1 Dynamic Response of Photorespiration in Fluctuating Light Environments

- 3 Authors: Xinyu Fu¹, Berkley J. Walker^{1,2*}
- ⁴ Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI
- 5 48824, USA

2

8

12

- 6 ² Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- 7 *Correspondence to: Berkley Walker, berkley@msu.edu

9 Highlight

- 10 Photorespiration is as dynamic as photosynthesis in fluctuating light, impacting photosynthetic
- induction, energy balancing and other interacting metabolic processes.

13 Abstract

- Photorespiration is a dynamic process that is intimately linked to photosynthetic carbon
- assimilation. There is a growing interest in understanding carbon assimilation during dynamic
- conditions, but the role of photorespiration under these dynamic conditions is unclear. In this
- 17 review, we discuss recent work relevant to the function of photorespiration under dynamic
- conditions, with a special focus on light transients. This work reveals that photorespiration is a
- 19 fundamental component of the light induction of assimilation where variable diffusive processes
- 20 limit CO₂ exchange with the atmosphere. Additionally, metabolic interactions between
- 21 photorespiration and the C3 cycle may help balance fluxes under dynamic light conditions. We
- further discuss how the energy demands of photorespiration present special challenges to energy
- balancing during dynamic conditions. We finish the review with an overview of why regulation
- of photorespiration may be important under dynamic conditions to maintain appropriate fluxes
- 25 through metabolic pathways related to photorespiration like nitrogen and one-carbon
- 26 metabolism.

27

28

Introduction

- 29 Photorespiration is an essential component of plant central metabolism responsible for recycling
- 30 byproducts of photosynthesis-related oxygen uptake (Husic *et al.*, 1987). Photorespiration is
- 31 intrinsically coupled with photosynthesis due to the dual specificity of ribulose 1,5-bisphosphate
- 32 (RuBP) carboxylase (rubisco) for CO₂ and oxygen. While the carboxylation of RuBP
- incorporates CO₂ to yield two 3-phosphoglycerate (3-PGA) that enter the C3 cycle, the
- 34 oxygenation of RuBP leads to one 3-PGA and one inhibitory molecule 2-phosphoglycolate (2-
- PG) (Bowes et al., 1971). The core photorespiratory pathway recycles 75% of the carbon
- 36 comprising 2-PG through a series of reactions to 3-PGA back into the C3 cycle for RuBP
- 37 regeneration and requires the coordination of several subcellular compartments (Berry et al.,
- 38 1978) (Box 1). This recycling process releases CO₂ and consumes ATP and NADPH, thus

- reducing photosynthetic efficiency and affecting the energy balance of the plant (Walker et al.,
- 40 2016). The reduction of net carbon fixation by photorespiratory carbon loss is not constant and is
- strongly dependent on leaf physiology related to CO₂ diffusion (Valentini *et al.*, 1995).
- 42 Additionally, many governing factors for photosynthesis also affect photorespiration, such as
- 43 stomatal and mesophyll conductance and activation of rubisco, making photosynthesis and
- 44 photorespiration dynamic under fluctuating environments (Sakoda et al., 2021; Taylor et al.,
- 45 2022).
- 46 Despite the dynamic nature of photorespiration, most of our knowledge regarding
- 47 photorespiratory metabolism comes from steady-state studies that probe the biochemistry of
- 48 photorespiratory metabolism by exposing plants to various environmental changes (Timm et al.,
- 49 2012; Busch, 2020; Dellero et al., 2021), applying stable-isotope tracers (Cegelski and Schaefer,
- 50 2006; Abadie et al., 2016, 2018; Tcherkez et al., 2017), and utilizing mutants with disrupted
- 51 components in the photorespiratory pathway (Wingler et al., 1999; Eisenhut et al., 2017; Timm
- *et al.*, 2021). However, the current understanding of steady-state photorespiration is insufficient
- 53 for evaluating its role under dynamic natural field conditions. Natural conditions are incredibly
- dynamic; for example, on a typical cloudless day, a wheat canopy can receive over 2,600
- sunflecks that comprise 83% of total irradiance, indicating that for many instances dynamic
- 56 conditions predominate over steady-state (Kaiser et al., 2018). While the mechanisms of
- 57 dynamic photosynthetic response to fluctuating light environments have been explored (Vialet-
- 58 Chabrand et al., 2017; Slattery et al., 2018; Morales and Kaiser, 2020; Gjindali et al., 2021),
- 59 little is known about the effect of dynamic fluctuations in environments on photorespiratory
- 60 metabolism and its impact on net assimilation (Huang et al., 2015; Eisenhut et al., 2017).
- 61 Many excellent reviews cover various aspects of photorespiration (Timm et al., 2012; Obata et
- 62 al., 2016; Walker et al., 2016; Hodges et al., 2016; Busch, 2020; Fernie and Bauwe, 2020; Shi
- and Bloom, 2021). In this review, we argue that including the dynamic role of photorespiration is
- essential for fully understanding (and possibly improving) the dynamic response of net
- assimilation to light. In the next sections, we will summarize some recent key findings in the
- photosynthetic response to light and relate them to photorespiratory mechanisms. We will not be
- 67 comprehensive to the response of net assimilation to light generally but instead focus on what is
- related most to photorespiration.

70

Photosynthesis is intimately linked to photorespiration

- 71 The intimate link between photorespiration and photosynthesis (net CO₂ assimilation) has been
- 72 long recognized since the discovery that rubisco has both carboxylase and oxygenase activity
- 73 (Bowes et al., 1971). These activities are integral to the classic C3 photosynthetic model for the
- rate of net CO₂ assimilation, which uses the mass balance between the rate of rubisco
- carboxylation (V_c) from the rate of CO₂ releasing reactions stemming from rubisco oxygenation
- 76 (V_o) and respiration in the light (R_l) (Farquhar et al., 1980; von Caemmerer, 2013). Rates of
- photorespiratory CO_2 loss are represented as half of V_0 because it is usually assumed that
- recycling 1 mol of 2-phosphoglycolate through the photorespiratory cycle results in the release
- of 0.5 mol of CO₂ in the mitochondria (von Caemmerer, 2013; Abadie et al., 2016) (Box 1). The
- 80 energy requirements and CO₂ loss from photorespiration are not trivial. There are ~2 rubisco
- 81 oxygenation reactions for every 5 carboxylation reactions under ambient conditions, which

- require 30-40% of leaf energy in the light and release CO_2 at ~25% the rate of net assimilation
- (Walker et al., 2016). These values highlight that net CO₂ assimilation in C3 plants cannot be
- separated from rates of photorespiration. The rates of rubisco oxygenation and carboxylation
- under constant light could be significantly different than under the fluctuating light conditions
- 86 (Huang *et al.*, 2015).

- Net photosynthesis is directly affected by the absolute values and relative ratio of oxygenation to
- carboxylation rate (V_o/V_c) determined by the kinetic constants of rubisco and the chloroplastic
- concentrations of CO₂ and O₂ (von Caemmerer, 2013). The chloroplastic concentration of CO₂
- 90 depends on the conductance of CO₂ diffusion from ambient through intercellular airspace to the
- 91 chloroplasts (Flexas et al., 2008), making chloroplastic CO₂ a dynamic relationship with the
- 92 environment. Experimentally manipulating the CO₂ and O₂ concentrations around the leaf can
- drastically change net CO₂ assimilation by influencing the V_o/V_c ratio (Abadie *et al.*, 2018).
- When O₂ concentrations are constant under field conditions, changes in chloroplastic CO₂ affect
- 95 the V_o/V_c ratio, leading to changes in net CO₂ assimilation. Under normal atmospheric
- conditions, the V_o/V_c ratio is around 0.5 in C3 species but can be highly variable under transient
- 97 changes in leaf physiology (Bellasio et al., 2014). For example, transient changes in stomatal
- onductance result in decreased leaf internal CO₂ concentrations, imposing a variable V_o/V_c ratio
- 99 that affects photosynthetic performance.

