Short Title: Physiological traits of *Rhazya stricta* associated with optimal photosynthetic performance under elevated temperature Corresponding Author: Berkley J. Walker Email: berkley@msu.edu Phone: (517) 355-3928 Title: Increased activity of core photorespiratory enzymes and CO₂ transfer conductances are associated with higher and more optimal photosynthetic rates under elevated temperatures in the extremophile Rhazya stricta Complete Author List Luke M. Gregory^{1,2} grego215@msu.edu Ludmila V. Roze¹ roze@msu.edu Berkley J. Walker^{1,2} berkley@msu.edu ¹ Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA ² Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA

One Sentence Summary:

Increased activity of two core photorespiratory enzymes and adapted CO_2 transfer (stomatal and mesophyll) conductance was associated with more optimal photosynthetic performance under elevated temperatures in the C_3 extremophile *Rhazya stricta*.

List of Author Contributions:

BJW conceived the original research plans and supervised the research with input from LMG. and LVR. LVR performed the enzymatic activity assays, while LMG carried out the in-depth gas-exchange experiments. LMG analyzed the results and wrote the paper with contributions from all authors. BJW serves as the author responsible for contact.

Funding Information:

LMG, LVR and BJW were funded by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the United States Department of Energy (DE-FG02-91ER20021), and National Science Foundation awards from the Division of Integrative Organismal Systems (2030337).

Abstract

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

Increased photorespiration and optimizing intrinsic water use efficiency are unique challenges to photosynthetic carbon fixation at elevated temperatures. To determine how plants can adapt to facilitate high rates of photorespiration at elevated temperatures while also maintaining water-use efficiency, we performed in-depth gas exchange and biochemical assays of the C₃ extremophile, Rhazya stricta. These results demonstrate that R. stricta supports higher rates of photorespiration under elevated temperatures and that these higher rates of photorespiration correlate with increased activity of key photorespiratory enzymes; phosphoglycolate phosphatase and catalase. The increased photorespiratory enzyme activities may increase the overall capacity of photorespiration by reducing enzymatic bottlenecks and allowing minimal inhibitor accumulation under high photorespiratory rates. Additionally, we found the CO₂ transfer conductances (stomatal and mesophyll) are re-allocated to increase the water-use efficiency in R. stricta but not necessarily the photosynthetic response to temperature. These results suggest important adaptive strategies in R. stricta that maintain photosynthetic rates under elevated temperatures with optimal water loss. The strategies found in R. stricta may inform breeding and engineering efforts in other C₃ species to improve photosynthetic efficiency at high temperatures.

102103

Keywords: Photorespiration, *Rhazya stricta*, phosphoglycolate phosphatase, catalase, wateruse efficiency, CO₂ transfer conductance

105

104

106

107

108

109

110

111

113 Table 1. Parameter definitions

Parameter	Biological Description	Unit
Α	Net CO ₂ assimilation rate	μmol m ⁻² s ⁻¹
Ca	The CO ₂ partial pressure in the ambient air	Pa
Ci	The CO ₂ partial pressure in the intercellular airspace of the leaf	Pa
C _i *	The CO ₂ partial pressure in the intercellular airspace of the leaf at	Pa
	the photorespiratory compensation point	
Cc	The CO ₂ partial pressure in the chloroplast	Pa
g sw	Stomatal conductance to H ₂ O in air	mol m ⁻² s ⁻¹
g tc	Stomatal conductance to CO2 in air	mol m ⁻² s ⁻¹
G m	Mesophyll conductance to CO ₂	µmol m ⁻² s ⁻¹ Pa ⁻¹
J _{max}	Maximum rate of electron transport	µmol m ⁻² s ⁻¹
Lg _{tc}	Limitation imposed by stomatal conductance on net CO ₂	%
	assimilation rate	
Lg _m	Limitation imposed by mesophyll conductance on net CO ₂	%
	assimilation rate	
S _{c/o}	specificity of rubisco for CO ₂ relative to O ₂	unitless
RL	Non-photorespiratory CO ₂ release in the light	μmol m ⁻² s ⁻¹
Vc	The velocity of rubisco carboxylation	μmol m ⁻² s ⁻¹
V _{c,max}	The maximum velocity of rubisco carboxylation	µmol m ⁻² s ⁻¹
Vo	The velocity of rubisco oxygenation	µmol m ⁻² s ⁻¹
Vo/Vc	The velocity of rubisco oxygenation per carboxylation	unitless
Γ*	The CO ₂ partial pressure in the chloroplast at the photorespiratory	Pa
	compensation point	
α	Stoichiometric release of CO ₂ per oxygenation reaction	mol mol ⁻¹
Δ_f	Discrimination associated with photorespiration	%
f	¹² C/ ¹³ C fractionation during photorespiration	%
Φ _{CO2}	Maximum quantum yield of CO ₂ fixed per photon absorbed	unitless

Introduction

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

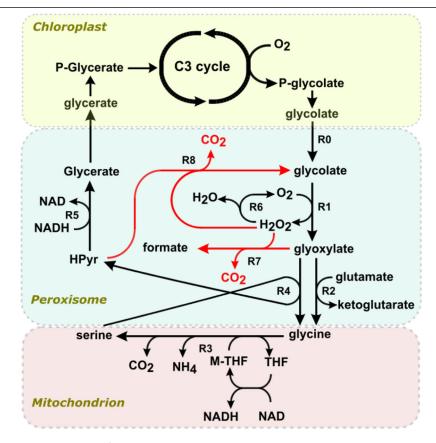
142

143

144

145

146


147

148

149

Global warming has increased the frequency of high temperature events that place physiological constraints on C₃ photosynthetic performance. This warming is happening rapidly; the most recent IPCC report estimates global surface temperatures will increase by 1.4°C -4.8°C in the next century, meaning that future plants will experience higher temperatures than they have experienced in at least the last 100,000 years (Pörtner et al., 2022). Increasing global surface temperatures will raise air temperature and alter atmospheric vapor pressure deficit (VPD), which directly influences various physiological processes in plants (Moore et al., 2021). These physiological processes include enzymatic temperature response, leaf energy balance, stomatal behavior, cell membrane properties, and changes in photosynthetic performance (Larkindale et al., 2004; Marcum, 1998; Moore et al., 2021; Prasertthai et al., 2022; Urban et al., 2017a; Urban et al., 2017b). While all these physiological processes are important, photosynthetic performance under future climates is of particular interest due to its participation in the global carbon cycle and recent efforts to improve its efficiency (De Souza et al., 2022; Kromdijk et al., 2016; South et al., 2018). Photorespiration and intrinsic water use efficiency (WUE) will disproportionately affect C₃ species as temperatures increase since they lack the carbon concentrating mechanism of C₄ or CAM species. Understanding how C₃ species will manage higher photorespiratory fluxes and optimize WUE at elevated temperatures will help us resolve temperature-dependent mechanisms and likely advance breeding and engineering strategies in C₃ species. Increased photorespiration limits C₃ photosynthetic performance at elevated temperatures. The photorespiration pathway begins when O₂ binds to ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) instead of CO2. The resulting oxygenation of ribulose-1,5bisphosphate (RuBP) produces 3-phosphoglycerate (3-PGA), a C₃ cycle intermediate, and 2phosphoglycolate (2-PG), an intermediate that inhibits the C₃ cycle enzymes triose phosphate isomerase and sedoheptulose-1,7-bisphosphatase (Anderson, 1971; Flügel et al., 2017). To reduce the inhibition of the C₃ cycle enzymes, photorespiration detoxifies and recycles 2-PG back into 3-PGA through a set of reactions that occur in the chloroplast, peroxisome, mitochondrion, and cytosol (see Box 1). Although the photorespiratory pathway is an effective

solution to handle RuBP oxygenation, it lowers the efficiency of photosynthesis by reducing net carbon fixation by releasing CO₂ (Bauwe et al., 2012). Relative rates of RuBP oxygenation increase with temperature due to decreases in rubisco specificity and decreased solubility of CO₂ relative to O₂ (Hall et al., 1983; Hermida-Carrera et al., 2016; Jordan et al., 1984). Therefore, under elevated temperature, greater oxygenation rates will increase rates of 2-PG production that need to be detoxified and recycled by the photorespiratory pathway. While rubisco kinetics and gas solubilities determine the rate at which 2-PG is initially produced following rubisco oxygenation, the temperature response of downstream photorespiration and the effects on subsequent CO₂ loss is unclear. Loss of CO₂ occurs through the decarboxylation of glycine in the mitochondrion; however, there is evidence for additional release of CO₂ from non-enzymatic decarboxylation reactions that occur within the peroxisome, especially under elevated temperatures (Abadie et al., 2016; Bao et al., 2021; Somerville, 2001; Somerville et al., 1980; Walker et al., 2013). The CO₂ released from nonenzymatic decarboxylation reactions combined with CO₂ loss from GDC would reduce net carbon fixation.

Following the oxygenation of RuBP by rubisco in the chloroplast, phosphoglycolate phosphatase (PGP) converts 2-PG into glyoxylate. Glycolate in transported to the peroxisome where glycolate oxidase (GO) catalyzes the conversion of glycolate and O_2 to glyoxylate and hydrogen peroxide (H_2O_2). H_2O_2 is decomposed in the peroxisome into H_2O and O_2 by catalase (CAT), while glyoxylate is animated with glutamate or alanine to produce glycine via aminotransferase (GGAT or AGAT). Glycine in transported into the mitochondrion and decarboxylated to produce serine by glycine decarboxylate complex and serine hydromethyltransferase. Serine is transported back to the peroxisome and converted to hydroxypyruvate by serine glyoxylate aminotransferase (SGAT). hydroxypyruvate is reduced by hydroxypyruvate reductase (HPR) to form glycerate. Glycerate is transported back to the chloroplast and catalyzed by glycerate kinase (GLYK) to 3-PGA, which re-enter the C_3 cycle. Image reproduced from: Catalase protects against nonenzymatic decarboxylations during photorespiration in *Arabidopsis thaliana*, Bao *et al.*, Plant Direct Volume 5 Issue 12. Copyright (c) [2021] authors hold copyright and have given permission to reproduce.

Another challenge to maintaining C₃ photosynthetic performance at elevated temperatures is preserving plant water. The driving force of water vapor loss or transpiration from the plant to the atmosphere is VPD. VPD, which is the difference in water vapor partial pressure between the intercellular airspace of the leaf and the atmosphere, responds to air temperature. As temperatures rise, VPD increases curvilinearly and drives greater transpiration rates (Lawrence, 2005). The greater rates of transpiration alter CO₂ and H₂O exchange between plants and the atmosphere and cause a greater water loss per carbon assimilated (or reduction in WUE) because CO₂ and H₂O exchange through the same stomatal pore (Rawson et al., 1977). While the stomatal conductance (q_{sw}) constrains CO_2 and H_2O exchange with the atmosphere and the intercellular airspace, mesophyll conductance (g_m) constrains only the transfer of CO_2 from the intercellular airspace to the site of carboxylation without a corresponding loss of H₂O. Given the ability of q_m to facilitate CO₂ transfer without accompanying H₂O loss, it is unclear to what degree plants adapted to high temperatures have exploited this property to limit water loss while maximizing CO₂ availability. The reduction of CO₂ availability through regulated decreases in q_{sw} is large enough to decrease photosynthetic performance in C_3 plants, which lack a carbon concentrating mechanism.

