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We point-identify and estimate linear social network models without ob-
serving any network links. The required data consist of many small net-
works of individuals, such as classrooms or villages, with individuals
who are each observed only once. We apply our estimator to data from
Tennessee’s Project STAR (Student-Teacher Achievement Ratio). With-
out observing the latent network in each classroom, we identify and esti-
mate peer and contextual effects on students’performance inmathemat-
ics. We find that peer effects tend to be larger in bigger classes and that
increasing peer effects would significantly improve students’ average test
scores in some classes.

I. Introduction

In many social and economic environments, an individual’s behavior or
outcome depends on both his own characteristics and the behavior and

We thank seminar and conference participants at the 2019 China Meeting of the Econ-
ometric Society, Brown University, the Toulouse School of Economics, the University of
Colorado Boulder, and the University of Pennsylvania for helpful feedback and comments.
Lewbel and Tang gratefully acknowledge support from the National Science Foundation

Electronically published February 27, 2023

Journal of Political Economy, volume 131, number 4, April 2023.
© 2023 The University of Chicago. All rights reserved. Published by The University of Chicago Press.
https://doi.org/10.1086/722090

898



characteristics of other individuals. Call such dependence between two
individuals a link. A network consists of a group of individuals who are po-
tentially linked or connected. Links between individuals can take either
binary values indicating the presence or absence of a connection or con-
tinuous values (weights) indicating the strength of the connection. We re-
fer to linked individuals as friends. The structure of a social network is fully
characterized by its adjacency matrix, which is a square matrix that lists all
links (continuous or discrete) among the group members.
One goal of econometric network models is the estimation of various

social effects based on observed outcomes and characteristics of network
members. These structural parameters capture the effects on each individ-
ual’s outcome of (i) the individual’s own characteristics (direct effects) and
group characteristics (correlated effects), (ii) the characteristics of friends
(contextual effects), and (iii) the outcomes of friends (peer effects).
Existing methods of point-identifying and estimating these structural

parameters require either that the adjacency matrix be observed in the
sample (as in, e.g., Bramoullé, Djebbari, and Fortin 2009), parameterized
(as in Rose 2017) or as the linear-in-means model described below or that
the reduced-form coefficients that correspond to a fixed, unknown net-
work are already identified (as in Blume et al. 2015; de Paula, Rasul, and
Souza 2020). The usual way this latter requirement would be satisfied is
by observing many repeated realizations of covariates and outcomes over
a fixed, unknown network.
Weprovide sufficient conditions to point-identify and estimate the struc-

tural parameters in linear social network models when the adjacency ma-
trix is unobserved andwhere only a single realization of covariates and out-
comes in each network is observed. Our identification assumes that we
observe outcomes and covariates for individuals in many small networks,
such as classrooms or villages, but does not require any data on who is
linked with whom within each network. Since most surveys do not include
link data, our results have widespread potential applications.
For example, consider students who participated in Project STAR

(Student-Teacher Achievement Ratio). These data include test scores
and demographic information on each student and report what class
each student is in, but no link data are provided, such as which sets of
children are friends or study partners within each class. Previous at-
tempts to estimate peer effects with these data either assume a linear-
in-means model where all classmates are assumed to be linked to each
other with equal weights (e.g., Boozer and Cacciola 2001) or define links
as functions of observed covariates as in Rose (2017).
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While often assumed in practice, the linear-in-means assumption is
very unlikely to hold inmany applications, such as classrooms, where peer
and contextual effects are more likely to operate through actual friend-
ships with varying strengths, instead of equal influence from all group
members. We also show how to use our identification results to empiri-
cally test the linear-in-means assumption. We reject this assumption in
the STAR data.

A. The Model

Let yi ∈ R and Xi ∈ R
K denote the outcome and exogenous covariates,

respectively, for an individual i. Each individual belongs to one of L

groups (a.k.a. networks). Assume that there are nl individuals in each
group l ∈ f1, ::: , Lg. Each group l has an unobserved nl � nl adjacency
matrix Gl, whose (i, j)th component is either binary (equals one if i is
linked to j and zero otherwise) or a generic number (a weight) indicating
the strength of the link between i and j.1

The researcher observes only yi andXi for each individual i and the iden-
tity of the group that each individual i belongs to. The researcher does not
observe the adjacency matrices G1, ... , GL. For example, suppose that each
group is an elementary school class and that each Gl describes a network of
friendships or study partners among the students in class l. The researcher
observes each student i’s test score yi and the student’s vector of demo-
graphic and other characteristics Xi. The researcher also observes which
class (i.e., group) each student is in but does not observe who is friends
with whom, or who studies with whom, within each class. Instead of observ-
ing or modeling the adjacency matrices of each group (i.e., class), we as-
sume only that there is an unknown distribution of latent adjacency matri-
ces from which each group’s matrix Gl is drawn.
We assume a standard linear social network model:2

yl 5 ai 1 lGlyl 1 Xlb 1 GlXlg 1 εl , (1)

where yl and εl are nl � 1 vectors of outcomes and errors, respectively, i is
an nl � 1 vector of ones, and Xl is an nl � K matrix of covariates. Assume
for now that the errors εl are independent and identically distributed and
uncorrelated with Xl (these conditions can be relaxed). Our asymptotics
are that the number of members nl of each network l is fixed but the total
number of networks L goes to infinity. Our goal is point identification and

1 Links are typically assumed to be nonnegative in network models, but we do not need
to impose that constraint.

2 Note that this linear model is far more general than linear-in-means. Linear-in-means
is the very special case where every off-diagonal element of Gl is the same number.
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estimation of structural parameters consisting of the group effect coeffi-
cient a ∈ R, the peer effect l ∈ R, the vector of individual direct effects
b ∈ RK , and the vector of contextual effects g ∈ RK . Later, we separate Xl

into individual- and group-level effects, with an additional vector d of
group-level coefficients.
If the adjacency matrix Gl were observed for each group l in the sam-

ple, then point identification and estimation of these parameters under
general conditions would follow from existing methods in the literature.
For example, one could use the linear instrumental variables estimator
of Bramoullé, Djebbari, and Fortin (2009), which uses data on friends of
friends (i.e., G2

l Xl) as instruments for endogenous regressors Glyl.

B. Intuition for Identification and Estimation

To explain the intuition for our identification strategy, let us continue to
use the example of students in a class. Begin by making the simplifying
assumption that all classes are the same size, having n students per class
(in sec. VI.C, we describe multiple methods of generalizing our results to
handle variation in group sizes).
Equation (1) says that each element of yl (i.e., each student’s test

score) is a linear function of the characteristics of that student and of
the test scores and characteristics of that student’s friends. One could
imagine trying to directly estimate these linear functions by linear re-
gressions. However, we do not know who each student’s friends are.
Moreover, even if we did know, the test scores of friends are endogenous
regressors. Without observing the adjacency matrices, we cannot con-
struct instruments for one’s friend’s test scores, as in Bramoullé, Djebbari,
and Fortin (2009).
Instead, consider estimating reduced-form regressions, where we solve

equation (1) for yl as a function of Xl and errors. In these regressions, each
student’s test score is regressedon all the characteristics of every child in that
student’s class. Thismeans estimating the regression coefficients in a system
of n linear equations (one equation for each class member), with each re-
gression estimated using a sample of size L (the number of classes in the
sample). The coefficients in these reduced-form regressions are all func-
tions of the structural parameters and of the underlying distribution of ad-
jacency matrices across classes. More precisely, we show that these reduced-
form coefficients, under our maintained assumptions, are all functions of
the structural parameters a, b, and g and of E(Ml) and E(MlGl), where

Ml ; ðI 2 lGlÞ21, (2)

I denotes the identity matrix, and the expectations are over the unknown
distribution of random matrices Gl across all classes.
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We establish sufficient conditions for identifying the structural parame-
ters from these reduced-form coefficients. These identification conditions
are analogous to the traditional rank and order conditions for identifying
structural parameters in classical linear simultaneous equation systems
(e.g., systems of linear supply and demand equations). However, a compli-
cating factor here, as compared with classical linear simultaneous systems,
is the presence ofmanynuisanceparameters—specifically, all the elements
of the matrices E(Ml) and E(MlGl).
A key insight is that we do not need to observe or identify all of the

adjacency matrices G1, ... , GL. For identifying the structural coefficients
l, a, b, and g, the only features of the network that matter are E(Ml) and
E(MlGl). What then makes this identification feasible is that these matri-
ces affect the reduced-form coefficients of each covariate in Xi in the same
way. So having multiple covariates in the model provides identifying in-
formation regarding these matrices. As a result, from the reduced-form
coefficients we can disentangle and identify the structural social effects,
without observing the network and without explicitly modeling either net-
work structure or network formation.
An attractive feature of our identification strategy is that it is construc-

tive, so the same steps used for identification can be replicated in data
to obtain parameter estimates. Unlike traditional indirect least squares
for linear simultaneous equations (recovering structural parameters from
reduced-form estimates), our estimator requires a first step to estimate in-
termediate parameters. These intermediate parameters depend on the
structural social effects but not the distribution of latent matrices.
Another attractive feature of our estimator is that, unlike other estimators

that deal with unobserved networks, we do not need to either parameterize
the networks or require repeated observations of the network. Moreover,
since we identify and estimate functions of E(Ml) and E(MlGl), which are fea-
tures of the distribution of adjacency matrices, we can use our estimates to
test some models of link formation, such as testing whether the linear-in-
means model holds or testing whether links are determined randomly.

C. Classroom Outcomes in Tennessee Elementary Schools

We apply our method without link data to estimate the impact of social
networks on the test performance of elementary school students in the
STAR data set mentioned above. For example, without observing any
data on the links between students, we identify the peer effects coeffi-
cient l and estimate it to be 0.85 in small classes and 0.92 in large classes.
Both estimates are statistically significant. We also find that, ceteris pari-
bus, increasing the magnitude of peer effects would result in improved
average test scores in some classes.
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Would it be worthwhile to institute policies that encourage students to
form additional links or friendships? Our results suggest that the impacts
of such policies would be small and could even have negative effects de-
pending on class sizes. This is an example of a counterfactual exercise we
can perform that would be difficult by othermeans with these data.We also
test and reject alternative model specifications, including the linear-in-
meansmodel, and we also reject the randomPoisson link formationmodel
(also known as Erdős-Rényi [1959] networks).
The rest of this paper proceeds as follows. Section II is a short literature

review. Section III gives our formal model. Sections IV and V respectively
present our new identification and estimationmethod for unobserved net-
works. The remaining sections provide the empirical application and con-
clusions. Proofs, derivations, andMonte Carlo simulations are given in the
appendixes.

II. Literature Review

Standard estimators of social interactions models—such as Lee (2007),
Bramoullé, Djebbari, and Fortin (2009), andLin (2010)—assume that net-
work links are reported in the data. One popular model that does not re-
quire observing the network is the linear-in-meansmodel. Thismodel sim-
ply assumes that everyone is equally linked to everyone else within groups.
So in that model, a simple network is assumed rather than observed.
An alternative to simply assuming an unobserved network is to exploit al-

ternative types of network information. For example, one may use spatial
data to estimate adjacency matrices, assuming that Gl is a function of ob-
served geographic distance or demographic difference. Examples are in
Pinkse, Slade, and Brett (2002), LeSage and Pace (2009), Manresa (2016),
and Rose (2018).
Another possibility is to assume a model of network formation and esti-

mate the resulting (possibly endogenous) network alongwith the structural
model parameters. An example is an Erdős-Rényi (1959) network, which
assumes that there is a fixed probability p that any element of Gl equals
one versus zero. One might then estimate p along with structural parame-
ters (we later show with our model that we can test the assumption of an
Erdős-Rényi network, and we reject it in our application). More recently,
Auerbach (2021) studies a regression model where one covariate is an un-
known function of a latent driver of the network link. Other endogenous
network formation models are Goldsmith-Pinkham and Imbens (2013),
Hsieh and Lee (2016), Hsieh, König, and Liu (2020), Hsieh, Lee, and Bou-
cher (2020), and Johnsson andMoon (2021). Among them,Hsieh andLee
(2016) and Hsieh, Lee, and Boucher (2020) estimate social interaction
models with endogenous network formation using a class of exponential
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random graph models (ERGMs). Many of the results in this endogenous
network literature yield set rather than point identification or are analyzed
under the Bayesian framework.3

Another approach is to assume that the researcher has additional infor-
mation about the effects of the network, rather than additional informa-
tion about its formation or structure. For example, if a survey directly asks
questions related to the value of peers’ outcomes and contextual effects
(e.g., aboutGlyl andGlXl), then the peer effectsmight be estimated without
observing the network Gl itself. An example is Breza et al. (2020). Alterna-
tively, Blume et al. (2015) provide identification results assuming that the
reduced-form coefficients of individual characteristics on outcomes are al-
ready known to researchers. Obtaining these reduced-form coefficients
would generally require many repeated observations of the same individu-
als in a fixed network or observations of many groups, each of which was
known to have the exact same network structure.4

Perhaps the closest result to ours is de Paula, Rasul, and Souza (2020),
who identify and estimate a linear social networkmodel where the network
is completely unobserved, without additional information about networks
or outcomes as above.They show identification assuming apanel data struc-
ture where researchers observe outcomes across multiple periods on a sin-
gle fixed network. In their model, individual outcomes vary over time con-
ditional on covariates, because they are generated by random draws of
unobserved errors in each time period, while the unknown network struc-
ture is assumed constant over time.Givenmany timeperiods (or fewer time
periods and some sparsity assumptions), they propose a consistent estima-
tor for the social effects.
The assumptions we require to deal with unobserved networks are moti-

vated by a different data structure than de Paula, Rasul, and Souza (2020).
While our methods could be applied to their data, unlike them we do not
require a panel structure with the network fixed over time. Our method al-
lows the unobserved network to vary across groups (e.g., classes or villages)
and so could be applied in a cross-sectional settingwhere the network varies
across groups within a single observed time period. Asymptotics in our case
are defined in terms of the number of groups (each of which needs to be
observed only once) going to infinity, rather than the number of repeated
observations of a single group.

