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Predicting Neuromuscular Engagement to Improve
Gait Training With a Robotic Ankle Exoskeleton

Karl Harshe, Jack R. Williams , Toby D. Hocking, and Zachary F. Lerner

Abstract—The clinical efficacy of robotic rehabilitation interven-
tions hinges on appropriate neuromuscular recruitment from the
patient. The first purpose of this study was to evaluate the use of
supervised machine learning techniques to predict neuromuscular
recruitment of the ankle plantar flexors during walking with ankle
exoskeleton resistance in individuals with cerebral palsy (CP). The
second goal of this study was to utilize the predictive models of plan-
tar flexor recruitment in the design of a personalized biofeedback
framework intended to improve (i.e., increase) user engagement
when walking with resistance. First, we developed and trained
multilayer perceptrons (MLPs), a type of artificial neural network
(ANN), utilizing features extracted exclusively from the exoskele-
ton’s onboard sensors, and demonstrated 85–87% accuracy, on
average, in predicting muscle recruitment from electromyography
measurements. Next, our participants completed a gait training
session while receiving audio-visual biofeedback of their personal-
ized real-time planarflexor recruitment predictions from the online
MLP. We found that adding biofeedback to resistance elevated
plantar flexor recruitment by 24 ±  16% compared to resistance
alone. This study highlights the potential for online machine learn-
ing frameworks to improve the effectiveness and delivery of robotic
rehabilitation systems in clinical populations.

Index Terms—Exoskeletons, deep learning methods, physical
human-robot interaction, wearable robotics.

I. INTRODUCTION

MPROVING mobility for those with neuromuscular disor-ders
such as cerebral palsy (CP) is an essential, yet largely unmet,

rehabilitation goal. Left untreated, deficits in strength,
balance, and coordination associated with CP and similar dis-
eases can result in decreasing mobility across the lifespan [1].
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Functional gait training is the predominate focus of routine phys-
ical therapy for children with CP. Current approaches however,
do not provide effective tools necessary to target the coordination
and recruitment of specific muscle groups, like the ankle plantar
flexors, which play a critical role in efficient walking [2].

Wearable robotic systems, particularly those providing re-
sistance targeting specific muscle groups and functions, have
emerged as potential tools for more effectively targeting appro-
priate timing of specific muscle groups within a functional con-
text [3]. Current implementations of rehabilitative exoskeletons
range from tethered multi-joint devices with complex learning
algorithms, to single joint systems that control video games
[4], [5], [6], [7]. In the future, these systems could deliver gait
training at an appropriate frequency to elicit long-term gains
(e.g., daily training at home) [8]. Machine learning has been
used to improve human interactions with the control of wearable
devices for tasks including EMG based grasping as well as
upper limb rehabilitation [9], [10]. However, we are not aware
of any other study that has leveraged machine learning to predict
neuromuscular engagement during robot-resisted gait training.
The ability of robot-aided functional gait training to facilitate
motor learning depends on whether a user is actively engaging
appropriately with the system [11]. Left unmonitored, individ-
uals can adapt to the constraints posed by the robotic system in
such a way that minimizes the desired neuromuscular response.

Monitoring the neuromuscular response (i.e., muscle recruit-
ment) during gait training with robotic resistance is therefore
necessary for optimizing rehabilitation outcomes as it would
allow for appropriate intervention in the form of physical ther-
apist instruction or automated performance biofeedback which
appears most effective when both audio and visual feedback
are used together [12]. Real-time visual and audio biofeedback
based on electromyography (EMG) signals has been shown to
have positive effects on rehabilitation outcomes [13], [14]. How-
ever, due to time, cost, reliability, and complexity constraints,
real-time measurements of muscle activity via EMG is often not
feasible nor desirable when monitoring gait training in clinical
and home environments. Therefore, there is a need for the ability
to predict muscle activity responses during gait training directly
from the robot’s integrated sensors. Machine learning techniques
hold potential to predict human-robot interaction [15].