Does C₃ photosynthetic performance always decrease with increasing temperatures, or have some C₃ species adapted to facilitate high rates of photorespiration while maintaining photosynthesis and *WUE* at elevated temperatures? To explore this question, we investigated how *Rhazya stricta*, a C₃ desert extremophile, has adapted to maintain photosynthetic performance at elevated temperatures. *R. stricta* is ideal for studying heat adaptation as it is native to hot-arid environments. Past work suggests that *R. stricta* has distinct physiological adaptations to extreme temperatures (Lawson et al., 2014; Yates et al., 2014). For example, leaf temperature during *in situ* diurnal measurements of *R. stricta* climbed from 26°C to 43°C with an accompanying increase in photorespiration (Lawson *et al.*, 2014). During this increase in temperature, the relative water content in the leaf was stable, suggesting there was minimal water stress.

In this paper, we determine how *R. stricta* facilitates high rates of photorespiration while maintaining photosynthesis and *WUE* at elevated temperatures. Here, we hypothesize that *R.*

stricta maintains photorespiratory capacity at elevated temperatures through increased activity of key photorespiratory enzymes. We additionally hypothesize that R. stricta optimizes WUE by favoring g_m relative to g_{sw} under elevated temperatures. To test these hypotheses, we compared various physiological and biochemical parameters in two species, Nicotiana tabacum, a thermotolerant C_3 species, and R. stricta, an extremophilic C_3 species. The results from these measurements indicate that R. stricta maintains higher rates of photorespiration than N. tabacum under moderate and elevated temperatures and that these higher rates of photorespiration correlate with increased activity of key photorespiratory enzymes; phosphoglycolate phosphatase and catalase. Additionally, the g_{sw} and g_m appear to be optimized for water-use efficiency but not necessarily photosynthetic carbon gain to temperature in R. stricta. These results suggest important adaptive strategies in R. stricta that maintain photosynthetic rates under elevated temperatures with optimal water loss.

Material and Methods

Plant Material and Growth Conditions

R. stricta seeds were wild collected for this study and are available through the Millennial Seed Bank coordinated by the Royal Botanical Gardens, Kew Serial number 220547. Prior to planting, R. stricta seeds were surface-sterilized inside a Laminar hood with 100% ethanol for five minutes followed by a seven-minute soak in 25% bleach solution. Seeds were then washed and vortexed three times in deionized water. After sterilization, seeds germinated in a petri dish filled with deionized water for two-weeks. During the two weeks, water was changed as needed to remove yellow exudate to avoid possible allelopathic inhibition of germination. Seeds were transferred when roots emerged and were 1 cm in length to 11.36 L pots containing half Sure-Mix potting soil (Michigan Grower Products, Inc., Galesburg, MI) and half sand mixture. R. stricta were grown for an additional eight weeks until leaves were large enough for gas exchange measurements. N. tabacum were sown and grown in 0.7 L pots containing Sure-Mix potting soil (Michigan Grower Products, Inc., Galesburg, MI) for 4-6 weeks until leaves were large enough for gas exchange measurements. Both R. stricta and N. tabacum plants were grown in a greenhouse with an average day/night temperature of 34/27 °C and a 16/8 photoperiod of supplemental light (150 µmol m⁻² s⁻¹). Plants were watered as needed with ½-strength Hoagland's solution.

284

285

286

287

288

289

290

291

292

293

294

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

Estimating C_i^* and R_L using the common intersection method

Gas exchange was measured on the youngest, fully expanded leaves of R. stricta and N. tabacum using a LI-6800 (LI-COR Biosciences, USA) using a 9 cm² chamber with 50:50 blue:red LEDs to better replicate the blue to red ratio of the solar spectrum at the earth's surface. To shift between temperatures ranging from 20°C to 40°C, the LI-6800 was placed inside a climate-controlled chamber (Percival Scientific, USA). The apparent CO_2 compensation point uncorrected for g_m (C_i *) and rates of CO_2 release from non-photorespiratory processes in the light (R_L) were measured using the common intersection method (Laisk, 1977; Walker $et\ al.$, 2016a). During the measurement, steady-state A was measured at 3, 5, 7, 9, 11, 40 pascal (Pa) CO_2 under various light intensities (250, 165, 120, 80, 50 μ mol PAR m^{-2} s⁻¹), with a flow rate of

500 μ mol s⁻¹. Linear fits of the CO₂ response curves were made for each light intensity. A linear regression of the slope-intercept from these linear fits was used to estimate C_i^* and R_L .

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

295

296

Measuring g_m with gas exchange and ¹³C isotope discrimination

q_m was measured using in vivo gas exchange combined with on-line measurements of the carbon isotope discrimination method with our particular system as described previously (Fu et al., 2023). Briefly, gas exchange was performed as above using an LI-6800 with 9 cm² chamber with 50:50 blue:red LEDs. To measure carbon isotope discrimination, the LI-6800 was coupled to a tunable infrared laser differential absorption spectrometer (TILDAS-CS, Aerodyne Research, USA). The CO₂ in the leaf chamber, flow rate, and irradiance were set to 40 Pa CO₂, 300 μmol s⁻¹, 1750 μmol PAR m⁻² s⁻¹, respectively. Measurements were made under 2% O₂ to minimize uncertainties about precise photorespiratory fractionation (f) values and since g_m has not been shown to be oxygen dependent (further validated below). To measure under 2% O₂, N₂ and O₂ were mixed by mass-flow controllers (Alicat Scientific, Inc., USA). For calibrating the δ^{13} C values, a reference line was supplied with isotopically characterized CO₂ (δ^{13} C vs. VPDB: -4.6 ± 0.3 ‰, (Airgas Specialty Gases, USA)). Leaves were measured after reaching steady-state assimilation rate (A) at each temperature starting at 20°C and increasing to 40°C, by 5°C steps. q_m was calculated from carbon isotope equations presented previously (Ubierna et al., 2018) that build upon foundation work in isotope-ration mass spectroscopy-based approaches in isotope discrimination (Evans et al., 1986; Farquhar et al., 1982; Farquhar et al., 2012) and the recent advances in online methods using tunable diode lasers (Barbour et al., 2007; Tazoe et al., 2011; von Caemmerer et al., 2015).

317318

319

320

321

322

323

Measuring the temperature response for photorespiratory discrimination and fractionation

Photorespiratory discrimination (Δ_f) and the 12 C/ 13 C fractionation during photorespiration (f) for R. stricta and N. tabacum were resolved using the in vivo gas exchange combined with on-line measurements of the carbon isotope discrimination (described above). Leaves were measured at 25°C and 35°C, both at 2% and 21% oxygen. g_m was determined at 2% oxygen where photorespiratory release of CO₂ was minimized assuming f = 11.8% (with the

corresponding rubisco ¹³C fractionation; 30‰) (Tcherkez, 2006; Ubierna *et al.*, 2018). We then assumed the g_m measurements at 2% oxygen were the same as the g_m at 21% oxygen to solve for Δ_{gm} at both measuring temperatures. g_m was also determined assuming f = 11.8% for both oxygen concentrations for each temperature. We could calculate Δ_f using:

$$\Delta_f = \Delta_i - \Delta_o - \Delta_{g_m} - \Delta_e \tag{1}$$

330 Then, with Δ_f , derive f by:

$$f = \frac{1 - t}{1 + t} \frac{\alpha_e}{\alpha_f} \Delta_f \frac{C_a}{A} \tag{2}$$

333 (Evans et al., 2013; Ubierna et al., 2018)

335 Calculating Γ*

 Γ^* in *R. stricta* and *N. tabacum* was calculated using C_i^* , R_L and g_m . Γ^* was determined according to

$$\Gamma^* = C_i^* + \frac{R_L}{g_m} \tag{3}$$

(Von Caemmerer, 2000). To account for internal dependency on solved parameters, g_m and Γ^* were re-solved iteratively using previous g_m , and Γ^* values; iterations continued until there was negligible change in re-solved g_m , and Γ^* .

Estimating rates of v_c and v_o

 v_c and v_o for R. stricta and N. tabacum were estimated according to

$$v_c = \frac{A + R_L}{1 - \Gamma^* / C_C} \tag{4}$$

$$v_o = \frac{v_c - A - R_L}{0.5} \tag{5}$$

346 (Walker *et al.*, 2020). Where, the partial pressure of CO_2 at the site of rubisco catalysis (C_c) was determined by

$$C_c = C_i - \frac{A}{g_m}. (6)$$

Finding saturating light intensity and maximum quantum yield

Gas exchange was measured on the youngest, fully expanded leaves of *R. stricta* and *N. tabacum* using a LI-6800 (LI-COR Biosciences, USA) using a 6 cm² chamber with 50:50 blue:red LEDs. During the measurement, steady-state *A* was measured at 40 Pa CO₂ under monotonically decreasing light intensities (2000, 1500, 1000, 750, 500, 350, 250, 150, 75, 50, 45, 40, 35, 30, 25, 20, 15, 10, 5 μ mol PAR m⁻² s⁻¹) with a flow rate of 500 μ mol s⁻¹. The leaf absorptivity in R. stricta and N. tabacum leaves was measured using a SpectroClip-JAZ-TR integrating sphere (Ocean Optics inc., USA) and used to calculate absorbed quanta. To find maximum quantum yield of CO₂ fixed per photon absorbed, the relationship of assimilation to absorbed quanta was then fit to a linear regression at low light intensity.

Measuring $v_{c,max}$ and J_{max} with the Dynamic Assimilation Technique

Gas exchange was measured on the youngest, fully-expanded leaves of *R. stricta* and *N. tabacum* using a LI-6800 (LI-COR Biosciences, USA) with a 6 cm² chamber with 50:50 blue:red LEDs. To shift between temperatures ranging from 20°C to 40°C, the LI-6800 was located inside of a climate-controlled chamber (Percival Scientific, USA). Range matching and dynamic calculations were preformed according to manufacturer's instructions. CO_2 response curves for fitting maximum rate of rubisco carboxylation ($v_{c,max}$) and maximum rate of electron transport (J_{max}) were measured under saturating light (1750 µmol PAR m⁻² s⁻¹) from 150 Pa CO_2 to 5 Pa CO_2 with a flow rate of 200 µmol s⁻¹. Leaves stabilized at 150 Pa CO_2 at the measuring temperature for 30-40 minutes before decreasing CO_2 concentrations monotonically. This method was utilized to reduce the oscillations that occur under triose-phosphate utilization limitation (McClain *et al.*, 2023); however, this parameter could still not properly be fitted. $v_{c,max}$

and J_{max} were estimated using an R-based ACi fitting tool (Gregory $et \, al.$, 2021) (see https://github.com/poales/msuRACiFit to access Rscript with user-friendly interface).