Photosynthetic and photorespiratory adjustments under fluctuating light

- Light is the most dynamic environmental condition that directly affects photosynthesis and
- photorespiration. Light fluctuations occur in timescales from milliseconds to seasons due to
- changes in sunflecks, self-shading, cloud-shading, and diurnal and seasonal light intensity
- 104 (Pearcy, 1990; Assmann and Wang, 2001; Slattery et al., 2018; Morales and Kaiser, 2020).
- Leaves therefore must respond to short- and long-term light fluctuations. Understanding
- photosynthetic performance under dynamic light environments is gaining more attention, as
- exemplified by recent reviews (Vialet-Chabrand et al., 2017; Slattery et al., 2018; Morales and
- Kaiser, 2020; Gjindali et al., 2021). Given that photorespiratory release of CO₂ is a major
- determinate of net assimilation, it is interesting that relatively limited studies have focused on
- 110 how photorespiration specifically responds and interacts with photosynthesis under fluctuating
- 111 light (Huang et al., 2015; Shi et al., 2022).
- Photorespiration is activated over season-long time scales when plants acclimate to long-term
- increases in light. For example, plants grown under high light have a higher rate of rubisco
- oxygenation than leaves exposed to low light (Huang et al., 2014). Since rates of rubisco
- oxygenation are related to total rubisco catalytic turnover, these increased rates are mostly due to
- the higher rubisco content and lower intercellular CO₂ concentration in the leaves acclimated to
- high light (Huang et al., 2014). Long-term acclimation to fluctuating light involves changes in
- gene expression in timescales of days (Athanasiou *et al.*, 2010; Karim and Johnson, 2021;
- Gjindali et al., 2021). For example, the expression of the photorespiratory gene HPR1 is induced
- by high light intensity (Wang et al., 2022). The long-term growth effects are also seen in the
- absolute rates of V_c and V_o which are higher in plants grown under high light than in low light,
- with an increased ratio V_o/V_c under high light conditions (Ma et al., 2014; Walker et al., 2020).
- While the content of rubisco and general photosynthetic capacity explains much of the response
- of photorespiration to growth under various light regimes, other factors constrain the response of

- net photosynthesis and photorespiration to rapid fluctuations in light intensity, which occur at
- timescales too fast to be driven by changes in gene expression.
- When leaves transition under short-term time scales from shade to full sunlight, net CO₂
- assimilation does not immediately reach a maximum light-saturated value but instead gradually
- increases to a new steady-state level, a phenomenon known as "photosynthetic induction"
- 130 (Pearcy, 1990). The delay in reaching the maximum A after a sudden increase in light intensity
- decreases daily photosynthetic carbon gain, which can further reduce crop productivity (Tanaka
- et al., 2019). The speed of photosynthetic induction varies between and among species (Tanaka
- et al., 2019). For example, the slow photosynthetic adjustment from shade to sun accounted for a
- 13% loss of carbon assimilation in cassava (De Souza et al., 2020) and a 21% loss of net canopy
- 135 CO₂ assimilation and productivity in wheat (Taylor and Long, 2017). These major losses of
- potential productivity beg the question: What are the physiological and biochemical mechanisms
- underlying the response of net assimilation to light, and does photorespiration play a larger role
- in this response than we realize?

Stomatal and mesophyll conductance effects rates of rubisco oxygenation and carboxylation

- The diffusion of CO₂ from the atmosphere to the catalytic site of rubisco in the chloroplast is a
- major factor constraining the induction of assimilation in dynamic light environments. CO₂
- diffusion is directly affected by the speed at which stomata open and close under changing
- environments (Vialet-Chabrand et al., 2017). Stomatal responses under fluctuating light are often
- an order of magnitude slower than photosynthetic responses, like the light activation of C3 cycle
- enzymes, resulting in a temporal disconnect between the stomatal conductance and the
- biochemical CO₂ assimilation (Lawson et al., 2010). There are substantial interspecific and
- intraspecific variations in the speed of stomatal responses to changes in light intensity, ranging
- from tens of minutes to over an hour (McAusland et al., 2016; Faralli et al., 2019). The
- limitation imposed on photosynthesis by CO₂ supply during the light induction period by
- stomatal conductance (g_s) is 10-15% across thirteen C3 and C4 crop species (McAusland *et al.*,
- 2016). When this limitation is relieved, plants perform higher rates of assimilation. For example,
- a rice cultivar with a faster photosynthetic induction response to light has a faster response of g_s
- and recovers faster from the drop of intracellular CO₂ concentration after the sudden increase in
- light intensity (Adachi et al., 2019). Removal of the stomatal induction generally can lead to a
- faster photosynthetic induction in rice and Arabidopsis mutants with constitutively opened
- stomata, but this comes at the cost of high water loss (Kimura et al., 2020; Yamori et al., 2020).
- 157 The slow stomatal kinetics under fluctuating light also affects photorespiration in non-steady-
- state conditions due to the fundamental link between photorespiration and CO₂ availability.
- During a light induction, both absolute and relative rates of V_o increase. Absolute rates increase
- as total rubisco catalysis increases, resulting in higher rates of V_c and V_o . Relative rates of
- photorespiration also increase when CO₂ is limited by stomatal conductance, driven by the
- increase in the ratio of O_2/CO_2 . The increase in O_2/CO_2 occurs when higher rates of CO_2
- assimilation under high light increase the CO₂ drawdown in the intercellular airspace due to CO₂
- 164 fixation. Increases in absolute and relative rates of V_0 are illustrated using data from McAusland
- et al. (2016), where we calculated V_o , V_c , and V_o/V_c in two species with distinct stomatal kinetics
- during the light induction (Fig. 1). In both species, there is an almost 10-fold increase in V_o
- during the light induction, with a slightly smaller increase in V_c . Concurrently, driven by a

- decrease in the intercellular CO₂ concentration and an increase in the ratio of O₂/CO₂, there is an increase in relative rates of photorespiration as shown by increases in V_o/V_c .
- Different stomatal kinetics between species further affect absolute and relative rates of
- photorespiration. For example, rice (*Oryza sativa*) has a faster response of stomatal conductance
- and net CO₂ assimilation than broad bean (*Vicia faba*) (Fig. 1). This faster response results in V_o
- and V_o/V_c rapidly reaching a plateau during the induction period. This plateau is maintained as
- stomatal conductance reaches its maximal value, and a new steady-state CO₂ concentration is
- present in the intercellular airspace. In contrast to rice, broad bean has a slow stomatal response
- 176 (Fig. 1). This slow response results in initially higher V_o and V_o/V_c values, which decrease as
- stomata open and increase CO₂ delivery to rubisco. Both of these cases highlight how stomatal
- conductance directly shapes the absolute and relative response of V_o during a light induction.
- Mesophyll conductance (g_m) describes the ease at which CO_2 diffuses from the intercellular
- airspace to the carboxylation site in the chloroplasts and is another factor constraining
- photosynthetic induction during fluctuating light (Slattery *et al.*, 2018). The limitation of g_m on
- photosynthesis under steady-state conditions is well known, but the extent of this limitation
- under fluctuating light is still under ongoing investigation due to the difficulty of accurately
- measuring the dynamics of g_m under non-steady-state conditions (Kaiser *et al.*, 2015). The
- response of g_m in light varies between plant species and the technique used to estimate g_m (Xiong
- 186 *et al.*, 2018; Carriquí *et al.*, 2019; Sakoda *et al.*, 2021; Liu *et al.*, 2022). The response of g_m is
- slower than g_s but not faster than the maximum rate of RuBP carboxylation during light
- induction (Sakoda *et al.*, 2021; Liu *et al.*, 2022).
- Like stomatal conductance, g_m also limits net photosynthesis during light induction and shapes
- the partitioning between V_o and V_c . For example, g_m limits net CO₂ assimilation by over 20% in
- 191 Arabidopsis and tobacco when integrated over the entire light induction period (Sakoda *et al.*,
- 192 2021; Liu et al., 2022). These studies showed g_m plays a significant role in restricting dynamic
- photosynthesis during the transient period of light induction. When CO_2 is limited by g_m during
- the light induction, V_o also increases relatively faster than V_c , increasing the V_o/V_c ratio (Fig. 2).
- These re-analyses of published data highlight that gas diffusional processes like stomatal
- conductance and g_m shape photorespiration as much as photosynthesis under fluctuating light.