3 While we obtain point identification without making use of any specific model of net-
work formation, we do require a relatively strong exogeneity condition regarding network
formation vs. outcomes. See assumptions 2 and 3 below.

4 Blume et al. (2015) also consider a more general model where adjacency matrices for
peer effects and for contextual effects are different. They show how to identify structural
coefficients using partial knowledge of both matrices (i.e., the complete set of individuals
linked) and a priori restrictions on the cardinality of these links. Whether their model can
be identified without such a priori restrictions is an open question.
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Our identification argument also differs qualitatively from de Paula,
Rasul, and Souza (2020) in that ours is based on the relationship between
the reduced-form impacts of multiple individual characteristics on out-
comes. Also, our identification strategy is constructive and thus leads to a
simple two-stage estimator that has a closed form, is easy to compute, and
attains standard parametric-rate consistency and asymptotic normality.
Our empirical application looks at peer effects on students’ academic

performance. Other linear models of peer effects on student outcomes
include Calvó-Armengol, Patacchini, and Zenou (2009), Hauser et al.
(2009), Lee, Liu, and Lin (2010), Lin (2010), Patacchini and Zenou
(2012), and Boucher et al. (2014).
A limitation of our model in equation (1) is that it assumes that peer ef-

fects l and contextual effects goperate through the same adjacencymatrix
Gl. This assumption is standard in the literature whenever both peer and
contextual effects are included in amodel (see, e.g., Lee 2007; Bramoullé,
Djebbari, and Fortin 2009; de Paula, Rasul, and Souza 2020). One paper
that relaxes this assumption is Blume et al. (2015). This assumption is gen-
erally imposed because it would be difficult to distinguish from data the
extent to which any observed link applies to peer effects versus contextual
effects. We are not aware of any data sets where such information has been
collected. However, since our identification is precisely intended to cover
situations where link data are not or cannot be observed, it is possible that
our methods could be extended to cover suchmodels. We discuss the pos-
sibility of extending our method to cover this case of multiple adjacency
matrices within each group in appendix E.
We conclude this literature review by noting a deep connection between

identification of linear network models and identification of traditional
structural systems of linear equations, going back to the rank and order
conditions described by Koopmans (1949) and the Cowles Foundation
and in more detail in Fisher (1966). First, consider the setting in de Paula,
Rasul, and Souza (2020), which is equation (1) but simplified by having
Gl 5 G and nl 5 n, the same for all time periods l (i.e., the number of
members and the adjacency matrices are the same for all time periods).
Let ~Xl be a column vector that stacks all Kn elements in Xl and a con-
stant term. We can write the model in (1) as

yl 5 Ayl 1 B ~Xl 1 εl , (3)

where A 5 lG and B ~Xl 5 ai 1 Xlb 1 GXlg, so the elements of the ma-
trix of coefficients B are functions of G, a, b, and g. Equation (3) is a sys-
tem of n linear equations. The reduced form (defined by solving for the
endogenous yl in terms of the exogenous covariates Xl) of equation (3) is

yl 5 C ~Xl 1 I 2 Að Þ21
εl ,
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where C 5 ðI 2 AÞ21
B. With L (the number of groups) large enough,

one can identify and estimate the reduced-form matrix of coefficients
C by linearly regressing each element of yl on the vector of regressors
~Xl , assuming that εl is uncorrelated with ~Xl .
Some form of rank and order conditions are then needed to identify

the structural coefficients A and B from C, and additional rank and order
conditions would be needed to recover G, l, a, b, and g from A and B (or
to simply recover l, a, b, and g in standard models where G is known). By
construction, A and B are functions of n2

1 2 1 2K structural parameters
(G, l, a, b, g), while C consists of n � ðKn 1 1Þ reduced-form coefficients.
Thus, it is straightforward to verify the order condition for identifying A

and B fromC for a given pair of n and K. The issues for identification here
are rank conditions for identifying A and B and for recovering the struc-
tural parameters given A and B.
The linear-in-means model, which corresponds to a G having all off-

diagonal elements equal to 1=ðn 2 1Þ, suffers from the “reflection prob-
lem” as pointed out by Manski (1993). The reflection problem is a failure
to obtain identification because of a violation of the rank condition. As in
ordinary linear simultaneous systems, themost common solution to the re-
flection problem is to regain identification by imposing exclusion assump-
tions—for example, by assuming that some contextual effects are zero as in
Graham and Hahn (2005). In the above notation, this is equivalent to as-
suming that some elements of g equal zero, thereby restricting the matrix
B and hence C to satisfy the rank condition. Both Blume et al. (2015) and
de Paula, Rasul, and Souza (2020) can also be interpreted as providing rank
conditions that suffice for identifying structural parameters from reduced-
form coefficients.
Our model of unobserved networks does not rule out linear-in-means

networks as a special case, and so we also require exclusion assumptions
for identification. Our model is more complicated than equation (3) in
that we let the unobserved adjacency matrices Gl vary across groups
l ∈ f1, ::: , Lg. So in our model, equation (3) is replaced by

yl 5 Alyl 1 Bl
~Xl 1 εl :

Instead of the fixed matrices of coefficients A and B as in equation (3),
variation in Gl across groups gives rise to matrices of random coefficients
Al and Bl. As a result, we first identify and estimate a mean reduced-form
matrix C 5 E ½ðI 2 AlÞ21

Bl �, where the expectation is over the distribu-
tion of random matrices Al and Bl. Then, by making use of some exclu-
sion (i.e., rank) restrictions, from this C we point-identify the structural
parameters l, a, b, and g, along with some features of the distribution of
the random Gl matrices.
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III. The Model

Let the data-generating process (DGP) be as specified in section I.A.
The data consist of independent networks, or groups, indexed by l 5

1, 2, ::: , L. Examples of groups could be classrooms or villages. Each group l

consists of nl individual members and has an nl � nl adjacency matrix Gl.
These adjacency matrices vary across the groups and are not reported
in the data. What are observed are the outcomes and covariates of every
member of each observed group l. Each group is observed only once.5 We
do not model how the latent, unobserved adjacency matrices are formu-
lated; instead, we assume that they are independent draws from some un-
known distribution of possible networks. As explained below, our method
requires these networks to be exogenous from the individual characteris-
tics whose social effects are to be identified.
By convention in the literature, the diagonal entries in each Gl are all

zeros—that is, Glii 5 0 for i 5 1, ::: , nl . The off-diagonal entries Glij ∈ R

measure the strength of the link between individuals i and j, with Glij 5

0 signifying the absence of a link. The unobserved adjacency matrices
G1, ... , GL are assumed to be row-normalized. That is, given a group adja-
cency matrix G*

l , the (i, j)th component in the row-normalized version Gl

is Glij 5 G*
lij=ðonl

j 051G
*
lij 0Þ, where the sum in the denominator is positive al-

most surely. Although row normalization imposes nontrivial behavioral
restrictions, it is commonly maintained in the literature of spatial econo-
metrics and social networks. However, we later (in sec. IV.A) discuss how
ourmethod can be generalized to work without row normalization.
For each individual i in the sample, it is assumed that the group l that

individual i belongs to is known. This is a sensible assumption in many
applications, because groups are often defined by public information. Ex-
amples include geographic boundaries as in Banerjee et al. (2017), where
each l indexes a village, or registration/enrollment records such as class
enrollment in the Add Health data set (see, e.g., Hunter, Goodreau, and
Handcock 2008), where each l indexes a school-grade pair.
To fix ideas, for now let all groups in the DGP be of the same size

nl 5 n. Later we will relax this assumption by dividing the population into
subgroups s and allowing the group size (and some model coefficients)
to vary by s. Another simplification we impose for now is to exclude any
group-level variables fromXl. This means that none of the columns in the
matrix Xl consist of n identical entries. We can extend our method to ac-
commodate such group-level variables; details are deferred to section VI.A.
To save on notation, we suppress the subscript l while presenting iden-

tification results below. Let Xck denote the kth column in X. That is, Xck

5 For identification and consistent estimation, there is no problem if outcomes and co-
variates of some or all groups are observed more than once. However, in that case, the as-
ymptotic distribution of our estimator would need to account for the resulting correlation
in errors and adjacency matrices across multiple observations of the same group.
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is an n � 1 vector of the kth regressor for all members in a group. The
subscript c serves as a reminder that the index is for columns. Let ~X ;

ð1, X 0
c1, X

0
c2, ::: , X

0
cK Þ0 denote a ðKn 1 1Þ � 1 vector that stacks the regres-

sors for all individuals in a group.
Assumption 1 (Population model). The outcomes on the social net-

work are determined by y 5 ai 1 lGy 1 Xb 1 GXg 1 ε, where y and ε are
n � 1,G is n � n, X is n � K, b and g are K � 1, and l is a nonzero sca-
lar. Because G is row-normalized, the sum of the elements in every row
ofG equals one. The joint distribution of (y, X ) is directly identified in
the DGP.
Assumption 2 (Exogenous networks). EðεjG , X Þ 5 0.
Assumption 3 (Independence). G is independent of X.6

Assumption 4 (Invertibility and no perfect collinearity).

i) Eð~X ~X 0Þ exists and is nonsingular.
ii) I 2 lG is invertible with probability one.
iii) All elements in E(M) and E(MG) are bounded above by a finite

constant, whereM is defined in (2).

Our method can be generalized to where assumptions 2 and 3 hold con-
ditional on other covariates. However, this extension adds notation and
complicates the presentation, so we defer it to appendix D, where it is
discussed in detail. Nevertheless, even with this generalization, assump-
tions 2 and 3 are strong restrictions, requiring that networks be condi-
tionally exogenous. They rule out potential endogeneity in group or link
formation that could arise from unobserved heterogeneity. Specifically,
suppose that in the DGP there exist unobserved factors, on either the in-
dividual or group level, that contribute to the observed outcome y. Such
factors would be absorbed in the error terms ε in the structural form. If
they also affect link formation or are correlated with X, then the mean
independence in assumption 2 might not hold.
In assumption 4, invertibility of M is a common assumption in the lit-

erature. It holds, for example, if jlj < 1, oj≤njlGij j < 1 for all i ≤ n, and G

is bounded in its norm. Row normalization, which we imposed in as-
sumption 1, is also often used in networkmodels to facilitate invertibility.
Given assumption 4, we can obtain the reduced form of the population
model y 5 ai 1 lGy 1 Xb 1 GXg 1 ε as

y 5 M ai 1 Xb 1 GXg 1 εð Þ: (4)

In the next section (lemma 1), we show that under assumptions 1-4,
the intercept and slope coefficients from a regression of y on ~X identify

6 This condition can be replaced by “Gr is mean independent of X for all integers r.”We
later discuss how this condition can be further relaxed to allow dependence of G on some
covariates in app. D.
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several reduced-form parameters, denoted by m0 and mk for 1 ≤ k ≤ K .
These reduced-form parameters are related to the structural parameters
a, l, b, and g and the distribution of adjacency matrices G as follows:

mk 5 bkE Mð Þ 1 gkE MGð Þ for k 5 1, ::: , K ,

m0 5 a= 1 2 lð Þ:
(5)

In other words, for each characteristic indexed by k 5 1, 2, ::: , K , the
(i, j)th component in mk is the marginal effect of the kth characteristic
in X for individual j on the mean outcome of individual i.
To make use of equation (5) for identifying the structural parameters,

we also maintain some mild conditions on the model structure.
Assumption 5 (Nontrivial effects). (i) For each k < K , the 2 � 2

matrix

bk bK

gk gK

 !

has full rank. (ii) mK ≠ cI for any c ∈ R, where mK is a matrix of reduced-
form coefficients for the Kth regressor as defined in equation (5).
Assumption 5(i) rules out the pathological case where some pair of re-

gressors has proportional contextual and peer effects. As long as one re-
gressor has contextual and peer coefficients that are not proportional to
those of any other regressor, we can reorder the columns of X to make
that regressor be the Kth regressor to satisfy part i. A sufficient but not
necessary condition for part i is gK 5 0 (one of the regressors has no
contextual effect) while bK, bk, and gk are all nonzero for all k < K . As-
sumption 5(ii) rules out another pathological case, where the Kth re-
gressor of each individual i has identical marginal effects on its own ex-
pected outcome but no impact on that of any other group member.
In addition to assumptions 1–5, to obtain identification we will require

some exclusion restrictions, to satisfy a rank condition. These are dis-
cussed at length in section IV.A.

IV. Identification

The first step of our identification strategy is to show how the reduced-form
parameters relate to the structural components of our model. As we show
below, Eðyj~X Þ is linear in ~X . Hence, the reduced-form parameters can be
alternatively definedas the coefficients of ~X in this conditional expectation.
Lemma 1. Under assumptions 1–4, the reduced-form parameters m0

and mk for 1 ≤ k ≤ K (defined in [5]) are identified.
The proof of lemma 1 is in appendix A, but the intuition is as follows.