We used the Dynamic Assimilation Technique rather than using a steady-state method to generate the CO₂ response curves to facilitate measuring enough multiple temperatures in a reasonable amount of time. Response curves that utilize continuous ramping of CO₂ began with the Rapid A-C_i Response (RACiR) technique (Stinziano *et al.*, 2017) paving the way for a more robust method (relative to the RACiR approach) based on re-deriving the equations for gas exchange for the non-steady state and implementing a range match to account for slight calibration differences between the sample and reference infra-red gas analyzers (Saathoff *et al.*, 2021). The speed in which the CO₂ response curves can be obtained (i.e., 5-7 minutes) compared to the traditional (i.e., 40-45 minutes) was especially important for measuring each genotype under a range of temperatures where we wanted to limit the plant's exposure to each condition.

Calculating Lg_{tc} , Lg_m and WUE

Using the CO₂ response curves from above, Lg_{tc} and Lg_m were calculated at ambient CO₂ concentration (40-42 Pa CO₂). Lg_{tc} was calculated according to

$$L_{g_{tc}} = \frac{A_{sl} - A_n}{A_{sl}} \tag{7}$$

(Warren, 2004). Where A_n is the A that occurs at C_a 40-42 Pa CO_2 and A_{sl} (assuming no stomatal resistance) is the A that occurs when C_i 40-42 Pa CO_2 . Lg_{tc} was calculated according to

$$L_{g_m = \frac{A_{ml} - A_n}{A_{ml}}} \tag{8}$$

where A_{ml} (assuming stomatal but no mesophyll resistance) is the A that occurs when $C_c = C_i$ when C_a is 40-42 Pa CO₂. WUE was calculated from gas exchange measurements at 40 Pa CO₂ according to

(Vialet-Chabrand et al., 2016).

Preparing crude protein extract for protein quantification and enzymatic assays

Crude protein extracts were prepared from the youngest, fully expanded leaves of *R. stricta* and *N. tabacum*. Leaf punches were removed from *R. stricta* and *N. tabacum* using a cork borer (8.15 mm and 17 mm), immediately frozen in liquid N₂, and stored at -80°C. Leaf material was homogenize on ice with 1 mL of the Extraction buffer (50 mM EPPS buffer, pH 8.0, containing 1 mM EDTA, 10 mM DTT, 0.1% Triton X-100 [v/v], 0.5% polyvinylpyrrolidone, and 10 uL 1X SigmaFAST Protease Inhibitor Cocktail, EDTA Free (Sigma, St. Louis, MO, USA)), using a 2 mL glass-to-glass homogenizer (Kontes Glass Co., Vineland, NJ, USA). The homogenate was transferred into a 1.5 mL plastic Eppendorf tube and clarified by centrifugation for 10 min at 13,500 g and 4°C (Eppendorf Centrifuge 5424R). The supernatant, containing the clarified crude protein extract, was used for protein quantification and enzyme assays.

Protein quantification

Soluble protein content was determined in crude protein extract (Bio-Rad Protein Assay; BIO-RAD, USA) according to the manufacturer instructions using a SpectraMax M2 Microplate Reader (Molecular Devices, San Jose, CA, USA).

Enzymatic Assays

All enzyme activities were measured by spectrophotometric assays with the use of SpectraMax M2 Plate reader and SoftMax Pro7 software (Molecular Devices, San Jose, CA, USA). PGP, GO, GGAT, AGAT, SGAT, HPR, and GLYK assays were performed in a 200 µL total reaction mix using polystyrene or acrylic UV transparent 96-well microplates (Corning, Kennebunk, ME, USA), while the CAT assay was performed in 1 mL reaction mix using a quartz cuvette. The pH of reactions was selected based on the organellar pH where the reaction occurs (Heinze *et al.*, 2002; Kendziorek *et al.*, 2008; Liu *et al.*, 2008; Shen *et al.*, 2013). All enzyme assays were performed across two temperatures (25 °C and 35°C) with three technical

replicates. There were 4 – 5 independent biological replicates measured using leaf tissue from different plants.

Phosphoglycolate phosphatase (PGP) activity

PGP activity was determined in *R. stricta* and *N. tabacum* colormetrically by the production of inorganic phosphate with the following modifications (Pai *et al.*, 1990; Schwarte *et al.*, 2007). 194 μ L of reaction buffer (50 mM HEPES buffer, pH 7.5, 1 mM EDTA, and 10 mM MgCl₂) were combined with 4 μ L of crude protein extract and 2 μ L 200 mM 2-PG was added to initiate the reaction. The addition of the substrate was performed using a 96-well microplate replicator (Boekel, Feasterville-Trevose, PA, USA). After 5 min the reaction was terminated by addition 32 μ L of Pi reagent (2.5 N H₂SO₄, 0.2 mM antimony potassium tartrate, 4.9 mM ammonium molybdate, and 30 mM ascorbic acid). The plate was covered with parafilm, and the spectrophotometric readings were taken after 45 min at 880 μ m using SpectraMax M2. To adjust for Pi that was produced independently from the PGP reaction, a control, containing reaction buffer and crude protein extract, was incubated for 5 min, then the reagent was added followed by 2-PG. A standard curve for Pi was constructed in the range 0.05 – 0.35 ug Pi per well using KH₂PO₄. PGP specific activity was expressed in μ moles of 2-phosphoglycolate m⁻² s⁻¹.

Glycolate oxidase (GO) activity

The activity of GO was determined in *R. stricta* and *N. tabacum* by formation of glyoxylate phenylhydrazone (Baker *et al.*, 1966; Zelitch *et al.*, 2008) with the following modifications. The reaction mix contained 20 μ L 0.5 mM K-phosphate buffer, pH 8.1, 10 μ L of 110 mM phenylhydrazine, 10 μ L 1.3 mM riboflavin, 3 μ L crude protein extract, 152 μ L sterile nQ water and 5 μ L of 100 mM glycolic acid. The reaction was initiated with glycolic acid after the mix was pre-incubated for 5 min without the substrate. The addition of the substrate was performed with the use of a 96-well microplate replicator (Boekel, Feasterville-Trevose, PA, USA). Control contained 5 μ L water instead of the substrate. The increase in OD at 324 um was measured in an acrylic UV transparent plate (Corning, Kennebunk, ME, USA) for 5 min every 10

sec. GO specific activity was calculated using the molar extinction coefficient of the glyoxylate-phenylhydrazone complex (17 mM $^{-1}$ cm $^{-1}$) and expressed as μ mol glyoxylate m $^{-2}$ s $^{-1}$.

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

455

456

Catalase (CAT) activity

The activity of CAT was determined in R. stricta and N. tabacum by the decomposition of H₂O₂ (Aebi, 1983; Zelitch, 1989) with the following modifications. Small molecules from crude protein extract from both species were excluded using a Spin-X UF 500 10 K MWCO (Corning/Sigma-Aldrich, Inc. St. Louis, MO, USA) protein concentrator cartridges to removes low molecular weight compounds, including specialized metabolites, which extensively absorb at 240 nm and interfere with the catalase assay. In brief, 300 μL crude protein extract and 200 μL extraction buffer with no PVDP were applied to the concentrator cartridge and centrifuged for 25 min, 15,000 rcf, 4°C. After centrifugation, an additional 200 μL of extraction buffer with no PVDP was added following another centrifugation under the same parameters. The extract from the concentrator cartridge was adjusted to 300 µL with extraction buffer with no PVDP before enzymatic assay so that catalase was not concentrated during this step. Since the concentrator membrane removes molecules up to 10 kDa and the molecular weight of catalase is ~60 kDa, catalase was not lost during this step and was not likely diluted or concentrated on a volume (or by extension, an area) basis. It is possible that soluble proteins lower than 10 kDa passed through the concentrator, resulting in an increase in catalase activities expressed on a protein basis. This protein loss was ~10% of the total soluble protein as determined by a Bradford assay.

The reaction mix containing 965.5 μ L 50 mM K-phosphate buffer, pH 8.1, and 15 μ L extract, was incubated for 1.5 min to determine the rate of background change in optical density. The reaction was initiated with 33.5 μ L 30 mM H₂O₂ and the decline in optical density at 240 nm was observed for 1.5 min with 10 sec intervals using spectrophotometer SpectraMax M2. The initial rate of reaction was determined during first 30 sec and the specific activity was expressed as μ moles H₂O₂ m⁻² s⁻¹ using molar extinction coefficient for H₂O₂ at 240 nm 43.6 M⁻¹cm⁻¹.

Glutamate glyoxylate aminotransferase (GGAT), alanine glyoxylate aminotransferase (AGAT), and serine glyoxylate aminotransferase (SGAT) activities

The activity of GGAT, AGAT, and SGAT were determined spectrophotometrically as described previously(Liepman *et al.*, 2001, 2003). Recombinant N-terminal 6xHis tagged HPR1 from *A. thaliana* was used as a coupling enzyme in the assay for SGAT. HPR1 was produced in *E. coli* LMG194 using a plasmid pBADAtHPR1 (obtained from S. Timm, University of Rostok, Germany), and the expression and purification of the enzyme were performed essentially as described previously (Liu *et al.*, 2020). The specific activity of GGAT, AGAT, and SGAT were expressed in µmoles of (Glutamate, Alanine, Serine) m⁻² s⁻¹.

Hydroxypyruvate reductase (HPR) activity

The activity of HPR was determined in *R. stricta* and *N. tabacum* by the oxidation of NADH (Tolbert *et al.*, 1970) with the following modifications. The reaction was initiated by adding 4 μ L of 25 Na beta-hydroxypyruvate to the reaction mix, containing 192 μ L of reaction buffer (100 mM K-phosphate buffer, pH 8.1, 0.15 mM NADH) and 4 μ L crude extract. The addition of the substrate was performed with the use of a 96-well microplate replicator. The decrease in absorbance at 340 nm was monitored continuously for 5 min. To determine the rate of background utilization of NADH, the controls contained 4 μ L H₂O instead of the substrate. The specific activity of HPR was expressed in μ moles of hydroxypyruvate m⁻² s⁻¹.

