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Highlight

Photorespiration is as dynamic as photosynthesis in fluctuating light, impacting photosynthetic
induction, energy balancing and other interacting metabolic processes.

Abstract

Photorespiration is a dynamic process that is intimately linked to photosynthetic carbon
assimilation. There is a growing interest in understanding carbon assimilation during dynamic
conditions, but the role of photorespiration under these dynamic conditions is unclear. In this
review, we discuss recent work relevant to the function of photorespiration under dynamic
conditions, with a special focus on light transients. This work reveals that photorespiration is a
fundamental component of the light induction of assimilation where variable diffusive processes
limit CO, exchange with the atmosphere. Additionally, metabolic interactions between
photorespiration and the C3 cycle may help balance fluxes under dynamic light conditions. We
further discuss how the energy demands of photorespiration present special challenges to energy
balancing during dynamic conditions. We finish the review with an overview of why regulation
of photorespiration may be important under dynamic conditions to maintain appropriate fluxes
through metabolic pathways related to photorespiration like nitrogen and one-carbon
metabolism.

Introduction

Photorespiration is an essential component of plant central metabolism responsible for recycling
byproducts of photosynthesis-related oxygen uptake (Husic et al., 1987). Photorespiration is
intrinsically coupled with photosynthesis due to the dual specificity of ribulose 1,5-bisphosphate
(RuBP) carboxylase (rubisco) for CO> and oxygen. While the carboxylation of RuBP
incorporates COz to yield two 3-phosphoglycerate (3-PGA) that enter the C3 cycle, the
oxygenation of RuBP leads to one 3-PGA and one inhibitory molecule 2-phosphoglycolate (2-
PG) (Bowes et al., 1971). The core photorespiratory pathway recycles 75% of the carbon
comprising 2-PG through a series of reactions to 3-PGA back into the C3 cycle for RuBP
regeneration and requires the coordination of several subcellular compartments (Berry ef al.,
1978) (Box 1). This recycling process releases CO2 and consumes ATP and NADPH, thus
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reducing photosynthetic efficiency and affecting the energy balance of the plant (Walker et al.,
2016). The reduction of net carbon fixation by photorespiratory carbon loss is not constant and is
strongly dependent on leaf physiology related to CO; diffusion (Valentini et al., 1995).
Additionally, many governing factors for photosynthesis also affect photorespiration, such as
stomatal and mesophyll conductance and activation of rubisco, making photosynthesis and
photorespiration dynamic under fluctuating environments (Sakoda et al., 2021; Taylor et al.,
2022).

Despite the dynamic nature of photorespiration, most of our knowledge regarding
photorespiratory metabolism comes from steady-state studies that probe the biochemistry of
photorespiratory metabolism by exposing plants to various environmental changes (Timm ef al.,
2012; Busch, 2020; Dellero et al., 2021), applying stable-isotope tracers (Cegelski and Schaefer,
2006; Abadie et al., 2016, 2018; Tcherkez et al., 2017), and utilizing mutants with disrupted
components in the photorespiratory pathway (Wingler et al., 1999; Eisenhut et al., 2017; Timm
et al., 2021). However, the current understanding of steady-state photorespiration is insufficient
for evaluating its role under dynamic natural field conditions. Natural conditions are incredibly
dynamic; for example, on a typical cloudless day, a wheat canopy can receive over 2,600
sunflecks that comprise 83% of total irradiance, indicating that for many instances dynamic
conditions predominate over steady-state (Kaiser ez al., 2018). While the mechanisms of
dynamic photosynthetic response to fluctuating light environments have been explored (Vialet-
Chabrand et al., 2017; Slattery et al., 2018; Morales and Kaiser, 2020; Gjindali et al., 2021),
little is known about the effect of dynamic fluctuations in environments on photorespiratory
metabolism and its impact on net assimilation (Huang et al., 2015; Eisenhut et al., 2017).

Many excellent reviews cover various aspects of photorespiration (Timm et al., 2012; Obata et
al., 2016; Walker et al., 2016; Hodges et al., 2016; Busch, 2020; Fernie and Bauwe, 2020; Shi
and Bloom, 2021). In this review, we argue that including the dynamic role of photorespiration is
essential for fully understanding (and possibly improving) the dynamic response of net
assimilation to light. In the next sections, we will summarize some recent key findings in the
photosynthetic response to light and relate them to photorespiratory mechanisms. We will not be
comprehensive to the response of net assimilation to light generally but instead focus on what is
related most to photorespiration.