The first goal of this study was to predict neuromuscular
recruitment of the ankle plantar flexors without the need for
EMG electrodes during exoskeleton resisted gait training in
CP. In addressing this goal, we compared the relative accuracies
of generic and custom model architectures. We also leveraged
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TABLE I
PARTICIPANT DETAILS

the interpretability of linear regression models to evaluate the
relative importance of each exoskeleton sensor feature in pre-
dicting recruitment. We hypothesized that ankle angle, ankle
angular velocity, device torque, and plantar pressure measure-
ment inputs into data-driven models would result in accurate
predictions of plantar flexor muscle recruitment in this clin-
ical population. We focused on predicting and incentivizing
plantarflexor muscle activity due its clinical relevance in the
management of CP [16], [17]. The second goal of this study was
to utilize the predictive model of plantar flexor recruitment in
the design of a personalized biofeedback framework intended to
improve (i.e., increase) user engagement when walking with
resistance. We hypothesized that biofeedback based on the
real-time prediction of plantar flexor recruitment would improve
muscle recruitment during resisted walking vs resisted walking
without muscle recruitment biofeedback.

II. METHODS

A. Overview

We developed and trained multilayer perceptrons (MLPs), a
type of data-driven supervised artificial neural network (ANN),
to create subject-specific predictions of neuromuscular re-
sponses. We used features extracted exclusively from the ex-
oskeleton’s onboard sensors to predict synchronized label data
generated from surface EMG activity of the plantar flexor mus-
cles. To assess the importance of custom MLP architectures
on predictive accuracy, we assessed both generic and subject-
specific layer structures. Next, to demonstrate the clinical rele-
vance of the framework, we used the subject-specific predictive
models to provide real-time recruitment biofeedback during a
gait training session.

We received approval for this study by the Institutional Re-
view Board of Northern Arizona University (#986744). Par-
ticipants over the age of 18 years provided written consent;
those under the age of 18 provided verbal assent, with written
consent provided by a parent. Our protocol and hypotheses were
registered with the Open Science Framework prior to enrolling
the first participant [18].

B. Participants

Seven individuals diagnosed with CP were recruited for
participation (Table I). Inclusion criteria were an age between
10-65 years old; a body mass between 40 and 85 kg; a confirmed
CP diagnosis with Gross Motor Functionality Classification
System (GMFCS) level I-III; the ability to walk continuously
on a treadmill for at least three minutes; the ability to follow

both verbal and simple visual instructions; finally, the absence
of any known medical condition that could cause harm or injury
during participation.

C. Robotic Ankle Exoskeleton

We used a custom untethered ankle exoskeleton to deliver
plantarflexor resistance, record feature data for predictive model
building, and stream real-time sensor data for neuromuscular
recruitment biofeedback (Fig. 1). Device characterization and
sensor validation was reported previously [19], [20]. The ex-
oskeleton was a lightweight, bilateral, battery-powered system
that could assist or resist both plantar flexion and dorsiflexion
of the ankle. In a centrally located waist assembly, two 24 V
brushless DC motors (Maxon EC-4pole, 120 watt), one for each
limb, were powered by a 910 mAh LiPo battery. Mechanical
work from the motors were transmitted to an ankle assembly on
each limb via steel cables inside Bowden sheaths. These cables
rotated a pulley at the ankle, which drove a carbon fiber footplate
to resist plantarflexion (Fig. 2).

For this study, a potentiometer-based angle sensor was
mounted in-line with the ankle joint to provide onboard mea-
surement of ankle angle and angular velocity. Force sensitive re-
sistors (FSR), located in the footplate, recorded plantar pressure
and were used to provide stance and swing state information. A
custom low-profile torque sensor located at each ankle joint
recorded real-time applied torque and was used by a closed-loop
proportional-derivative controller, operating at 500 Hz, to ensure
proper torque tracking. The exoskeleton was monitored and
controlled with a MATLAB Graphical User Interface wirelessly
over Bluetooth. System state data were displayed to researchers
and recorded at 100 Hz.