Glycerate kinase (GLYK) activity

The activity of GK was determined by linking formation of 3-phosphoglycerate to NADH oxidation using a set of coupling enzymes identical to the set of coupling enzymes used for measuring rubisco activity (Walker *et al.*, 2016b). 192 μL reaction buffer (containing 50 mM HEPES, pH 7.8, 10 mM MgCl₂, 60 mM KCl, 1 mM ATP, 0.2 mM NADH) (Kleczkowski and Randall, 1988) were combined with 4 μL crude protein extract, 4 μL coupling enzymes (22.5 U ml⁻¹ 3-phosphoglycerate kinase, 250 U mL⁻¹ carbonic anhydrase, 12.5 U mL⁻¹ creatine phosphokinase, 20 U mL⁻¹ glyceraldehyde-3-phosphate dehydrogenase, 20 U mL⁻¹ glycerol-3-phosphate dehydrogenase, 56 U mL⁻¹ triose-phosphate isomerase), and the reaction was initiated by

addition of 2 μ L of 500 mM D-glycerate (5 mM final) (all from Sigma-Aldrich, Inc., St. Louis, MO, United States); the substrate was added with the use of a 96-well microplate replicator. The decrease in optical density at 340 nm was monitored for 10 min. The initial rate of reaction was used to express the specific activity as μ moles glycerate m⁻² s⁻¹.

Data Processing and Statistical Analyses

Gas exchange, stable carbon isotope, and biochemical data were visualized and analyzed using custom scripts in R (R Core Team, 2021; RStudio Team, 2021). Student's t-test and repeated measures Two-way ANOVA were used to measure significance (P < 0.05). All ANOVA tests were followed with a Tukey's post-hoc test. Additionally, all gas-exchange data followed the reporting format and recommendations defined in (Ely *et al.*, 2021).

Results

R. stricta performs higher photorespiration than N. tabacum under elevated temperatures

To assess the ability of R. stricta and N. tabacum to fix carbon under ambient photorespiratory conditions, the temperature response of v_o , v_o/v_c , A and $A + R_L$ were measured under ambient O_2 conditions (21%) at low (250 µmol PAR m^{-2} s⁻¹) and high light (1750 µmol PAR m^{-2} s⁻¹) intensities (Figure 1 and Figure 2). V_o in R. stricta was significantly greater than N. tabacum at 25°C, 30°C, 35°C, and 40°C under low light and greater at 25°C, 30°C, and 40°C at high light (Figure 1A & C). At the growth temperature (~30°C), v_o in R. stricta was 48% (low light) and 60% (high light) greater than N. tabacum. The relative rate of rubisco oxygenation (v_o/v_c) in R. stricta was significantly greater than N. tabacum at 25°C and 40°C under low light and greater at 25°C, 30°C, and 40°C under high light (Figure 1B & D). The increased v_o and v_o/v_c in R. stricta indicate that rubisco catalyzes oxygenation reactions more frequently than N. tabacum and therefore, experiences a greater photorespiratory pressure under most temperatures. R. stricta had similar rates of A to N. tabacum at 20°C, 25°C, 35°C, and 40°C; but a greater rate at 30°C under low light (Figure 2A). Under high light, R. stricta had similar rates of A as compared to N. tabacum at 20°C, 35°C, and 40°C; but a greater rate at 25°C and 30°C (Figure 2C). At the growth temperature, A in R. stricta was 20% (low light) and 16% (high light)

larger than *N. tabacum*. *R*_L, which is needed to determine gross assimilation, was greater in *R. stricta* than *N. tabacum* at 20°C, 25°C, 30°C, 35°C, and 40°C (Supplemental Figure 1A). Gross assimilation was higher in *R. stricta* than *N. tabacum* at 25°C, 30°C, and 35°C under low light (Figure 2B). Under high light, gross assimilation in *R. stricta* was similar to *N. tabacum* at 20°C, 35°C, and 40°C; but a greater at 25°C and 30°C (Figure 2D). These results indicate that the photosynthetic rate in *R. stricta* did not decrease despite high rates of photorespiration.

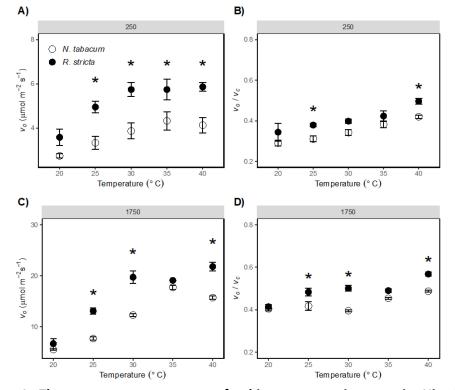
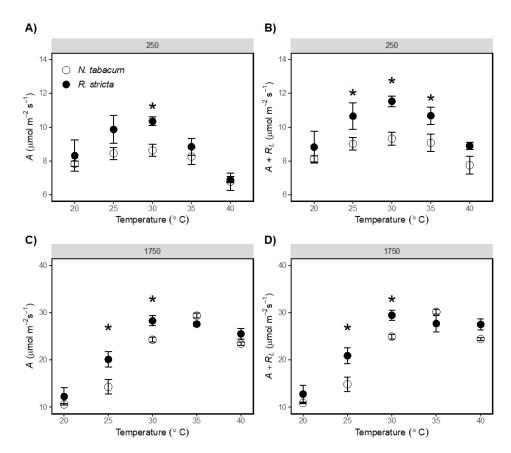



Figure 1. The temperature response of rubisco oxygenation rate in *Nicotiana* tabacum and *Rhazya stricta*. The temperature response of the oxygenation rate (v_o , A & C) and rubisco oxygenation per carboxylation (v_o/v_c , B & D) in *R. stricta* (closed symbols) and *N. tabacum* (open symbols). v_o and v_o/v_c were calculated from steady-state gas exchange measured under 40 Pa CO₂ and 250 or 1750 µmol PAR m⁻² s⁻¹. Shown are the means of 4-5 biological replicates with ± SE bars. Significant difference between species is indicated by an asterisk as determined by Two-way ANOVA with P < 0.05.

To understand *R. stricta* and *N. tabacum* abilities to fix carbon under minimal photorespiratory conditions, the temperature response of v_o , v_o/v_c , A, and $A + R_L$ were measured under low O_2 conditions and high light (2% 1750 PAR; Supplemental Figure 2). In

contrast to the ambient O_2 conditions, v_o in R. stricta was similar to N. tabacum at 25°C and 40°C, but less than N. tabacum at 25°C, 30°C and 35°C (Supplemental Figure 1A). As expected, the rates of v_o in both species were reduced to a fraction of the 21% values under 2% O_2 . v_o/v_c in R. stricta was similar to N. tabacum at 20°C, 25°C, 30°C, and 35°C, but greater than N. tabacum at 40°C (Supplemental Figure 1B). Under this minimal photorespiration, R. stricta had lower rates of A and $A + R_L$ than N. tabacum at 20°C, 25°C, 30°C, 35°C, and 40°C (Supplemental Figure 1C and D). The results indicate under minimal photorespiratory conditions, R. stricta ability to fix carbon is reduced compared to N. tabacum.

Figure 2. The temperature response of net and gross assimilation rates in *Nicotiana tabacum* and *Rhazya stricta*. The temperature response of net assimilation rate (A, A & C) and gross assimilation rate ($A + R_L$; B & D) in A. *stricta* (closed symbols) and A. *tabacum* (open symbols). A and $A + R_L$ were measured from steady-state gas exchange at 40 Pa CO_2 and 250 or 1750 μ mol PAR m^{-2} s^{-1} . Shown are the means of 4 biological replicates with \pm SE bars. Significant difference between species is indicated by an asterisk as determined by Two-way ANOVA with P < 0.05.

Photosynthetic biochemical limitations of *R. stricta* and *N. tabacum*

To understand the biochemical limitations on photosynthesis, the temperature response of the J_{max} and the $v_{c,max}$ were estimated in R. stricta and N. tabacum. J_{max} in R. stricta was similar to N. tabacum at 20°C, but greater than N. tabacum at 25°C, 30°C, 35°C, and 40°C (Figure 3A). In contrast to J_{max} , $v_{c,max}$ did not have a consistent trend in R. stricta. $v_{c,max}$ in R. stricta was similar to N. tabacum at 20°C, greater than N. tabacum at 25°C, 30°C, and 40°C, but less than N. tabacum at 35°C.

To find the saturating light intensity and to understand photosynthetic capacity in R. stricta and N. tabacum, a light response curve was measured at 25°C (Supplemental Figure 3). Maximum quantum yield of CO2 fixed per photon absorbed (Φ_{CO2}) was significantly greater in R. stricta (0.060 \pm 0.0047) than N. tabacum (0.046 \pm 0.0017) at 25°C.

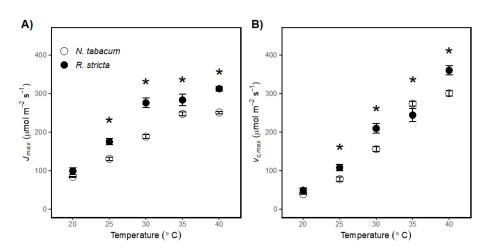


Figure 3. The temperature response of J_{max} and $v_{c,max}$ in Nicotiana tabacum and Rhazya stricta. The temperature response of the maximum rate of electron transport (J_{max} , A) and rubisco maximum carboxylation rates ($v_{c,max}$, B) in R. stricta (closed symbols) and N. tabacum (open symbols). J_{max} and $v_{c,max}$ were estimated from gas exchange measurements at 40-42 Pa CO₂ and 1750 µmol PAR m⁻² s⁻¹. Shown are the means of 4 biological replicates with \pm SE bars. Significant difference between species is indicated by an asterisk as determined by Two-way ANOVA with P < 0.05.

Quantifying the photorespiratory CO_2 compensation point (Γ^*) under ambient O_2 conditions links rubisco kinetics with the stoichiometry of CO_2 release per rubisco oxygenation

from photorespiration (Walker *et al.*, 2016a). Additionally, the temperature response of Γ^* provides a key parameter needed to calculate v_o , v_c , and g_m . Γ^* in R. *stricta* was greater than N. *tabacum* at 30°C and 40°C, but similar to N. *tabacum* at 20°C, 25°C, and 35°C (Supplemental Figure 1B).

To understand whether differences in Γ^* are related to a variable or constant α between R. stricta and N. tabacum, we measured photorespiratory discrimination (Δ_f) and the $^{12}\text{C}/^{13}\text{C}$ fractionation during photorespiration (f). Interestingly, there was no significant difference between the species for either parameter at 25°C or 35°C (Supplemental Figure 4). To understand whether oxygen sensitivity in g_m lead to misinterpretation in Δ_f and f calculation, we measured at 2% and 21% oxygen at two key temperatures (25°C and 35°C) and determined no oxygen sensitivity to g_m using different assumptions for photorespiratory fractionation (Supplemental Figure 5).