Photosynthesis is intimately linked to photorespiration

The intimate link between photorespiration and photosynthesis (net CO; assimilation) has been
long recognized since the discovery that rubisco has both carboxylase and oxygenase activity
(Bowes et al., 1971). These activities are integral to the classic C3 photosynthetic model for the
rate of net CO» assimilation, which uses the mass balance between the rate of rubisco
carboxylation (V.) from the rate of CO- releasing reactions stemming from rubisco oxygenation
(V) and respiration in the light (R;) (Farquhar et al., 1980; von Caemmerer, 2013). Rates of
photorespiratory COz loss are represented as half of ¥, because it is usually assumed that
recycling 1 mol of 2-phosphoglycolate through the photorespiratory cycle results in the release
of 0.5 mol of CO> in the mitochondria (von Caemmerer, 2013; Abadie ef al., 2016) (Box 1). The
energy requirements and COz loss from photorespiration are not trivial. There are ~2 rubisco
oxygenation reactions for every 5 carboxylation reactions under ambient conditions, which
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require 30-40% of leaf energy in the light and release CO» at ~25% the rate of net assimilation
(Walker ef al., 2016). These values highlight that net CO; assimilation in C3 plants cannot be
separated from rates of photorespiration. The rates of rubisco oxygenation and carboxylation
under constant light could be significantly different than under the fluctuating light conditions
(Huang et al., 2015).

Net photosynthesis is directly affected by the absolute values and relative ratio of oxygenation to
carboxylation rate (V./V.) determined by the kinetic constants of rubisco and the chloroplastic
concentrations of CO2 and O; (von Caemmerer, 2013). The chloroplastic concentration of CO>
depends on the conductance of CO» diffusion from ambient through intercellular airspace to the
chloroplasts (Flexas ef al., 2008), making chloroplastic CO; a dynamic relationship with the
environment. Experimentally manipulating the CO; and O; concentrations around the leaf can
drastically change net CO: assimilation by influencing the V,/V. ratio (Abadie et al., 2018).
When O concentrations are constant under field conditions, changes in chloroplastic CO, affect
the V,/V. ratio, leading to changes in net CO» assimilation. Under normal atmospheric
conditions, the V,/V. ratio is around 0.5 in C3 species but can be highly variable under transient
changes in leaf physiology (Bellasio et al., 2014). For example, transient changes in stomatal
conductance result in decreased leaf internal CO> concentrations, imposing a variable V,/V. ratio
that affects photosynthetic performance.

Photosynthetic and photorespiratory adjustments under fluctuating light

Light is the most dynamic environmental condition that directly affects photosynthesis and
photorespiration. Light fluctuations occur in timescales from milliseconds to seasons due to
changes in sunflecks, self-shading, cloud-shading, and diurnal and seasonal light intensity
(Pearcy, 1990; Assmann and Wang, 2001; Slattery et al., 2018; Morales and Kaiser, 2020).
Leaves therefore must respond to short- and long-term light fluctuations. Understanding
photosynthetic performance under dynamic light environments is gaining more attention, as
exemplified by recent reviews (Vialet-Chabrand et al., 2017; Slattery et al., 2018; Morales and
Kaiser, 2020; Gjindali ef al., 2021). Given that photorespiratory release of CO> is a major
determinate of net assimilation, it is interesting that relatively limited studies have focused on
how photorespiration specifically responds and interacts with photosynthesis under fluctuating
light (Huang et al., 2015; Shi et al., 2022).

Photorespiration is activated over season-long time scales when plants acclimate to long-term
increases in light. For example, plants grown under high light have a higher rate of rubisco
oxygenation than leaves exposed to low light (Huang et al., 2014). Since rates of rubisco
oxygenation are related to total rubisco catalytic turnover, these increased rates are mostly due to
the higher rubisco content and lower intercellular CO> concentration in the leaves acclimated to
high light (Huang et al., 2014). Long-term acclimation to fluctuating light involves changes in
gene expression in timescales of days (Athanasiou et al., 2010; Karim and Johnson, 2021;
Gjindali et al., 2021). For example, the expression of the photorespiratory gene HPR! is induced
by high light intensity (Wang et al., 2022). The long-term growth effects are also seen in the
absolute rates of V. and ¥V, which are higher in plants grown under high light than in low light,
with an increased ratio V,/V. under high light conditions (Ma et al., 2014; Walker et al., 2020).
While the content of rubisco and general photosynthetic capacity explains much of the response
of photorespiration to growth under various light regimes, other factors constrain the response of
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net photosynthesis and photorespiration to rapid fluctuations in light intensity, which occur at
timescales too fast to be driven by changes in gene expression.