Let yi denote the outcome for individual i. By construction,
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Eðyi jX Þ 5 m0 1 eiE Mð ÞXb 1 eiE MGð ÞXg, (6)

where ei is a 1 � n unit-vector whose ith component is 1. Observe that the
right-hand side of (6) is linear in allKn components ofX, so Eðyj~X Þ is linear
in ~X . This equation holds because G andM are independent from X by as-
sumption 3, and EðM εjX Þ 5 E ½MEðεjX ,GÞjX � 5 0 by assumption 2. The
equality in (6) also uses the fact that the rownormalization ofG implies that

aM i 5 a o
∞

s50

lGð Þs
� �

i 5 m0i: (7)

The second equality here holds because, by row normalization, each row
of M adds up to the same constant 1=ð1 2 lÞ.
In the reduced form of equation (6), the slope coefficient for the kth

regressor of individual j is bk½eiEðM Þe 0j � 1 gk½eiEðMGÞe 0j �. (Note that for a
generic n � n matrix Q, the product eiQe 0j returns the (i, j)th component
inQ.) The full rank and the invertibility conditions in assumption 4 guar-
antee the identification of these reduced-form coefficients. These iden-
tified vectors of regressor coefficients are then arranged into the K ma-
trices of reduced-form coefficients mk for k 5 1, ::: , K .
Remark 1. The representation of EðyjX Þ in (6) is consistent not only

with the simultaneous social network model with complete information
given by equation (1) but also with an alternative model in which individ-
uals have private information and rational expectations regarding peer
outcomes:

y 5 ai 1 lGEðyjG , X Þ 1 Xb 1 GXg 1 ε, (8)

where the ε’s are private shocks that are independent of other groupmem-
bers conditional on the commonly knownG and the exogenous character-
istics X. In equation (1), individuals have complete information about
others in the same group and outcomes are simultaneously determined.
In comparison, each group member in equation (8) has private shocks,
and outcomes are determined through rational expectations of others’
outcomes, conditional on each individual’s information set (G, X). Both
models lead to the same representation of the conditional mean function

EðyjG , X Þ 5 ðI 2 lGÞ21
ai 1 Xb 1 GXgð Þ,

which in turn implies (6) under assumption 3.
Remark 2. Some comments about the data requirement for estimat-

ing the reduced-form coefficients are in order here. If a researcher uses
ordinary least squares (OLS) to estimate these reduced-form coefficients,
then the number of groups in the sample needs to be large relative to the
number of regressors. This is not a concern if the empirical specification
of the reduced form includes only a small number of covariates for each
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individual while the sample size is moderately large.7 Otherwise, the re-
searcher needs to takemeasures to estimate the reduced-form coefficients
using limited data. For example, instead of requiring that the sample size
be large relative to the number of regressors in OLS, de Paula, Rasul, and
Souza (2020) impose a sparsity condition on the structural-form adjacency
matrix and then use a penalization approach to estimate the reduced-form
interaction matrix. In contrast, we propose alternative ways to deal with
such data deficiency using anatomy of partitioned regressions in sec-
tion VI.B. By doing so, we choose to avoid sparsity restriction on structural
adjacency matrices, which is necessary for the penalization approach. Fi-
nally, note that some prominent papers in this literature just assume that
reduced-form coefficients can be identified and estimated, including
Bramoullé, Djebbari, and Fortin (2009) and Blume et al. (2015).
In the next lemma, we construct 2ðK 2 1Þ intermediate parameters ak

and bk for k 5 1, ::: , K 2 1 from the reduced-form coefficients mk. Later,
the final step of the identification will recover the structural parameters
l, b, g from these intermediate parameters ak and bk.
Lemma 2. Suppose that assumptions 1–5 hold. Then for each k < K ,

the equation

akmk 1 bkmK 5 I (9)

has a unique solution ðak , bkÞ ∈ R2, where

ak

bk

 !
5

bk bK

gk gK

 !
21 1

2l

 !
: (10)

Proof. For any k 5 1, ::: , K 2 1, the inverted matrix on the right-
hand side of (10) has full rank under assumption 5(i). Hence, the solu-
tion (ak, bk) is well defined, and ðak , bkÞ ≠ ð0, 0Þ. By construction, akbk 1

bkbK 5 1 and akgk 1 bkgK 5 2l. Therefore,

akmk 1 bkmK 5 E M akbkI 1 akgkG 1 bkbK I 1 bkgKGð Þ½ � 5 E M I 2 lGð Þ½ � 5 I :

Next, we show that for each k, (ak, bk) as defined in (10) is the unique so-
lution for (9). That is, there exists no ð~ak , ~bkÞ ≠ ðak , bkÞ such that

~ak 2 akð Þmk 1
~bk 2 bk
� �

mK 5 0: (11)

Consider three mutually exclusive cases. In case 1, ~ak 5 ak , ~bk ≠ bk . Then
(11) requires thatmK 5 0. In case 2, ~ak ≠ ak ,~bk 5 bk . Then (11) requires that
mk 5 0. This in turn implies that mK must be a scalar multiple of I for (9) to

7 For example, Krueger (1999)uses two individual-level characteristics (dummy variables for
gender and being white) and six group-level features in the specification of student outcomes.
For a regular class with 15 students, this leads to 2 � 15 1 6 5 36 regressors, which is small rel-
ative to the sample size of 465 classes. (For details, see tables III and V in Krueger 1999.)
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hold for (~ak , ~bk). In case 3, ~ak ≠ ak , ~bk ≠ bk . Then (11) requires that mk 5

2½ð~bk 2 bkÞ=ð~ak 2 akÞ�mK , which is a scalarmultiple of mK. Again, this implies
that for (9) to hold for (~ak , ~bk), mK must be a scalar multiple of I. In each of
these three cases, the implication of (11) contradicts assumption 5(ii). QED
The reduced-form coefficients m0 and mk are identified by lemma 1.

Therefore, for each k ≤ K 2 1, (ak, bk) can be recovered as the unique
solution to equation (9). For each k, this matrix equation yields n2 equa-
tions—namely, akmk,ij 1 bkmK ,ij 5 0 for all i ≠ j and akmk,ii 1 bkmK ,ii 5 1 for
all i, where i and j go from one to n. In section V, we construct an esti-
mator for each pair (ak, bk) by minimizing the L2-distance between
akmk 1 bkmK and the identity matrix.
Now consider identification of the structural parameters (l, b, g) given

ak and bk. Lemma 2 provides the linear equations

bk bK

gk gK

 !
ak

bk

 !
5

1

2l

 !
 for k 5 1, ::: , K 2 1, (12)

and by the row normalization of G in assumption 1, we get the additional
equations

mk ; i0mkið Þ=n 5
bk 1 gk

1 2 l
 for k 5 1, ::: , K , (13)

where mk is the sum of components in mk divided by n, which is identified
due to lemma 1.
Combining equations (12) and (13) yields a system of 2ðK 2 1Þ 1 K

linear equations for 2K 1 1 parameters v ; ðl, b0, g0Þ0, with b ; ðb1,
b2, ::: , bK Þ0 and g ; ðg1, g2, ::: , gK Þ0. The rank of the matrix of coeffi-
cients for v in this linear system is at most 2K 2 1, because akmk1

bkmK 5 1 for all k < K by construction.
To illustrate, the system of linear equations we obtain from equations (12)

and (13) when K 5 3 is

0 a1 0 b1 0 0 0

0 0 a2 b2 0 0 0

1 0 0 0 a1 0 b1

1 0 0 0 0 a2 b2

m1 1 0 0 1 0 0

m2 0 1 0 0 1 0

m3 0 0 1 0 0 1

0

BBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCA

l

b1

b2

b3

g1

g2

g3

0

BBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCA

5

1

1

0

0

m1

m2

m3

0

BBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCA

: (14)
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Here v 5 ðl, b1, b2, b3, g1, g2, g3Þ0, which has seven elements, while the
rank of the matrix that multiplies v in equation (14) is bounded above
by five.8

For general cases with K > 3, the linear system in (14) is generalized to

0ðK21Þ�1 H 0ðK21Þ�K

iðK21Þ�1 0ðK21Þ�K H

m I I

0

BBB@

1

CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p

l

b

g

0

BBB@

1

CCCA

|fflffl{zfflffl}
v

5

iðK21Þ�1

0ðK21Þ�1

m

0

BBB@

1

CCCA

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
t

, (15)

where m ; ðm1,m2, ::: ,mK Þ0, I is a K � K identity matrix, and H is a
(K 2 1) � K matrix constructed from ðak , bkÞk51, ::: ,K21 as follows:

H ; ½diag a1, ::: , aK21ð Þ,   b1, b2, ::: , bK21Þ0ð �:
The rank of the pmatrix is generically 2K 2 1. It cannot be greater than
2K 2 1 by construction and is strictly less than 2K 2 1 only if the DGP
generates one or more pathological equality constraint coincidences
among the ak, bk, and mk terms.
Next, we define what we call an environment. An environment s is a sub-

population of groups, defined by observable information, that satisfies as-
sumptions 1–5. Each group lies in one and only one environment. Let S
denote the finite number of environments in the population. We allow
all model parameters and group sizes to vary across environments, and
so all can be given an s superscript. Within each environment, the struc-
tural parameters are fixed. For example, environment can be defined
by classroom size, as in our empirical study. Notice that S 5 L is ruled
out because S is finite and L→∞. To accommodate data that have groups
of different sizes, we can assume a different environment s for each possi-
ble group size n(s) (additional ways to deal with varying group sizes are dis-
cussed later).
Because structural parameters vðsÞ ; ðlðsÞ, bðsÞ0, gðsÞ0Þ0 ∈ R2K11 and the dis-

tribution of (G, X, ε) vary by environment in general, we index them with
superscripts s, (G(s), X(s), ε(s)), to emphasize that they are allowed to be drawn
from different distributions across different environments. For example,
for two groups l and k from the same environment s, their adjacency ma-
tricesGl andGk differ but are drawn from the same distribution indexed
by s; in comparison, for two groups l and k0 from different environments s
and s 0, the adjacency matricesGl and G k 0 are drawn from two different dis-
tributions, indexed by s and s 0, respectively. Now identification of themodel
requires that we identify v(s) for each environment s.

8 To see this, note that the sum of the first and third rows equals a weighted sum of the
fifth and last rows (as a1m1 1 b1m3 5 1 by construction). Likewise, the sum of the second
and fourth rows equals a weighted sum of the last two rows.
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Suppose that v(s) and the distribution of (G(s), X(s), ε(s)) satisfy the restric-
tions in assumptions 1–5 for each environment s. Then by repeating the
construction of equation (15), we obtain S linear systems:

p sð Þv sð Þ
5 t sð Þ for s 5 1, 2, ::: , S:

We then stack these S systems to get

Πv 5 d,

where v and d are column vectors that stack v(s) and t(s), respectively, for
s 5 1, ::: , S and Π is a block-diagonal matrix with diagonal blocks p(s).
Finally, suppose that there are additional known linear equality con-

straints that hold among the elements of v. For example, some structural
parameters might take the same value in different environments or one
or more structural parameters might be known to equal zero (i.e., exclu-
sion restrictions). Denote these additional restrictions by Rv 5 c, where
R and c are known a priori (see the next subsection for details). Let
Ψ ; ½Π; R � denote a combined coefficient matrix constructed by stack-
ing Π on top of R, and define the vector v ; ðd 0, c 0Þ0. We can then sum-
marize all these equality constraints by the linear system

Ψv 5 v:

Theorem 1. Assume that the population consists of S environments
for some fixed constant S. Let assumptions 1–5 hold for each environ-
ment s 5 1, ::: , S . Assume that Ψ has full rank. Then l(s), b(s), g(s), and
a(s) for s 5 1, ::: , S are all identified.
As the very first step, we construct Ψ and v using the coefficients iden-

tified from lemmas 1 and 2 above. To prove theorem 1, we first get iden-
tification of v, and hence of l(s), b(s), g(s) for all s, by v 5 ðΨ0

ΨÞ21
Ψ

0v.
Then, using lemma 1, a(s) is identified by aðsÞ

5 ð1 2 lðsÞÞmðsÞ
0 .

Once the structural parameters are identified, equation (5) (which
can now vary by environment s) provides equality constraints that the
matrices EðM ðsÞÞ and EðM ðsÞG ðsÞÞ must satisfy. These constraints are not
sufficient to identify moments of the distribution of the adjacency ma-
trix itself, but they provide restrictions that we will later use to test hy-
potheses about the networks, such as whether they are linear-in-means.
We discuss restrictions that suffice to give Ψ full rank, as required by the-
orem 1, in the next section.

A. Rank Restrictions

To satisfy the rank condition in theorem 1, we require restrictions of the
form Rv 5 c. The number of rows in Rmust at least equal the number of
required restrictions on the coefficients v to satisfy the rank condition in
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theorem 1. This number depends on both the number of regressors K
and the number of environments S. For example, with K 5 3 and
S 5 1, we require two additional linear restrictions on v to make Ψ full
rank.
One way to see why rank restrictions such as Rv 5 c are needed is to

consider Manski’s (1993) reflection problem again. Manski’s linear-in-
means social interactions model is a special case of our model where
G(s) is the same for all groups in each environment s and where all off-
diagonal elements of G(s) equal 1=ðnðsÞ

2 1Þ. The reflection problem shows
that in this model, even if G(s) were known, the structural parameters would
not be identified without additional restrictions. Since our model includes
this linear-in-means model as a special case, we must require at least as
many additional restrictions for identification.9

There are two types of rank restrictions that are most natural to im-
pose. The first type is exclusion restrictions, which consist of assuming
that some elements of either b or g equal zero (like the exclusion restric-
tions commonly used to identify linear simultaneous systems of equa-
tions). Graham andHahn (2005) use such exclusion restrictions to iden-
tify the linear-in-means model.10 To illustrate, suppose that K 5 3 and
S 5 1. In this case, it suffices to assume that one regressor Xk has no con-
textual effect (g

ð1Þ
k 5 0) and a nonzero direct effect (b

ð1Þ
k ≠ 0), while an-

other regressor X k 0 has no direct effect (bk 0 ð1Þ 5 0) and a nonzero contex-
tual effect (gk 0 ð1Þ ≠ 0). More generally, with K ≥ 3, Ψ has full rank
generically if R is defined by the exclusion restrictions that there exist
k, k 0

< K with gk 5 0, bk 0 5 0 and bk ≠ 0, gk 0 ≠ 0. So essentially, we get
identification if one regressor has no contextual effects and another
has no direct effects. In contrast, restricting two regressors to both have
no contextual effects but nonzero individual effects would not suffice to
make Ψ full rank (this turns out to be a case where the order condition
would be satisfied but the rank condition is not).
Since it would be unusual for covariates to have contextual but not di-

rect effects, we consider a second type of rank restriction, which exploits
the presence of multiple environments s. These restrictions are that some
structural parameters do not vary by environment. To illustrate, suppose
we have two different environments, so S 5 2, and we assume that peer
effects vary by environment, but direct and contextual effects do not.
Then the restrictions Rv 5 c will include the equations bð1Þ

2 bð2Þ
5 0 and

gð1Þ
2 gð2Þ

5 0. In this case, Ψv 5 v simplifies to

9 It is not sufficient to rule out the linear-in-means model to eliminate this problem,
since there exist many other models in our framework that are also not identified without
additional restrictions.