Rhazya stricta partitions CO₂ transfer conductances for increased water use efficiency

The temperature response of stomatal conductance and mesophyll conductance to CO_2 (g_{tc} and g_m) were measured to determine the CO_2 diffusion differences between R. stricta and N. tabacum (Figure 4A and C). g_{tc} was lower in R. stricta than N. tabacum at all temperatures. g_m in R. stricta was similar to N. tabacum at 20°C, 25°C, and 30°C, but greater at 35°C and 40°C. The results indicate that there is a tradeoff in the diffusive barriers in R. stricta from stomatal to mesophyll conductance.

The temperature response of the photosynthetic limitation imposed by stomatal conductance and mesophyll conductance to CO_2 (Lq_{tc} and Lq_m) were calculated to determine how much g_{tc} and g_m limit photosynthetic rate (Figure 4 B and D). Lg_{tc} in R. stricta was greater than N. tabacum at 35°C, but similar to N. tabacum at the other temperatures. Lg_m in R. stricta was greater than N. tabacum at 25°C and 30°C, but similar to N. tabacum at the rest of the

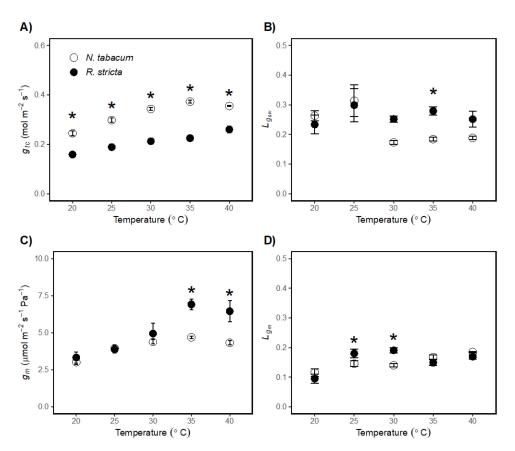
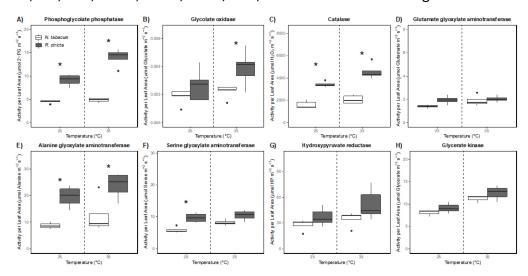


Figure 4. Temperature response of stomatal and mesophyll conductance and their limitations imposed on photosynthetic rate in Nicotiana tabacum and Rhazya stricta. The temperature response of stomatal conductance to CO_2 (g_{tc} , A), and mesophyll conductance to $CO_2(g_m, C)$ as well as the limitation imposed by both conductances (Lg_{tc} and Lg_m , B and D) in R. stricta (closed symbols) and N. tabacum (open symbols). g_{tc} and q_m were measured from steady state gas exchange and on-line measurements of carbon isotope discrimination at 40 Pa CO₂ and 1750 µmol PAR m⁻² s⁻¹ (panels A & C). Lq_{tc} and Lq_m were estimated from gas exchange measurements at 40-42 Pa CO₂ and 1750 µmol PAR m⁻² s⁻¹. Shown are the means of 4-5 biological replicates with ± SE bars. Significant difference between species is indicated by an asterisk as determined by Two-way ANOVA with P < 0.05.


temperatures. Overall, g_{tc} and g_m did not impose a significant limitation of photosynthetic rate as Lg_{tc} and Lg_m did not have consistent trends across temperature for R. stricta or N. tabacum.

The temperature response of water use efficiency (*WUE*) was calculated to determine how the CO₂ transfer conductances constrained water use in *R. stricta* and *N. tabacum* (Supplemental Figure 6). *WUE* in *R. stricta* was greater compared to *N. tabacum* at 20°C, 25°C, 30°C, 35°C, and 40°C. The temperature response of WUE results indicate that *R. stricta* fixes carbon at a lower cost of water than *N. tabacum* on a stoichiometric basis.

Photorespiratory enzyme activity in R. stricta compared to N. tabacum

We measured photorespiratory enzyme activities to determine which photorespiratory enzymes have higher activities and temperature responses in *R. stricta* as compared to *N. tabacum* (Figure 5). These enzymatic activities were measured in leaves in *R. stricta* and *N. tabacum* at 25°C and 35°C using crude protein extracts. The photorespiratory enzymes assayed PGP, GO, CAT, GGAT, AGAT, SGAT, HPR, and GLYK. *R. stricta* had greater PGP and CAT activities

Figure 5. Photorespiratory enzymatic activities in *Nicotiana tabacum* and *Rhazya stricta* at 25°C and 35°C. Specific activities per m^2 leaf area were measured in *R. stricta* (black boxplot) and *N. tabacum* (white boxplot) using crude protein extracts for the enzymes phosphoglycolate phosphatase, glycolate oxidase, catalase, glutamate glyoxylate aminotransferase, alanine glyoxylate aminotransferase, serine glyoxylate aminotransferase, hydroxypyruvate reductase, and glycerate kinase. Shown are boxplots as well as points indicating the biological replicates. Significant difference between species is indicated by an asterisk as determined by Student's t-test with P < 0.05.

than *N. tabacum* at 25°C and 35°C. *R. stricta* had greater AGAT and SGAT activities than *N. tabacum* at 25°C. *R. stricta* had similar GO, GGAT, HPR, and GK activities to *N. tabacum* at 25°C and 35°C.

The temperature response ratio of the enzyme activities was calculated by dividing the activity per mg protein at 35°C by the activity per mg protein at 25°C for each enzyme to establish if there are greater enzyme activities (relative to 25°C) at the elevated temperature in *R. stricta* and *N. tabacum* (Supplemental Figure 7). PGP had a greater relative increase in activity with temperature in *R. stricta* as compared to *N. tabacum*; however, GO, CAT, GGAT, AGAT, SGAT, HPR, and GLYK had similar temperature response ratios.

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

670

671

672

673

674

675

676

677

678

Discussion

Hallmarks of a temperature-tolerant photorespiratory pathway

These results demonstrate that R. stricta maintains higher rates of photorespiration under moderate and elevated temperatures and that these higher rates of activity correlate with increased activity of key photorespiratory enzymes. The higher rates of photorespiration are evident in the temperature response of v_o and v_o/v_c , which were greater in R. stricta than in N. tabacum at moderate (25°C and 30°C) and elevated (35°C and 40°C) temperatures (Figure 1). Higher rates of photorespiration in R. stricta were accompanied by increased activities of specific photorespiratory enzymes. In R. stricta, PGP and CAT activities were greater than N. tabacum at 25°C and 35°C (Figure 5A & C). These higher photorespiratory enzyme activities in R. stricta compared to N. tabacum support the hypothesis that R. stricta has adapted to high photorespiratory pressure at moderate and elevated temperature by increased activity of these key enzymes. Additionally, the temperature response ratio of PGP activity in R. stricta was larger compared to N. tabacum (1.55 compared to 1.07; Supplemental Figure 7). The larger temperature response of PGP indicates a larger V_{max} in the R. stricta at elevated temperatures than N. tabacum. The larger temperature response of PGP at elevated temperatures could not be explained by gene expression differences between the species as these assays were conducted in vitro. However, the increase could result from a more thermostable isoform of PGP in R. stricta than N. tabacum.

Increased activity of PGP may allow photorespiration to maintain low concentrations of 2-PG, an inhibitor of C₃ cycle enzymes, that accumulates under moderate and elevated temperatures. Past work supports the hypothesis that efficient degradation of 2-PG by PGP is critical for maintaining high rates of photosynthesis under higher photorespiratory conditions. For example, *Arabidopsis* overexpressing PGP maintain higher photosynthetic rates after short-term and long-term exposure to elevated temperatures as compared to wild-type and maintain a lower steady-state pool of 2-PG (Flügel *et al.*, 2017; Timm *et al.*, 2019). Therefore, minimizing the inhibition of photosynthesis by 2-PG appears to be a key feature for increasing the temperature resiliency of photorespiration in engineered and adapted plants.

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

CAT may also play a role in maintaining photosynthesis under higher photorespiratory pressure by detoxifying H₂O₂. Photorespiration is a large source of H₂O₂ in the light. H₂O₂ functions as a signaling molecule in both stress and developmental processes, where concentrations of H₂O₂ are likely under homeostatic regulation by foliar-expressed CAT in the peroxisome (Dat et al., 2003; Queval et al., 2008; Queval et al., 2007). CAT-deficient N. tabacum has high concentrations of H₂O₂ that leads to cell death when plants were exposed to high photorespiratory pressure (Dat et al., 2003). Other work with CAT-deficient plants indicate the enzyme is an important mediator of cellular toxicity during environmental stress (Willekens et al., 1997). Additionally, there is evidence that H_2O_2 can react with glyoxylate and/or hydroxypyruvate resulting in non-enzymatic decarboxylation and release additional CO₂ from photorespiration (Cousins et al., 2008; Grodzinski, 1978; Halliwell et al., 1974; Keech et al., 2012; Zelitch, 1992). For example, in a mutant with reduced foliar-expressed CAT, photosynthetic rates are reduced due to an increase in the stoichiometry release of CO₂ per oxygenation, most likely from the non-enzymatic decarboxylation with hydroxypyruvate and H₂O₂ (Bao et al., 2021). This work supports the hypothesis that sufficient CAT activity plays a critical role preventing elevated H₂O₂ signaling and possibly the additional loss of CO₂ from photorespiration and is an adaptive strategy in R. stricta to moderate and elevated temperatures. Interestingly, we found no evidence that N. tabacum actually had an increase in CO₂ release per rubisco oxygenation as would be expected from excess non-enzymatic

decarboxylations (discussed below). This finding indicates that the role of CAT in H_2O_2 signaling may be more important than any potential CO_2 loss from non-enzymatic decarboxylations.

Interestingly, when photorespiration was reduced under low O_2 conditions, both A and $A + R_L$ were lower in R. stricta compared to N. tabacum but were similar or slightly higher when measured under ambient O_2 conditions (Supplemental Figure 2 & Figure 2). The higher rates of A and $A + R_L$ in N. tabacum supports that the photorespiratory pathway in R. stricta reduces the inhibition of photosynthesis under photorespiratory conditions more efficiently than N. tabacum. In other words, A in N. tabacum is more sensitive to photorespiratory intermediates, despite having only half the rates of v_0 . The increase in A and $A + R_L$ under photorespiratory conditions in R. stricta is therefore likely due to the greater activity of PGP and CAT in R. stricta, rather than an improved ability to fix carbon. These results also indicate that photosynthesis in R. stricta is adapted to environments with high photorespiratory pressure.