When leaves transition under short-term time scales from shade to full sunlight, net CO»
assimilation does not immediately reach a maximum light-saturated value but instead gradually
increases to a new steady-state level, a phenomenon known as “photosynthetic induction”
(Pearcy, 1990). The delay in reaching the maximum A4 after a sudden increase in light intensity
decreases daily photosynthetic carbon gain, which can further reduce crop productivity (Tanaka
et al., 2019). The speed of photosynthetic induction varies between and among species (Tanaka
et al., 2019). For example, the slow photosynthetic adjustment from shade to sun accounted for a
13% loss of carbon assimilation in cassava (De Souza ef al., 2020) and a 21% loss of net canopy
CO; assimilation and productivity in wheat (Taylor and Long, 2017). These major losses of
potential productivity beg the question: What are the physiological and biochemical mechanisms
underlying the response of net assimilation to light, and does photorespiration play a larger role
in this response than we realize?

Stomatal and mesophyll conductance effects rates of rubisco oxygenation and carboxylation

The diffusion of CO» from the atmosphere to the catalytic site of rubisco in the chloroplast is a
major factor constraining the induction of assimilation in dynamic light environments. CO»
diffusion is directly affected by the speed at which stomata open and close under changing
environments (Vialet-Chabrand et al., 2017). Stomatal responses under fluctuating light are often
an order of magnitude slower than photosynthetic responses, like the light activation of C3 cycle
enzymes, resulting in a temporal disconnect between the stomatal conductance and the
biochemical CO; assimilation (Lawson ef al., 2010). There are substantial interspecific and
intraspecific variations in the speed of stomatal responses to changes in light intensity, ranging
from tens of minutes to over an hour (McAusland et al., 2016; Faralli et al., 2019). The
limitation imposed on photosynthesis by CO> supply during the light induction period by
stomatal conductance (gy) is 10-15% across thirteen C3 and C4 crop species (McAusland et al.,
2016). When this limitation is relieved, plants perform higher rates of assimilation. For example,
a rice cultivar with a faster photosynthetic induction response to light has a faster response of g
and recovers faster from the drop of intracellular CO> concentration after the sudden increase in
light intensity (Adachi et al., 2019). Removal of the stomatal induction generally can lead to a
faster photosynthetic induction in rice and Arabidopsis mutants with constitutively opened
stomata, but this comes at the cost of high water loss (Kimura et al., 2020; Yamori ef al., 2020).

The slow stomatal kinetics under fluctuating light also affects photorespiration in non-steady-
state conditions due to the fundamental link between photorespiration and CO> availability.
During a light induction, both absolute and relative rates of V, increase. Absolute rates increase
as total rubisco catalysis increases, resulting in higher rates of V. and V,. Relative rates of
photorespiration also increase when CO» is limited by stomatal conductance, driven by the
increase in the ratio of O2/COsz. The increase in O2/CO;z occurs when higher rates of CO2
assimilation under high light increase the CO> drawdown in the intercellular airspace due to CO>
fixation. Increases in absolute and relative rates of V, are illustrated using data from McAusland
et al. (2016), where we calculated V,, V., and V,/V. in two species with distinct stomatal kinetics
during the light induction (Fig. 1). In both species, there is an almost 10-fold increase in V,
during the light induction, with a slightly smaller increase in V.. Concurrently, driven by a
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decrease in the intercellular CO» concentration and an increase in the ratio of O2/CO», there is an
increase in relative rates of photorespiration as shown by increases in Vo/V..

Different stomatal kinetics between species further affect absolute and relative rates of
photorespiration. For example, rice (Oryza sativa) has a faster response of stomatal conductance
and net CO> assimilation than broad bean (Vicia faba) (Fig. 1). This faster response results in V,
and V,/V. rapidly reaching a plateau during the induction period. This plateau is maintained as
stomatal conductance reaches its maximal value, and a new steady-state CO2 concentration is
present in the intercellular airspace. In contrast to rice, broad bean has a slow stomatal response
(Fig. 1). This slow response results in initially higher V, and Vo/V. values, which decrease as
stomata open and increase CO» delivery to rubisco. Both of these cases highlight how stomatal
conductance directly shapes the absolute and relative response of V, during a light induction.