Activation of rubisco constrains V_o as well as V_c

- Once CO₂ enters the chloroplast, carbon fixation can be limited by the activation of a series of
- 200 C3 cycle enzymes. The initial enzyme of C3 cycle, rubisco, must be fully activated by rubisco
- activase (Rca) to effectively overcome inhibition by catalytic misfire products and maintain
- 202 maximum capacity to catalyze the carboxylation reaction (Portis et al., 2008). During the low to
- 203 high light transition, rubisco is quickly activated with a linear increase within the first 4 minutes,
- but the full activation requires more than 20 minutes to reach the steady state (Yamori et al.,
- 205 2012). Thus Rca plays an important role in regulating dynamic photosynthesis under fluctuating
- light conditions, evidenced by a positive correlation between Rca concentration and the speed of
- photosynthetic induction upon transition from low to high light (Hammond et al., 1998; Yamori
- 208 *et al.*, 2012).

197

198

Since rubisco catalyzes both carboxylation and oxygenation, the induction kinetics of rubisco 209 activation also affect photorespiration under fluctuating light conditions. Interestingly, the 210 photorespiratory intermediate glyoxylate has been shown to inhibit the activation state of rubisco 211 212 in isolated chloroplasts (Chastain and Ogren, 1989; Campbell and Ogren, 1990). In addition, glycolate can inhibit rubisco activity. Increased glycolate levels in maize leaves induced by 213 photorespiratory inhibitors accompanied decreased photosynthesis (Gonzalez-Moro et al., 1997). 214 The photosynthetic induction response of dark-adapted leaves is much slower in a maize mutant 215 with disrupted glycolate oxidase activity than in the wild-type plant that can maintain low 216 steady-state levels of glycolate (Zelitch et al., 2009). Indeed, many other photorespiratory 217 intermediates are involved in the crosstalk with the C3 cycle metabolism (Timm and Hagemann, 218 2020). The metabolic interactions between photorespiration and the C3 cycle may play a role in 219 balancing the fluxes through photorespiration and carbon fixation under dynamic environments. 220 For example, when rates of photorespiration become too high, the carbon released may negate 221 the benefits of continued rubisco catalysis. Under these conditions, it may be beneficial to 222 decrease total rates of rubisco activity until more favorable conditions are present. 223

Metabolic interactions between photorespiration and the C3 cycle under fluctuating light

224

225

241242

243

244

245

246

247

248

249

250 251

The dynamics of photorespiratory and photosynthetic fluxes under fluctuating light also depend 226 on enzyme activities and metabolite concentrations downstream from rubisco. In addition to the 227 light activation of rubisco, the activity of several key enzymes in the C3 cycle is regulated by the 228 229 thioredoxin-ferredoxin system in a light-dependent manner (Buchanan, 1980). Activating these enzymes during light induction is more rapid than for rubisco, taking up to 10 minutes 230 (Sassenrath-Cole and Pearcy, 1994). The slow activation response of these enzymes contributes 231 to the delayed photosynthetic activation under fluctuating light. Many of the C3 cycle enzymes 232 are regulated by photorespiratory intermediates. For example, 2-PG inhibits several enzymes in 233 the C3 cycle and starch metabolism, including triosephosphate isomerase (TPI), sedoheptulose-234 1,7-bisphosphate phosphatase (SBPase), and phosphofructokinase (PFK) (Anderson, 1971; Kelly 235 and Latzko, 1976; Flügel et al., 2017). These interactions present a regulatory feedback loop via 236 2-PG levels that may adjust carbon fluxes through the C3 cycle and balance carbon partitioning 237 between RuBP regeneration and starch biosynthesis (Flügel et al., 2017). This may be important 238 in maintaining adequate C3 pool sizes when carbon is being lost from the cycle from 239 photorespiration. 240

Besides interacting with the C3 cycle enzymes through regulatory interactions, photorespiratory metabolites can directly constrain the photosynthetic response under fluctuating light. Pool sizes of photorespiratory intermediates generally increase when switching plants from low to high light condition (Florez-Sarasa *et al.*, 2012; Adachi *et al.*, 2019; Bao *et al.*, 2021). Specifically, glycine and serine respond quickly to changes in light intensity in rice, with glycine peaking at 10 min and serine peaking at 30 min (Adachi *et al.*, 2019). Among all photorespiratory intermediates, glycine showed the strongest accumulation upon various photorespiratory pressures (Hitz and Stewart, 1980; Timm *et al.*, 2012; Abadie *et al.*, 2016, 2018; Eisenhut *et al.*, 2017). The increased glycine pools during the transient to high light hold carbon that is not passed through glycine decarboxylation and therefore contributes to greater gain of carbon

during light induction since this carbon stays in reduced bonds rather than being released through

glycine decarboxylation. This increase in assimilation is temporary and ceases when glycine pool sizes reach their new steady-state concentrations.

Increased photorespiratory metabolite pools during light induction may additionally function as carbon reservoirs needed for photosynthetic induction. Compared to the rapid turnover (< 1s) and small pool size of C3 cycle intermediates, photorespiratory intermediates have a much larger pool size with turnover times of 10-15 minutes (Szecowka et al., 2013; Ma et al., 2014; Arrivault et al., 2017; Xu et al., 2021). Isotope labeling studies suggested that inactive pools of glycine, serine, and glycerate may be stored in vacuoles (Szecowka et al., 2013; Ma et al., 2014; Xu et al., 2021). These carbon reservoirs could be used to replenish C3 cycle intermediate pools when transitioning to low light, where pools of RUBP and its precursors are lower (Borghi et al., 2019). The buffering capacity of large pools of photorespiratory intermediates could also be important for C4 photosynthesis under fluctuating light (Schlüter and Weber, 2020). The final step of the photorespiratory pathway, glycerate kinase, is located in the mesophyll cells, where the resulting 3-phosphoglycerate (3PGA) is reduced to triose phosphate shuttles to the bundle sheath cells (Bräutigam et al., 2008). Increasing pools of photorespiratory intermediates not only allows for a fast build-up of metabolite pools for the 3PGA/triose phosphate shuttle during the photosynthetic induction but also feeding additional substrate into the carbon-concentrating mechanism via the interconnection of 3PGA and phosphoenolpyruvate (Kromdijk et al., 2014).

Maintaining a basal level of the C3 cycle intermediate pools in low light would facilitate the high flux to support both rapid RuBP regeneration and photorespiration during light induction (Stitt *et al.*, 2021). C3 cycle intermediate pools generally increase as irradiance increases, but many of them do not fall to very low levels at low light (Borghi *et al.*, 2019; Stitt *et al.*, 2021). For example, triose-phosphate at the light compensation point already reached about one-fifth (Arabidopsis) or one-third (rice) of the levels at high light. If C3 cycle metabolites are too low in low light, it would take longer to build up the metabolite pools to support high photorespiratory and C3 cycle enzyme activity when transitioning to high light.