Managing CO₂ transfer conductance for improved water use efficiency

Our results demonstrate that R. stricta has a higher g_m that is compensated by a lower g_{tc} , resulting in a similar overall CO_2 transfer conductance limitation to photosynthesis. R. stricta exhibits a lower g_{tc} than N. tabacum across the entire temperature gradient (Figure 5A). However, this conductance difference between R. stricta and N. tabacum does not impose a larger CO_2 limitation on photosynthetic rate (Figure 5B). R. stricta has a greater g_m than N. tabacum at elevated temperatures (Figure 5C). This difference in g_m at elevated temperatures does not reduce the CO_2 limitation on photosynthetic rate (Figure 5D). So why does this repartitioning strategy exist in R. stricta if it does not support an increase in net CO_2 assimilation? R. stricta appears to have re-partitioned the CO_2 transfer conductance at high temperatures from the stomata, which loses water, to the mesophyll, which does not.

The implications of this re-partitioning of conductances result in R. stricta having an increase in WUE. Although the lower g_{tc} indicates that the initial CO_2 delivery into the leaf was more restricted in R. stricta than N. tabacum, it also means that water has a more restricted path leaving the leaf. The lower g_{tc} in R. stricta resulted in a greater WUE than N. tabacum (Supplemental Figure 6). The greater WUE indicates a lower cost of water loss per carbon

assimilated, which is an important water-saving strategy. This water-saving strategy in R. stricta is consistent with other stomatal conductance measurements in other C_3 desert species, but the higher g_m has not yet been described to our knowledge (Driscoll *et al.*, 2021; Driscoll *et al.*, 2020; Kannenberg *et al.*, 2021; Ogle *et al.*, 2012).

Other adaptive strategies of photosynthesis appear similar between species

Biochemical limitations of photosynthesis reveal key similarities and differences between R. stricta and N. tabacum. In R. stricta, the J_{max} was greater than N. tabacum at 25°C, 30°C, 35°C, and 40°C (Figure 3A). These higher rates of J_{max} in R. stricta are consistent with a higher photorespiratory capacity in R. stricta, since photorespiration dissipates more excitation energy from the electron transport chain than N. tabacum which would increase maximal rates of electron flux (Kozaki et al., 1996).

In contrast to J_{max} , differences in $v_{c,max}$ were inconsistent between R. stricta and N. tabacum. In R. stricta, the $v_{c,max}$ was similar to N. tabacum at 20°C, and greater than N. tabacum at 25°C, 30°C, and 40°C (Figure 3A). Interestingly, $v_{c,max}$ in R. stricta was less than N. tabacum at 35°C. Generally, ignoring the 35°C data, there was a greater $v_{c,max}$ in R. stricta as temperature increased. Moreover, while we measured an increase in $v_{c,max}$ associated with temperature, others measure a $v_{c,max}$ independent of temperature in in situ studies of R. stricta (Lawson et al., 2014). Lawson et al., point to a potential thermostable rubisco activase as a potential strategy R. stricta uses to maintain rubisco catalytic capacity and activity at elevated temperatures. Potentially, this thermotolerant rubisco activase could be the reason we see higher $v_{c,max}$ in R. stricta compared to N. tabacum at 25°C, 30°C, and 40°C. However, we did not measure rubisco activity or activation state in this study.

Carbon assimilation is in part determined by the CO₂ released from R_L . Minimizing R_L could be a strategy used by R. stricta to maintain a higher assimilation rate at elevated temperatures. Interestingly, R_L was greater in R. stricta compared to N. tabacum at each temperature (Supplemental Figure 1A). The higher R_L meant that R. stricta is respiring more non-photorespiratory CO₂ than N. tabacum in the light. When considering rates of carbon assimilation, R. stricta had higher A than N. tabacum at 30°C under low light and at 25°C and

30°C under high light. In contrast, when the CO_2 loss from R_L is added back, R. stricta maintained higher $A + R_L$ than N. tabacum at 25°C, 30°C, and 35°C under low light, and at 25°C and 30°C under high light, meaning that R. stricta fixed more carbon at these temperatures (Figure 2). Therefore, the greater rates of R_L in R. stricta reduce the amount of carbon fixed and does not explain why R. stricta can maintain higher A at growth temperatures (~30°C) under low or high light intensity than N. tabacum. This result demonstrates that minimizing R_L does not appear to be a strategy that R. stricta uses to perform photosynthesis at higher rates compared to N. tabacum from a carbon budget perspective, but perhaps the elevated R_L contributes some yet-undescribed metabolic role in the elevated temperature tolerance.

Photosynthetic performance can also be characterized by Γ^* which links the specificity of rubisco for CO₂ over O₂ ($S_{c/o}$) to the stoichiometry of CO₂ release from rubisco oxygenation from photorespiration (α). A change in Γ^* may indicate differences in $S_{c/o}$ or α and may be an adaptive strategy in R. stricta to maintain photosynthetic performance. Interestingly, Γ^* was greater at 30°C and 40°C in R. stricta compared to N. tabacum, but similar at 20°C, 25°C, and 35°C. When considering changes in $S_{c/o}$, past work suggest that $S_{c/o}$ varies little within higher plants (Flamholz et al., 2019) but R. stricta was not included in this analysis, therefore not ruling out that it has adapted an improved $S_{c/o}$. Since the temperature response of Γ^* does not show any decrease in R. stricta as compared to N. tabacum, we do not see any evidence for adaptive changes in $S_{c/o}$ as a strategy that R. stricta uses to perform photosynthesis.

When considering α , previous work has resolved α to be 0.5 moles of CO₂ loss per rubisco oxygenation. The CO₂ loss is primarily attributed to the decarboxylation of glycine from the mitochondrion; however, if additional CO₂ is lost from NED in the peroxisome, the additional moles of CO₂ loss would be captured in this term. Determining α in vivo is difficult since it is integral to many of the simplifications and assumptions needed to interpret any gas exchange data in C₃ plants. For example, taken at face value, the Γ^* data would suggest that α actually increases in R. stricta as compared to N. tabacum which, if true, would mean that R. stricta has a less efficient photorespiratory pathway from a carbon balance perspective assuming a similar $S_{C/0}$. However, determining Γ^* requires assumptions of α to calculate Γ^* in the first place (i.e., g_m) clouding this interpretation. As an independent indicator to support the

use of a constant α in all our calculations, we surmised that additional CO₂ release would carry a different isotopic fractionation since it would arise from a different reaction (not glycine decarboxylase). This is supported by past work indicating that the transgenic rice with reduced glycine decarboxylase activity (and more alternative decarboxylation reactions with a higher α) have greatly decreased f values from 16.2% to ~3.3% (Giuliani $et\ al.$, 2019).

To determine if there was a decreased (or even different) f value consistent with a change in α , we measured Δ_f and f in R. stricta and N. tabacum. Interestingly, there was no significant difference between the species for either parameter at 25°C or 35°C (Supplemental Figure 4). Therefore, we do not see any evidence for differences in the reactions contributing to α between R. stricta and N. tabacum. Interestingly, there was an increase in R_L in R. stricta relative to N. tabacum but this can't be a reflection of a different α since this rate was not sensitive to different rates of photorespiration as indicated by the common intercept of the CO2 response curves measured under different illumination during the common-intersection measurements. This approach cannot preclude a small rate of non-enzymatic decarboxylations or a reaction that has the same fractionation as glycine decarboxylation, but for the purposes of this study, we assume that $\alpha = 0.5$ for all the gas-exchange calculations. This assumption also suggests that the protection against these reactions by increased catalase expression may be accompanied by a self-regulating mechanism to down-regulate rubisco activity when catalase activity is too low to prevent them from happening, explaining why higher activities of catalase are important in R. stricta, but non-enzymatic decarboxylations do not appear to occur at high rates in N. tabacum.

Although *R. stricta* and *N. tabacum* share the same photosynthetic pathway (C_3 cycle), differences in Φ_{CO2} reveal changes in photosynthetic capacity (Supplemental Figure 3). At 25°C, *R. stricta* had a significantly greater Φ_{CO2} (0.060 \pm 0.0047) than *N. tabacum* (0.046 \pm 0.0017). The question arises: What occurs between light absorption by the antennae and the carboxylation of CO_2 by rubisco that allows *R. stricta* to maximize the number of CO_2 fixed per photon absorbed? Perhaps non-photochemical quenching and/or photosynthetic control through cytochrome b_6 f is less, leading to a higher light use efficiency of photosystem II and higher electron transfer rates per photon absorbed (Eberhard *et al.*, 2008). However, at low

light absorption, we do not expect substantial non-photochemical quenching to occur in either species (Strand *et al.*, 2023). To understand the differences in coupling between the light absorption and Φ_{CO2} , we would need more characterizations of the upstream light reactions in both species.

Concluding Remarks

These results suggest important adaptive strategies used by R. stricta to maintain photosynthetic rates under moderate and elevated temperatures. To maintain high rates of photorespiration under most temperatures with minimal inhibitor accumulation, R. stricta increases photorespiratory capacity by reducing enzymatic bottlenecks. A second adaptive strategy in R. stricta to elevated temperatures is to increase water-use efficiency by lowering g_{tc} and increasing g_m . These strategies found in R. stricta may inform breeding and engineering efforts in other C_3 species to improve photosynthetic efficiency at elevated temperature.

Acknowledgement

We would like to thank Dr. Salman Gulzar for help with *R. stric*ta cultivation and ecophysiology. We additionally thank Audrey Johnson for the valuable work and discussion during the cultivation process of *R. stricta*. We thank Deserah Strand for helpful discussion regarding Φ_{CO2} and potential adaptations in the light reaction pathway. We also thank Jim Klug and Cody Keilen (MSU Growth Chamber Facility) for overall greenhouse maintenance and pest management during plant cultivation. Finally, we would like to thank Hilary Stewart Williams for help setting up the tunable diode laser measurement system, including the software and hardware.

