (cell/mL) between hemocy­

tometer and agar plate count, which is within the hemocytometer’s manufacture error 

rate. However, still, if VBNCs are present and grow only in liquid, we expect 1 cell/well in 

a 96-well plate when using CFU/mL from Petri dishes. Instead, we consistently get ~48 

wells with growth. We also consistently get growth in ~24, ~12, and ~6 wells when we 

use 0.25, 0.125, and 0.0625 cell/well, respectively, with an r2 of 0.97, when plotting the 

wells with growth vs cells/well based on CFU/mL. Supplementing media with pyruvate 

may resurrect VBNCs quicker (65, 66). We tested the addition of pyruvate after antibiotic 

therapy with two carbon sources: glycerol and glucose. VBNCs did not resurrect; only ~48 

wells had growth.
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Recognizing that the previous assays do not account for all the nuances of VBNCs, 

we tested whether VBNCs would alter our overall results using 2 cells/well (based on 

CFU/mL). Again, we see a high variation with Amp treatment, ~78-fold (Fig. S1c). This 

shows that if there are VBNCs, they are not skewing our results and that we still observe 

primed cells even with 2 cells in each well. It also demonstrates that the FT does not 

require 1 cell/well, which is an important finding because it is unrealistic to assume that 

every well we test will always have 1 cell when diluted to 0.5 cells/well.

Overall, our findings show that a subset of the population has a transient memory 

allowing them to prepare for antibiotic stress; we refer to them as “primed cells.” We 

call these cells primed cells instead of persister cells for consequential reasons. The 

word “primed” means prepared or ready or conditioned for prompt action or use. These 

cells are prepared/ready and conditioned for prompt action to survive lethal antibiotic 

stress. Our results show that primed cells are not dormant (primed cells grow and divide, 

unlike persister cells), and they must divide because bacteria cannot have epigenetic 

memory passed down for generations unless cells are dividing. High primed levels lead 

to high persister levels over several generations. Primed cells are prepared and can hold 

a transient epigenetic memory, but the mechanism behind this memory is currently 

undefined. Further exploration is needed to determine the regulatory mechanism(s) 

behind this cellular memory and the contribution of non-genetic factors in phenotypic 

heterogeneity.

MATERIALS AND METHODS

Microbial strains and media

Escherichia coli DH5αZ1 having the p24KmNB82 plasmid was used in this study. We used 

this strain because DH5αZ1 was a derivative of E. coli K12 strain, and it has been used in 

our previous persistence studies (27, 28). The cultures were grown in the defined media 

MMB+ (27, 28) with thiamine (10 µg/mL 0.5% glycerol [or glucose]), Km (25 µg/mL), and 

amino acids (40 µg/mL) or on Miller’s lysogeny broth (LB) agar plates +Km (25 µg/mL). 

For pyruvate assays, MMB+ media were supplemented with 2 mM sodium pyruvate. All 

cultures were incubated at 37°C and shaken at 300 rpm.

Population-level variation check (noise control)

We used two different types of antibiotics, Amp [target cell wall (31)] and Apr [target 

30S ribosome (32)], for all FTs. We started with a mid-log phase E. coli culture having ~1E 

+ 8 CFU/mL (~OD 0.5), subsequently divided the culture into 48-well (48 replicates) of 

96-Well Optical-Bottom Plate with Polymer Base (ThermoFisher) and treated them with 

Amp (0.1 mg/mL) or Apr (0.1 mg/mL) for 3 h at 300 rpm, 37°C in a FLUOstar Omega 

microplate reader. Persister percentage was calculated by comparing CFUs per milliliter 

(CFU/mL) before antibiotic treatment to CFU/mL after antibiotic treatment. Plates were 

incubated at 37°C for 42–48 h and then scanned using a flatbed scanner. Custom scripts 

were used to identify and count bacterial colonies (67, 68).

Fluctuation test from a single-cell level

We started with a log phase E. coli culture with ~1E + 8 CFU/mL (~OD 0.5) and subse­

quently diluted the culture into 0.5 cell/well in a 96-Well Optical-Bottom Plate and grown 

in a FLUOstar Omega microplate reader at 37°C, 300 rpm. Each dilution experiment was 

done twice for each single-cell experiment to confirm the dilution, and cultures were 

only picked when 50–60% of the well had growth (48–55 wells out of 96 wells). The 

single cell was proliferated to mid-log phase ~1E + 8 CFU/mL (~OD 0.5) and treated with 

Amp (0.1 mg/mL) or Apr (0.1 mg/mL) for 3 h, 300 rpm at 37°C. The persister percentage 

was calculated in the same manner described in the above section. The splitting and 

dilution test was done exactly as above, except when the single cell proliferated into 

mid-log phase, the cultures were separated and diluted into two plates with pre-warmed 
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MMB+ media. Then, the cultures were grown to exponential phase, and persister assays 

were performed.

Antibiotic resistance assay

After each FT, clones were diluted 1:100 in 1-mL LB media and were grown for 12 h. The 

cultures were then centrifuged for 3 min at 16,000 x g. After that, the supernatant was 

removed, and the pellet was streaked with and without antibiotic containing LB agar 

plate and incubated at 37°C.

Minimal inhibitory concentration test

Clones, including high persister clones from FTs, were diluted 1:100 in 1-mL LB media 

and grown for 12 h. First, 0.2 mL of culture was spread on an LB agar plate, and then an 

MIC strip was placed on top of it and incubated at 37°C.

Mathematical model

To understand prime cell proliferation rate, we considered a model of persister formation 

where drug-sensitive cells switch to a persister state with a rate k1 , and persister cells 

revert back to the drug-sensitive state with a rate k2 . We assumed the rate of cellular 

proliferation in the drug-sensitive and persisters states to be kd and kp , respectively. In 

an expanding cell colony, the number of persister cells can be captured by the following 

system of ordinary differential equations:

dx
dt

= kdx t − kdy t + kpy t

dy

dt
= kpy t + k1x t − k1y t − k2y t

where x t  and y t  are the total number of cells and the number of persister cells, 

respectively, at time t. By setting,

k1 =
fs k2 + kd − kp 1 − fs

1 − fs

ensures that the steady-state persister fraction limt→∞

y t

x t
= fs. We considered a 

clone that initially had a high fraction of persister cells. We used the model to explore 

the relaxation of persister numbers back to steady-state levels, and how this time scale 

particularly depends on the persister proliferation rate kp . We then plotted the fraction 

of persister cells 
y t

x t
 as a function of time for persister proliferation being 100%, 90%, 

80%, 50%, and 0% of the proliferation rate of the drug-sensitive cells.

Cell counting

Initially, using the common protocol for a hemocytometer, microscopic counting, and 

live/dead dye, we saw about equal “VBNCs” per non-VBNCs in log and stationary phase 

and with lethal antibiotics. This is consistent with the literature (63, 64). However, we 

adjusted our counting protocol to match the manufacturer’s recommendation. As a 

result, we no longer see two times the VBNCs compared to the CFU/mL; instead, the 

microscope count and Petri plate count only varied by ~20–25% in log phase.

We attempted to use several live-dead dyes to calculate viability after antibiotic 

treatment, but we found these assays to be quite unreliable, as recently cited in the 

literature (57, 69–72). So, we took the other approaches we described.
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