10 Graham and Hahn (2005) also use instruments from outside the model to obtain iden-
tification. In contrast, we consider only restrictions on coefficients to gain identification.
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0 0 H 1ð Þ 0

i 0 0 H 1ð Þ

m 1ð Þ 0 I I

0 0 H 2ð Þ 0

0 i 0 H 2ð Þ

0 m 2ð Þ I I

R

0

BBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCA

l 1ð Þ

l 2ð Þ

b

g

0

BBBBBB@

1

CCCCCCA
5

i

0

m 1ð Þ

i

0

m 2ð Þ

c

0

BBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCA

, (16)

where we let b 5 bð1Þ
5 bð2Þ and similarly for g. Inspection of equation (16)

shows that this still does not provide enough restrictions for identifica-
tion (note that increasing S from 1 to 2 increased the number of required
restrictions). However, if we impose one exclusion restriction, such as
assuming that one contextual effect (i.e., one element of g) equals zero,
and we impose the constraint that lð1Þ ≠ lð2Þ, then that provides enough
restrictions to generically satisfy theorem 1.
Note that the requirement that lð1Þ ≠ lð2Þ can be tested in this case,

since, by equation (16), lð1Þ ≠ lð2Þ if and only if mð1Þ ≠ mð2Þ.
The assumption that b and g do not vary by environment in this exam-

ple can be relaxed. For example, if the direct effects b are the same across
groups but the contextual effects vary, so gð1Þ ≠ gð2Þ, then the full rank con-
dition required for identification will still hold generically if one of the
regressors has no contextual effect in either environment—that is, if
one element in g(1) and g(2) equals zero.
For our empirical application in section VII, we analyze students’ math

test scores. In that application, we assume two environments correspond-
ing to small (s 5 1) and large (s 5 2) class sizes. For identification, we al-
low l to vary by class size while fixing b and g. This generalizes the models
using class size variation to estimate constant peer effects (e.g., Boozer and
Cacciola 2001; Graham 2008). We then need one additional exclusion re-
striction. For this we assume that a student’s number of days of absence
from school has an impact on his own test score but not on those of other
classmates, so the element of g corresponding to days of absence is set
to zero. This exclusion restriction is motivated by the fact that common
specifications of student outcomes in the empirical literature typically
do not include any contextual effect for students’ days of absence from
school (see, e.g., Hanushek 1999; Krueger 1999; Boozer and Cacciola 2001;
Krueger and Whitmore 2001). We concur with the literature that such
an exclusion restriction is plausible, because there is no empirical or anec-
dotal evidence that students in these schools made coordinated efforts to
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play truant. In our application, we generalize previous specifications by let-
ting days of absence have direct, individual effects, which are shown to be
statistically significant in section VII.C.
We conclude this section by discussing how the rank restrictions men-

tioned above also help to generalize ourmethodwithout row-normalizing
the adjacency matrices G. To fix ideas, let us consider the simple case with
three individual characteristics (K 5 3) and use the linear system in (14)
to illustrate the role of row normalization in our method. On the one
hand, lemmas 1 and 2—and hence the first four equalities in (14)—would
hold even without the row normalization of G in assumption 1. On the
other hand, (13) and the last three equalities in (14) would not hold with-
out row normalization, and as a result we would be left with a linear system
of four equations, which is insufficient for recovering seven unknown pa-
rameters in v. Therefore, without row-normalizing G, point identification
of v requires further rank restrictions. The two approaches proposed in
this section could precisely serve this purpose. For example, if the model
imposes no contextual effects—that is, gk 5 0 for k 5 1, 2, 3—we can
uniquely solve for (l, b1, b2, b3) from the linear system (14) provided
the coefficient matrix, after dropping the last three rows, has full rank
(four). Alternatively, we can accommodate contextual effects but exploit
the presence of multiple environments to add rank restrictions by adopt-
ing the second approach proposed above. We note that these additional
required rank restrictions may in practice impose strong additional as-
sumptions on the model.

B. Individual Labels

Define the label of an individual in a group l to be the row of Yl andXl where
that individual’s data appear and hence is also the row ofGl that contains
that individual’s links. When we refer to individual members i 5 1, ::: , n
of a group l, any given member’s value of i is that member’s label.
The ordering, or labeling, of individuals in a group l determines the

ordering of the rows of that group’s adjacency matrix Gl. Therefore,
the labeling of individuals in each group affects the distribution of adja-
cency matrices. As a result, the validity of our assumptions may depend
in part on how individuals in each group are labeled. In particular, our
assumptions require that, for the chosen labeling of individuals, every
group’s random array (Xl, Gl, εl) is drawn from the same underlying joint
distribution of group arrays, and that distribution satisfies the properties
given in assumptions 2, 3, and 4.
Analogous labeling requirements exist in other papers that identify so-

cial networkmodels from reduced-form coefficients, including Bramoullé,
Djebbari, and Fortin (2009), Blume et al. (2015), and de Paula, Rasul, and
Souza (2020). Similar requirements apply to the labelingof players inmany
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empirical game models. For example, to infer private values from bids in
auctions, it is assumed that bidders who share the same label across differ-
ent auctions be independent draws from the same underlying distribution
of private values (see, e.g., secs. 3.2.2 and 4.1 in Athey and Haile 2007). An-
other example is the labeling of firms in matching markets. For example,
Fox, Yang, and Hsu (2015) recover unobserved complementarities from
matching patterns across many markets in a sample. Their method re-
quires either that the labels of firms on both sides have common meaning
across markets in the data or that the distribution of unobserved charac-
teristics is fully exchangeable in firm labels.
There are three methods we can use to deal with this labeling issue.

One is to assume that the joint distribution of (Xl, Gl, εl) is exchangeable
in individual labels. In this case, how the individuals are labeled would
have no impact on the identification strategy or on the asymptotic prop-
erties of the estimator we propose in the next section. Under exchange-
ability, one could simply randomly label individuals from 1 to n in each
group. However, exchangeability is a strong symmetry restriction that in
many ways resembles (though is still less restrictive than) the linear-in-
means model.11 Note that it would be sufficient for our results to assume
exchangeability only within environments, not across environments.
A secondmethodwould be to use panel data, where the groups are time

periods. In this case, the individual labels would by definition be fixed and
known across time periods, so the labeling issue would not arise. However,
in this case our identification would require a long panel, so the number
of time periods would need to go to infinity, and our assumed indepen-
dence of network draws across groups could be difficult to satisfy in such
a panel data setting.
An alternative to either panel data or assuming exchangeability is to

order (and hence label) individuals in each group based on some ob-
servable characteristics that may affect link formation but are otherwise
exogenous (and so are not included in Xl). In our empirical application,
we order students in classrooms based on their dates of birth. Within
classrooms, students’ dates of birth are typically not included as an ele-
ment of Xl in models of test score outcomes (see, e.g., Krueger and
Whitmore 2001).12 However, dates of birth may have nontrivial impacts

11 In the linear-in-means model,M is constant and therefore identical to E(M) and has a
simple form where the ratio between any diagonal and any off-diagonal element of M is a
known function of n and l. In contrast, in our model, even under exchangeability, that ra-
tio is jointly determined by the distribution of network links in addition to n and l. So even
with exchangeability, our model is more general than the linear-in-means model.

12 Some papers, such as Angrist and Krueger (1991), showed that the dates of birth could
affect broader, longer-term outcomes. However, since we use essentially the same STAR data
as Krueger and Whitmore (2001), we follow them to exclude dates of birth as a direct re-
gressor. Still, our partitioning of classes into more vs. less disbursed dates of birth does allow
for some indirect effects on outcomes via differences in link formation.
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on link formation. For example, a child may be less likely to consider a
much younger or older classmate as a friend than one with a closer birth-
day. The assumption, then, is that, with students sorted by dates of birth
and hence labeled by their order of seniority within in each group l, the
random arrays (Xl, Gl, εl) for l ≤ L can be treated as independent draws
from some underlying distribution. This means that, given the ordering
of students by age, Xl and the adjacency matrix for each group l are in-
dependent draws from some unknown distribution of demographics
and possible adjacency matrices. This may be a strong assumption, since
it requires that the researcher know a priori what conditioning charac-
teristic (such as date of birth) suffices to satisfy this assumption.Note, how-
ever, that if exchangeability happens to hold, then this labeling based
on any observed characteristic is known to be innocuous.

V. Estimation

To estimate the structural parameters of our model, we use a sample of
outcomes and regressors over random networks ðyl , XlÞl51,2, ::: ,L. Assume
that across l 5 1, ::, L, (yl, Gl, Xl, εl) are independent draws from the envi-
ronments in the population model. Our estimator is based on sample an-
alogs of the moments and steps used for identification. The estimator is
analogous to indirect least squares, in that we first estimate reduced-form
coefficients and then use them to recover the structural parameters.
To fix ideas, we first consider the case of a single environment (S 5 1),

so the required rank restrictions Rv 5 c are all exclusion restrictions.
Step 1.—For each i ∈ f1, ::: , ng, linearly regress the outcome ðyl ,iÞl51, ::: ,L

on a constant and on ðXlÞl51, ::: ,L, yielding Kn 1 1 slope coefficients for
each i. Note that each of these regressions uses L observations. These re-
gressions correspond to equation (6). The constant term in each regres-
sion should be the same m0, so these regressions can be estimated jointly,
imposing the constraint that the estimated intercept in each regression
be the same m̂0 ∈ R.13

After running these regressions, the resulting coefficients are then ar-
ranged into matrices m̂k ∈ R

n�n for k 5 1, 2, ::: , K , as described imme-
diately before and after lemma 1. Also, construct m̂k ; ði0m̂kiÞ=n for
k 5 1, 2, ::: , K . Note that at this stage one could test the condition of
nontrivial marginal effects required by assumption 5(ii), using these esti-
mates and their associated standard errors.
Step 2.—For each k 5 1, 2, ::: , K 2 1, estimate the solution to equa-

tion (9) using the extremum estimator

13 Alternatively, we may first de-mean the data, estimate these regressions separately
(each without an intercept), and then recover an estimate of the common intercept m̂0.
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âk , b̂k
� �

; arg  min
ak ,bk∈R

o
i,j

ei akm̂k 1 bk m̂K 2 Ið Þe 0j
� �2

: (17)

A potentially less efficient but closed-form alternative would be to use a
subset of the information in (9) to construct a smaller linear system that
could then be solved for (ak, bk) by matrix inversion. An example of such
a system would simply be that the equalities that the diagonal entries in
akm̂k 1 bk m̂K sum to n and the off-diagonal entries add up to zero. These
closed-form estimates could be used as starting values for the extremum
estimation above.14

Step 3.—Given the estimates from step 2, calculate the closed-form esti-
mator of v̂ ; ðl̂,  b̂1, ::: , b̂K ,  ĝ1, ::: ,  ĝK Þ0 using

v̂ ; Ψ̂
0
Ψ̂

� �21
Ψ̂v̂,

where Ψ̂ is the coefficient matrix formed by stacking (12) and (13) along
with the exclusion restrictions Rv 5 c, as in theorem 1.
For example, in the case with K 5 3 above,

Ψ̂ ;

0 â1 0 b̂1 0 0 0

1 0 0 0 â1 0 b̂1

0 0 â2 b̂2 0 0 0

1 0 0 0 0 â2 b̂2

m̂ I I

R

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

,  v̂ ;

1

0

1

0

m̂

c

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

,

with Rv 5 c representing equalities describing the exclusion restric-
tions, such as some of the contextual and direct effects being set to zero.
Finally, the remaining structural parameter a is estimated by â 5

ð1 2 l̂Þm̂0.
Now consider how this procedure can be generalized to handle multi-

ple environments, so that S ≥ 2. To do so, first implement steps 1 and 2
separately for each environment s to get estimates â

ðsÞ
k , b̂

ðsÞ
k , m̂

ðsÞ
k , s ≤ S .