Mesophyll conductance (g) describes the ease at which CO> diffuses from the intercellular
airspace to the carboxylation site in the chloroplasts and is another factor constraining
photosynthetic induction during fluctuating light (Slattery et al., 2018). The limitation of g, on
photosynthesis under steady-state conditions is well known, but the extent of this limitation
under fluctuating light is still under ongoing investigation due to the difficulty of accurately
measuring the dynamics of g, under non-steady-state conditions (Kaiser et al., 2015). The
response of g, in light varies between plant species and the technique used to estimate g, (Xiong
et al., 2018; Carriqui et al., 2019; Sakoda et al., 2021; Liu et al., 2022). The response of g, is
slower than g, but not faster than the maximum rate of RuBP carboxylation during light
induction (Sakoda et al., 2021; Liu et al., 2022).

Like stomatal conductance, g, also limits net photosynthesis during light induction and shapes
the partitioning between V, and V.. For example, g, limits net CO» assimilation by over 20% in
Arabidopsis and tobacco when integrated over the entire light induction period (Sakoda et al.,
2021; Liu et al., 2022). These studies showed g, plays a significant role in restricting dynamic
photosynthesis during the transient period of light induction. When CO is limited by g, during
the light induction, V, also increases relatively faster than V., increasing the V,/V. ratio (Fig. 2).
These re-analyses of published data highlight that gas diffusional processes like stomatal
conductance and g, shape photorespiration as much as photosynthesis under fluctuating light.

Activation of rubisco constrains V, as well as V.

Once COz enters the chloroplast, carbon fixation can be limited by the activation of a series of
C3 cycle enzymes. The initial enzyme of C3 cycle, rubisco, must be fully activated by rubisco
activase (Rca) to effectively overcome inhibition by catalytic misfire products and maintain
maximum capacity to catalyze the carboxylation reaction (Portis et al., 2008). During the low to
high light transition, rubisco is quickly activated with a linear increase within the first 4 minutes,
but the full activation requires more than 20 minutes to reach the steady state (Yamori ef al.,
2012). Thus Rca plays an important role in regulating dynamic photosynthesis under fluctuating
light conditions, evidenced by a positive correlation between Rca concentration and the speed of
photosynthetic induction upon transition from low to high light (Hammond ef a/., 1998; Yamori
etal.,2012).
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Since rubisco catalyzes both carboxylation and oxygenation, the induction kinetics of rubisco
activation also affect photorespiration under fluctuating light conditions. Interestingly, the
photorespiratory intermediate glyoxylate has been shown to inhibit the activation state of rubisco
in isolated chloroplasts (Chastain and Ogren, 1989; Campbell and Ogren, 1990). In addition,
glycolate can inhibit rubisco activity. Increased glycolate levels in maize leaves induced by
photorespiratory inhibitors accompanied decreased photosynthesis (Gonzalez-Moro et al., 1997).
The photosynthetic induction response of dark-adapted leaves is much slower in a maize mutant
with disrupted glycolate oxidase activity than in the wild-type plant that can maintain low
steady-state levels of glycolate (Zelitch et al., 2009). Indeed, many other photorespiratory
intermediates are involved in the crosstalk with the C3 cycle metabolism (Timm and Hagemann,
2020). The metabolic interactions between photorespiration and the C3 cycle may play a role in
balancing the fluxes through photorespiration and carbon fixation under dynamic environments.
For example, when rates of photorespiration become too high, the carbon released may negate
the benefits of continued rubisco catalysis. Under these conditions, it may be beneficial to
decrease total rates of rubisco activity until more favorable conditions are present.

Metabolic interactions between photorespiration and the C3 cycle under fluctuating light