D. MLP to Predict Plantar Flexor Recruitment

We used Scikit-learn, a validated Python machine learning
library, to implement our multilayer perceptron (MLP) [21]. We
selected the MLP structure of an ANN primarily for its abilities
to fit linear and non-linear functions, as well as predict con-
tinuous output values [22]. Two different multilayer perceptron
regressions were used for each participant, a generic model,
and a custom model. The generic model had a relatively simple
three-layer architecture with six fully connected nodes in the
first layer, four fully connected nodes in the second, and two
fully connected nodes in the third, this generic architecture was
selected on the basis of showing the most accurate learning
across participants in pilot testing. There was also a bias term
on each layer and hyperbolic tangent activation functions after
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Fig. 1.     Overview of our real-time plantar flexor recruitment biofeedback framework. Data from the exoskeleton were transmitted over Bluetooth and passed into a
multilayer perceptron (MLP) used to predict a change in muscle recruitment. Predictions above the recruitment target incremented a visual display counter and
provided an auditory “reward”. Predictions below the target reset the counter to zero. Participants were instructed to maximize the number of steps counted in a row
without the counter resetting.

TABLE II
MLP ARCHITECTURE AND ACCURACY INFORMATION

Fig. 2.     Motors, controllers and power were all contained in the motor control
assembly that was worn around the waist of all participants. The ankle assemblies
were augmented with bilateral brackets and angle sensors, which provided angle
and angular velocity measurements.

non-terminal layers. The Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) solver was used for gradient up-
dates. A custom MLP was also generated for each participant
based on minimum mean squared error (MSE) of the validation
set. To create each custom model, we evaluated all architectures

where the total layer number was between two and five with
node numbers ranging from one to ten in each layer, test set
data were never used to train models, only the train set. The
custom MLP architectures are shown in Table II. Identical to
the generic model, the custom architecture also contained bias
terms, hyperbolic tangent activation functions and used LBFGS
for gradient updates.

The input features for both custom and generic MLP models
were a processed subset of the exoskeleton’s state variables from
the stance phase of walking, including peak torque, peak angle
(θ), mean θ, peak FSR, mean FSR, peak angular velocity (ω),
mean ω, peak F S R  peak positive θ, peak negative θ, and peak
negative ω. The mean and max values from each step were used
as model input features to contain the amount of data required to
predict peak plantarflexor recruitment. All input features were
scaled such that every feature had a mean of zero and a standard
deviation of one prior to model input.

In a post-hoc analysis, Scikit-learn was also used for the
implementation of a linear regression model used to evaluate the
relative importance of each of the 11 features when predicting
plantar flexor recruitment. Its accuracy was also checked against
the custom MLP to assess the necessity of more complex models
for prediction. Each linear model contained a single weight for
each feature and a bias term, all of which were summed to
generate predicted values.

E. Experimental Data Collection

The participants were instructed to engage with resistance
to the best of their ability by plantarflexing during late stance
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during all resisted trials (with and without biofeedback) across
both sessions. During the first session, participants underwent
five one-minute walking trials with the exoskeleton, including
one zero-torque trial followed by four bouts of plantar flexor
resistance. The target non-dimensional walking speed [23] was
0.35, though one participant was not able to achieve this speed.
The target walking speed was based on leg length and selected to
be slightly challenging for participant population, but not
difficult enough to cause fatigue. Each participant wore four
wireless EMG sensors (Delsys, Trigno) located symmetrically
on the lateral gastrocnemius and soleus. Resistance torque was
set at 0.137 Nm/kg [24].

After each trial, each participant rested for between one and
five minutes. Participants were prompted in the third bout of
resistance to take larger steps so that the training data would
include more varied walking. Exoskeleton and EMG data were
synchronized with the exoskeleton by having key start and stop
events in each trial that allowed researchers to accurately identify
initial and terminal steps.

Between sessions, 11 features were extracted from the ex-
oskeleton’s sensor data. EMG data were scaled to the mean
activation of the highest ten steps from the zero-torque trial to
isolate changes in recruitment caused by the resistive torque
separate from adding mass to the body. The EMG data from
the gastrocnemius and soleus muscles on each leg were then
summed to form the label for the step; this was done to create a
single metric that reflected the response from both muscles. We
trained the “generic” MLP architecture for each participant to
predict plantar flexor recruitment for the biofeedback system
used in the second session. Left and right legs were trained
independently so that asymmetries related to CP did not impact
the accuracy of the prediction for the target (more-affected) limb.