278279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

252

253

254

255

256

257258

259

260

261262

263

264

265

266

267268

269

270

271

272

273

274

275

276

277

The energy demand of photorespiration during light transients

Energy produced from the light reactions must be balanced with energy consumed during metabolism to prevent photodamage and reduce photosynthetic inefficiencies (Kramer and Evans, 2011; Walker et al., 2020). This balancing needs to occur not just in absolute terms but also stoichiometrically, meaning that both ATP and reducing equivalents (NAD(P)H) need to be produced and consumed at the same rates. NAD(P)H includes all products of linear electron flow (LEF), including NADH, NADPH, and Ferredoxin). LEF produces ATP and NAD(P)H in a fixed stoichiometry, commonly accepted to be ~1.28 ATP/NAD(P)H (Kramer and Evans, 2011; Walker et al., 2020). The biochemical requirements of the C3 cycle and photorespiration in the steady-state are 1.5 and 1.75 ATP/NAD(P)H, resulting in an ATP deficit (Edwards and Walker, 1983; von Caemmerer, 2000). This ATP deficit requires additional production to safely balance energy consumption and production. There have been many mechanisms proposed to meet this ATP deficit targeting energy production under steady-state conditions, including cyclic electron flow around photosystem I, the "malate valve" and the water-water cycle as discussed in previous reviews (Hangarter and Good, 1982; Asada, 1999; Scheibe, 2004; Li et al., 2004). What is less clear is how ATP/NAD(P)H demand changes under non-steady-state conditions and what are the downstream consequences of this changing demand?

- In this section, we will focus exclusively on how energy demand from photorespiration changes from the steady-state 1.75 ATP/NAD(P)H during transient conditions. The origin of this demand stoichiometry arises from the various reactions of the C3 cycle and photorespiration itself that are required to regenerate the Ribulose 5-phosphate (R5P) used to produce the substrate RuBP consumed per V_o (Box 1). Note that these demands assume the steady-state processing of photorespiratory intermediates, an assumption that is not true under fluctuating light when photorespiratory intermediates, especially serine and glycine, do not maintain constant pool sizes
- During light induction, when glycine pools are increasing, photorespiration no longer requires 304 energy stemming from reactions downstream from glycine decarboxylation, shifting the 305 demands of photorespiration to two ATP and one NAD(P)H per glycine that is not 306 decarboxylated. Not processing glycine through photorespiration results in an ATP/NAD(P)H 307 demand of 2, greatly increasing the ATP deficit of increased relative rates of V_o during light 308 induction (Box 2). This increase in glycine pool size therefore temporarily increases the 309 ATP/NAD(P)H demand of photorespiration metabolically. It is unclear how plants manage this 310 temporary increase in stoichiometric energy demand, but it appears that production-side 311
- mechanisms like cyclic electron flow around photosystem I, the "malate valve" and the waterwater cycle are sufficient to minimize major photodamage.

303

315

as discussed above.

Regulation of photorespiration and impacts on photosynthesis

- Given its essential yet dynamic role, is photorespiration regulated? The large transients in the 316 photorespiratory flux under fluctuating light outlined above suggest that this pathway may be 317 highly regulated in response to dynamic environmental changes. The need to regulate 318 photorespiration may come from its interaction with other metabolic pathways such as nitrogen 319 assimilation, respiration, sulfur, and C1 metabolism has been extensively reviewed (Obata et al., 320 2016; Hodges et al., 2016; Abadie et al., 2017; Busch, 2020), but how changes in 321 photorespiratory flux affect interacting metabolic pathways remains unclear. Since 322 photorespiration carries the second-largest carbon flux in plants, rapid shifts in the 323 photorespiratory flux in dynamic light conditions would significantly affect fluxes to these 324 interacting metabolic pathways. One hypothesis is that activation of photorespiration helps 325 coordinate carbon and nitrogen metabolisms under non-steady-state conditions. Additionally, 326 photorespiration may be regulated to maintain adequate flux to related metabolisms like C1 and 327 sulfur metabolism. In this section, we will discuss the evidence that photorespiration is regulated 328 329 and examine the hypotheses for why photorespiration might be regulated.
- The accumulation of glycine when V_0 increases indicate that the mitochondrial glycine to serine 330 conversion via GDC is a bottleneck flux that needs to be adjusted dynamically. GDC is believed 331 to have a high coefficient of control in the photorespiratory pathway (Timm and Hagemann, 332 2020). Elevated GDC activity increases the flux capacity through photorespiration, possibly by 333 reducing the steady-state level of glycine and all other photorespiratory intermediates, resulting 334 in increases in plant growth and net assimilation (Timm et al., 2012). In contrast, impaired GDC 335 activity reduces the photorespiratory flux and decreases photosynthesis and growth (López-336 Calcagno et al., 2019). The importance of GDC to photorespiratory flux raises the question of 337 how is GDC activity regulated under fluctuating light? One possible mechanism for regulating 338 enzymatic activities is via thioredoxins (trx) which regulate several enzymes in the C3 cycle 339

- under fluctuating light conditions (Nikkanen and Rintamäki, 2014). Two mitochondrial trxs, trx
- o1, and trx h2, downregulate GDC as shown by reverse genetics and biochemical assays
- 342 (Reinholdt et al., 2019b; da Fonseca-Pereira et al., 2020). Moreover, the trx o1-mediated redox
- regulation is important for the rapid induction of photorespiration and photosynthesis in response
- to short-term light/dark changes (Reinholdt et al., 2019a). In addition to GDC, other
- photorespiratory core enzymes such as SHMT1, HPR1 and GOX appear to be regulated by post-
- translational modifications (Liu et al., 2019, 2020; Jossier et al., 2020).
- 347 The regulation of photorespiratory flux may also enable plants to optimize N utilization during
- 348 light induction. Leaf N content can limit the speed of photosynthetic induction under fluctuating
- 349 light in several C3 and C4 species (Chen et al., 2013; Liu et al., 2021; Sun et al., 2022). The link
- between *de novo* nitrogen assimilation and photorespiration is supported by the observations that
- rates of NO₃⁻ uptake and assimilation decrease as rates of photorespiration decrease
- 352 (Rachmilevitch et al., 2004; Bloom et al., 2010). During light induction, the transient increase in
- 353 photorespiratory flux could increase N assimilation to support the higher N demand for increased
- 354 glycine pools under high light. This newly assimilated N may not stay in the photorespiratory
- cycle. When photorespiration is not limited by NO₃⁻ uptake, a large portion of photorespiration-
- derived amino acids (glycine and serine) may be exported from the photorespiratory pathway
- 357 (Busch et al., 2018). The exported photorespiratory glycine and serine can be used to synthesize
- proteins and various specialized metabolites (Noctor et al., 1999; Dirks et al., 2012; Benstein et
- 359 *al.*, 2013).
- Photorespiration may function to sense the changes in the metabolic demand for downstream
- metabolism under fluctuating light and respond accordingly to match the supply with demand.
- Photorespiration is thought to be the main biosynthetic pathway for providing the 1-C units for
- 363 the synthesis of nucleic acids, proteins, vitamins, and methylated molecules in leaf tissue
- 364 (Hanson and Roje, 2001; Li et al., 2003). Plant sulfur assimilation is stimulated under high
- photorespiratory conditions (Abadie and Tcherkez, 2019; Abadie et al., 2021). Regulating
- 366 photorespiration flux could ensure adequate and consistent flux to interacting metabolic
- pathways such as C1 metabolism and sulfur metabolism despite fluctuating light and absolute
- 368 rates of V_o .

370 Future Research

- 371 Given the importance and unknowns of the operation of photorespiration under fluctuating
- 372 conditions, we feel that the field would benefit from several areas of increased research
- investment. Studies investigating the metabolic changes of photorespiratory intermediates during
- 374 light transients would help resolve some of these questions, as would investigating the effects of
- 375 fluctuating light under non-photorespiratory and photorespiratory conditions. Investigating non-
- 376 steady-state behavior also requires analytical approaches developed for dynamic systems that
- integrate a time component to best compare and evaluate *in vivo* signals like net CO₂
- assimilation of chlorophyll fluorescence. Engineering control theory provides apt tools for this
- 379 type of analysis and has been already applied to control leaf temperature under dynamic light
- (Pare et al., 2017). We feel that control theory approaches may be uniquely suited to bring new
- insight into the behavior of photorespiration and photosynthesis generally under fluctuating light.