The dynamics of photorespiratory and photosynthetic fluxes under fluctuating light also depend
on enzyme activities and metabolite concentrations downstream from rubisco. In addition to the
light activation of rubisco, the activity of several key enzymes in the C3 cycle is regulated by the
thioredoxin-ferredoxin system in a light-dependent manner (Buchanan, 1980). Activating these
enzymes during light induction is more rapid than for rubisco, taking up to 10 minutes
(Sassenrath-Cole and Pearcy, 1994). The slow activation response of these enzymes contributes
to the delayed photosynthetic activation under fluctuating light. Many of the C3 cycle enzymes
are regulated by photorespiratory intermediates. For example, 2-PG inhibits several enzymes in
the C3 cycle and starch metabolism, including triosephosphate isomerase (TPI), sedoheptulose-
1,7-bisphosphate phosphatase (SBPase), and phosphofructokinase (PFK) (Anderson, 1971; Kelly
and Latzko, 1976; Fliigel ef al., 2017). These interactions present a regulatory feedback loop via
2-PG levels that may adjust carbon fluxes through the C3 cycle and balance carbon partitioning
between RuBP regeneration and starch biosynthesis (Fliigel et al., 2017). This may be important
in maintaining adequate C3 pool sizes when carbon is being lost from the cycle from
photorespiration.

Besides interacting with the C3 cycle enzymes through regulatory interactions, photorespiratory
metabolites can directly constrain the photosynthetic response under fluctuating light. Pool sizes
of photorespiratory intermediates generally increase when switching plants from low to high
light condition (Florez-Sarasa et al., 2012; Adachi et al., 2019; Bao et al., 2021). Specifically,
glycine and serine respond quickly to changes in light intensity in rice, with glycine peaking at
10 min and serine peaking at 30 min (Adachi et al., 2019). Among all photorespiratory
intermediates, glycine showed the strongest accumulation upon various photorespiratory
pressures (Hitz and Stewart, 1980; Timm et al., 2012; Abadie et al., 2016, 2018; Eisenhut et al.,
2017). The increased glycine pools during the transient to high light hold carbon that is not
passed through glycine decarboxylation and therefore contributes to greater gain of carbon
during light induction since this carbon stays in reduced bonds rather than being released through
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glycine decarboxylation. This increase in assimilation is temporary and ceases when glycine pool
sizes reach their new steady-state concentrations.

Increased photorespiratory metabolite pools during light induction may additionally function as
carbon reservoirs needed for photosynthetic induction. Compared to the rapid turnover (< 1s) and
small pool size of C3 cycle intermediates, photorespiratory intermediates have a much larger
pool size with turnover times of 10-15 minutes (Szecowka et al., 2013; Ma et al., 2014; Arrivault
etal.,2017; Xu et al., 2021). Isotope labeling studies suggested that inactive pools of glycine,
serine, and glycerate may be stored in vacuoles (Szecowka et al., 2013; Ma et al., 2014; Xu et
al., 2021). These carbon reservoirs could be used to replenish C3 cycle intermediate pools when
transitioning to low light, where pools of RUBP and its precursors are lower (Borghi et al.,
2019). The buffering capacity of large pools of photorespiratory intermediates could also be
important for C4 photosynthesis under fluctuating light (Schliiter and Weber, 2020). The final
step of the photorespiratory pathway, glycerate kinase, is located in the mesophyll cells, where
the resulting 3-phosphoglycerate (3PGA) is reduced to triose phosphate shuttles to the bundle
sheath cells (Briutigam et al., 2008). Increasing pools of photorespiratory intermediates not only
allows for a fast build-up of metabolite pools for the 3PGA/triose phosphate shuttle during the
photosynthetic induction but also feeding additional substrate into the carbon-concentrating
mechanism via the interconnection of 3PGA and phosphoenolpyruvate (Kromdijk ez al., 2014).

Maintaining a basal level of the C3 cycle intermediate pools in low light would facilitate the high
flux to support both rapid RuBP regeneration and photorespiration during light induction (Stitt et
al., 2021). C3 cycle intermediate pools generally increase as irradiance increases, but many of
them do not fall to very low levels at low light (Borghi et al., 2019; Stitt et al., 2021). For
example, triose-phosphate at the light compensation point already reached about one-fifth
(Arabidopsis) or one-third (rice) of the levels at high light. If C3 cycle metabolites are too low in
low light, it would take longer to build up the metabolite pools to support high photorespiratory
and C3 cycle enzyme activity when transitioning to high light.