F. Model Validation and Assessment

We compared predictions from each custom and generic MLP
to a linear model (this simplest version of an ANN) and a
featureless model that predicted the mean of its label data. This
was done to identify meaningful learning rather than relative
learning [25]. Standard 3-fold cross-validation was used to
validate our ANNs and linear models, with each dataset split
into a training set (85%) and a test set (15%); test datasets were
not used to train the models. Loss (MSE) was tracked over every
epoch of learning for both sub-train and validation datasets [22].
Each fold of the data generated characteristic validation losses
relative to training epoch. The folds were then averaged, and the
final loss vector provided the epoch at which to stop training to
avoid overfitting. This mean curve displayed the characteristic
under-fitting at low epoch counts and over-fitting at large epoch
counts. The minimum mean-validation loss was identified and
set as the optimal number of epochs for learning (Fig. 3).

We analyzed the linear models to inform our understanding of
the importance of each exoskeleton data feature. We ranked the
absolute values of each linear model weight across the cohort to
assess the features that had the largest impact on predicted
recruitment.
We computed model accuracy as one minus the percent er-ror

between predicted and measured change in plantar flexor
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Fig. 3.     Example mean loss curves for linear and generic MLPs. A different
number of epochs was expected to produce the most accurate model. In this
example, the generic model would be trained to 10 epochs, and the linear model
would train to 14.

recruitment. Model prediction accuracies were confirmed to be
normally distributed based on the Lilliefors test for normality
with alpha set at 0.05. We then used paired two-tailed t-tests to
determine statistically significant differences in accuracy
between the models; statistical significance was defined as α <
0.05. We did not adjust our alpha values for multiple compar-
isons due to the exploratory nature of this work.

G. Real-Time Biofeedback From Online Predictions

Once the generic MLP model was trained for an individual,
they returned for a second session in which they completed three
additional one-minute walking trials. Listed in order of delivery,
the walking trials included walking with (1) zero-torque, (2)
resistance alone, and (3) resistance plus real-time biofeedback
delivered to the more affected limb. The biofeedback target was
set at the 60th percentile of predicted plantar flexor recruitment
from the first session. When each participant succeeded in
walking in such a way that resulted in a predicted recruitment
above the target level, they received an auditory and visual
reward in the form of a “chime” sound and a TV-displayed
counter informing them how many consecutive steps they had
achieved with elevated recruitment. The text changed at 5, 15
and 25 consecutive elevated recruitment steps and disappeared
following a below-target prediction. One participant was unable
to return for their second session within the study window.

III. RESULTS

A. Model Prediction Accuracy

All three data-driven models designed to predict plantarflexor
recruitment showed effective learning relative to baseline (p <
0.049 for all models, Fig. 4(b)). The generic MLP had an average
accuracy of 84.9%, which was similar to the accuracy of the
linear model at 85.3% (p =  0.323). With an average accuracy of
86.8%, custom MLP architectures were more accurate than the
generic architecture and the linear model (p <  0.004, Fig. 4(a))

The linear model was evaluated for each participant and the
absolute values of the weights were used to rank the impact
that each variable had on predicted plantar flexor recruitment
(Table III). The features varied in rank from person-to-person,
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Fig. 4.     (a) The mean Mean Squared (MS) Error across all participants and their
observations. (b) The mean accuracy improvement relative to baseline across all
participant. Error bars depict variance.

TABLE III
LINEAR REGRESSION FEATURE RANKINGS

Fig. 5.     Change in plantarflexor recruitment across participants during walking
with resistance alone (Resist) vs resistance plus MLP-predicted recruitment
biofeedback (BF+Resist).

where peak FSR, mean angle, and mean FSR during stance phase
were the top three features. Only peak FSR was in the top five
features for all participants.

B. Biofeedback Improved Muscle Recruitment

Real-time plantar flexor recruitment biofeedback increased
mean peak in plantarflexor recruitment by 23.6 ± 15.7% relative
to resistance only (p =  0.028); the range of increased recruit-
ment across individuals was 11.5–57.5% (Fig. 5). Plantar flexor
recruitment for the less-affected leg, which was not receiving
biofeedback, increased by 10.5 ± 5.2%. Peak FSR voltage, mean
angular velocity and peak angular velocity all increased relative
to resistance only conditions.