Then, for step 3, stack the estimated matrices Π̂ with R, and the estimated
vector d̂ with c as in the preceding subsection, to obtain Ψ̂ and v̂. Then v is
estimated by a classical minimum distance (CMD) method:

bv ; arg  min
v∈Θ

ðΨ̂v 2 v̂Þ0Ξ21
Ψ̂v 2 v̂
� �

,

14 Many alternative, smaller linear systems could be constructed for inefficient closed-
form estimation, each using a different subset of the equalities in eq. (9). One could then
estimate (âk , b̂k), or obtain consistent starting values for extremum estimation of these co-
efficients, by taking a (possibly weighted) average of these many closed-form estimates.
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whereΘ denotes the feasible parameter space and Ξ
21 is a chosen weight

matrix that is symmetric and positive definite. The first-order condition
for this minimization yields the estimator

bv 5 Ψ̂
0
Ξ

21
Ψ̂

� �21
Ψ̂

0
Ξ

21v̂
� �

:

The following theorem shows consistency of this estimator under stan-
dard conditions.
Assumption 6. For each s ≤ S , the parameter space for (a

ðsÞ
k , b

ðsÞ
k ) (de-

fined in [10]) is compact for all k ≤ K .
Theorem 2. Suppose that assumptions 1–6 hold for each s ≤ S and

Ψ has full rank. Then bv converges in probability to v as L→∞.
In appendix A, we provide the proof of theorem 2. To see intuition for

the consistency of bv, recall that for each environment s and each k ≤ K ,
m̂
ðsÞ
k consists of OLS coefficient estimates from linear regressions with L

observations, and m̂
ðsÞ
k is a simple linear function of all the elements in

m̂
ðsÞ
k . Hence, these estimators are consistent for the actual m

ðsÞ
k and m

ðsÞ
k

in the DGP. In addition, (â
ðsÞ
k , b̂

ðsÞ
k ) are two-step extremum estimators,

whose objective function in (17) depends on m̂
ðsÞ
k smoothly. As L→∞,

this objective function converges in probability, uniformly over the pa-
rameter space, to its limit where m̂

ðsÞ
k is replaced by m

ðsÞ
k . Lemma 2 implies

that this limit is uniquely minimized at the actual (a
ðsÞ
k , b

ðsÞ
k ). By a standard

argument for the consistency of extremum estimators, (â
ðsÞ
k , b̂

ðsÞ
k ) converges

in probability to (a
ðsÞ
k , b

ðsÞ
k ) for each s and k. Note that Ψ and v consist of

known constants, a
ðsÞ
k , b

ðsÞ
k , andm

ðsÞ
k for k ≤ K and s ≤ S . It then follows from

the Slutsky theorem that bv is consistent for v.
In appendix A, we also explain why bv is

ffiffiffiffi
L

p
-convergent and asymp-

totically normal. Essentially, this result comes from the parametric con-
vergence of OLS regression coefficients and application of the delta
method.

VI. Extensions

A. Group-Level Variables and Group Fixed Effects

The identification and estimation methods in sections IV and V can be
readily extended to accommodate group-level regressors. Suppose that
each group l has a row vector of group-level characteristics zl ∈ R

P . For
example, these could be attributes of the teacher when each group is an
elementary school class.
For the moment, consider just a single environment, so S 5 1 and the

s superscript is omitted. Including group-level effects, the structural
model becomes

yl 5 ai 1 lGlyl 1 izld 1 Xlb 1 GlXlg 1 εl ,
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with d ∈ RP being a column vector of additional coefficients. One could
interpret d as a source of “correlated effects.” Let assumptions 1, 2, and 3
hold with Xl replaced by (Xl, zl), and let assumption 4(i) hold with ~Xl ;

ð1, zl , X 0
l ,c1, X

0
l ,c2, ::: , X

0
l ,cK Þ0. The reduced form is now

Eðyl jXl , zlÞ 5 m0 1 E Mlð Þizld 1 E Mlð ÞXlb 1 E MlGlð ÞXlg: (18)

The first-step linear regressions identify m0 and ðmkÞk≤K as before. But in
addition, these regressions now include zl. Denote the reduced-form co-
efficients for zl as n ∈ RP . The pth component of n, denoted np, satisfies
np ; dp=ð1 2 lÞ. This equality follows from equation (18) and the row
normalization in assumption 1, which as noted earlier implies that each
row in Ml adds up to the same constant 1=ð1 2 lÞ. We used this same
relationship earlier to obtain m0 5 a=ð1 2 lÞ. Applying theorem 1, we iden-
tify l, b, g, a from m0, ðmkÞk≤K , and Rv 5 c. Finally, the parameters d can
then be identified by d 5 vð1 2 lÞ. Correspondingly, for estimation let
d̂ 5 n̂ð1 2 l̂Þ, where n̂ are the OLS estimates for the slope coefficients of
zl in the reduced-form regression in equation (18).
Now if we have multiple environments, then run the above reduced-

form regressions separately for each environment s as before but now in-
clude zl as additional regressors. We may then identify and estimate v

from m
ðsÞ
0 , ðmðsÞ

k Þk≤K for s ≤ S and Rv 5 c as before and estimate each d̂ðsÞ

using d̂ðsÞ 5 n̂ðsÞð1 2 l̂ðsÞÞ.
Finally, this procedure can be further extended to accommodate unob-

served group-level fixed effects (denoted -l). Essentially, we can remove
these fixed effects by applying group-level de-meaning of the outcomes
to the reduced form, prior to recovering the structural parameters. Specif-
ically, the method consists of replacing the dependent variables y in the
first-stage reduced-form regressions with de-meaned outcomes y 2 �y

and following the same steps as before to estimate the structural parame-
ters v. Then, we can recover the remaining parameters d and a by plug-
ging the estimates for v into the non-de-meaned reduced form in (18)
and applying an exogeneity and location normalization assumption that
Eð-l jzl , Xl ,GlÞ 5 0. Details of this procedure are provided in appendix F.

B. Dimension Reduction

Again, begin by considering the case of only one environment, so s super-
scripts canbedropped. In thefirst-step regressions ofyl ,i onXl for each i ≤ n,
we need the number of groups L in the sample to be large relative to the
dimension of regressors Kn (where n is the group size and K is the number
of individual characteristics in X). Blume et al. (2015) and de Paula, Rasul,
and Souza (2020) have similar data requirements on the number of groups.
However, in some applications, L might not be large relative to Kn.
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One possible way to deal with this issue could be to apply sparsity-related
methods such as least absolute shrinkage and selection operator (LASSO)
in Tibshirani (1996) to these first-step reduced-form regressions, with the
caveat that setting small elements of mk equal to zero could have effects
of unknown magnitude on the resulting structural model parameters. De
Paula, Rasul, and Souza (2020) impose sparsity and penalization on the
adjacencymatrix in the structural form while estimating the reduced-form
interaction matrix.
Alternatively, by making an additional uncorrelatedness assumption

regarding characteristics, our method can be implemented using se-
quential steps that involve just K dimensional regressions. Suppose for
each individual i that the vector of characteristics xl ,i ∈ R

K is uncorre-
lated with those of other group members ðxl ,jÞj≠i . This may occur if, for
example, members are randomly assigned to groups. We may then trans-
form all observed variables into mean deviation form: Δyl ,i ; yl ,i 2 �yi and
Δxl ,i ; xl ,i 2 �xi for i 5 1, ::: , n, where�yi ; ð1=LÞol 0≤Lyl 0,i, �xi ;ð1=LÞol 0≤Lxl 0,i.
Now, for each i and j from 1 to n, separately regress Δyl ,i on Δxl ,j . This
gives a total of n2 regressions, each havingK regressors andL observations.
The resulting coefficients from these regressions can then be assembled
into the reduced-form coefficient matrices mk for k ≤ K . Then, given these
mk matrices, one can proceed as before to estimate the model.
With multiple environments (S > 1), the above regressions would be

run separately in each environment before proceeding to the later steps
of identification and estimation as before. Either of the above dimension-
reduction methods may be especially useful in applications with multiple
environments, where the number of groups in some environments s could
be small relative to Kn(s). We adopt the second approach to estimate reduced-
form coefficients in our application.

C. Variation in Group Sizes

Our identification and estimation method assumes that all groups within
each environment s have the same group size n(s). But with K individual
characteristics in X, this requires observing enough groups of size n(s)

(meaning that L(s), the number of groups in environment s, is large enough)
to estimate first-step reduced-form regressions consisting ofKn(s) coefficients
in each environment s. However, in some samples we may not observe
enough groups of each size to implement these regressions. We propose
two ways to resolve such data deficiencies. One requires some additional
uncorrelatedness assumptions, while the other exploits an assumption that,
within each environment, groups with different sizes share the same struc-
tural parameters.
The first approach exploits the dimension-reduction methods in sec-

tion VI.B. To fix ideas, first suppose that individual characteristics xl ,i ∈ R
K
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are uncorrelated across group members (as would happen if, e.g., indi-
viduals were randomly assigned to groups with different sizes). Then, as
explained in section VI.B, one can estimate the reduced-form coefficients
for each i via a sequence of lower-dimension regressions, each involving
only K instead of Kn(s) regressors. In this case, one can account for varia-
tion in group sizes in each of these lower-dimension regressions by includ-
ing dummy variables for group sizes and interacting them with the slope
coefficients. This method can be generalized to allow for correlated indi-
vidual characteristics, by instead applying the partitioned regressions to es-
timate reduced-form coefficients and again including group size dummies
(and their interactions with slope coefficients) in these regressions.
The second approach that we propose can be used even if the sample

has very few observations of some group sizes. This second approachpools
groups of different sizes into a single environment and so requires that the
structural parameters l, b, g, a be the same among all the different-sized
groupsbeingpooled. This secondapproach takes smaller groups and aug-
ments them with additional simulated “pseudoindividuals” to artificially
increase their size and match the size of other, larger groups. Under cer-
tain conditions, the resulting pooled regressions then consistently esti-
mate a weighted average of reduced-form coefficient matrices for groups
of different sizes, yielding consistent estimates of the structural parameters.
Details are given in appendix C.
In our empirical application, we apply the second method. We define

S 5 2 environments: “small class size” and “large class size.” Small classes
pool classes (groups) having 15–20 students, while large classes pool clas-
ses of 21–25 students.

VII. Peer Effects in Tennessee Elementary Schools

We apply our method to analyze the social effects among elementary
school students who participated in Project STAR in Tennessee. Project
STAR was a 4-year longitudinal study funded by the Tennessee General
Assembly and conducted by the Tennessee State Department of Educa-
tion. The goal of the project was to assess the impact of class sizes on stu-
dents’ academic performance through randomized experiments.15 The
STAR sample data do not report any measure of links among students
and so are a candidate for applying our method of estimation.
The typical method of evaluating potential peer effects in a model with-

out link data is to assume a linear-in-means specification. In classroom
applications, this is equivalent to assuming that every class has an adjacency

15 A general survey of influences on learning and associated outcomes is given in Heck-
man and Mosso (2014).
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matrix where each student in the class is linked to all others in the class,
with equal weights. Examples of papers that use this method include esti-
mates of contextual effects of student and teacher races in Dee (2004), gen-
der ratios in Whitmore (2005), and a composite of peer characteristics in
Graham (2008) and Sojourner (2013). Boozer and Cacciola (2001) apply
a linear-in-means specification to the STAR data, using experimental vari-
ation in class quality (fraction of students exposed in the previous year to
small classes) as an instrument to identify peer effects.
Instead of assuming that each student in a class is linked to all the oth-

ers with equal weights, our estimator makes no assumption about what the
within-class unobserved links actually are and allows these links to vary
across classes. We also do not require an instrument, although we do re-
quire exclusion assumptions as explained in section IV.A. We neverthe-
less identify both peer and contextual effects. We also use our results to test
some hypotheses about these effects and about the link-formation process,
and we use our structural model estimates to perform some counterfactual
calculations.

A. Data Description

We observe a cohort of students who were in kindergarten in 1985–86.
Seventy-nine public schools were selected to participate in the project,
representing various geographic locations (inner city, urban, suburban,
or rural). Students and teachers were randomly assigned to classes with
varying sizes of 13–25 students.16 Note that our estimator neither requires
nor directly exploits this random assignment; however, random assignment
does make some of our assumptions more plausible. An example is the di-
mension reduction discussed in section VI.B.
Our sample consists of 258 classes that had at least 15 but nomore than

25 students each. The total number of students in the sample is 5,189. We
partition the classes in the sample intoS 5 2 environments: smaller clas-
ses with 15–20 students and larger classes with 21–25 students according
to the original design of the project. In each class, we order the students
by their dates of birth and use this ordering to label individual students.
Table 1 reports summary statistics of the students’ math test scores in
the second and third grade (t2 and t3) and other individual- or class-level
variables to be used in our empirical analysis. These include a student’s
number of days of absence from school (abs), students’ self-reported mo-
tivation scores (mot), and a discretizedmeasure of teachers’ years of expe-
rience (tec). We standardize themath scores in the second grade t2 using

16 Students who joined the cohort at STAR schools after 1985–86 were also included in
the experiment throughout later years.
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the overall mean and standard deviation of raw scores of all classes in the
sample.
Table 1 reports that the average math score in the third grade is 620.7

for small classes and 616.6 for large classes. In addition, table 2 shows that
a t-test for the null hypothesis of equalmean scores in small and large clas-
ses (allowing for unequal variances) rejects the null at the 1% level. The
sign of this difference is consistent with findings in Krueger (1999), which
reports in a bigger sample that on average gradesK–3 test scores in smaller
classes are about 5 percentage points (or 0.2 standard deviations) higher
than in larger classes. Other papers that report similar patterns include
Hanushek (1999) and Krueger and Whitmore (2001).
Table 2 also reports the p-values for testing the equality of means of de-

mographic variables in small versus large classes. Unlike the test scores, we
fail to reject the null of equal means for each of the demographic vari-
ables. This provides some support for the assumption that the assignment
of students and teachers to classes is independent of these demographic
variables. However, table 2 suggests that the small classes have a higher

TABLE 1
Summary Statistics

Small Class Size (122 Classes) Large Class Size (136 Classes)

Mean Median
Standard
Deviation Range Mean Median

Standard
Deviation Range

t3 620.7 618.0 40.88 [487.0,
774.0]

616.6 616.0 40.15 [510.0,
774.0]

t2 .077 .287 .936 [25.902,
1.042]

2.029 .287 1.023 [26.355,
1.042]

abs 6.743 5.000 6.643 [0, 59] 6.902 5.000 6.429 [0, 55]
mot 49.29 50.00 3.990 [17, 59] 49.14 50.00 4.013 [18, 60]
tec 13.30 13.00 8.416 [0, 36] 14.19 14.00 9.079 [0, 38]

Note.—abs 5 days of absence; mot 5 self-reported motivation score; t25 standardized
scores for second-grade math (using overall mean and standard deviation across all clas-
ses); t3 5 raw scores for third-grade math; tec 5 teacher experience (in number of years).