Uncategorized References

- Abadie, C., Boex-Fontvieille, E. R., Carroll, A. J., & Tcherkez, G. (2016). In vivo stoichiometry of photorespiratory metabolism. *Nature Plants*, *2*(2), 1-4.
- Aebi, H. E. (1983). Catalase. In: Bergmeyer, H.U., Ed., Methods of Enzymatic Analysis. *Verlag Chemie, Weinheim*, 273-286.
 - Anderson, L. E. (1971). Chloroplast and cytoplasmic enzymes II. Pea leaf triose phosphate isomerases. *Biochimica et Biophysica Acta (BBA) Enzymology, 235*(1), 237-244. doi:https://doi.org/10.1016/0005-2744(71)90051-9
 - Baker, A. L., & Tolbert, N. E. (1966). Glycolate oxidase (ferredoxin containing form). Methods in Enzymology. *Academic Press*, *9*, 339-342.
 - Bao, H., Morency, M., Rianti, W., Saeheng, S., Roje, S., Weber, A. P. M., & Walker, B. J. (2021). Catalase protects against nonenzymatic decarboxylations during photorespiration in Arabidopsis thaliana. *Plant Direct*, 5(12), e366. doi:https://doi.org/10.1002/pld3.366
 - Barbour, M. M., McDowell, N. G., Tcherkez, G., Bickford, C. P., & Hanson, D. T. (2007). A new measurement technique reveals rapid post-illumination changes in the carbon isotope composition of leaf-respired CO2. *Plant, Cell & Environment, 30*(4), 469-482. doi:https://doi.org/10.1111/j.1365-3040.2007.01634.x
 - Bauwe, H., Hagemann, M., Kern, R., & Timm, S. (2012). Photorespiration has a dual origin and manifold links to central metabolism. *Current Opinion in Plant Biology*, *15*(3), 269-275. doi:10.1016/j.pbi.2012.01.008
 - Cousins, A. B., Pracharoenwattana, I., Zhou, W., Smith, S. M., & Badger, M. R. (2008). Peroxisomal malate dehydrogenase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release. *Plant Physiology, 148*(2), 786-795. doi:10.1104/pp.108.122622
 - Dat, J. F., Pellinen, R., Beeckman, T., Van De Cotte, B., Langebartels, C., Kangasjärvi, J., . . . Van Breusegem, F. (2003). Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. *The Plant Journal*, *33*(4), 621-632. doi:https://doi.org/10.1046/j.1365-313X.2003.01655.x
 - De Souza, A. P., Burgess, S. J., Doran, L., Hansen, J., Manukyan, L., Maryn, N., . . . Long, S. P. (2022). Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection. *Science*, *377*(6608), 851-854. doi:doi:10.1126/science.adc9831
 - Driscoll, A. W., Bitter, N. Q., & Ehleringer, J. R. (2021). Interactions among intrinsic water-use efficiency and climate influence growth and flowering in a common desert shrub. *Oecologia*, *197*(4), 1027-1038. doi:10.1007/s00442-020-04825-3
 - Driscoll, A. W., Bitter, N. Q., Sandquist, D. R., & Ehleringer, J. R. (2020). Multidecadal records of intrinsic water-use efficiency in the desert shrub <i>Encelia farinosa</i> reveal strong responses to climate change. *Proceedings of the National Academy of Sciences, 117*(31), 18161-18168. doi:doi:10.1073/pnas.2008345117
- 916 Eberhard, S., Finazzi, G., & Wollman, F. A. (2008). The dynamics of photosynthesis. *Annu Rev* 917 *Genet*, *42*, 463-515. doi:10.1146/annurev.genet.42.110807.091452

- 918 Ely, K. S., Rogers, A., Agarwal, D. A., Ainsworth, E. A., Albert, L. P., Ali, A., . . . Yang, D. (2021). A 919 reporting format for leaf-level gas exchange data and metadata. *Ecological Informatics*, 920 61, 101232. doi:https://doi.org/10.1016/j.ecoinf.2021.101232
- Evans, J. R., Sharkey, T. D., Berry, J. A., & Farquhar, G. D. (1986). Carbon Isotope Discrimination
 measured Concurrently with Gas Exchange to Investigate CO2 Diffusion in Leaves of
 Higher Plants. Functional Plant Biology, 13(2), 281-292.
 doi:https://doi.org/10.1071/PP9860281
- Evans, J. R., & von Caemmerer, S. (2013). Temperature response of carbon isotope
 discrimination and mesophyll conductance in tobacco. *Plant Cell Environ*, *36*(4), 745 756. doi:10.1111/j.1365-3040.2012.02591.x

929

930

931

932

933

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

- Farquhar, G., O'Leary, M., & Berry, J. (1982). On the Relationship Between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves. *Functional Plant Biology*, *9*(2), 121-137. doi:https://doi.org/10.1071/PP9820121
- Farquhar, G. D., & Cernusak, L. A. (2012). Ternary effects on the gas exchange of isotopologues of carbon dioxide. *Plant, Cell & Environment, 35*(7), 1221-1231. doi:https://doi.org/10.1111/j.1365-3040.2012.02484.x
- Flamholz, A. I., Prywes, N., Moran, U., Davidi, D., Bar-On, Y. M., Oltrogge, L. M., . . . Milo, R. (2019). Revisiting Trade-offs between Rubisco Kinetic Parameters. *Biochemistry*, *58*(31), 3365-3376. doi:10.1021/acs.biochem.9b00237
- 937 Flügel, F., Timm, S., Arrivault, S., Florian, A., Stitt, M., Fernie, A. R., & Bauwe, H. (2017). The
 938 Photorespiratory Metabolite 2-Phosphoglycolate Regulates Photosynthesis and Starch
 939 Accumulation in Arabidopsis. *The Plant Cell, 29*(10), 2537-2551.
 940 doi:10.1105/tpc.17.00256
 - Fu, X., Gregory, L. M., Weise, S. E., & Walker, B. J. (2023). Integrated flux and pool size analysis in plant central metabolism reveals unique roles of glycine and serine during photorespiration. *Nature Plants*, *9*(1), 169-178. doi:10.1038/s41477-022-01294-9
 - Giuliani, R., Karki, S., Covshoff, S., Lin, H.-C., Coe, R. A., Koteyeva, N. K., . . . Cousins, A. B. (2019). Knockdown of glycine decarboxylase complex alters photorespiratory carbon isotope fractionation in Oryza sativa leaves. *Journal of Experimental Botany, 70*(10), 2773-2786. doi:10.1093/jxb/erz083
 - Gregory, L. M., McClain, A. M., Kramer, D. M., Pardo, J. D., Smith, K. E., Tessmer, O. L., . . . Sharkey, T. D. (2021). The triose phosphate utilization limitation of photosynthetic rate: Out of global models but important for leaf models. *Plant Cell Environ, 44*(10), 3223-3226. doi:10.1111/pce.14153
 - Grodzinski, B. (1978). Glyoxylate decarboxylation during photorespiration. *Planta, 144*(1), 31-37. doi:10.1007/BF00385004
 - Hall, N. P., & Keys, A. J. (1983). Temperature dependence of the enzymic carboxylation and oxygenation of ribulose 1, 5-bisphosphate in relation to effects of temperature on photosynthesis. *Plant Physiology*, 72(4), 945-948.
- Halliwell, B., & Butt, V. S. (1974). Oxidative decarboxylation of glycollate and glyoxylate by leaf peroxisomes. *The Biochemical journal, 138*(2), 217-224. doi:10.1042/bj1380217
- Heinze, M., & Gerhardt, B. (2002). Plant Catalases. In A. Baker & I. A. Graham (Eds.), *Plant Peroxisomes: Biochemistry, Cell Biology and Biotechnological Applications* (pp. 103-140).
 Dordrecht: Springer Netherlands.

- Hermida-Carrera, C., Kapralov, M. V., & Galmés, J. (2016). Rubisco Catalytic Properties and
 Temperature Response in Crops. *Plant Physiology*, *171*(4), 2549-2561.
 doi:10.1104/pp.16.01846
- Jordan, D. B., & Ogren, W. L. (1984). The CO2/O2 specificity of ribulose 1,5-bisphosphate
 carboxylase/oxygenase. *Planta*, *161*(4), 308-313. doi:10.1007/BF00398720
- Kannenberg, S. A., Driscoll, A. W., Szejner, P., Anderegg, W. R. L., & Ehleringer, J. R. (2021).
 Rapid increases in shrubland and forest intrinsic water-use efficiency during an ongoing
 megadrought. *Proceedings of the National Academy of Sciences, 118*(52), e2118052118.
 doi:doi:10.1073/pnas.2118052118
- Keech, O., Zhou, W., Fenske, R., Colas-des-Francs-Small, C., Bussell, J. D., Badger, M. R., & Smith,
 S. M. (2012). The Genetic Dissection of a Short-Term Response to Low CO₂
 Supports the Possibility for Peroxide-Mediated Decarboxylation of Photorespiratory
 Intermediates in the Peroxisome. *Molecular Plant*, 5(6), 1413-1416.
 doi:10.1093/mp/sss104
 - Kendziorek, M., & Paszkowski, A. (2008). Properties of serine:glyoxylate aminotransferase purified from Arabidopsis thaliana leaves. *Acta Biochimica et Biophysica Sinica, 40*(2), 102-110. doi:10.1111/j.1745-7270.2008.00383.x
 - Kozaki, A., & Takeba, G. (1996). Photorespiration protects C3 plants from photooxidation. *Nature, 384*(6609), 557-560. doi:10.1038/384557a0
 - Kromdijk, J., Głowacka, K., Leonelli, L., Gabilly, S. T., Iwai, M., Niyogi, K. K., & Long, S. P. (2016). Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. *Science*, *354*(6314), 857-861. doi:doi:10.1126/science.aai8878
 - Laisk, A. K. (1977). Kinetics of photosynthesis and photorespiration of C3 in plants.

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

- Larkindale, J., & Huang, B. (2004). Changes of lipid composition and saturation level in leaves and roots for heat-stressed and heat-acclimated creeping bentgrass (Agrostis stolonifera). *Environmental and Experimental Botany, 51*(1), 57-67. doi:https://doi.org/10.1016/S0098-8472(03)00060-1
- Lawrence, M. G. (2005). The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications. *Bulletin of the American Meteorological Society*, 86(2), 225-234. doi:10.1175/bams-86-2-225
- Lawson, T., Davey, P. A., Yates, S. A., Bechtold, U., Baeshen, M., Baeshen, N., . . . Mullineaux, P. M. (2014). C3 photosynthesis in the desert plant Rhazya stricta is fully functional at high temperatures and light intensities. *New Phytologist*, *201*(3), 862-873. doi:https://doi.org/10.1111/nph.12559
- Liepman, A. H., & Olsen, L. J. (2001). Peroxisomal alanine : glyoxylate aminotransferase
 (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana.
 The Plant Journal, 25(5), 487-498. doi: https://doi.org/10.1046/j.1365-313x.2001.00961.x
- Liepman, A. H., & Olsen, L. J. (2003). Alanine Aminotransferase Homologs Catalyze the
 Glutamate:Glyoxylate Aminotransferase Reaction in Peroxisomes of Arabidopsis. *Plant Physiology*, 131(1), 215-227. doi:10.1104/pp.011460
- Liu, L., Zhong, S., Yang, R., Hu, H., Yu, D., Zhu, D., . . . Gong, D. (2008). Expression, purification, and initial characterization of human alanine aminotransferase (ALT) isoenzyme 1 and 2

- in High-five insect cells. *Protein Expression and Purification, 60*(2), 225-231. doi:https://doi.org/10.1016/j.pep.2008.04.006
- Liu, Y., Guérard, F., Hodges, M., & Jossier, M. (2020). Phosphomimetic T335D Mutation of
 Hydroxypyruvate Reductase 1 Modifies Cofactor Specificity and Impacts Arabidopsis
 Growth in Air1. *Plant Physiology*, 183(1), 194-205. doi:10.1104/pp.19.01225
- Marcum, K. B. (1998). Cell Membrane Thermostability and Whole-Plant Heat Tolerance of Kentucky Bluegrass. *Crop Science*, *38*(5), cropsci1998.0011183X003800050017x. doi:https://doi.org/10.2135/cropsci1998.0011183X003800050017x
- McClain, A. M., & Sharkey, T. D. (2023). Rapid CO2 changes cause oscillations in photosynthesis
 that implicate PSI acceptor-side limitations. *Journal of Experimental Botany*.
 doi:10.1093/jxb/erad084
- Moore, C. E., Meacham-Hensold, K., Lemonnier, P., Slattery, R. A., Benjamin, C., Bernacchi, C. J.,

 1017 . . . Cavanagh, A. P. (2021). The effect of increasing temperature on crop photosynthesis:

 1018 from enzymes to ecosystems. *Journal of Experimental Botany, 72*(8), 2822-2844.