Conclusion 383 384 While considerable progress has been made regarding the role and regulation of photorespiration in the steady-state, it is critical to better understand photorespiration under non-steady-state 385 conditions. Many factors simultaneously constrain the response of net photosynthesis and 386 photorespiration during light transients, including the diffusional conductance to CO₂ from the 387 atmosphere to the catalytic site of rubisco in the chloroplasts and the activation of rubisco. The 388 metabolic interactions between photorespiration and the C3 cycle and their energy demand are 389 390 also dynamic under light transients. Considering the tight connection between photorespiration and other pathways such as nitrogen assimilation and C1 metabolism, transient changes in the 391 photorespiratory flux can affect overall carbon and nitrogen partitioning. As photorespiration is 392 393 involved in the induction of net assimilation under fluctuating light, exploiting the genetic manipulation of the transient responses of photorespiration has the potential to improve crop 394 performance. Increasing our understanding of photorespiration regulation in transient presents an 395 opportunity to improve net carbon assimilation and optimize nutrient uptake and partition in 396 dynamic environments. 397 398 Acknowledgements 399 400 We thank Lorna McAusland and Tracy Lawson for sharing the McAusland et al. (2016) datasets for our re-analyses. 401 402 **Author contributions** 403 XF and BJW: conceptualization; XF: writing - original draft; XF and BJW: writing - editing and 404 405 approval of the final version. 406 **Conflict of interest** 407 The authors have no conflicts of interest to disclose. 408 409 **Funding** 410 This work was supported by the U.S. Department of Energy Office of Science, Basic Energy 411 Sciences under Award DE-FG02-91ER20021 and the US National Science Foundation under 412 awards 2015843 and 2030337. 413 414 415 References 416 Abadie C, Bathellier C, Tcherkez G. 2018. Carbon allocation to major metabolites in illuminated leaves is not just proportional to photosynthesis when gaseous conditions (CO2 and 417 O2) vary. New Phytologist **218**, 94–106. 418 Abadie C, Boex-Fontvieille ERA, Carroll AJ, Tcherkez G. 2016. In vivo stoichiometry of 419

- 420 photorespiratory metabolism. Nature plants **2**, 15220.
- 421 Abadie C, Carroll A, Tcherkez G. 2017. Interactions Between Day Respiration,
- 422 Photorespiration, and N and S Assimilation in Leaves. Plant Respiration: Metabolic Fluxes and
- 423 Carbon Balance. Springer, Cham, 1–18.
- 424 Abadie C, Lalande J, Limami AM, Tcherkez G. 2021. Non-targeted 13C metabolite analysis
- demonstrates broad re-orchestration of leaf metabolism when gas exchange conditions vary.
- 426 Plant Cell and Environment 44, 445–457.
- 427 **Abadie C, Tcherkez G**. 2019. Plant sulphur metabolism is stimulated by photorespiration.
- 428 Communications Biology 2, 1–7.
- 429 Adachi S, Tanaka Y, Miyagi A, et al. 2019. High-yielding rice Takanari has superior
- 430 photosynthetic response to a commercial rice Koshihikari under fluctuating light. Journal of
- 431 Experimental Botany **70**, 5287–5297.
- 432 Anderson LE. 1971. Chloroplast and cytoplasmic enzymes II. Pea leaf triose phosphate
- 433 isomerases. BBA Enzymology **235**, 237–244.
- 434 Arrivault S, Obata T, Szecówka M, Mengin V, Guenther M, Hoehne M, Fernie AR, Stitt
- 435 M. 2017. Metabolite pools and carbon flow during C4 photosynthesis in maize: 13CO 2 labeling
- kinetics and cell type fractionation. Journal of Experimental Botany **68**, 283–298.
- 437 Asada K. 1999. The water-water cycle in chloroplasts: Scavenging of active oxygens and
- dissipation of excess photons. Annual Review of Plant Biology **50**, 601–639.
- 439 Assmann SM, Wang XQ. 2001. From milliseconds to millions of years: Guard cells and
- environmental responses. Current Opinion in Plant Biology 4, 421–428.
- 441 Athanasiou K, Dyson BC, Webster RE, Johnson GN. 2010. Dynamic acclimation of
- photosynthesis increases plant fitness in changing environments. Plant Physiology **152**, 366–373.
- Bao H, Morency M, Rianti W, Saeheng S, Roje S, Weber APM, Walker BJ. 2021. Catalase
- protects against nonenzymatic decarboxylations during photorespiration in Arabidopsis thaliana.
- 445 Plant Direct **5**, e366.
- Bellasio C, Burgess SJ, Griffiths H, Hibberd JM. 2014. A high throughput gas exchange
- screen for determining rates of photorespiration or regulation of C4 activity. Journal of
- 448 Experimental Botany **65**, 3769–3779.
- Benstein RM, Ludewig K, Wulfert S, Wittek S, Gigolashvili T, Frerigmann H, Gierth M,
- 450 Flügge UI, Krueger S. 2013. Arabidopsis phosphoglycerate dehydrogenase1 of the
- 451 phosphoserine pathway is essential for development and required for ammonium assimilation
- and tryptophan biosynthesis. Plant Cell **25**, 5011–5029.
- 453 **Berry JA, Osmond CB, Lorimer GH**. 1978. Fixation of 18 O 2 during Photorespiration . Plant
- 454 Physiology **62**, 954–967.
- 455 Bloom AJ, Burger M, Asensio JSR, Cousins AB. 2010. Carbon dioxide enrichment inhibits
- nitrate assimilation in wheat and arabidopsis. Science **328**, 899–903.
- Borghi GL, Moraes TA, Günther M, Feil R, Mengin V, Lunn JE, Stitt M, Arrivault S.

- 458 2019. Relationship between irradiance and levels of Calvin-Benson cycle and other intermediates
- in the model eudicot Arabidopsis and the model monocot rice. Journal of Experimental Botany
- **70**, 5809–5825.
- Bowes G, Ogren WL, Hageman RH. 1971. Phosphoglycolate production catalyzed by ribulose
- diphosphate carboxylase. Biochemical and Biophysical Research Communications 45, 716–722.
- 463 Bräutigam A, Hoffmann-Benning S, Weber APM. 2008. Comparative proteomics of
- 464 chloroplast envelopes from C3 and C4 plants reveals specific adaptations of the plastid envelope
- to C4 photosynthesis and candidate proteins required for maintaining C4 metabolite fluxes. Plant
- 466 Physiology **148**, 568–579.
- **Buchanan BB.** 1980. Role of Light in the Regulation of Chloroplast Enzymes. Annual Review
- 468 of Plant Physiology **31**, 341–374.
- Busch FA. 2020. Photorespiration in the context of Rubisco biochemistry, CO2 diffusion and
- 470 metabolism. Plant Journal **101**, 919–939.
- Busch FA, Sage RF, Farquhar GD. 2018. Plants increase CO2 uptake by assimilating nitrogen
- via the photorespiratory pathway. Nature Plants 4, 46–54.
- von Caemmerer S. 2000. Biochemical Models of Leaf Photosynthesis. CSIRO Publishing.
- von Caemmerer S. 2013. Steady-state models of photosynthesis. Plant, Cell and Environment
- **36**, 1617–1630.
- 476 Campbell WJ, Ogren WL. 1990. Glyoxylate inhibition of ribulosebisphosphate
- carboxylase/oxygenase activation in intact, lysed, and reconstituted chloroplasts. Photosynthesis
- 478 Research 23, 257–268.
- 479 Carriquí M, Douthe C, Molins A, Flexas J. 2019. Leaf anatomy does not explain apparent
- short-term responses of mesophyll conductance to light and CO 2 in tobacco. Physiologia
- 481 Plantarum **165**, 604–618.
- 482 Cegelski L, Schaefer J. 2006. NMR determination of photorespiration in intact leaves using in
- vivo 13CO2 labeling. Journal of Magnetic Resonance 178, 1–10.
- 484 Chastain CJ, Ogren WL. 1989. Glyoxylate inhibition of ribulosebisphosphate
- carboxylase/oxygenase activation state in vivo. Plant and Cell Physiology **30**, 937–944.
- Chen JW, Yang ZQ, Zhou P, Hai MR, Tang TX, Liang YL, An TX. 2013. Biomass
- accumulation and partitioning, photosynthesis, and photosynthetic induction in field-grown
- maize (Zea mays L.) under low- and high-nitrogen conditions. Acta Physiologiae Plantarum 35,
- 489 95–105.
- 490 **Dellero Y, Mauve C, Jossier M, Hodges M**. 2021. The impact of photorespiratory glycolate
- oxidase activity on arabidopsis thaliana leaf soluble amino acid pool sizes during acclimation to
- low atmospheric CO2 concentrations. Metabolites 11, 501.
- 493 Dirks RC, Singh M, Potter GS, Sobotka LG, Schaefer J. 2012. Carbon partitioning in
- soybean (Glycine max) leaves by combined 11C and 13C labeling. New Phytologist 196, 1109–
- 495 1121.