TABLE 2
Test of Equal Means (Small vs. Large Classes)

p -Value

t3 .001
t2 <.001
abs .402
mot .161
tec .420

Note.—abs 5 days of absence; mot 5 self-reported
motivation score; t2 5 standardized scores for second-
grade math (using overall mean and standard deviation
across all classes); t3 5 raw scores for third-grade math;
tec 5 teacher experience (in number of years).
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average for grade 2 scores than large classes, and the difference is highly
statistically significant at the 1% level. One explanation, which is recon-
cilable with earlier findings in the literature, is that the students enrolled
in smaller classes had already developed better math skills than their peers
in larger classes before the beginning of the third grade.

B. Econometric Specification

Our model, corresponding to equation (1) is

t3l ,i 5 a sð Þ
1 l sð Þ

o
j

G
sð Þ

lij t3l ,j 1 b1absl ,i 1 b2motl ,i 1 b3t2l ,i 1 d sð Þtecl

1 g2o
j

G
sð Þ

lij motl ,j 1 g3o
j

G
sð Þ

lij t2l ,j 1 εl ,i ,

where i and j are indexes (labels) for individual students, l is an index for
class, and (s) is the environment index. Each summation oj is over all stu-
dents in the same class l as student i. For each pair i and j, G

ðsÞ
lij is the row-

normalized unobserved zero or nonzero link between the members la-
beled i and j in class l in environment s. The coefficients to be estimated
are peer effects l(s), direct effects (b1, b2, b3), contextual effects (g2, g3), in-
tercepts a(s), and correlated effects d(s) (this last is the marginal impact of
teacher experience, a group-level covariate).
The rank restrictions we have imposed for identification are as follows.

First, this specification allows “abs” to have a direct effect (b1 ≠ 0) but no
contextual effects (g1 5 0). That is, a student’s absence from school af-
fects his own test scores but has no impact on his classmates other than
through peer effects. This is an exclusion restriction. Other covariates “mot”
(self-reported motivation score) and t2 (grade 2 math score) are not re-
stricted and so can have both direct and contextual effects. Our second
rank restriction is that we assume that the individual effects b and con-
textual effects g are the same in the two environments, small and large
class sizes (which is why b and g do not have s superscripts above). All
other structural parameters (i.e., the intercept a(s), the peer effect l(s),
and the correlated effect d(s)) are permitted to differ between small (s 5 1)
and large (s 5 2) classes. These constraints result in more rank restric-
tions than are required to satisfy theorem 1. Our model is therefore over-
identified, which we will exploit by providing some model specification
tests.
Our methodology does not require explicit modeling or parametriza-

tion of the network formation process. However, as discussed in appen-
dix D, we do require conditional independence between the random ad-
jacency matrices and some exogenous covariates while extending our
model to allow for network dependence on some student demographics.
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To control for such possible dependence of the network, we partition the
classes (and hence partition each of the environments) in our sample into
those with higher versus lower dispersion in birthdays.17 In the notation
of appendix D, X a

l is a dummy indicating low versus high birthday dis-
persion, and X e

l is the set of other covariates in the model. We then report
estimates for social effects that are sample-size-weighted averages of esti-
mates obtained across these partitions.

C. Estimation Results

Table 3 reports our structural coefficient estimates. Standard errors are
calculated using B 5 1,000 bootstrap samples, each of which is constructed
by drawing classes from the original sample with replacement.
Estimates of peer effects are statistically significant and positive in both

small and large classes, with the estimated coefficient l being 0.85 and
0.92, respectively. A t-test for the equality of peer effects in small and large
classes rejects the null of equality at the 1% level. Themagnitudes of our l
estimates are comparable with earlier findings that used the same data but
very different methodologies. For example, using a linear-in-means spec-
ification (with average class size of students in the previous year as an in-
strument), Boozer andCacciola (2001) estimate thepeer effects to be 0.86
for the second grade and 0.92 for the third grade. Defining links to be a
simple function of measured social distance and employing some vari-
ance restrictions, Rose (2017) estimates the peer effects to be 0.90. Gra-
ham (2008) reports a peer effect of 0.86 for normalized math scores in
a linear-in-means social interaction model. The estimated magnitudes of
peer effects are quite similar across these different papers and modeling
strategies, though the implications and hence implied counterfactuals dif-
fer somewhat by specification. Moreover, we later test and reject the linear-
in-means specification, and we obtain estimates of both direct and contex-
tual effects in addition to peer effects.
Unlike these previous papers, our peer effect estimates differ in small

versus large classes. The bigger value of l in larger classes could be due
to students having more options to form links (such as friendships or study
partners) in larger classes. On average, this could lead to better matches
and hence be conducive to more productive relationships.
Our estimates also show that the number of days absent from school

has a small but statistically significant direct effect on a student’s test per-
formance. We find that self-reported motivation scores have no signifi-
cant direct or contextual effects. In contrast, students’ performance in the
second grade (t2) have both direct and contextual effects that are positive

17 For each class, we calculate the standard deviation of students’ birthdays. We label a
class as having “high birthday dispersion” if the standard deviation exceeds 6 months.
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and statistically significant. A unit (1 standard deviation) increase in a stu-
dent’s score in the second grade improves his own raw score in the third
grade by 23.36 points and increases his friend’s third-grade scores by
13.13 points.
We infer that the higher average grade 3 score in small classes should

bemostly attributed to better grade 2 preparation in small classes, as dem-
onstrated in tables 1 and 2. While table 3 shows that positive peer effects
are bigger in large classes, this effect is not sufficient to counteract the tra-
jectory of higher grade 2 preparation in small classes. Note that the struc-
tural intercept a is also higher in smaller classes. This also contributes to
the higher average grade 3 performance in small classes.

D. Specification Tests

In this section, we report results from a general specification test of our
model and tests of some specific adjacency matrix specifications. We first
exploit the fact that we imposed sufficient rank restrictions to overidentify
our model. Recall that in theorem 1, v is identified from Ψv 5 v. In our
empirical application, v has seven elements while Ψ has 15 linearly inde-
pendent rows, yielding eight degrees of overidentification. Our estimator
minimizes a measure of distance between Ψv and v, so under the null of
correct specification, the minimized objective function is asymptotically
zero. To test this, exploiting the overidentification, we use B 5 1,000 boot-
strap samples to estimate the sampling distribution of the minimized ob-
jective function and calculate p-values under the null.18

18 Note that our estimator does not lend itself to the use of classical J-tests of overidentified
models in the generalizedmethod of moments. This is because the coefficient matrix in the

TABLE 3
Estimates of Social Effects

Effects Coefficient

Small Class Large Class

Estimate
Standard
Error Estimate

Standard
Error

Peer l .8478*** .0189 .9208*** .0215
Group d .0709 .2885 .2032 .2609
Constant a 94.543*** 26.221 48.126*** 14.450

Estimate Standard Error

Direct b1 2.3639** .1611
Direct b2 .0384 .0653
Direct b3 23.356*** 5.3011
Context g2 2.0118 .0742
Context g3 13.129** 5.8605

Note.—Standard errors are computed using B 5 1,000 bootstrap samples.
** Significant at the 5% level.
*** Significant at the 1% level.
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Recall that to control for possible network dependence, we partition
the data by low versus high dispersion in the dates of birth and minimize
separately for each. We obtain separate test statistics for each partition,
and p -values are reported in table 4. We therefore fail to reject the null
of correct model specification.
Next, we turn to tests of network structure. We cannot identify or esti-

mate individual adjacency matrices G
ðsÞ
l . However, we do identify the ex-

pected value of some functions of thesematrices. Since ourmodel imposes
regularity assumptions only on the distribution of adjacency matrices, we
can use these identified functions to test some models of network specifi-
cation against arbitrary regular alternatives. In particular, we consider two
different null hypotheses: the linear-in-means specification and a Poisson
random network (i.e., the Erdős-Rényi [1959]) network, where links are
drawn independently from a heterogeneous Bernoulli distribution. Both
of these network specifications imply restrictions on the reduced-form co-
efficient matrices mk that we use to construct tests.
In the linear-in-means specification, for every group l in each environ-

ment s, the adjacency matrix G
ðsÞ
l is constant (the same for all l ), with all

off-diagonal elements taking the exact same value. With the s superscript
dropped for simplicity, this implies that, for each individual characteris-
tic k,

mk ; ðI 2 lGÞ21
bkI 1 gkGð Þ 5 I 1

l

1 2 l
G


 �
bkI 1 gkGð Þ:

This in turn means that all the off-diagonal components in mk must be
identical. We calculate Wald test statistics using a 6 � 6 leading principal
minor of the reduced-form coefficient for t2 (standardized grade 2
score) in each of the partitions (defined by birthday dispersion) for each
of the environments (defined by class size). We choose t2 as the charac-
teristic k to base the test on. The resulting test statistics are reported in
table 5. The number of restrictions (which equals the degrees of free-
dom) of each test is df 5 6 � 6 2 6 2 1 5 29. Based on the p -values re-
ported in table 5, we reject the hypothesis that the data were generated
by the linear-in-means model. Note that there could exist other models

last step of estimation is constructed from the estimates of reduced-form coefficients in ear-
lier steps, analogous to indirect least squares. Once these reduced-form coefficient estimates
are calculated, the linear system used in the last step is deterministic.

TABLE 4
Tests for Overidentification

p -Value

Low dispersion .569
High dispersion .358
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that also imply identical off-diagonal components in mk, in which case
those models would also be rejected.
To provide a sense of the magnitude of the difference between our es-

timates and a linear-in-means model, we can compare our estimate of
E(M)with the constant linear-in-meansM. These matrices are large, but
to summarize, consider only small groups with low birthday dispersion.
For this environment and partition, the average of the n estimates for
diagonal entries in E(M) is 1.0611 with a standard deviation of 0.0562,
whereas the average of the nðn 2 1Þ off-diagonal entries is 0.0801 with
a standard deviation of 0.1147. These values differ substantially from the
linear-in-meansM matrix, which has all diagonal entries equal to 1.2785
and all off-diagonal entries equal to 0.2785 (based on our estimated peer
effect of 0.8478).
Next, we construct CMD tests for the null hypothesis of Poisson ran-

dom network formation, again controlling for class size and birthday dis-
persion. Specifically, this null hypothesis posits a random link-formation
process where, before row normalization, each element of each group’s
adjacency matrix equals one with some success probability and equals
zero with one minus that probability, independent of all the other ele-
ments of the adjacency matrix (and of the model error). We allow the suc-
cess probability to take one of three values, depending on the difference
between the birthdays of the two students’ being potentially linked. Let p
be the vector of these three success probabilities.
We construct the CMD objective function for estimating p by simula-

tion. That is, for any given value of p, we simulate a large number of net-
works by drawing independently from a Bernoulli distribution with suc-
cess probabilities given by the vector p. Let GrðpÞ denote the simulated
adjacency matrix in the rth draw. Define the objective function Q̂ ðpÞ as
the distance between the estimated reduced-form coefficients m̂k and
the average (over a large number of simulated draws r) of the simulated
model-impliedmarginal effects ðI 2 l̂GrðpÞÞ21ðb̂kI 1 ĝkGrðpÞÞ. We define
the distance between these two matrices as a weighted sum of the differ-
ences in average diagonal and off-diagonal components, respectively.
We estimate p by minimizing Q̂ ðpÞ. This objective function would asymp-
totically converge to zero if the Poisson network specification is correct,
so our test statistic is simply the minimized value of Q̂ ðpÞ, with a standard
error obtained by bootstrapping. The degrees of freedom of the limit

TABLE 5
Wald Test Statistics for Linear-in-Means (df 5 29)

Small Class (p -Value) Large Class (p -Value)

Low dispersion 79.915 (<.001) 63.874 (<.001)
High dispersion 45.112 (.028) 61.061 (<.001)
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distribution under the null is three.19 As before, we implement this pro-
cedure and test separately for the two partitions defined by birthday dis-
persion and the two environments defined by class size. Results are reported
in table 6. We strongly reject the null of Poisson random network forma-
tion. In conclusion, we do not reject our general model, and we do reject
both a simple linear-in-means model and a model of independently drawn
random links.

E. Counterfactuals

Our first counterfactual exercise is to ask how test scores would change
if the unobserved networks that generated our data were replaced with
linear-in-means networks, holding our estimated parameters fixed. This can
be interpreted as measuring the potential benefits or costs of encouraging
more links (i.e., more friendships or other connections) among students.
For each class, we calculate the within-class average difference in test

scores between those observed in the data and those obtained if every
class’s adjacency matrix Gl (which we do not observe) were replaced with
linear-in-means adjacency matrices, holding all our parameter estimates
fixed. The counterfactual in this setting is equivalent to redistributing
some link weight onto classmates who previously were not friends. This
could impact a student’s score in either direction, depending on whether
the counterfactual “new friends” would have a positive or negative impact
on a student’s test performance, relative to their actual friends.
Table 7 reports the resulting difference in average test scores across the

classes in each subpopulation defined by class size and birthday disper-
sion. Table 7 indicates that the effects of encouraging more links among
students would bemodest. For comparison, test scores have a standard de-
viation of 40 in the raw data (see table 1). These results should be inter-
preted cautiously given their lack of statistical significance, but they sug-
gest that having more friends would slightly increase test scores in small
classes and decrease them in large classes.
In thenext counterfactual exercise, wemaintain the linear-in-means count-

erfactual and consider alternative magnitudes of peer effects. Specifically,

19 This is because the number of restrictions (number of links between reduced-form
coefficients and model-implied marginal effects) used in the CMD objective function is
2K 5 6, and the number of structural parameters is dimðpÞ 5 3.