 1019 doi:10.1093/jxb/erab090
- Ogle, K., Lucas, R. W., Bentley, L. P., Cable, J. M., Barron-Gafford, G. A., Griffith, A., . . . Tissue, D. T. (2012). Differential daytime and night-time stomatal behavior in plants from North American deserts. *New Phytologist*, 194(2), 464-476. doi:https://doi.org/10.1111/j.1469-8137.2012.04068.x
- Pai, S.-C., Yang, C.-C., & Riley, J. P. (1990). Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex. *Analytica Chimica Acta, 229*, 115-120.

1028

1029

1034

1035

1036

1037

1038

1039

1040

1041

- Pörtner, H. O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., . . . (eds.). (2022). IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. *Cambridge Univeristy Press*.
- Prasertthai, P., Paethaisong, W., Theerakulpisut, P., & Dongsansuk, A. (2022). High Temperature
 Alters Leaf Lipid Membrane Composition Associated with Photochemistry of PSII and
 Membrane Thermostability in Rice Seedlings. *Plants (Basel), 11*(11).
 doi:10.3390/plants11111454
 - Queval, G., Hager, J., Gakière, B., & Noctor, G. (2008). Why are literature data for H2O2 contents so variable? A discussion of potential difficulties in the quantitative assay of leaf extracts. *Journal of Experimental Botany*, *59*(2), 135-146. doi:10.1093/jxb/erm193
 - Queval, G., Issakidis-Bourguet, E., Hoeberichts, F. A., Vandorpe, M., Gakière, B., Vanacker, H., . . . Noctor, G. (2007). Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. *The Plant Journal*, *52*(4), 640-657. doi:https://doi.org/10.1111/j.1365-313X.2007.03263.x
- 1043 R Core Team. (2021). R: A Language and Environment for Statistical Computing. Vienna, Austria:
 1044 R Foundation for Statistical Computing. Retrieved from https://www.R-project.org
- Rawson, H. M., Begg, J. E., & Woodward, R. G. (1977). The effect of atmospheric humidity on photosynthesis, transpiration and water use efficiency of leaves of several plant species. Planta, 134(1), 5-10. doi:10.1007/BF00390086

- RStudio Team. (2021). RStudio: Integrated Development Environment for R. Boston, MA: 1048 1049 RStudio, PBC. Retrieved from http://www.rstudio.com/
- 1050 Saathoff, A. J., & Welles, J. (2021). Gas exchange measurements in the unsteady state. Plant, 1051 Cell & Environment, 44(11), 3509-3523. doi:https://doi.org/10.1111/pce.14178
- 1052 Schwarte, S., & Bauwe, H. (2007). Identification of the Photorespiratory 2-Phosphoglycolate Phosphatase, PGLP1, in Arabidopsis. Plant Physiology, 144(3), 1580-1586. 1053 1054 doi:10.1104/pp.107.099192
- 1055 Shen, J., Zeng, Y., Zhuang, X., Sun, L., Yao, X., Pimpl, P., & Jiang, L. (2013). Organelle pH in the 1056 Arabidopsis Endomembrane System. *Molecular Plant*, 6(5), 1419-1437. 1057 doi:https://doi.org/10.1093/mp/sst079

1062

1063

1064

1065

1066 1067

1068

1073

1074

1075

1076 1077

1078

1079

1080

1081

- 1058 Somerville, C. R. (2001). An early Arabidopsis demonstration. Resolving a few issues concerning 1059 photorespiration. *Plant Physiology*, 125(1), 20-24.
 - Somerville, C. R., & Ogren, W. L. (1980). Photorespiration mutants of Arabidopsis thaliana deficient in serine-glyoxylate aminotransferase activity. Proceedings of the National Academy of Sciences, 77(5), 2684-2687.
 - South, P. F., Cavanagh, A. P., Lopez-Calcagno, P. E., Raines, C. A., & Ort, D. R. (2018). Optimizing photorespiration for improved crop productivity. Journal of Integrative Plant Biology, 60(12), 1217-1230. doi:https://doi.org/10.1111/jipb.12709
 - Stinziano, J. R., Morgan, P. B., Lynch, D. J., Saathoff, A. J., McDermitt, D. K., & Hanson, D. T. (2017). The rapid A-Ci response: photosynthesis in the phenomic era. Plant, Cell & Environment, 40(8), 1256-1262. doi:https://doi.org/10.1111/pce.12911
- Strand, D. D., Karcher, D., Ruf, S., Schadach, A., Schöttler, M. A., Sandoval-Ibañez, O., . . . Bock, 1069 1070 R. (2023). Characterization of mutants deficient in N-terminal phosphorylation of the 1071 chloroplast ATP synthase subunit β . *Plant Physiol, 191*(3), 1818-1835. 1072 doi:10.1093/plphys/kiad013
 - Tazoe, Y., von Caemmerer, S., Estavillo, G. M., & Evans, J. R. (2011). Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO2 diffusion dynamically at different CO2 concentrations. Plant, Cell & Environment, 34(4), 580-591. doi:https://doi.org/10.1111/j.1365-3040.2010.02264.x
 - Tcherkez, G. (2006). How large is the carbon isotope fractionation of the photorespiratory enzyme glycine decarboxylase? Functional Plant Biology, 33(10), 911-920. doi:https://doi.org/10.1071/FP06098
 - Timm, S., Woitschach, F., Heise, C., Hagemann, M., & Bauwe, H. (2019). Faster removal of 2phosphoglycolate through photorespiration improves abiotic stress tolerance of arabidopsis. *Plants*, 8(12). doi:10.3390/plants8120563
- 1083 Tolbert, N. E., Yamazaki, R. K., & Oeser, A. (1970). Localization and Properties of 1084 Hydroxypyruvate and Glyoxylate Reductases in Spinach Leaf Particles. Journal of Biological Chemistry, 245(19), 5129-5136. doi:https://doi.org/10.1016/S0021-1085 1086 9258(18)62827-3
- 1087 Ubierna, N., Holloway-Phillips, M.-M., & Farquhar, G. D. (2018). Using Stable Carbon Isotopes to 1088 Study C3 and C4 Photosynthesis: Models and Calculations. In S. Covshoff (Ed.),
- 1089 Photosynthesis: Methods and Protocols (pp. 155-196). New York, NY: Springer New York.

- 1090 Urban, J., Ingwers, M., McGuire, M. A., & Teskey, R. O. (2017a). Stomatal conductance increases
 1091 with rising temperature. *Plant Signal Behav, 12*(8), e1356534.
 1092 doi:10.1080/15592324.2017.1356534
- Urban, J., Ingwers, M. W., McGuire, M. A., & Teskey, R. O. (2017b). Increase in leaf temperature
 opens stomata and decouples net photosynthesis from stomatal conductance in Pinus
 taeda and Populus deltoides x nigra. *J Exp Bot, 68*(7), 1757-1767.
 doi:10.1093/jxb/erx052
- Vialet-Chabrand, S., Matthews, J. S. A., Brendel, O., Blatt, M. R., Wang, Y., Hills, A., . . . Lawson,
 T. (2016). Modelling water use efficiency in a dynamic environment: An example using
 Arabidopsis thaliana. *Plant Science*, *251*, 65-74.
 doi:https://doi.org/10.1016/j.plantsci.2016.06.016
- 1101 Von Caemmerer, S. (2000). *Biochemical models of leaf photosynthesis*: Csiro publishing.
- von Caemmerer, S., & Evans, J. R. (2015). Temperature responses of mesophyll conductance differ greatly between species. *Plant, Cell & Environment, 38*(4), 629-637. doi:https://doi.org/10.1111/pce.12449
- Walker, B. J., & Cousins, A. B. (2013). Influence of temperature on measurements of the CO2
 compensation point: differences between the Laisk and O2-exchange methods. *J Exp Bot*, 64(7), 1893-1905. doi:10.1093/jxb/ert058
- Walker, B. J., Kramer, D. M., Fisher, N., & Fu, X. (2020). Flexibility in the Energy Balancing
 Network of Photosynthesis Enables Safe Operation under Changing Environmental
 Conditions. *Plants*, *9*(3), 301. Retrieved from https://www.mdpi.com/2223-7747/9/3/301
- Walker, B. J., Skabelund, D. C., Busch, F. A., & Ort, D. R. (2016a). An improved approach for measuring the impact of multiple CO2 conductances on the apparent photorespiratory CO2 compensation point through slope—intercept regression. *Plant, Cell & Environment,* 39(6), 1198-1203. doi:https://doi.org/10.1111/pce.12722
- Walker, B. J., South, P. F., & Ort, D. R. (2016b). Physiological evidence for plasticity in
 glycolate/glycerate transport during photorespiration. *Photosynthesis Research*, *129*(1),
 93-103. doi:10.1007/s11120-016-0277-3
- Warren, C. R. (2004). The photosynthetic limitation posed by internal conductance to CO2 movement is increased by nutrient supply. *Journal of Experimental Botany, 55*(406), 2313-2321. doi:10.1093/jxb/erh239
- Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M.,

 1123 ... Van Camp, W. (1997). Catalase is a sink for H2O2 and is indispensable for stress

 1124 defence in C3 plants. *The EMBO Journal, 16*(16), 4806-4816.

 1125 doi:https://doi.org/10.1093/emboj/16.16.4806
- Zelitch, I. (1989). Selection and Characterization of Tobacco Plants with Novel O2-Resistant Photosynthesis. *Plant Physiology*, *90*(4), 1457-1464. doi:10.1104/pp.90.4.1457
- Zelitch, I. (1992). Factors Affecting Expression of Enhanced Catalase Activity in a Tobacco
 Mutant with O2-Resistant Photosynthesis. *Plant Physiology, 98*(4), 1330-1335.
 doi:10.1104/pp.98.4.1330
- Zelitch, I., Schultes, N. P., Peterson, R. B., Brown, P., & Brutnell, T. P. (2008). High Glycolate
 Oxidase Activity Is Required for Survival of Maize in Normal Air *Plant Physiology, 149*(1),
 195-204. doi:10.1104/pp.108.128439