- 496 Edwards G, Walker D. 1983. C3, C4: Mechanisms, and Cellular and Environmental
- 497 Regulation, of Photosynthesis. University of California Press.
- 498 Eisenhut M, Bräutigam A, Timm S, Florian A, Tohge T, Fernie AR, Bauwe H, Weber
- 499 **APM**. 2017. Photorespiration is crucial for dynamic response of photosynthetic metabolism and
- stomatal movement to altered CO2 availability. Molecular Plant 10, 47–61.
- Faralli M, Cockram J, Ober E, Wall S, Galle A, Van Rie J, Raines C, Lawson T. 2019.
- Genotypic, developmental and environmental effects on the rapidity of gs in Wheat: Impacts on
- carbon gain and water-use efficiency. Frontiers in Plant Science 10, 492.
- Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic
- 505 CO2 assimilation in leaves of C3 species. Planta **149**, 78–90.
- Fernie AR, Bauwe H. 2020. Wasteful, essential, evolutionary stepping stone? The multiple
- personalities of the photorespiratory pathway. Plant Journal **102**, 666–677.
- Flexas J, Ribas-Carbó M, Diaz-Espejo A, Galmés J, Medrano H. 2008. Mesophyll
- conductance to CO2: Current knowledge and future prospects. Plant, Cell and Environment 31,
- 510 602–621.
- Florez-Sarasa I, Araújo WL, Wallström S V., Rasmusson AG, Fernie AR, Ribas-Carbo M.
- 512 2012. Light-responsive metabolite and transcript levels are maintained following a dark-
- adaptation period in leaves of Arabidopsis thaliana. New Phytologist **195**, 136–148.
- Flügel F, Timm S, Arrivault S, Florian A, Stitt M, Fernie AR, Bauwe H. 2017. The
- 515 photorespiratory metabolite 2-phosphoglycolate regulates photosynthesis and starch
- accumulation in Arabidopsis. Plant Cell **29**, 2537–2551.
- da Fonseca-Pereira P, Souza PVL, Hou LY, et al. 2020. Thioredoxin h2 contributes to the
- redox regulation of mitochondrial photorespiratory metabolism. Plant Cell and Environment 43,
- 519 188–208.
- 520 Gjindali A, Herrmann HA, Schwartz JM, Johnson GN, Calzadilla PI. 2021. A Holistic
- 521 Approach to Study Photosynthetic Acclimation Responses of Plants to Fluctuating Light.
- Frontiers in Plant Science 12, 668512.
- Gonzalez-Moro B, Lacuesta M, Becerril JM, Gonzalez-Murua C, Munoz-Rueda A. 1997.
- Glycolate accumulation causes a decrease of photosynthesis by inhibiting RUBISCO activity in
- maize. Journal of Plant Physiology 150, 388–394.
- Hammond ET, John Andrews T, Mott KA, Woodrow IE. 1998. Regulation of Rubisco
- activation is antisense plants of tobacco containing reduced levels of Rubisco activase. Plant
- 528 Journal **14**, 101–110.
- 529 Hangarter RP, Good NE. 1982. Energy thresholds for ATP synthesis in chloroplasts. BBA -
- 530 Bioenergetics **681**, 397–404.
- Hanson AD, Roje S. 2001. One-carbon metabolism in higher plants. Annual Review of Plant
- 532 Biology **52**, 119–137.
- Hitz WD, Stewart CR. 1980. Oxygen and carbon dioxide effects on the pool size of some

- photosynthetic and photorespiratory intermediates in soybean (Glycine max [L.] Merr.). Plant
- 535 Physiology **65**, 442–446.
- Hodges M, Dellero Y, Keech O, Betti M, Raghavendra AS, Sage R, Zhu XG, Allen DK,
- Weber APM. 2016. Perspectives for a better understanding of the metabolic integration of
- 538 photorespiration within a complex plant primary metabolism network. Journal of Experimental
- 539 Botany **67**, 3015–3026.
- Huang W, Hu H, Zhang SB. 2015. Photorespiration plays an important role in the regulation of
- 541 photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight.
- Frontiers in Plant Science 6, 621.
- Huang W, Zhang SB, Hu H. 2014. Sun leaves up-regulate the photorespiratory pathway to
- maintain a high rate of CO2 assimilation in tobacco. Frontiers in Plant Science 5, 688.
- Husic DW, Husic HD, Tolbert NE, Black CC. 1987. The oxidative photosynthetic carbon
- 546 cycle or c2 cycle. Critical Reviews in Plant Sciences 5, 45–100.
- Jossier M, Liu Y, Massot S, Hodges M. 2020. Enzymatic properties of recombinant
- 548 phosphomimetic photorespiratory glycolate oxidases from Arabidopsis thaliana and Zea mays.
- 549 Plants 9, 27.
- Kaiser E, Morales A, Harbinson J. 2018. Fluctuating light takes crop photosynthesis on a
- rollercoaster ride. Plant Physiology **176**, 977–989.
- Kaiser E, Morales A, Harbinson J, Kromdijk J, Heuvelink E, Marcelis LFM. 2015.
- 553 Dynamic photosynthesis in different environmental conditions. Journal of Experimental Botany
- **66**, 2415–2426.
- Karim MF, Johnson GN. 2021. Acclimation of Photosynthesis to Changes in the Environment
- Results in Decreases of Oxidative Stress in Arabidopsis thaliana. Frontiers in Plant Science 12,
- 557 683986.
- Kelly GJ, Latzko E. 1976. Inhibition of spinach-leaf phosphofructokinase by 2-
- phosphoglycollate. FEBS Letters **68**, 55–58.
- Kimura H, Hashimoto-Sugimoto M, Iba K, Terashima I, Yamori W. 2020. Improved
- stomatal opening enhances photosynthetic rate and biomass production in fluctuating light.
- Journal of Experimental Botany 71, 2339–2350.
- Kramer DM, Evans JR. 2011. The importance of energy balance in improving photosynthetic
- productivity. Plant Physiology **155**, 70–78.
- Kromdijk J, Ubierna N, Cousins AB, Griffiths H. 2014. Bundle-sheath leakiness in C4
- photosynthesis: A careful balancing act between CO2 concentration and assimilation. Journal of
- 567 Experimental Botany **65**, 3443–3457.
- Lawson T, von Caemmerer S, Baroli I. 2010. Photosynthesis and Stomatal Behaviour., 265–
- 569 304.
- 570 Li XP, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi KK. 2004. Regulation
- of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein.