The energy demand of photorespiration during light transients

Energy produced from the light reactions must be balanced with energy consumed during
metabolism to prevent photodamage and reduce photosynthetic inefficiencies (Kramer and
Evans, 2011; Walker et al., 2020). This balancing needs to occur not just in absolute terms but
also stoichiometrically, meaning that both ATP and reducing equivalents (NAD(P)H) need to be
produced and consumed at the same rates. NAD(P)H includes all products of linear electron flow
(LEF), including NADH, NADPH, and Ferredoxin). LEF produces ATP and NAD(P)H in a
fixed stoichiometry, commonly accepted to be ~1.28 ATP/NAD(P)H (Kramer and Evans, 2011;
Walker et al., 2020). The biochemical requirements of the C3 cycle and photorespiration in the
steady-state are 1.5 and 1.75 ATP/NAD(P)H, resulting in an ATP deficit (Edwards and Walker,
1983; von Caemmerer, 2000). This ATP deficit requires additional production to safely balance
energy consumption and production. There have been many mechanisms proposed to meet this
ATP deficit targeting energy production under steady-state conditions, including cyclic electron
flow around photosystem I, the “malate valve” and the water-water cycle as discussed in
previous reviews (Hangarter and Good, 1982; Asada, 1999; Scheibe, 2004; Li et al., 2004). What
is less clear is how ATP/NAD(P)H demand changes under non-steady-state conditions and what
are the downstream consequences of this changing demand?
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In this section, we will focus exclusively on how energy demand from photorespiration changes
from the steady-state 1.75 ATP/NAD(P)H during transient conditions. The origin of this demand
stoichiometry arises from the various reactions of the C3 cycle and photorespiration itself that
are required to regenerate the Ribulose 5-phosphate (R5P) used to produce the substrate RuBP
consumed per V, (Box 1). Note that these demands assume the steady-state processing of
photorespiratory intermediates, an assumption that is not true under fluctuating light when
photorespiratory intermediates, especially serine and glycine, do not maintain constant pool sizes
as discussed above.

During light induction, when glycine pools are increasing, photorespiration no longer requires
energy stemming from reactions downstream from glycine decarboxylation, shifting the
demands of photorespiration to two ATP and one NAD(P)H per glycine that is not
decarboxylated. Not processing glycine through photorespiration results in an ATP/NAD(P)H
demand of 2, greatly increasing the ATP deficit of increased relative rates of ¥, during light
induction (Box 2). This increase in glycine pool size therefore temporarily increases the
ATP/NAD(P)H demand of photorespiration metabolically. It is unclear how plants manage this
temporary increase in stoichiometric energy demand, but it appears that production-side
mechanisms like cyclic electron flow around photosystem I, the “malate valve” and the water-
water cycle are sufficient to minimize major photodamage.

Regulation of photorespiration and impacts on photosynthesis

Given its essential yet dynamic role, is photorespiration regulated? The large transients in the
photorespiratory flux under fluctuating light outlined above suggest that this pathway may be
highly regulated in response to dynamic environmental changes. The need to regulate
photorespiration may come from its interaction with other metabolic pathways such as nitrogen
assimilation, respiration, sulfur, and C1 metabolism has been extensively reviewed (Obata et al.,
2016; Hodges et al., 2016; Abadie et al., 2017; Busch, 2020), but how changes in
photorespiratory flux affect interacting metabolic pathways remains unclear. Since
photorespiration carries the second-largest carbon flux in plants, rapid shifts in the
photorespiratory flux in dynamic light conditions would significantly affect fluxes to these
interacting metabolic pathways. One hypothesis is that activation of photorespiration helps
coordinate carbon and nitrogen metabolisms under non-steady-state conditions. Additionally,
photorespiration may be regulated to maintain adequate flux to related metabolisms like C1 and
sulfur metabolism. In this section, we will discuss the evidence that photorespiration is regulated
and examine the hypotheses for why photorespiration might be regulated.

The accumulation of glycine when V, increases indicate that the mitochondrial glycine to serine
conversion via GDC is a bottleneck flux that needs to be adjusted dynamically. GDC is believed
to have a high coefficient of control in the photorespiratory pathway (Timm and Hagemann,
2020). Elevated GDC activity increases the flux capacity through photorespiration, possibly by
reducing the steady-state level of glycine and all other photorespiratory intermediates, resulting
in increases in plant growth and net assimilation (Timm et al., 2012). In contrast, impaired GDC
activity reduces the photorespiratory flux and decreases photosynthesis and growth (Lopez-
Calcagno et al., 2019). The importance of GDC to photorespiratory flux raises the question of
how is GDC activity regulated under fluctuating light? One possible mechanism for regulating
enzymatic activities is via thioredoxins (trx) which regulate several enzymes in the C3 cycle
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under fluctuating light conditions (Nikkanen and Rintamaki, 2014). Two mitochondrial trxs, trx
ol, and trx h2, downregulate GDC as shown by reverse genetics and biochemical assays
(Reinholdt et al., 2019b; da Fonseca-Pereira et al., 2020). Moreover, the trx ol-mediated redox
regulation is important for the rapid induction of photorespiration and photosynthesis in response
to short-term light/dark changes (Reinholdt et al., 2019a). In addition to GDC, other
photorespiratory core enzymes such as SHMT1, HPR1 and GOX appear to be regulated by post-
translational modifications (Liu et al., 2019, 2020, Jossier et al., 2020).