IV. DISCUSSION

In this letter, we sought to predict neuromuscular recruitment
of the ankle plantar flexors during exoskeleton resisted gait
training without the need for EMG electrodes. We found that
custom and generic MLP s were able to predict changes in
plantar flexor muscle activity to between 80–90% accuracy
across a diverse group of individuals with CP. Our second goals
was to develop and validate biofeedback delivery framework
based on the MLP predictions to demonstrate clinical relevance.
We found that predicted recruitment biofeedback significantly
improved neuromuscular engagement during gait training with
exoskeleton resistance in CP.

We compared accuracies between generic, custom MLP and
linear architectures across our participants. We did not use
conservative reporting which might have devalued the validity
of other researchers elaborating on methods that we did not
find optimal, but still showed promise. The custom architecture
models were statistically more accurate than the generic models,
as expected.

Our biofeedback results suggest that the observed prediction
accuracy (85–87% on average) is adequate for the intended
purpose of improving human-robot interaction. There was a
potential ordering effect due to the fact that all participants
received the same testing order. We purposefully implemented
the resistance plus biofeedback trial after the resistance alone
trial because once the biofeedback system taught the user to
improve engagement through the incentivized scoring, it is
unlikely that that skill would be unlearned for the remainder of
the session. More rigorous evaluation of the testing order
effects should be investigated in future work. The group-level
increase in plantarflexor activity during the resistance plus
biofeedback condition, while significantly improved over the
resistance alone condition, was less than what was reported
previously by Conner et al., [3]. This is likely because Connor et
al., used a longer acclimation period (four 20-minute ses-
sions). Participants walked for only four minutes with resistance
in the present proof of concept study. Additional acclimation
would likely result in greater increases in plantarflexor activity
during resisted walking with automated biofeedback. For the
resistance alone condition, it is possible that additional accli-
mation may not change engagement as people may elect to
remain disengaged in the absence of external cueing. Comparing
the neuromuscular response to our automated resistance plus
biofeedback system following a longer acclimation period is
something we plan to investigate in the future.

In a post-hoc analysis, we also developed linear regression
models for each subject with the primary goal of understanding
the strength of the relationships between our model features and
plantar flexor muscle activity. On average across the cohort, the
most predictive features were peak and mean plantar pressure
measured from embedded FSRs, ankle angle and angular veloc-
ity, and exoskeleton torque. The similarity of the linear model
accuracy compared to our MLP predictions was a surprising,
but welcome outcome. There may be many benefits of utilizing
linear regression vs MLP models in this and similar frame-
works. Regression models are simpler, easier to interpret and
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communicate, and faster and less complicated to implement.
Such a model would be less computationally expensive and
easier to embed completely on board the robotic system.

This study lays the foundation for our long-term goal, which
is to develop a single generalizable data-driven model that can
accurately predict plantar flexor activity across individuals with
wide ranges of neurological conditions and walking patterns.
A generalizable model that would not require patient-specific
modifications or additional training data is likely necessary for
translation to clinical practice. We intend to meet this need
in our future work, with a focus on increasing the reliability
of sensor measurements across individuals, device fitting, and
time-points.

Several limitations to this study exist and should be noted.
First, data were time series but were summarized into event
driven observations, so some context could have been lost during
processing. Second, because we targeted plantarflexor activity
as opposed to the plantarflexor joint moment, there was the
possibility of increased plantarflexor activity not resulting in
an increase in the plantarflexor moment due to co-contraction.
This limitation is worthy of further consideration. Finally, we
did not account for multiple comparisons due to the exploratory
nature of this work. The level of evidence from each comparison
in our study should be carefully interpreted from our reporting
of the unadjusted p-values.

This letter showed that supervised machine learning tech-
niques, such as MLPs, and even simple linear regression, can be
used to estimate peak plantar flexor activity from exoskeleton
features during gait training in individuals with neuromuscular
impairment. We also demonstrated the relevance of these predic-
tions through the application of a real-time biofeedback scheme
that resulted in improved plantar flexor recruitment. These re-
sults highlight the potential for this framework to improve the
effectiveness and delivery of robotic rehabilitation systems in
clinical populations. Future work will evaluate the framework
over longer training interventions, attempt to generalize a data-
driven model across multiple individuals, and extend predictions
to additional muscle groups.
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