TABLE 6
CMD Test Statistics for Poisson Random Network (df 5 3)

Small Class (p -Value) Large Class (p -Value)

Low dispersion 49.880 (<.001) 171.327 (<.001)
High dispersion 36.954 (<.001) 101.636 (<.001)
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we swap the estimated peer effects between small and large classes (i.e.,
increase l to 0.9208 in small classes and decrease l to 0.8478 in large
classes). The goal of this exercise is to assess how peer effect magnitudes
interact with the contextual and other differences between small and
large classes.
Table 8 reports the average changes in class means within each subpop-

ulation again. The table shows that increasing peer effects in small classes
would lead to significantly better test scores and that reducing peer effects
in large classes would yield worse performance. These effects are larger
and highly statistically significant for the low-dispersion partition.

VIII. Conclusions

Weprovide an original method for identifying and estimating social inter-
action effects on many small networks when the networks are not ob-
served.We propose a two-step estimator and apply ourmethod to estimate
direct, contextual, and peer effects among elementary school students.
Among other results, we find that the peer effects are larger in bigger clas-
ses, that encouragingmore links or friendships among studentsmight not
significantly improve outcomes (and could make them worse), and that
we can reject the usual linear-in-means specification of network links.
One limitation of our model is that it requires network formation to

be exogenous, after conditioning on covariates. Relaxing this constraint,
perhaps using new models of the joint determination of network links

TABLE 7
Differences in Test Scores under the Linear-in-Means Network

Estimated Mean Δ p -Value

Small, low dispersion 6.054 .105
Large, low dispersion 29.596 .060
Small, high dispersion 5.810 .184
Large, high dispersion 26.405 .239

Note.—“Estimated Mean Δ” is the average difference in class means of grade 3
math scores in a network with equal weights on all friends.

TABLE 8
Impact of Counterfactual Peer Effects

Estimated Mean Δ p -Value

Small, low dispersion 16.198 .003
Large, low dispersion 211.637 .001
Small, high dispersion 2.954 .620
Large, high dispersion 25.301 .187

Note.—“Estimated Mean Δ” is the average difference in class means of grade 3
math scores when peer effects in small and large classes are swapped in a network
with equal weights on all friends.
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and outcomes (as alternatives to the ERGM framework mentioned in
“Literature Review”), would be a useful area for future research.

Appendix A

Proofs

Proof of Lemma 1

The outcome of each individual i in group l is

yl ,i 5 ~X 0
l kl ,i 1 ~εl ,i ,

where ~εl ,i ; Ml ,riεl , with Ml ,ri being the ith row in Ml, and kl ,i is a (Kn 1 1) � 1
random vector:

kl ,i ; m0, b1Ml ,ri 1 g1Ml ,riGlð Þ, ::: , bKMl ,ri 1 gKMl ,riGlð Þ½ �0,

with bk, gk being the kth components in b, g. Recall that the joint distribution of
(yl, Xl) is directly identified in the DGP under assumption 1. By construction, for
each individual i,

E ~Xlyl ,i
� �

5 E ~Xl
~X 0
l kl ,i

� �
1 E ~Xl~εl ,i

� �
5 E ~Xl

~X 0
l

� �
E kl ,ið Þ,

where the second equality holds because of the exogeneity of (G, X ) in assump-
tion 2 and the independence between G and X in assumption 3. Under the
nonsingularity of Eð~Xl

~X 0
l Þ in assumption 4(i), we can recover Eðkl ,iÞ from the

joint distribution of (yl, Xl) as

E kl ,ið Þ 5 E ~Xl
~X 0
l

� �� �
21
E ~Xlyl ,i
� �

for each i 5 1, 2, ::: , n. Rearranging the components in Eðkl ,iÞ, we identify m0 ;

a=ð1 2 lÞ and mk ; E ½MlðbkI 1 gkGlÞ� for each k 5 1, ::: , K . QED

Proof of Theorem 2

The estimators for reduced-form coefficients in step 1 are OLS estimators
for slope coefficients in a regression. Thus, under assumptions 1–3 and 4(i),
m̂k→

p
mk , m̂k→

p
mk for all k ≤ K . Next, for each k 5 1, ::: , K 2 1,

o
i,j

ei ak m̂k 1 bk m̂K 2 Ið Þe 0j
� �2

2o
i,j

ei akmk 1 bkmK 2 Ið Þe 0j
� �2

�����

�����

5 o
i,j

ei ak m̂k 1 mkð Þ 1 bk m̂K 1 mKð Þ 2 2I½ �e 0j

 �

ei ak m̂k 2 mkð Þ 1 bk m̂K 2 mKð Þ½ �e 0j

 �

�����

�����

≤ max
i,j

ei ak m̂k 1 mkð Þ 1 bk m̂K 1 mKð Þ 2 2I½ �e 0j
�� �� � o

i,j

ei ak m̂k 2 mkð Þ 1 bk m̂K 2 mKð Þ½ �e 0j
�� ��

( )

≤ akj j 1 bkj jð Þmax
i,j ,k 0

ei m̂k 0 1 mk 0ð Þe 0j
�� �� 1 2

� �
� n2 � akj j 1 bkj jð Þmax

i,j ,k 0
ei m̂k 0 2 mk 0ð Þe 0j
�� ��,
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where the inequalities are due to the triangular and Cauchy-Schwarz inequalities.
By the consistency of m̂k and the continuous mapping theorem, the first term on
the right-hand side of the last inequality is bounded in probability, and the last
term is opð1Þ. Therefore, due to compact parameter space in assumption 6, the ob-
jective function of the extremum estimator in step 2 converges in probability to its
population counterpart uniformly over (ak, bk). That is, for all k ≤ K ,

sup
ak ,bk

o
i,j

ei ak m̂k 1 bk m̂K 2 Ið Þe 0j
� �2

2o
i,j

ei akmk 1 bkmK 2 Ið Þe 0j
� �2

�����

�����→
p

0:

By lemma 2, the limit function oi,j ½eiðakmk 1 bkmK 2 I Þe 0j �2 is uniquely minimized
at the solution of (ak, bk) in (10). By theorem 2.1 in Newey and McFadden (1994),
ðâk , b̂kÞ→p ðak , bkÞ for all k ≤ K . Because Ψ has full rank and the weight matrix Ξ

21

is positive definite, Ψ0
Ξ

21
Ψ is invertible. The consistency of bv then follows from

the Slutsky theorem. QED
The estimator bv is

ffiffiffiffi
L

p
-convergent and asymptotically normal under standard

regularity conditions. To see this, note that for each k ≤ K , m̂k consists of slope
coefficient estimates from a regression. Besides, (âk , b̂k) are two-step extremum
estimators whose objective function depends on m̂k , and m̂k is a linear function of
m̂k (i.e., the sum of all components in m̂k divided by the group size n). By a standard
argument of two-step estimators similar to section 6.1 of Newey and McFadden
(1994) or chapter 12.4 of Wooldridge (2010), one can show that ðâk , b̂k , m̂kÞk51, :::,K

are jointly
ffiffiffiffi
L

p
-convergent and asymptotic normal, with a limiting covariance that

takes account of the first-step estimation error in m̂k’s. Next, recall that our esti-
mator has a closed form bv ; ðΨ̂0

Ξ
21
Ψ̂Þ21ðΨ̂0

Ξ
21v̂Þ, with Ψ̂ and v̂ being a matrix

and a vector that consist of elements in ðâk , b̂k , m̂kÞk51, ::: ,K . Also note that Ψ̂0
Ξ

21
Ψ̂

converges in probability to an invertible matrix, because Ψ has full rank and Ξ
21

is symmetric and positive definite. Hence, one can apply the delta method to show
that bv is

ffiffiffiffi
L

p
-convergent and asymptotically normal.

Appendix B

Monte Carlo Simulation

We provide a simulation study of the finite sample performance of our estimator.
We simulate 200 samples, each of which consists of L independent groups. Each
group involves n individuals, where n is a fixed small integer.

The structural equation in our DGP is y 5 a 1 lGy 1 Xb 1 GXg 1 ε, where
X is an n � 3 matrix that consists of three characteristics. The parameter values
are a 5 1, l 5 0:7, b 5 ð1:5, 2, 0Þ0, and g 5 ð0:9, 0, 0:6Þ0. For each observation
i 5 1, :::, n, the error terms εi are independently drawn from a standard normal
distribution. The elements in the first column of X are independently drawn
from amultinomial distribution with equal probability mass over f21, 1, 2g, the sec-
ond from a standard normal N ð0, 1Þ, and the third from a normal N ð1, 2Þ. The
three characteristics are uncorrelated with each other. The links in the latent adja-
cency matrix G* (of whichG is a row normalization) are each independently drawn
from Bernoulli with success probability 0.5.
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We estimate the model using the method in section V. In the first step, we
use the first dimension-reduction algorithm (when regressors are uncorrelated
across group members) to estimate the reduced-form coefficients, as explained
in section VI.B. Tables B1 and B2 report the mean-squared error (MSE), the
mean bias, and the standard deviation of the estimators for group sizes n 5 10
and 20, using the empirical distribution of estimates from 200 simulated samples.
We increase the sample size L (i.e., the number of groups in each sample) from
L 5 60 to L 5 480.
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TABLE B1
Finite-Sample Performances of the Estimator with Unobserved Links (Group Size: n 5 10)

L 5 60 L 5 120 L 5 240 L 5 480

MSE Bias
Standard
Deviation MSE Bias

Standard
Deviation MSE Bias

Standard
Deviation MSE Bias

Standard
Deviation

l .0197 2.0305 .1374 .0044 2.0162 .0648 .0017 2.0061 .0409 .0010 2.0069 .0314
b1 .7232 .0288 .8521 .0143 .0133 .1190 .0047 .0123 .0677 .0024 .0086 .0487
b2 .6762 .0590 .8223 .0078 .0130 .0876 .0031 .0072 .0553 .0018 .0074 .0416
g1 1.3511 .2260 1.1430 .2911 .0808 .5347 .1009 .0399 .3159 .0760 .0357 .2740
g3 .1192 .0370 .3441 .0484 .0151 .2200 .0225 2.0016 .1505 .0125 .0061 .1119
a .5919 .1020 .7645 .2349 .0955 .4763 .0956 .0336 .3082 .0495 .0382 .2198

Note.—MSE, mean bias, and standard deviation are calculated from empirical distribution of coefficient estimates in 200 simulated samples.



TABLE B2
Finite-Sample Performances of the Estimator with Unobserved Links (Group Size: n 5 20)

L 5 60 L 5 120 L 5 240 L 5 480

MSE Bias
Standard
Deviation MSE Bias

Standard
Deviation MSE Bias

Standard
Deviation MSE Bias

Standard
Deviation

l .0181 2.0340 .1305 .0037 2.0086 .0603 .0017 2.0037 .0417 .0007 2.0059 .0258
b1 .0151 .0199 .1216 .0031 .0024 .0556 .0015 .0051 .0389 .0006 2.0020 .0238
b2 .0118 .0184 .1071 .0022 .0044 .0463 .0008 .0028 .0283 .0004 2.0017 .0207
g1 1.4307 .2101 1.1805 .2747 .0443 .5236 .1233 .0255 .3510 .0546 .0279 .2326
g3 .1422 .0448 .3753 .0373 .0006 .1937 .0209 .0016 .1448 .0105 .0184 .1010
a .5534 .1597 .7284 .1794 .0582 .4206 .1041 .0213 .3228 .0495 .0268 .2215

Note.—MSE, mean bias, and standard deviation are calculated from empirical distribution of coefficient estimates in 200 simulated samples.



The results show that our estimator is reasonably accurate evenwhen the sample
is moderately small with L 5 60. Furthermore, theMSEs diminish at the paramet-
ric rate (i.e., the same rate as the increase in sample sizes). In fact, the reduction in
MSEbetweenL 5 60 andL 5 120 is faster than the increase in sample size. This is
because the first-step estimation of reduced-form coefficients consists of n � n re-
gressions on K 5 3 characteristics. The reduction in estimation error in such a
low-dimension regression is substantial, as the number of observations increases
from L 5 60 to L 5 120.

It is worth noting that the difference inMSE is small between theDGP with small
group size n 5 10 and the larger n 5 20. This illustrates a desirable feature of our
estimator: the precision of the estimator primarily depends on the accuracy of the
first-step reduced-form coefficients. Once the constants ak, bk are recovered from
the reduced-form coefficients, the second step does not introduce additional sam-
pling errors. A useful result for practitioners is that thefirst-step estimationprecision
can be enhanced using the dimension-reduction methods explained in section VI.B.
For example, in the current simulation example, the dimension-reduction method
replaces n 5 10 regressions on n � K 5 30 explanatory variables with n � n 5

100 regressions on K 5 3 characteristics. This dimension reduction helps obtain
the encouraging performance results reported in tables B1 and B2.

Appendix C

Pooling Groups with Different Sizes

In this appendix, we explain how to impute smaller groups with simulated
“pseudoindividuals.”Doing so allows us to run a pooled regression with balanced
group sizes and consistently estimate a weighted average of reduced-form coef-
ficient matrices.