The regulation of photorespiratory flux may also enable plants to optimize N utilization during
light induction. Leaf N content can limit the speed of photosynthetic induction under fluctuating
light in several C3 and C4 species (Chen et al., 2013; Liu et al., 2021; Sun et al., 2022). The link
between de novo nitrogen assimilation and photorespiration is supported by the observations that
rates of NO3™ uptake and assimilation decrease as rates of photorespiration decrease
(Rachmilevitch et al., 2004; Bloom et al., 2010). During light induction, the transient increase in
photorespiratory flux could increase N assimilation to support the higher N demand for increased
glycine pools under high light. This newly assimilated N may not stay in the photorespiratory
cycle. When photorespiration is not limited by NO3z™ uptake, a large portion of photorespiration-
derived amino acids (glycine and serine) may be exported from the photorespiratory pathway
(Busch et al., 2018). The exported photorespiratory glycine and serine can be used to synthesize
proteins and various specialized metabolites (Noctor et al., 1999; Dirks et al., 2012; Benstein et
al.,2013).

Photorespiration may function to sense the changes in the metabolic demand for downstream
metabolism under fluctuating light and respond accordingly to match the supply with demand.
Photorespiration is thought to be the main biosynthetic pathway for providing the 1-C units for
the synthesis of nucleic acids, proteins, vitamins, and methylated molecules in leaf tissue
(Hanson and Roje, 2001; Li et al., 2003). Plant sulfur assimilation is stimulated under high
photorespiratory conditions (Abadie and Tcherkez, 2019; Abadie et al., 2021). Regulating
photorespiration flux could ensure adequate and consistent flux to interacting metabolic
pathways such as C1 metabolism and sulfur metabolism despite fluctuating light and absolute
rates of V.

Future Research

Given the importance and unknowns of the operation of photorespiration under fluctuating
conditions, we feel that the field would benefit from several areas of increased research
investment. Studies investigating the metabolic changes of photorespiratory intermediates during
light transients would help resolve some of these questions, as would investigating the effects of
fluctuating light under non-photorespiratory and photorespiratory conditions. Investigating non-
steady-state behavior also requires analytical approaches developed for dynamic systems that
integrate a time component to best compare and evaluate in vivo signals like net CO»
assimilation of chlorophyll fluorescence. Engineering control theory provides apt tools for this
type of analysis and has been already applied to control leaf temperature under dynamic light
(Pare et al., 2017). We feel that control theory approaches may be uniquely suited to bring new
insight into the behavior of photorespiration and photosynthesis generally under fluctuating light.



383 Conclusion

384  While considerable progress has been made regarding the role and regulation of photorespiration
385 in the steady-state, it is critical to better understand photorespiration under non-steady-state

386  conditions. Many factors simultaneously constrain the response of net photosynthesis and

387  photorespiration during light transients, including the diffusional conductance to CO> from the
388  atmosphere to the catalytic site of rubisco in the chloroplasts and the activation of rubisco. The
389  metabolic interactions between photorespiration and the C3 cycle and their energy demand are
390 also dynamic under light transients. Considering the tight connection between photorespiration
391  and other pathways such as nitrogen assimilation and C1 metabolism, transient changes in the
392  photorespiratory flux can affect overall carbon and nitrogen partitioning. As photorespiration is
393 involved in the induction of net assimilation under fluctuating light, exploiting the genetic

394  manipulation of the transient responses of photorespiration has the potential to improve crop

395  performance. Increasing our understanding of photorespiration regulation in transient presents an
396  opportunity to improve net carbon assimilation and optimize nutrient uptake and partition in

397  dynamic environments.
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Figure legends

Fig. 1. Response of stomatal conductance to water vapour (gs), net CO, assimilation (4), rate of
rubisco carboxylation (V.), rate of rubisco oxygenation (V,), and the V,/V. ratio of rice (Oryza
sativa) and broad bean (Vicia faba) to an increase in irradiance from 100 (shaded area) to 1000
(unshaded area) umol m 2 s™! followed by a decrease to 100 pmol m 2 s~!. Data were taken or
calculated from McAusland et al., 2016.