- Journal of Biological Chemistry **279**, 22866–22874.
- Li R, Moore M, King J. 2003. Investigating the regulation of one-carbon metabolism in
- Arabidopsis thaliana. Plant and Cell Physiology 44, 233–241.
- Liu T, Barbour MM, Yu D, Rao S, Song X. 2022. Mesophyll conductance exerts a significant
- limitation on photosynthesis during light induction. New Phytologist **233**, 360–372.
- Liu Y, Guérard F, Hodges M, Jossier M. 2020. Phosphomimetic T335D mutation of
- 578 hydroxypyruvate reductase 1 modifies cofactor specificity and impacts Arabidopsis growth in
- 579 AIR1. Plant Physiology **183**, 194–205.
- Liu Y, Mauve C, Lamothe-Sibold M, Guérard F, Glab N, Hodges M, Jossier M. 2019.
- Photorespiratory serine hydroxymethyltransferase 1 activity impacts abiotic stress tolerance and
- stomatal closure. Plant Cell and Environment 42, 2567–2583.
- Liu J, Zhang J, Estavillo GM, Luo T, Hu L. 2021. Leaf N content regulates the speed of
- photosynthetic induction under fluctuating light among canola genotypes (Brassica napus L.).
- 585 Physiologia Plantarum **172**, 1844–1852.
- López-Calcagno PE, Fisk S, Brown KL, Bull SE, South PF, Raines CA. 2019.
- Overexpressing the H-protein of the glycine cleavage system increases biomass yield in
- glasshouse and field-grown transgenic tobacco plants. Plant Biotechnology Journal 17, 141–151.
- Ma F, Jazmin LJ, Young JD, Allen DK. 2014. Isotopically nonstationary 13C flux analysis of
- 590 changes in Arabidopsis thaliana leaf metabolism due to high light acclimation. Proceedings of
- the National Academy of Sciences of the United States of America 111, 16967–16972.
- McAusland L, Vialet-Chabrand S, Davey P, Baker NR, Brendel O, Lawson T. 2016. Effects
- of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. The
- 594 New phytologist **211**, 1209–1220.
- Morales A, Kaiser E. 2020. Photosynthetic Acclimation to Fluctuating Irradiance in Plants.
- Frontiers in Plant Science 11, 268.
- Nikkanen L, Rintamäki E. 2014. Thioredoxin-dependent regulatory networks in chloroplasts
- 598 under fluctuating light conditions. Philosophical Transactions of the Royal Society B: Biological
- 599 Sciences **369**.
- Noctor G, Arisi ACM, Jouanin L, Foyer CH. 1999. Photorespiratory glycine enhances
- 601 glutathione accumulation in both the chloroplastic and cytosolic compartments. Journal of
- 602 Experimental Botany **50**, 1157–1167.
- Obata T, Florian A, Timm S, Bauwe H, Fernie AR. 2016. On the metabolic interactions of
- 604 (photo)respiration. Journal of Experimental Botany 67, 3003–3014.
- Pare PE, Walker BJ, McGrath J. 2017. Feedback linearization control methods for accurate
- leaf photosynthesis measurements. Proceedings of the American Control Conference, 801–806.
- Pearcy RW. 1990. Sunflecks and photosynthesis in plant canopies. Annual Review of Plant
- Physiology and Plant Molecular Biology 41, 421–453.
- Portis AR, Li C, Wang D, Salvucci ME. 2008. Regulation of Rubisco activase and its

- interaction with Rubisco. Journal of Experimental Botany **59**, 1597–1604.
- Rachmilevitch S, Cousins AB, Bloom AJ. 2004. Nitrate assimilation in plant shoots depends on
- photorespiration. Proceedings of the National Academy of Sciences of the United States of
- 613 America **101**, 11506–11510.
- Reinholdt O, Bauwe H, Hagemann M, Timm S. 2019a. Redox-regulation of mitochondrial
- 615 metabolism through thioredoxin o1 facilitates light induction of photosynthesis. Plant Signaling
- and Behavior 14.
- Reinholdt O, Schwab S, Zhang Y, Reichheld JP, Fernie AR, Hagemann M, Timm S. 2019b.
- Redox-regulation of photorespiration through mitochondrial thioredoxin O1. Plant Physiology
- **181**, 442–457.
- 620 Sakoda K, Yamori W, Groszmann M, Evans JR. 2021. Stomatal, mesophyll conductance, and
- biochemical limitations to photosynthesis during induction. Plant Physiology **185**, 146–160.
- Sassenrath-Cole GF, Pearcy RW. 1994. Regulation of photosynthetic induction state by the
- magnitude and duration of low light exposure. Plant Physiology **105**, 1115–1123.
- 624 Scheibe R. 2004. Malate valves to balance cellular energy supply. Physiologia Plantarum 120,
- 625 21–26.
- 626 Schlüter U, Weber APM. 2020. Regulation and Evolution of C4 Photosynthesis. Annual
- 627 Review of Plant Biology **71**, 183–215.
- Shi X, Bloom A. 2021. Photorespiration: The futile cycle? Plants 10, 908.
- 629 Shi Q, Sun H, Timm S, Zhang S, Huang W. 2022. Photorespiration Alleviates Photoinhibition
- of Photosystem I under Fluctuating Light in Tomato. Plants 11, 195.
- 631 Slattery RA, Walker BJ, Weber APM, Ort DR. 2018. The impacts of fluctuating light on crop
- performance. Plant Physiology **176**, 990–1003.
- De Souza AP, Wang Y, Orr DJ, Carmo-Silva E, Long SP. 2020. Photosynthesis across
- African cassava germplasm is limited by Rubisco and mesophyll conductance at steady state, but
- by stomatal conductance in fluctuating light. New Phytologist **225**, 2498–2512.
- 636 Stitt M, Luca Borghi G, Arrivault S. 2021. Targeted metabolite profiling as a top-down
- approach to uncover interspecies diversity and identify key conserved operational features in the
- 638 Calvin-Benson cycle. Journal of Experimental Botany 72, 5961–5986.
- 639 Sun H, Zhang YQ, Zhang SB, Huang W. 2022. Photosynthetic Induction Under Fluctuating
- 640 Light Is Affected by Leaf Nitrogen Content in Tomato. Frontiers in Plant Science 13, 835571.
- 641 Szecowka M, Heise R, Tohge T, et al. 2013. Metabolic fluxes in an illuminated Arabidopsis
- 642 rosette. Plant Cell **25**, 694–714.
- Tanaka Y, Adachi S, Yamori W. 2019. Natural genetic variation of the photosynthetic
- induction response to fluctuating light environment. Current Opinion in Plant Biology 49, 52–59.
- Taylor SH, Gonzalez-Escobar E, Page R, Parry MAJ, Long SP, Carmo-Silva E. 2022.
- Faster than expected Rubisco deactivation in shade reduces cowpea photosynthetic potential in