To fix ideas, let there be a single environment (S 5 1 so that the superscript s
can be dropped) in the DGP. There are two group sizes nl ∈ fn, �ng within this en-
vironment, and suppose that the assumptions in section IV hold conditional on
either group size. As noted in the main text, this approach of simulating “pseudo-
individuals” exploits the fact that the structural parameter v ; ðl, b, g, aÞ is fixed
regardless of group sizes within the environment. In addition, it requires that
across all groups and individuals the characteristics ofmember i in group l (denoted
by Xl ,ri) be drawn independently from the same distribution in RK .

For each group l with nl 5 n, define an �n � K matrix X *
l by stacking the ob-

served matrix Xl (i.e., the n � K matrix of regressors for group l in the sample)
with an ð�n 2 nÞ � K matrix of draws simulated from the distribution of regres-
sors of the other (�n 2 n) individuals in groups with �n members. Under the as-
sumptions above, by construction we can consider X *

l as a draw from the distri-
bution of X l 0 when nl 0 5 �n. Define an (�nK 1 1)-dimensional column vector:

~Xl ;

1, X 0
l ,c1, ::: , X

0
l ,cKð Þ0 if  nl 5 �n,

1, X *0
l ,c1, ::: , X

*0
l ,cK

� �0
 if  nl 5 n,

(

with Xl ,ck denoting the kth column in Xl as before. By construction, Eð~Xl
~X 0
l Þ is in-

variant to group sizes.
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For a large group l with nl 5 �n and all i ≤ nl , we have Eð~Xlyl ,i jnl 5 �nÞ 5
Eð~Xl

~X 0
l ÞΦið�nÞ, where

Φi �nð Þ ; m0, m1,ri �nð Þ, ::: , mK ,ri �nð Þð Þ0

and mk,rið�nÞ denotes the ith row of the �n � �n matrix of reduced-form coefficients
mkð�nÞ defined in lemma 1. (Note that we now write mk as a function of nl to em-
phasize its dependence on group sizes.) Likewise, for any small group l with nl 5

n and all i ≤ nl , we have Eð~Xlyl ,i jnl 5 nÞ 5 Eð~Xl
~X 0
l ÞΦiðnÞ, where

Φi
nð Þ ; m0, m1,ri nð Þ, 0, m2,ri nð Þ, 0, ::: , mK ,ri nð Þ, 0ð Þ0

and mk,riðnÞ denotes the i th row of the n � n matrix mkðnÞ and 0 a row vector of
(�n 2 n) zeros.

Let pð�Þ denote the probability mass for nl in the population. It then follows
that for all i 5 1, ::: , n,

E ~Xl yl ,i
� �

5 E ~Xl
~X 0
l

� �
p �nð ÞΦi �nð Þ 1 p nð ÞΦi

nð Þ½ �

⇒ E Φi nlð Þ½ � 5 E ~Xl
~X 0
l

� �� �
21
E ~Xlyl ,i
� �

:

Thus, E ½mkðnlÞ�, with nl integrated out as a random variable, are identified and
consistently estimable for k 5 1, 2, ::: , K . Assuming that l, b, g, a are the same
for small and large classes, one can then proceed and apply the method in sec-
tion IV to estimate the structural parameters of social effects. We use this method
to balance group sizes within the environments of small or large classes in our
application.

Appendix D

Dependent Networks

In practice, the formation of links on a network may depend on individual char-
acteristics in the data. We now discuss how to generalize our estimator to deal
with this dependence.

Begin by considering a single environment s, where all groups within the en-
vironment have the same size n, and we omit the environment superscript. This
procedure can be applied separately for each environment in the data to obtain
reduced-form coefficients, which would then be combined to obtain the struc-
tural parameters as in theorems 1 and 2. Partition individual characteristics into
two parts Xl 5 ðX a

l , X
e
l Þ. Let X e

l denote an n � Ke matrix of excluded character-
istics (i.e., covariates that affect outcomes but not link formation); let X a

l denote
an n � Ka matrix that affects individuals’ outcomes, link formation decisions, or
both. For example, in our empirical application, we let X e

l represent students’
days of absence from school and test scores from previous years. This assumes
that friendships are independent of test scores conditional on observed demo-
graphics, such as proximity of age. If we observe all variables that jointly deter-
mine network formation and outcomes, then our method can be applied after
conditioning on X a

l .
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There is a large and growing literature on network formation. To name just a
few, Leung (2015, 2020), Graham (2017), Hsieh, König, and Liu (2020), Hsieh,
Lee, and Boucher (2020), and Sheng (2020) explicitly model how the links are
formed as an equilibrium outcome. As stated in Graham (2019, 6), “Ultimately,
of course, the goal is to study the formation of networks and their consequences
jointly, but such an integrated treatment remains largely aspirational at this stage.”
Our focus in this paper is on peer effects with unobserved links, so we simply
adopt the conditional independence to deal with potential endogeneity in net-
work formation.

Suppose that network formation is given by Gl 5 zðX a
l , ulÞ, which does not in-

volve X e
l . The reduced form is

Eðyl jXlÞ 5
ð
o
K

k51

Ml bkI 1 gkGlð ÞXl ,ck 1 MlEðεl jXl ,GlÞ
� �

dF ðGl jXlÞ, (D1)

where Xl ,ck denotes the kth column in Xl as before. Assume that (i) εl is indepen-
dent of X e

l conditional on (X a
l , ul) and (ii) ul is independent of X

e
l conditional on

X a
l . These conditions allow the unobserved errors εl and ul to be correlated con-

ditional on X a
l . Under these assumptions, EðMl jXlÞ and EðMlGl jXlÞ is a function

of X a
l but not X e

l , and

ð
MlEðεl Xl , GlÞ dF ðGlj jXlÞ 5

ð
MlEðεl X a

l ,GlÞ dF ðGlj jX a
l Þ ; f X a

lð Þ:

Conditional on X a
l , the reduced-form coefficients for Xl in (D1) are

mk X a
lð Þ ; bkEðMl X

a
l Þ 1 gkEðMlGlj jX a

l Þ for all k ≤ K :

With abuse of notation, let Ka and Ke denote the set of indexes for characteristics
in X a

l , X
e
l , respectively, so that Ka and Ke partition f1, 2, ::: , Kg. We can write (D1)

as

Eðyl jXlÞ 5 o
k∈Ke

mkðX a
l ÞXl ,ck 1ok 0

∈Ka
mk 0ðX a

l ÞXl ,ck 0 1 fðX a
l Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
,

;wðX a
l Þ

which is linear in X e
l conditional on X a

l .
We can identify the model by the following steps. First, recover wðX a

l Þ and
mkðX a

l Þ for all k ∈ Ke for a given realization of X a
l . In practice, this can be estimated

using reduced-form methods such as kernel estimation of an average derivative
E ½∂Eðyl jXlÞ=∂X e

l � or, exploiting the structure of Eðyl jXlÞ, using sieve regressions
that replace the mkðX a

l Þ and fðX a
l Þ functions with sieve expansions, or by linearly

regressing yl on X e
l conditioning on discrete values of X a

l . Then, for all k ∈ Ke ,
identify l, bk, gk from mkðX a

l Þ using the methods in section IV. We can also back
out EðMl jX a

l Þ and EðMlGl jX a
l Þ from mkðX a

l Þ, k ∈ Ke , using bk, gk, k ∈ Ke .20

20 One could also recover the model elements fð�Þ and mkð�Þ for k ∈ Ka from wð�Þ by mak-
ing additional functional-form assumptions—e.g., assuming index sufficiency in fð�Þ and
mkð�Þ for k ∈ Ka .
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Appendix E

Multiple Adjacency Matrices

In this appendix, we discuss how our method might be extended to allow peer
effects and contextual effects to operate through different adjacency matrices.
The reasons why one might be interested in this extension, as well as citations
to previous literature on the subject, are given in section II.

Again we start with the case of a single environment where all groups have
identical size n, and we suppress the group subscript l throughout this section
to simplify notation. Let G and W be two possibly different n � n adjacency ma-
trices. For each group, peer effects and contextual effects operate through two
different adjacency matrices G and W, respectively. Divide the set of individual
characteristic regressors into two matrices: V is an n � J matrix of regressors that
have both direct and contextual effects, while X is an n � K matrix of regressors
that have only direct effects (including the constant term). The structural equation
for the outcome is now

y 5 lGy 1 XbX 1 V bV 1 WV g 1 ε,  EðεjG , X , V Þ 5 0,

where y and ε are n � 1 vectors. Let PrfG ≠ W g > 0. The structural parameters
are l, bX, bV, g, d.

Now consider the same steps we used before to achieve identification. The re-
duced form is now

EðyjX , V Þ 5 E ½ðI 2 lGÞ21

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
M

ðXbX 1 V bV 1 WV g 1 εÞjX , V �

5 E MXbX 1 MV bV 1 MWV gjX , Vð Þ
5 o

k

EðbX ,kM Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Jk

Xck 1o
j

E M ðbV ,jI 1 gjW Þ
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mj

Vcj ,

where Xck , Vcj are n � 1 vectors of single characteristics (the kth column in X and
j th column in V ). The last equality assumes that ðG ,W Þ ?ðX , V Þ. Note that Jk

and mj are each n � n matrices of reduced-form coefficients. Maintain the fol-
lowing two conditions on the structural parameters:

bX ,k ≠ 0  8 k ≤ K ;  rank
bV ,j bV ,J

gj gJ

 !

5 2  8 j < J , (E1)

where the second condition rules out proportional social effects as well as the
special case with no contextual effects (gj 5 0 for all j ≤ J ). We also assume that

EðM Þ ≠ 0,  EðMW Þ ≠ 0;  ∄ðΔ1, Δ2Þ ≠ ð0, 0Þ s:t: Δ1EðM Þ 1 Δ2EðMW Þ 5 0 : (E2)

This second condition in (E2) rules out the pathological case where the n � n

entries in E(M ) are proportional to those in EðMW Þ.
Lemma E1. For each j ≤ J 2 1 and k ≤ K , the system of equations

ajkmj 1 bjkmJ 5 Jk (E3)

has a unique solution
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ajk

bjk

 !

5

bV ,j bV ,J

gj gJ

 !21
bX ,k

0

 !

: (E4)

Proof. It is straightforward to check that (ajk , bjk) defined in (E4) solves (E3).
To see that this is a unique solution, suppose that there exists ð~ajk , ~bjkÞ ≠ ðajk , bjkÞ
such that (E3) holds with (ajk , bjk) replaced by (~ajk , ~bjk), and

bV ,j bV ,J

gj gJ

 !
~ajk 2 ajk

~bjk 2 bjk

 !

5

Δ1

Δ2

 !

≠ 0,

where the inequality follows from the rank condition in (E1). It then follows that

~ajk 2 ajk

� �
mj 1

~bjk 2 bjk
� �

mJ 5 E Δ1M 1 Δ2MWð Þ 5 0: (E5)

The last equality is ruled out by (E2). QED
Lemma E1 provides an analog to lemma 1. It may then be possible to combine

these equality constraints with rank restrictions such as exclusions and multiple
environments to construct a corresponding extension of theorem 1 to attain iden-
tification of this extended model.

Appendix F

Group-Level Fixed Effects

Our identification strategy can be extended to allow for group-level unobserved
heterogeneity (i.e., group-level fixed effects). First, we note that if the group-level
unobserved heterogeneity is mean independent from the group and individual-
level covariates in (z, X ) (corresponding to the usual assumption in random ef-
fects models), then the estimation method described in section VI.A can be directly
applied, because in this case the conditional mean of y given (z, X ) is as specified
in equation (18).

Now consider instead the more general fixed effects model. We now have the
reduced-form

y 5 M Xb 1 GXg 1 εð Þ 1 a

1 2 l
i 1

zd

1 2 l
i 1

-

1 2 l
i,

where a is still the intercept, z represents observed group characteristics, and -
represents the unobserved group heterogeneity (fixed effects). Let D 5 I 2 C ,
where C is an n � n matrix of identical entries 1=n, so that Dy returns the within
transformation of y. Then, under the assumptions that EðεjX ,GÞ 5 0 and G ? X ,
a within transformation leads to

Dy 5 DM Xb 1 GXg 1 εð Þ ⇒ EðDyjX Þ 5 E DMð ÞXb 1 E DMGð ÞXg:

Thus, we can write the reduced-form coefficients for the kth characteristic from a
regression using the within transformation as

~mk ; E bkDM 1 gkDMGð Þ 5 DE M bkI 1 gkGð Þ½ �:
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Assume that the rank condition in assumption 5(i) holds and that

~mK ≠ cD for any c ∈ R: (F1)

This condition can in principle be checked directly using the identifiable ~mK . It
can then be established that the following system

ak~mk 1 bk~mK 5 D

admits a unique solution

ak

bk

 !

5

bk bK

gk gK

 !
21 1

2l

 !

: (F2)

The proof is almost the same as that of lemma 1, except that the condition
“mk ≠ cI for any c ∈ R” in assumption 5 is replaced by (F1). It is worth emphasiz-
ing that the first-step reduced-form regressions now consist of regressing de-
meaned outcomes Dy on the un-de-meaned characteristics X to get reduced-
form coefficients. Given (F2), we can then apply the constructions of theorem 1
to identify l, b, g.

This “fixed-effect” approach does not immediately identify the coefficient for
group-level variables d or the intercept a, in the same way that the “within trans-
formation” does not identify the coefficients of variables that vary only by time in
linear panel data models. We can identify these remaining parameters from un-
de-meaned reduced-form Eðyl jXl , zlÞ 5 m0 1 EðMlÞizld 1 EðMlÞXlb1EðMlGlÞXlg

by imposing the exogeneity and location normalization condition Eð-l jzl , Xl ,
GlÞ 5 0.
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