Fig. 2. Response of mesophyll conductance (gn), stomatal conductance to water vapour (g;), net
CO; assimilation (4), rate of rubisco carboxylation (V¢), rate of rubisco oxygenation (V,), and the
Vo/ Ve ratio of wild-type Arabidopsis to an increase in irradiance from 100 (shaded area) to 1200
(unshaded area) pmol m 2 s™!. Data were taken or calculated from Liu et al., 2021.
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Box 1. Schematic view of photorespiration and the interacting metabolic pathways.

The core photorespiratory pathway involves three subcellular compartments, chloroplasts,
peroxisomes and mitochondria. Photorespiration is initiated by rubisco oxygenation (R0),
yielding the inhibitory molecule 2-phosphoglycolate (P-glocate), which is dephosphorylated to
glycolate. Glycolate is exported from the chloroplast into the peroxisomes, then reacts
irreversibly with O to form glyoxylate by glycolate oxidase (R1), producing H,O as a
byproduct. Next, glyoxylate is aminated by either glutamate glyoxylate:aminotransferase (R2) or
serine:glyoxylate transaminase (R4) to produce glycine. The glycine produced is moved from the
peroxisomes to mitochondria, then decarboxylated to form serine releasing CO2, NHa, cycling
tetrahydrofolate (THF) and methyl-THF (M-THF), and reducing NAD by a multienzyme
complex, glycine—cleavage system (R3). Photorespiratory serine is moved back to the
peroxisome and converted to hydroxypyruvate (Hpyr) while serine:glyoxylate transaminase (R4)
is catalyzing the amino group transfer to glyoxylate. Hpyr is reduced to glycerate by
hydroxypyruvate reductase (R5) and transported back to the chloroplast. Glycerate is
phosphorylated to 3-phosphoglycerate (P-glycerate), which can then enter the C3 cycle. The
H>0O; produced by R1 is decomposed to oxygen and water by catalase (R6). Nonenzymatic
decarboxylations can occur either between glyoxylate and H2Oz (R7) or between HPyr and H20-
(R8), releasing CO; in the process. The extra glycine and serine can be exported out of the
photorespiratory pathway for protein synthesis or other metabolic processes (R9 and R10).
Figure and caption are revised from Bao et al., 2021.
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Box 2. Energy demand from photorespiration

To understand how the stoichiometry of energy demand from photorespiration changes during
transient conditions, we first must understand where it originates. This energy demand is most
easily followed by starting with the C3-cycle intermediate Ribulose 5-phosphate (R5P), the
immediate precursor to RuBP. To follow the entire energy demand of photorespiration, we must
account for all ATP and NAD(P)H needed to convert all downstream products of RSP through
the various cycles back into R5P. R5P requires a single ATP to produce RuBP. To initiate
photorespiration, RuBP is oxygenated and produces a single 3-phosphoglycerate (3-PGA) and 2-
PG per V,. Photorespiration recycles 2-PG to 0.5 3-PGA, which is processed in the C3 cycle at
the cost of one ATP and one NADPH each back to RSP. Recycling of 2-PG by photorespiration
first involves energy during glycine decarboxylation, which produces 0.5 NADH per V, and
releases NH4" from glycine. This NH4" is refixed in the chloroplast by the glutamine synthetase-
glutamate synthase pathway at the cost of one ATP and two ferredoxin, or 0.5 ATP and 0.5
NAD(P)H per V,. The downstream product of glycine decarboxylation requires 0.5 NADH to
convert hydroxypyruvate to glycerate and one ATP to convert glycerate to 3-PGA, which can
enter the C3 cycle and require an additional 0.5 ATP and 0.5 NAD(P)H per V5.

Energy Demands of Steady-State Photorespiration
ATP Demands NAD(P)H Demands

R5P to RuBP Conversion 1 --
3-PGA produced per V, to R5P 1 1
NADH produced from GDC - -0.5
Refixation of NH4" by GS-GOGAT 0.5 0.5
Reduction of hydroxypyruvate - 0.5
Glycerate phosphorylation 0.5 --
3-PGA recycled from photorespiration to RSP 0.5 0.5

Total 3.5 2