- variable light conditions. Nature Plants **8**, 118–124.
- 648 Taylor SH, Long SP. 2017. Slow induction of photosynthesis on shade to sun transitions in
- wheat may cost at least 21% of productivity. Philosophical Transactions of the Royal Society B:
- 650 Biological Sciences 372.
- 651 Tcherkez G, Gauthier P, Buckley TN, et al. 2017. Leaf day respiration: low CO2 flux but high
- significance for metabolism and carbon balance. New Phytologist **216**, 986–1001.
- 653 Timm S, Florian A, Arrivault S, Stitt M, Fernie AR, Bauwe H. 2012. Glycine decarboxylase
- controls photosynthesis and plant growth. FEBS Letters **586**, 3692–3697.
- 655 Timm S, Hagemann M. 2020. Photorespiration-how is it regulated and how does it regulate
- overall plant metabolism? Journal of Experimental Botany 71, 3955–3965.
- 657 Timm S, Nunes-Nesi A, Florian A, et al. 2021. Metabolite profiling in arabidopsis thaliana with
- 658 moderately impaired photorespiration reveals novel metabolic links and compensatory
- mechanisms of photorespiration. Metabolites 11, 391.
- Valentini R, Epron D, De Angelis P, Matteucci G, Dreyer E. 1995. In situ estimation of net
- 661 CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.)
- leaves: diurnal cycles under different levels of water supply. Plant, Cell & Environment 18, 631–
- 663 640.
- Vialet-Chabrand SRM, Matthews JSA, McAusland L, Blatt MR, Griffiths H, Lawson T.
- 2017. Temporal dynamics of stomatal behavior: Modeling and implications for photosynthesis
- and water use. Plant Physiology 174, 603–613.
- Walker BJ, Kramer DM, Fisher N, Fu X. 2020. Flexibility in the energy balancing network of
- photosynthesis enables safe operation under changing environmental conditions. Plants 9, 301.
- Walker BJ, Vanloocke A, Bernacchi CJ, Ort DR. 2016. The Costs of Photorespiration to Food
- 670 Production Now and in the Future. Annual Review of Plant Biology 67, 107–129.
- Wang Z, Wang Y, Wang Y, Li H, Wen Z, Hou X. 2022. HPR1 Is Required for High Light
- 672 Intensity Induced Photorespiration in Arabidopsis thaliana. International Journal of Molecular
- 673 Sciences **23**, 4444.
- Wingler A, Quick WP, Bungard RA, Bailey KJ, Lea PJ, Leegood RC. 1999. The role of
- 675 photorespiration during drought stress: An analysis utilizing barley mutants with reduced
- activities of photorespiratory enzymes. Plant, Cell and Environment 22, 361–373.
- Kiong D, Douthe C, Flexas J. 2018. Differential coordination of stomatal conductance,
- 678 mesophyll conductance, and leaf hydraulic conductance in response to changing light across
- species. Plant Cell and Environment 41, 436–450.
- Ku Y, Fu X, Sharkey TD, Shachar-Hill Y, Walker BJ. 2021. The metabolic origins of non-
- photorespiratory CO2 release during photosynthesis: A metabolic flux analysis. Plant Physiology
- **186**, 297–314.
- **Yamori W, Kusumi K, Iba K, Terashima I**. 2020. Increased stomatal conductance induces
- rapid changes to photosynthetic rate in response to naturally fluctuating light conditions in rice.

685	Plant Cell and Environment 43, 1230–1240.		
686 687 688	Yamori W, Masumoto C, Fukayama H, Makino A. 2012. Rubisco activase is a key regulato of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-stat photosynthesis at high temperature. Plant Journal 71, 871–880.		
689 690	Zelitch I, Schultes NP, Peterson RB, Brown P, Brutnell TP . 2009. High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiology 149 , 195–204.		
691			
692			
693			
694			
695			
696			
697			
698			
699			
700			
701			
702			
703			
704			
705			
706			
707			
708			

709 Figure legends

- 710 Fig. 1. Response of stomatal conductance to water vapour (g_s) , net CO₂ assimilation (A), rate of
- rubisco carboxylation (V_c) , rate of rubisco oxygenation (V_o) , and the V_o/V_c ratio of rice (Oryza
- 712 sativa) and broad bean (Vicia faba) to an increase in irradiance from 100 (shaded area) to 1000
- 713 (unshaded area) μ mol m⁻² s⁻¹ followed by a decrease to 100 μ mol m⁻² s⁻¹. Data were taken or
- 714 calculated from McAusland et al., 2016.
- Fig. 2. Response of mesophyll conductance (g_m) , stomatal conductance to water vapour (g_s) , net
- CO₂ assimilation (A), rate of rubisco carboxylation (V_c), rate of rubisco oxygenation (V_o), and the
- 717 V_o/V_c ratio of wild-type Arabidopsis to an increase in irradiance from 100 (shaded area) to 1200
- 718 (unshaded area) µmol m⁻² s⁻¹. Data were taken or calculated from Liu et al., 2021.

Box 1. Schematic view of photorespiration and the interacting metabolic pathways.

720 The core photorespiratory pathway involves three subcellular compartments, chloroplasts, 721 peroxisomes and mitochondria. Photorespiration is initiated by rubisco oxygenation (R0), yielding the inhibitory molecule 2-phosphoglycolate (P-glocate), which is dephosphorylated to 722 723 glycolate. Glycolate is exported from the chloroplast into the peroxisomes, then reacts irreversibly with O₂ to form glyoxylate by glycolate oxidase (R1), producing H₂O₂ as a 724 725 byproduct. Next, glyoxylate is aminated by either glutamate glyoxylate:aminotransferase (R2) or 726 serine: glyoxylate transaminase (R4) to produce glycine. The glycine produced is moved from the peroxisomes to mitochondria, then decarboxylated to form serine releasing CO₂, NH₄, cycling 727 tetrahydrofolate (THF) and methyl-THF (M-THF), and reducing NAD by a multienzyme 728 729 complex, glycine-cleavage system (R3). Photorespiratory serine is moved back to the peroxisome and converted to hydroxypyruvate (Hpyr) while serine:glyoxylate transaminase (R4) 730 731 is catalyzing the amino group transfer to glyoxylate. Hpyr is reduced to glycerate by 732 hydroxypyruvate reductase (R5) and transported back to the chloroplast. Glycerate is phosphorylated to 3-phosphoglycerate (P-glycerate), which can then enter the C3 cycle. The 733 H₂O₂ produced by R1 is decomposed to oxygen and water by catalase (R6). Nonenzymatic 734 735 decarboxylations can occur either between glyoxylate and H₂O₂ (R7) or between HPyr and H₂O₂ (R8), releasing CO₂ in the process. The extra glycine and serine can be exported out of the 736 photorespiratory pathway for protein synthesis or other metabolic processes (R9 and R10). 737 738 Figure and caption are revised from Bao et al., 2021.

719

Box 2. Energy demand from photorespiration

To understand how the stoichiometry of energy demand from photorespiration changes during transient conditions, we first must understand where it originates. This energy demand is most easily followed by starting with the C3-cycle intermediate Ribulose 5-phosphate (R5P), the immediate precursor to RuBP. To follow the entire energy demand of photorespiration, we must account for all ATP and NAD(P)H needed to convert all downstream products of R5P through the various cycles back into R5P. R5P requires a single ATP to produce RuBP. To initiate photorespiration, RuBP is oxygenated and produces a single 3-phosphoglycerate (3-PGA) and 2-PG per V_o . Photorespiration recycles 2-PG to 0.5 3-PGA, which is processed in the C3 cycle at the cost of one ATP and one NADPH each back to R5P. Recycling of 2-PG by photorespiration first involves energy during glycine decarboxylation, which produces 0.5 NADH per V_o and releases NH₄⁺ from glycine. This NH₄⁺ is refixed in the chloroplast by the glutamine synthetase-glutamate synthase pathway at the cost of one ATP and two ferredoxin, or 0.5 ATP and 0.5 NAD(P)H per V_o . The downstream product of glycine decarboxylation requires 0.5 NADH to convert hydroxypyruvate to glycerate and one ATP to convert glycerate to 3-PGA, which can enter the C3 cycle and require an additional 0.5 ATP and 0.5 NAD(P)H per V_o .

Energy Demands of Steady-State Photorespiration			
	ATP Demands	NAD(P)H Demands	
R5P to RuBP Conversion	1		
3-PGA produced per V_o to R5P	1	1	
NADH produced from GDC		-0.5	
Refixation of NH ₄ ⁺ by GS-GOGAT	0.5	0.5	
Reduction of hydroxypyruvate		0.5	
Glycerate phosphorylation	0.5		
3-PGA recycled from photorespiration to R5P	0.5	0.5	
Total	3.5	2	